
Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Lejun Zhou 1 Yi Ju 1 Scott Moura 1

Abstract
The Asymmetric Traveling Salesman Problem
(ATSP) is a generalization of the well-known NP-
hard Traveling Salesman Problem (TSP), where
edge costs depend on the direction of travel.
While recent learning-based solvers for TSP use
machine-learned heatmaps to guide Monte Carlo
Tree Search (MCTS), we find that MCTS alone
drives most of the performance, with heatmaps
offering limited standalone value. Moreover, ex-
isting MCTS methods are largely restricted to 2D
Euclidean TSPs, limiting real-world applicabil-
ity. To address these gaps, we propose a new
model combining an autoencoder and Graph Con-
volutional Network (GCN) to generate more in-
formative heatmaps. We also design a tailored
MCTS pipeline for ATSP, overcoming limitations
of prior frameworks. Our approach achieves state-
of-the-art results among learning-based methods
on ATSP with low inference-time cost.

1. Introduction
The Vehicle Routing Problem (VRP) is a fundamental com-
binatorial optimization challenge with broad applications
in logistics, transportation, and supply chain management.
The goal is to determine optimal routes for a fleet of vehi-
cles to visit a set of locations while minimizing a given cost
function, such as travel distance, time, or fuel consumption.

As a key special case of the Vehicle Routing Problem (VRP),
the Traveling Salesman Problem (TSP) involves a single
vehicle visiting all locations exactly once before returning
to the starting point. TSP is extensively studied as a funda-
mental benchmark in combinatorial optimization, serving
as a foundation for the development and evaluation of a
wide range of algorithms (Pop et al., 2024). Despite its sim-
plified structure, TSP remains a classic NP-hard problem,

1Department of Civil & Environmental Engineering, University
of California, Berkeley, USA. Correspondence to: Lejun Zhou
<lejun@berkeley.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

with the number of possible solutions growing factorially
with the number of locations. Consequently, finding exact
solutions for large-scale instances becomes computationally
intractable, underlining TSP’s importance as a benchmark
for designing efficient optimization methods (Lawler, 1985;
Applegate, 2006).

A more general and complex variant of the Traveling Sales-
man Problem is the Asymmetric Traveling Salesman Prob-
lem (ATSP), in which the cost of traveling from city i to city
j is not necessarily equal to the cost of traveling from j to i.
This asymmetry naturally arises in many real-world contexts,
such as one-way street networks, direction-dependent traf-
fic conditions, and constraints in logistics systems. Unlike
the symmetric TSP, where the solution space can be signif-
icantly reduced due to bidirectional symmetry, the ATSP
presents unique structural challenges that render many clas-
sical algorithms ineffective or inefficient. The ATSP not
only increases the solution space but also alters the com-
binatorial landscape of the problem, requiring specialized
algorithms and transformation techniques (Gutin & Punnen,
2006). These directional dependencies demand more so-
phisticated modeling and optimization strategies, making
ATSP a critical testbed and benchmarking tool for advanced
heuristics and learning-based solvers.

Traditionally, TSP and ATSP have been tackled using
mathematical programming techniques from the opera-
tions research (OR) community. Early approaches relied
on Integer Linear Programming (ILP) and Mixed-Integer
Linear Programming (MILP) formulations, including the
Miller-Tucker-Zemlin (MTZ) constraints (Miller et al.,
1960) and the Dantzig-Fulkerson-Johnson (DFJ) formula-
tions (Dantzig et al., 1954). These methods guarantee opti-
mality but suffer from exponential solving times as problem
size increases. To mitigate this, heuristics and metaheuris-
tics have been developed, such as the Lin-Kernighan heuris-
tic (Lin & Kernighan, 1973), Simulated Annealing (Kirk-
patrick et al., 1983), and Genetic Algorithms (Holland,
1992). While these methods provide high-quality approx-
imations, they still face fundamental limitations. Exact
methods remain impractical for large instances due to their
high computational complexity. Meanwhile, heuristic ap-
proaches lack guarantees on solution quality while often
requiring extensive parameter tuning. Moreover, formu-
lating TSP and ATSP constraints for real-world scenarios

1



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

further increases model complexity, making these traditional
techniques challenging to apply at scale (Laporte, 1992).

In recent years, learning-based approaches have emerged
as an alternative for solving combinatorial optimization
problems, including TSP. One of the earliest works in this
direction, Pointer Networks (Vinyals et al., 2015), demon-
strated the feasibility of using sequence-to-sequence models
for TSP by leveraging attention mechanisms. Later, rein-
forcement learning-based methods, such as Neural Combi-
natorial Optimization (Bello et al., 2016) and the Attention
Model (Kool et al., 2018), introduced policy gradient ap-
proaches for direct solution generation. Other methods, such
as Graph Neural Networks (GNNs) (Khalil et al., 2017), fur-
ther improved generalization by embedding combinatorial
structures into graph representations. These learning-based
methods showed promise in approximating solutions effi-
ciently, but they struggled with scaling to large problem
instances and often failed to outperform strong handcrafted
heuristics.

To enhance scalability, recent studies have explored
heatmap-guided Monte Carlo Tree Search (MCTS) as a
hybrid learning-and-search paradigm. In this framework,
machine learning models generate heatmaps that estimate
the likelihood of each edge belonging to the optimal solu-
tion. These heatmaps are then used as priors within MCTS
to guide the search toward high-quality solutions (Fu et al.,
2021; Qiu et al., 2022; Min et al., 2023; Sun & Yang, 2023).
By combining data-driven generalization with search-based
refinement, this approach achieves low optimality gaps on
large-scale TSP instances. However, despite its potential,
heatmap-guided MCTS faces critical limitations. The gen-
erated heatmaps often provide only coarse or noisy guid-
ance, resulting in poor performance when used to gener-
ate solutions without MCTS. Besides, the MCTS proce-
dure remains computationally intensive, especially for large-
scale instances. These challenges raise a fundamental ques-
tion: Are heatmaps truly crucial for enhancing solution
quality, or is the observed performance gain primarily at-
tributable to the computationally expensive MCTS simula-
tion itself? (Xia et al., 2024)

In addition, although dozens of research papers on learning-
based approaches for TSP/VRP were published1, most mod-
els are exclusively tailored to Euclidean instances2. Only
very limited (and to some extent isolated) research has
been performed on TSP/VRPs whose distance matrices are

1The github page Awesome Machine Learning for Combina-
torial Optimization Resources collects 69 papers under the TSP
section and 41 papers under the VRP section (accessed on 18 May,
2025).

2In this paper, by ”non-Euclidean” instances, we primarily refer
to the class of Asymmetric TSP (ATSP). These are characterized
by distance matrices that may satisfy the triangle inequality but are
not necessarily symmetric or derived from any underlying norm.

not induced by a Euclidean norm. To the best of the au-
thors’ knowledge, MatNet (Kwon et al., 2021) , BQ-NCO
(Drakulic et al., 2023) and UniCO (Pan et al., 2025), are the
only three papers which make general and systematic contri-
butions to this problem. Although MatNet was published 3
years ago, few papers include a task on non-Euclidean TSP
when evaluating their innovations. As one example, GLOP
(Ye et al., 2024) did include an ATSP task which directly
used pre-trained MatNet models as sub-solver.

Furthermore, existing MCTS-based methods are inherently
tied to the symmetric structure of classical TSP, where prop-
erties such as bidirectional edge equivalence simplify search
and pruning. This reliance on symmetry makes them ill-
suited for direct application to ATSP. To date, no significant
innovation has been introduced to adapt MCTS for asymmet-
ric problems, underscoring the need for novel algorithmic
developments in this space.

Building on these insights, we introduce a new MCTS
framework specifically adapted to the Asymmetric Trav-
eling Salesman Problem (ATSP), thereby extending its ap-
plicability to a broader class of combinatorial optimization
problems. In addition, we propose a novel model that inte-
grates an autoencoder with a Graph Convolutional Network
(GCN) to generate heatmaps specifically tailored to comple-
ment MCTS. Our key contributions are as follows:

• Reevaluating heatmaps and MCTS: We revisit the
contributions of heatmaps in previous learning-based
solvers and show that their standalone effectiveness
is limited, with MCTS playing the dominant role
in optimization. In addition, we analyze the limita-
tions of existing MCTS frameworks—such as their re-
liance on random initialization and symmetric assump-
tions—which hinder their applicability to asymmetric
problems like ATSP.

• Enhancing heatmap quality via model design: We
propose a new heatmap generation model that inte-
grates an autoencoder with a Graph Convolutional Net-
work (GCN). The autoencoder enables the model to
capture global structural patterns and compress rel-
evant information to low dimensional node features,
resulting in more informative and effective heatmaps.

• Extending MCTS to ATSP: With the structural prop-
erties of ATSP, we design a modified MCTS framework
capable of handling asymmetry in edge costs. This
extension enables MCTS to solve a broader class of
combinatorial problems beyond symmetric TSP, with
improved performance on ATSP benchmarks.

2

https://github.com/Thinklab-SJTU/awesome-ml4co
https://github.com/Thinklab-SJTU/awesome-ml4co


Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

2. Preliminary Analysis
2.1. Evaluating Heatmaps

Recent learning-based solvers often rely on machine learn-
ing models to generate heatmaps, which are then used as
priors in Monte Carlo Tree Search (MCTS) to guide solution
construction. However, these works typically report only the
final performance achieved with MCTS, leaving the true ef-
fectiveness of the heatmaps themselves unclear. To evaluate
their role in the optimization process, we conduct an em-
pirical study by assessing solutions for TSP instances con-
structed directly by heatmaps — without applying MCTS.
Specifically, we use previously proposed model UTSP (Min
et al., 2023) to generate heatmaps and construct solutions by
greedily selecting edges with the highest probabilities. As a
performance metric, we adopt the optimality gap, defined as
the percentage difference between the obtained solution and
the known optimal solution. Our results show that solutions
derived solely from heatmaps exhibit substantial optimality
gaps, indicating that heatmaps alone fail to reliably capture
the structure of high-quality solutions.

To further assess whether the learned heatmaps offer supe-
rior guidance, we compare them against two straightforward
baselines: (1) a naı̈ve heuristic-based heatmap (referred to
as SoftDist in the remainder of this paper), which assigns
probabilities to edges based on their distances using a soft-
max function that favors shorter edges (Xia et al., 2024),
and (2) a random heatmap with uniform edge probabilities.
To ensure fairness, we allocate the same average MCTS
search time T = 0.01×N per instance across all methods,
where T denotes the average search time per instance (in
seconds), and N is the size of the TSP instance. For ex-
ample, a TSP instance with 200 nodes is allocated a time
budget of 0.01× 200 = 2 seconds.

Surprisingly, solutions constructed using the SoftDist
heatmap and the random heatmap—when combined with
MCTS—perform comparably to, and in some cases even
better than, those guided by certain state-of-the-art learned
models. The corresponding optimality gaps are reported in
Table 1, and visualizations of the generated solutions are
provided in Appendix A.

These findings highlight a fundamental limitation of existing
heatmap-based approaches: they often fail to learn meaning-
ful structural information during training, preventing them
from consistently encoding the fine-grained characteristics
of optimal solutions. As a result, when used without addi-
tional refinement, such heatmaps may mislead the search
process rather than enhance it. These observations under-
score the need to rethink how to improve the informative-
ness and reliability of learned heatmaps in combinatorial
optimization.

Table 1. Optimality Gap Comparison for Different Approaches

Method 100 200 500 1000

LH+G 43.7% 37.7% 44.3% 40.2%
HH+G 24.8% 25.5% 25.5% 24.4%
LH+M 0.03% 0.76% 4.23% 5.62%
HH+M 0.03% 0.80% 4.07% 4.26%
RH+M 0.03% 0.75% 4.58% 4.85%

Description: The table reports the average optimality gap (%) of
different approaches on TSP instances with 100, 200, 500, and

1000 nodes, with 100 instances evaluated per node size. LH refers
to heatmaps generated by model UTSP, HH refers to SoftDist
heatmaps, and RH indicates random heatmaps. G represents

greedy inference, where edges with the highest probabilities are
selected directly, while M denotes MCTS-based inference, where
heatmaps serve as priors to guide the search. In the table, lower

optimality gap values correspond to higher solution quality.

2.2. Evaluating MCTS

Monte Carlo Tree Search, as applied to the TSP in previous
papers, operates by first generating an initial solution, then
applying 2-OPT, followed by a k-OPT3 search procedure
guided by heatmaps (hereafter referred to as MCTS for
brevity). A brief overview of this MCTS framework is
provided in Appendix B, and we refer interested readers to
the original work (Fu et al., 2021) for a more comprehensive
treatment.

Although previous studies demonstrated that MCTS was ca-
pable of producing near-optimal solutions for TSP, a closer
examination revealed several critical limitations:

1. Lack of heatmap usage in initialization. The pre-
vious MCTS framework did not use the heatmap to
generate the initial tour; instead, it relied on random
initialization followed by local search improvements.
This design choice was motivated by two key con-
siderations. First, previous heatmaps often lacked the
granularity needed to construct informative initial tours.
Second, avoiding deterministic initialization promoted
exploration, as random starts increased the likelihood
of escaping local optima and discovering globally com-
petitive solutions. However, this strategy was compu-
tationally intensive, as it required many iterations to
reliably obtain a high-quality starting tour.

2. Dependence on TSP symmetry. The previous MCTS
framework implicitly assumed symmetric edge costs,
both in its 2-OPT and k-OPT simulation steps. Dur-
ing each local move, it evaluated the cost difference

3k-OPT is a local search heuristic that improves a given tour
by removing k edges and reconnecting the remaining segments in
a different way to obtain a shorter tour. The most common variants
are 2-OPT and 3-OPT. (Helsgaun, 2009)

3



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

between the tours using a simple formula:

∆ = cost of removed edges− cost of added edges,

and then performed a reversal of the affected sub-tour.
While this was effective for symmetric TSPs, it was
inappropriate for ATSP, where reversing a sub-tour did
not preserve cost due to asymmetry in the distance
matrix.

3. Limited contribution from k-OPT. In our experi-
ments, we observed that most improvements of pre-
vious MCTS framework occurred during the 2-OPT
phase, with the k-OPT search contributing little to the
overall solution quality. This suggested that the effec-
tiveness of MCTS was largely driven by 2-OPT, which
did not utilize the heatmap. This observation helped
explain why a wide range of heatmaps, regardless of
quality, tended to produce competitive results when
combined with MCTS—because the heatmap itself
played a minor role.

Given these limitations, it becomes evident that the previ-
ous MCTS framework is not well-suited for solving ATSP
instances. To address these issues, we propose a new MCTS
pipeline specifically tailored for ATSP. Our framework in-
corporates heatmap-based initialization, handles asymmet-
ric edge costs explicitly during local search, and leverages
improved edge evaluation strategies to better exploit the
structural information captured by learned heatmaps. The
details of this modified pipeline are presented in the follow-
ing sections.

2.3. Transformations for ATSP

The Asymmetric Traveling Salesman Problem (ATSP) is a
generalization of the classic Traveling Salesman Problem
(TSP), where the cost of traveling between two locations
depends on the direction of travel. Formally, given a set
of n cities and a distance matrix D ∈ Rn×n, the objective
is to find a Hamiltonian cycle (visiting each city exactly
once) while minimizing the total travel cost. Unlike TSP,
where the distance matrix is symmetric (D = D⊤), ATSP
instances are characterized by asymmetric costs (D ̸=
D⊤).

The inherent asymmetry of the ATSP introduces significant
complexity, as many optimization techniques developed for
the symmetric TSP rely on the assumption that reversing a
segment of a tour does not alter its cost (see Section 2.2).
Consequently, these methods often perform poorly when
applied directly to the ATSP, underscoring the need for
specialized algorithms.

Inspired by the classical transformation proposed by Jonker
and Volgenant (Jonker & Volgenant, 1983), which converts

an ATSP instance into an equivalent expanded symmetric
TSP, we extend this idea beyond merely transforming the
distance matrix. Specifically, we apply the transformation
to the learned heatmap, guided by structural insights into
the ideal solution of the expanded symmetric instance.

The details of this heatmap-based transformation process
are provided in Appendix C. The resulting transformed
heatmap is compatible with downstream search operations
and significantly enhances the effectiveness of MCTS in the
asymmetric setting.

3. Methodology
3.1. Model Inference Pipeline

Our approach begins with a distance matrix that defines
the cost between all node pairs in an ATSP instance. This
matrix is first processed by an autoencoder, which aims to
capture global structural patterns through a low dimensional
representation, which can be treated as node features after-
wards. The resulting node features augment the original
edge features (distance matrix), are then fed into a Graph
Convolutional Network (GCN) to generate a heatmap—a
matrix estimating the likelihood that each edge belongs to
the optimal tour.

We apply a transformation that expands both the original
distance matrix and the heatmap, as detailed in Appendix C.
This heatmap serves as a prior to guide our refined MCTS
framework tailored for ATSP. Unlike previous approaches,
our MCTS leverages the heatmap to generate initial tours
for further refinement. Then the search process is restricted
to 3-OPT operations, guided by a potential function derived
from the heatmap. The tour is iteratively refined until the
predefined time budget is exhausted. An overview of the
proposed model inference pipeline is illustrated in Figure 1.

Figure 1. Model Inference Pipeline

4



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

3.2. GCN and Autoencoder

3.2.1. GRAPH CONVNET

Our network builds upon the work (Joshi et al., 2019), which
employs a Graph Convolutional Network (GCN) to directly
output a probability heatmap matrix, where each entry rep-
resents the likelihood that a given edge is part of the optimal
tour. Detailed architecture and implementation are provided
in Appendix D.

3.2.2. AUTOENCODER

In the TSP setting, node coordinates serve as effective input
features, capturing spatial relationships directly. However,
for the Asymmetric TSP (ATSP), such coordinates are typi-
cally unavailable. To obtain node embeddings that capture
spatial structure purely from the distance matrix, we design
an autoencoder-based representation learning module.

Let D ∈ Rn×n denote the normalized distance matrix of an
ATSP instance with n nodes. For each node i, we extract its
outgoing and incoming distance vectors, Di,: and D:,i re-
spectively, and concatenate them with a learnable positional
embedding PE(i) ∈ Rp. The input to the encoder is thus:

xi = [Di,: ∥D:,i ∥PE(i)] ∈ R2n+p, (1)

where ∥ denotes vector concatenation.

The encoder network maps this input to a latent embedding:

zi = Encoder(xi) ∈ Rd, (2)

where d is the embedding dimension. A decoder then at-
tempts to reconstruct the outgoing distance vector from this
latent representation:

D̂i,: = Decoder(zi) ∈ Rn. (3)

The model is trained to minimize the mean squared recon-
struction error over all nodes:

L =
1

n

n∑
i=1

∥∥∥D̂i,: −Di,:

∥∥∥2
2
. (4)

After training, we retain only the encoder and use the full
d-dimensional embedding zi for each node. These learned
embeddings serve as spatial representations that replace
traditional coordinates and are used as input features for
downstream models such as Graph Convolutional Networks
(GCNs).4

4An alternative approach is to apply singular value decom-
position (SVD) to the distance matrix. In our experiments, we
found that SVD takes longer to generate node embeddings, while
achieving similar final performance compared to the autoencoder.
Therefore, we adopt the autoencoder-based approach in this work.

3.3. MCTS with Only 3-OPT

3.3.1. HEATMAP AND DISTANCE MATRIX
TRANSFORMATION

To solve an ATSP instance, the original distance matrix
is first passed through the autoencoder to generate node
embeddings, which are then used by the GCN to produce
an edge potential heatmap H . Before initiating the MCTS
procedure, both the heatmap and the distance matrix are
transformed. The details of this transformation are provided
in Appendix C. After transformation, we obtain a expanded
heatmap H̃ and a corresponding distance matrix suitable for
use in the MCTS framework.

3.3.2. INITIAL SOLUTION GENERATION

To construct the initial solution, we adopt a stochastic pro-
cedure guided by the heatmap. Starting from a fixed node,
the algorithm iteratively selects the next node based on a
softmax distribution over unvisited candidates, where the
logits correspond to the heatmap scores. Specifically, given
the current node c, the probability of selecting an unvisited
node i is given by:

P (i | c) =
exp

(
H̃c,i

τ

)
∑

j /∈visited exp
(

H̃c,j

τ

) , (5)

where H̃ ∈ R2n×2n is the expanded heatmap and τ > 0
is a temperature parameter controlling the randomness of
the selection. Lower values of τ produce greedier behavior,
while higher values encourage more exploration.

3.3.3. 3-OPT LOCAL SEARCH

We apply a 3-OPT local search to refine the initial solution
by iteratively replacing three edges with a different set of
three, aiming to reduce the overall tour cost.

Each 3-OPT move begins from a base node a, where we
evaluate candidate connections b′. The candidate set is
selected based on the following potential score:

Za,b′ = H̃a,b′ + α · ln(M + 1)

Qa,b′ + 1
, (6)

where H̃a,b′ denotes the heatmap score from the transformed
probability matrix, which is updated dynamically through-
out the simulation. M is the total number of simulation
steps, and Qa,b′ is the number of times that edge (a, b′) has
been assessed during 3-OPT. This formulation balances the
learned prior with an exploration term, encouraging diverse
search behavior.

We denote the successor of node u in the tour as u′ (i.e.,
there exists an edge u → u′). As illustrated in Figure 2,

5



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Figure 2. A 3-OPT Move Example

once a candidate pair (a, b′) is selected, the edges (a, a′)
and (b, b′) are designated for removal.

To determine the third edge to cut, we simulate traversals
starting from edge (b, b′) and explore the sequence of con-
nected edges until we loop back to (a, a′). Among the
visited candidates, the best third edge is selected based on
the potential improvement in tour cost. After cutting three
edges, the tour is divided into three subtours. Since our re-
connection strategy always links the head of one subtour to
the tail of another, the internal order of each subtour remains
unchanged, and no edge reversals are required. Under this
constraint, the change in cost of a 3-OPT move is computed
as:

∆ = (da,a′ + db,b′ + dc,c′)− (da,b′ + db,c′ + dc,a′), (7)

where (a, a′), (b, b′), and (c, c′) are the original edges to be
removed, and (a, b′), (b, c′), and (c, a′) are the new edges
introduced by the move. An example of our 3-OPT move is
illustrated in Figure 2. If a gainful move is found, we apply
the exchange and update both the heatmap H̃ and the access
frequency matrix Q accordingly. Otherwise, we proceed to
evaluate the next candidate b′ for the current base node until
all candidates have been tested. This 3-OPT procedure is
repeated for different base nodes until every node in the tour
has been considered.

The Initial Solution Generation followed by 3-OPT Lo-
cal Search is repeated iteratively until the predefined time
budget is exhausted. The complete procedure and detailed
analysis are provided in Appendix E.

4. Experiments
4.1. Training

4.1.1. TRAINING DATA

We construct the training dataset using ATSP instances
solved by the exact solver Concorde (Applegate et al., 2006).
Details on the generation of ATSP instances can be found
in Appendix F.

4.1.2. TRAINING PROCEDURE

During training, we adopt a supervised learning framework
in which each ATSP instance is paired with its correspond-
ing optimal solution, as illustrated in Figure 3. The GCN
model is trained using the loss function detailed in Ap-
pendix D. The network architecture comprises four residual
gated GCN layers, followed by two fully connected MLP
layers, with a hidden dimension of 64 throughout. We train
the model on 10,000 instances using a batch size of 64 for
100 epochs, leveraging an NVIDIA GeForce RTX 4060
Laptop GPU.

Figure 3. Supervised Training Pipeline

4.2. Test Results

4.2.1. 100 NODE ATSP TEST

We conduct tests using a 13th Gen Intel® Core™ i9-13900H
CPU. To evaluate the performance of our model, we test it on
1000 ATSP instances with 100 nodes and compare its results
against several baselines: an exact solver (Concorde) (Ap-
plegate et al., 2006), a classical heuristic algorithm (LKH-
3) (Helsgaun, 2000), and a recent learning-based solver
(UniCO) (Pan et al., 2025). The results are summarized in
Table 2.

Table 2. Performance of our technique compared to non-learned
baselines and state-of-the-art learning-based solver (UniCO) on
100-node ATSP instances.

Method Solving Time (s) Optimality Gap (%)

Concorde 31.00 0.00
LKH-3 4.20 0.30
UniCO 0.67 3.55
Ours 0.60 1.71

Our method achieves a strong balance between speed and ac-
curacy. While Concorde provides exact solutions, it requires
significantly more computation time. Compared to LKH-
3, our method is roughly seven times faster and achieves
a competitive optimality gap. More notably, compared to

6



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

the latest learning-based solver UniCO, our model not only
reduces the optimality gap from 3.55% to 1.71%, but also
improves inference speed.5 These results demonstrate that
our GCN-guided MCTS framework is both computationally
efficient and solution-effective for solving ATSP instances.

To further evaluate whether the heatmap generated by our
neural network provides effective guidance for solution gen-
eration, we compare its performance against three alter-
native heatmaps. The first is a random heatmap, where
all entries are assigned uniform probability, implying no
learned information is incorporated. The second is the Soft-
Dist heatmap, constructed from pairwise edge distances
using a softmax function that favors shorter edges (Xia
et al., 2024). The third is generated by the UTSP neural
model (Min et al., 2023), which learns edge probabilities in
an unsupervised manner. We evaluate all heatmaps using
three inference strategies—greedy selection, sampling, and
MCTS—on 100-node ATSP instances. As shown in Ta-
ble 3, our learned heatmap consistently achieves the lowest
optimality gap across all settings, demonstrating its strong
guidance for solution generation.

Without applying MCTS, our heatmap still significantly out-
performs the alternatives. These results indicate that neither
SoftDist nor UTSP captures sufficient structural information
for ATSP instances. In contrast, our model learns a more
effective edge selection prior, enabling high-quality initial
solutions even before refinement. When combined with
MCTS, all methods benefit from local search improvements.
This highlights the effectiveness of our search framework
in producing near-optimal tours within a short computation
time.

To evaluate the stability of our model’s performance, we
compute the optimality gap for each instance under vary-
ing time budgets and visualize the distribution using box
plots in Figure 4. The figure illustrates how the optimal-
ity gap varies across three time budgets: 0.2s, 0.4s, and
0.6s per instance. As the time budget increases, the me-
dian optimality gap consistently decreases, indicating that
the model effectively utilizes additional computation time
to improve solution quality. Furthermore, the interquartile
range (IQR) narrows with longer budgets, reflecting greater
consistency and reduced variability across instances. These
results demonstrate that our model delivers stable and robust
performance, progressively refining solutions with minimal
sensitivity to time constraints.

Additional experiments and analyses can be found in Ap-
pendix G.

5Since the original paper did not report the solving time for
ATSP separately, we estimated it based on the ratio of solving
times relative to the exact solver to obtain an approximate value.

Table 3. Performance comparison of different heatmaps under vari-
ant inference strategy on 100-node ATSP instances.

Method Inference Optimality Gap (%)

Random Greedy 296.31
UTSP Greedy 279.22
SoftDist Greedy 113.69
Ours Greedy 14.99

Random Sampling (x128) 263.49
UTSP Sampling (x128) 242.30
SoftDist Sampling (x128) 85.81
Ours Sampling (x128) 7.74

Random MCTS 4.64
UTSP MCTS 4.24
SoftDist MCTS 3.42
Ours MCTS 1.71

Greedy refers to selecting the next node with the highest
probability directly from the heatmap. Sampling (x128) indicates
that nodes are sampled according to the probability distribution in

the heatmap, with 128 initial tours generated and the best one
selected. MCTS refers to our proposed Monte Carlo Tree Search,

with a searching time budget of 0.6 seconds per instance.

4.2.2. 1000-NODE ATSP TEST

To assess the scalability of our model, we perform experi-
ments on 1000-node ATSP networks. Specifically, we eval-
uate performance on 50 ATSP instances, each containing
1,000 nodes. To facilitate these tests, we adopt a divide-
and-conquer paradigm through the GLOP framework (Ye
et al., 2024). The results of our GLOP-augmented model,
compared to the classical heuristic LKH-3 (Helsgaun, 2000),
are presented in Table 4.

Table 4. Performance comparison between LKH-3 and our GLOP-
augmented model on 1000-node ATSP instances

Method Avg. Solving Time (s) Avg. Tour Distance

LKH-3 217.11 57.51
Ours 21.23 61.08

The results show that with significantly lower average solv-
ing time, our GLOP-augmented model achieves demonstra-
bly superior efficiency on large-scale instances. Although
the average tour distance is slightly higher, the trade-off
is reasonable given the one order of magnitude reduction
in computational cost, making our method well-suited for
time-sensitive or resource-constrained scenarios.

7



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Figure 4. Distribution of optimality gaps for our method across
instances under different time budgets. Each box plot represents
the variability and robustness of the model’s performance at a
specific time setting.

5. Conclusion and Future Work
Conclusion In this paper, we evaluated the roles of
heatmaps and Monte Carlo Tree Search (MCTS) in prior
works. Building upon these insights, we proposed a new
learning-based framework for solving the Asymmetric Trav-
eling Salesman Problem (ATSP)—a complex NP-hard com-
binatorial optimization problem. Powered by learned priors
and guided search, our method achieves strong performance
and high efficiency compared to existing general neural
solvers. It also establishes a useful benchmark for future
research, paving the way for continued advancements in this
domain.

Limitations and Future Work While our model ad-
vances beyond the classical TSP to tackle the more complex
ATSP, it is not yet equipped to handle richer constraints
such as stochastic or dynamic conditions. Moreover, this
work remains limited to TSP-based problems. In future
work, we aim to extend our approach to a broader class of
combinatorial optimization problems, including the Capac-
itated Vehicle Routing Problem (CVRP), VRP with Time
Windows, and beyond.

References
Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-

corde tsp solver, 2006.

Applegate, D. L. The traveling salesman problem: a com-
putational study, volume 17. Princeton university press,
2006.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Dantzig, G., Fulkerson, R., and Johnson, S. Solution of a
large-scale traveling-salesman problem. Journal of the
operations research society of America, 2(4):393–410,
1954.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli,
J.-M. Bq-nco: Bisimulation quotienting for efficient
neural combinatorial optimization. Advances in Neural
Information Processing Systems, 36:77416–77429, 2023.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large tsp instances. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pp. 7474–7482, 2021.

Gutin, G. and Punnen, A. P. The traveling salesman prob-
lem and its variations, volume 12. Springer Science &
Business Media, 2006.

Helsgaun, K. An effective implementation of the lin–
kernighan traveling salesman heuristic. European journal
of operational research, 126(1):106–130, 2000.

Helsgaun, K. General k-opt submoves for the lin–kernighan
tsp heuristic. Mathematical Programming Computation,
1:119–163, 2009.

Holland, J. H. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press, 1992.

Jonker, R. and Volgenant, T. Transforming asymmetric
into symmetric traveling salesman problems. Operations
Research Letters, 2(4):161–163, 1983.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. science, 220(4598):
671–680, 1983.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kwon, Y.-D., Choo, J., Yoon, I., Park, M., Park, D., and
Gwon, Y. Matrix encoding networks for neural combi-
natorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

8



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Laporte, G. The traveling salesman problem: An overview
of exact and approximate algorithms. European Journal
of Operational Research, 59(2):231–247, 1992.

Lawler, E. L. The traveling salesman problem: a guided
tour of combinatorial optimization. Wiley-Interscience
Series in Discrete Mathematics, 1985.

Lin, S. and Kernighan, B. W. An effective heuristic algo-
rithm for the traveling-salesman problem. Operations
research, 21(2):498–516, 1973.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. Integer pro-
gramming formulation of traveling salesman problems.
Journal of the ACM (JACM), 7(4):326–329, 1960.

Min, Y., Bai, Y., and Gomes, C. P. Unsupervised learning
for solving the travelling salesman problem. Advances
in Neural Information Processing Systems, 36:47264–
47278, 2023.

Pan, W., Xiong, H., Ma, J., Zhao, W., Li, Y., and Yan,
J. UniCO: On unified combinatorial optimization via
problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=yEwakMNIex.

Pop, P. C., Cosma, O., Sabo, C., and Sitar, C. P. A com-
prehensive survey on the generalized traveling salesman
problem. European Journal of Operational Research,
314(3):819–835, 2024.

Qiu, R., Sun, Z., and Yang, Y. Dimes: A differentiable
meta solver for combinatorial optimization problems. Ad-
vances in Neural Information Processing Systems, 35:
25531–25546, 2022.

Sun, Z. and Yang, Y. Difusco: Graph-based diffusion solvers
for combinatorial optimization. Advances in neural infor-
mation processing systems, 36:3706–3731, 2023.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
Advances in neural information processing systems, 28,
2015.

Xia, Y., Yang, X., Liu, Z., Liu, Z., Song, L., and Bian,
J. Position: Rethinking post-hoc search-based neural
approaches for solving large-scale traveling salesman
problems. arXiv preprint arXiv:2406.03503, 2024.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
Glop: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 20284–20292, 2024.

9

https://openreview.net/forum?id=yEwakMNIex
https://openreview.net/forum?id=yEwakMNIex


Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

A. Visual Comparison of Heatmap-Guided Tours
To illustrate the impact of different heatmap priors on solution quality, we visualize the tours generated for a TSP instance
under the guidance of two distinct heatmaps: (1) UTSP Heatmap—a learned heatmap produced by the trained model (Min
et al., 2023), and (2) SoftDist Heatmap—a naı̈ve heuristic-based heatmap that assigns edge probabilities using a softmax
function over inverse distances, thereby favoring shorter edges (Xia et al., 2024). Tours are constructed using either greedy
inference or Monte Carlo Tree Search (MCTS) guided by these priors.

We begin with a 100-node TSP instance and visualize the tours generated under the guidance of the UTSP heatmap, as
illustrated in Figure 5. The results show that the UTSP heatmap alone fails to capture critical structural patterns of the
optimal route, resulting in poor performance when a greedy inference strategy is applied. In contrast, when the UTSP
heatmap is combined with MCTS, the generated tour closely matches the optimal one in cost, indicating that the performance
improvement is primarily driven by the MCTS procedure rather than the heatmap.

Figure 5. Tours generated for a 100-node TSP instance. The first tour is the optimal solution obtained from an exact solver, while the latter
two are generated using the UTSP heatmap via greedy inference and MCTS.

We then apply the same 100-node TSP instance to visualize the tours generated under the guidance of the SoftDist heatmap,
as shown in Figure 6. Compared to the UTSP heatmap, the SoftDist heatmap alone captures more structural information
about the optimal solution, resulting in a lower-cost tour under greedy inference. When combined with MCTS, the resulting
tour again closely approximates the optimal cost, further emphasizing the critical role of MCTS in achieving high-quality
solutions.

Figure 6. Tours generated for a 100-node TSP instance. The first tour is the optimal solution obtained from an exact solver, while the latter
two are generated using the SoftDist heatmap via greedy inference and MCTS.

10



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

For reference, we also visualize the tours for two additional 100-node TSP instances. In both cases, the results consistently
support the conclusions discussed above.

Figure 7. Tour visualizations for a 100-node TSP instance using UTSP and SoftDist heatmaps.

Figure 8. Tour visualizations for a second 100-node TSP instance using UTSP and SoftDist heatmaps.

11



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

B. Previous Monte Carlo Tree Search
In this part, we briefly introduce the Monte Carlo Tree Search (MCTS) method from (Fu et al., 2021). MCTS is a k-OPT
process guided by the heatmap, which iteratively refines a complete TSP solution π by alternating edge deletions and
additions. The selection of edges during k-OPT is influenced by a weight matrix W and an access matrix Q, both of which
are dynamically updated based on k-OPT outcomes. Here, Wi,j scores the suitability of edge (i, j) in the solution, while
Qi,j records the number of times edge (i, j) is selected.

Initial Tour. An initial tour π is constructed randomly, with the constraint that each node is visited exactly once. Pure
randomness is used here—rather than a heatmap-based initialization—to avoid deterministic patterns and encourage diverse
starting solutions.

2-OPT Search. A 2-OPT local search is applied to improve the initial solution. In this phase, edge exchanges are guided
purely by the distance matrix; the heatmap is not used. This helps refine the initial tour based solely on problem geometry.

k-OPT Search. In this phase, the heatmap H is used to initialize the weight matrix W via Wi,j = 100×Hi,j . The access
matrix Q is initialized with all elements set to zero. An edge potential matrix Z guides the k-OPT process by balancing
exploitation and exploration. The edge potential Zi,j is defined as:

Zi,j =
Wi,j

Ωi
+ α

√
ln(M + 1)

Qi,j + 1
, (8)

where Ωi is the average weight of edges connected to vertex i:

Ωi =

∑
j ̸=i Wi,j

n− 1
, (9)

α controls the exploration-exploitation trade-off, and M is the total number of actions sampled so far.

Each k-OPT action is represented as a vertex decision sequence (a1, b1, a2, b2, . . . , ak, bk, ak+1) with ak+1 = a1. This
sequence involves removing k edges (ai, bi) and inserting k new edges (bi, ai+1) for 1 ≤ i ≤ k. Given bi, the next vertex
ai+1 is sampled according to the edge potential Zi,j . The tour π is then updated to πnew, the associated metrics M and Q
are updated accordingly.

Backpropagation. If a better solution πnew is found such that c(πnew) < c(π), the weights of the newly added edges from
the k-OPT action are reinforced using the following rule:

Wi,j ←Wi,j + β

[
exp

(
c(π)− c(πnew)

c(πnew)

)
− 1

]
, (10)

where β is the update rate.

All the above steps are executed sequentially and repeated multiple times until the time budget is exhausted.

12



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

C. ATSP Transformation
We transform the Asymmetric TSP (ATSP) instance into an equivalent Symmetric TSP (STSP) instance using the Jonker-
Volgenant (1983) transformation (Jonker & Volgenant, 1983). This transformation is applied to both the distance matrix and
the model-generated heatmap.

Distance Matrix Transformation Let ATSP(D) denote an asymmetric traveling salesman problem (ATSP) defined on a
distance matrix D = (dij), where i, j ∈ N , and N = {1, 2, . . . , n} is the set of nodes. The asymmetry is characterized by
dij ̸= dji for i ̸= j.

Let the modified matrix D̄ be identical to D except that

d̄ii = −M (for all i ∈ N), (11)

where M is a very large constant.

Let U = (uij) be an n× n matrix with uij =∞ for all i, j ∈ N . We propose transforming the asymmetric ATSP(D) into
a symmetric TSP defined on the distance matrix

D̃ =

[
U D̄
D̄⊤ U

]
, (12)

which we denote as TSP(D̂). The node set of TSP(D̂) is {1, 2, . . . , n, n+ 1, . . . , 2n}.

The optimal solutions of TSP(D̂) belong to a class of solutions with finite cost that contain exactly n edges of weight −M .
Due to the symmetry of D̂, these solutions occur in pairs. It is easy to verify that each solution in this class takes the form:

i1 → (i1 + n)→ i2 → (i2 + n)→ · · · → in → (in + n)→ i1,

where ik ∈ N for k = 1, 2, . . . , n.

There is a one-to-one correspondence between the set of such TSP(D̃) solutions and the solutions of the original ATSP(D).
To recover the ATSP solution from TSP(D̃), we can simply remove all nodes with indices greater than n, and add n ·M to
the total cost to offset the artificially inserted edges with cost −M .

Heatmap Transformation Based on the structural property of the optimal solution in the transformed space, we expand
the asymmetric heatmap H ∈ [0, 1]n×n into a expanded heatmap H̃ ∈ [0, 1]2n×2n as follows:

H̃ =

[
0 U
H 0

]
, where Ui,j =

{
1 if j = i+ n

0 otherwise
(13)

The top-right block U encodes a strong prior, encouraging each original node i to be followed by its corresponding dummy
node i+ n, thereby reinforcing the structural pattern commonly observed in optimal solutions of the expanded symmetric
TSP. The bottom-left block replicates the original heatmap H , guiding transitions from dummy nodes back to real nodes
and preserving the learned edge preferences of the ATSP model. Note that although the transformed distance matrix D̃ is
symmetric, the expanded heatmap H̃ remains asymmetric.

Tour Conversion The resulting symmetric instance is solved as a TSP over 2n nodes. The output tour alternates between
original and dummy nodes in the pattern i→ i+ n→ · · · . The final ATSP tour is recovered by removing the dummy nodes
from this alternating sequence.

13



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

D. Graph Convolutional Network (GCN)
Input Layer Each node is represented by a k-dimensional feature vector {xi} from the autoencoder, which is projected
into an h-dimensional node embedding as follows:

αi = A1xi + b1, (14)

where A1 ∈ Rh×k and b1 ∈ Rh.

Similarly, the edge distance dij is embedded into an h-dimensional edge feature. The resulting edge embedding βij is
computed as:

βij = A3 · ReLU(A2dij), (15)

where A2 ∈ Rh×1 and A3 ∈ Rh×h.

Graph Convolution Layer Let xℓ
i and eℓij denote the node and edge embeddings at layer ℓ, corresponding to node i and

edge (i, j), respectively. The embeddings at the next layer are updated as follows:

xℓ+1
i = xℓ

i + ReLU

BN

W ℓ
1x

ℓ
i +

∑
j∼i

ηℓij ⊙W ℓ
2x

ℓ
j

 , (16)

ηℓij =
σ(eℓij)∑

j′∼i σ(e
ℓ
ij′) + ε

, (17)

eℓ+1
ij = eℓij + ReLU

(
BN

(
W ℓ

3e
ℓ
ij +W ℓ

4x
ℓ
i +W ℓ

5x
ℓ
j

))
, (18)

where W ℓ
n ∈ Rh×h are learnable weight matrices, σ(·) denotes the sigmoid function, ε is a small constant for numerical

stability, ReLU is the rectified linear unit, and BN denotes batch normalization. At the input layer, we initialize with x0
i = αi

and e0ij = βij .

MLP Classifier The edge embedding eLij from the final layer is used to estimate the likelihood that edge (i, j) is part of
the optimal tour. First, each embedding is passed through a Multi-Layer Perceptron (MLP) to produce a scalar score. Then,
a softmax operation is applied over all outgoing edges from node i to obtain a normalized probability distribution:

pij =
exp(MLP(eLij))∑

j′∼i exp(MLP(eLij′))
. (19)

This ensures that
∑

j′∼i pij′ = 1 for each node i, and pij ∈ (0, 1) represents the probability of selecting edge (i, j).

Loss function Given the ground-truth TSP tour permutation π, we convert it into a binary adjacency matrix Y ∈ {0, 1}n×n,
where yij = 1 if edge (i, j) belongs to the tour, and 0 otherwise. The model predicts a probability matrix Ŷ ∈ (0, 1)n×n,
where each element ŷij represents the predicted likelihood that edge (i, j) is part of the optimal tour.

To handle the severe class imbalance (few tour edges vs. many non-tour edges), we minimize a weighted binary cross-entropy
loss:

LBCE = − 1

n2

n∑
i=1

n∑
j=1

[
w1 · yij · log(ŷij + ε)

+ w0 · (1− yij) · log(1− ŷij + ε)

]
(20)

where ε is a small constant to ensure numerical stability.

According to the previous work (Joshi et al., 2019), the class weights w0 and w1 are computed to balance the positive and
negative classes:

w0 =
n2

(n2 − 2n) · c
, w1 =

n2

(2n) · c
, c = 2, (21)

where c is the number of classes. This formulation ensures that the loss is not dominated by the negative class and encourages
the model to correctly identify edges belonging to the TSP tour.

14



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

E. Monte Carlo Tree Search with only 3-OPT Optimization
The output of the Graph Convolutional Network is a heatmap H ∈ Rn×n. Following the transformation described in
Appendix C, we construct an expanded symmetric distance matrix D̃ and a corresponding expanded heatmap H̃ ∈ R2n×2n,
where each entry H̃i,j represents the learned likelihood of selecting edge (i, j) as part of the optimal tour. The expanded
heatmap H̃ and distance matrix D̃ are then used as input to our MCTS framework.

E.1. Heatmap-Guided Initialization

To generate an initial solution, we employ a softmax-based stochastic policy that balances exploration and exploitation,
with selection probabilities guided by the values in H̃ . Starting from a predefined node c, we iteratively construct a tour by
sampling the next unvisited node i according to the following softmax distribution:

P (i | c) =
exp

(
H̃c,i

τ

)
∑

j /∈visited exp
(

H̃c,j

τ

) , (22)

where τ > 0 is the softmax temperature controlling the randomness of the selection process. In our implementation, we set
τ = 0.01, which biases the initialization procedure strongly toward high-probability edges suggested by the heatmap.

After initialization, the resulting solution consistently takes the form:

i1 → (i1 + n)→ i2 → (i2 + n)→ · · · → in → (in + n)→ i1,

where ik ∈ N for k = 1, 2, . . . , n. Note that all edges connecting each original node ik to its corresponding dummy node
(ik + n) have artificially assigned negative costs and are therefore guaranteed to appear in any optimal solution of the
transformed instance. As a result, in subsequent local search operations, we freeze these edges and restrict modifications to
the remaining edges in the tour.

E.2. 2-OPT Analysis

Before introducing the details of the 3-OPT procedure, we first explain why 2-OPT is not applicable in our setting. Consider
the structure of the solution immediately after initialization. Suppose we attempt a 2-OPT move by removing two edges: the
first from (ia + n) to ia+1, and the second from (ib + n) to ib+1. Note that (ia + n) and (ib + n) represent the dummy
nodes corresponding to ia and ib, respectively.

To reconnect the tour, we must link (ia + n) to another node. However, the only candidates here are (ib + n) and ib+1.
Connecting (ia + n) to (ib + n) is invalid because all edges between dummy nodes have infinite cost. On the other hand,
connecting (ia + n) to ib+1 would create two disconnected subtours, violating the tour constraint.

Therefore, no valid reconnection is possible under the 2-OPT scheme, making it ineffective for our expanded symmetric
TSP formulation. This limitation motivates the use of 3-OPT, which provides greater flexibility in restructuring the tour. An
illustrative example of a 2-OPT failure is shown in Figure 9.

Figure 9. A 2-OPT Example

15



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

E.3. 3-OPT Local Search

Following the initialization phase, we apply a 3-OPT local search procedure to refine the solution. The 3-OPT local search
improves a tour by removing three edges and reconnecting the resulting segments in a different order to reduce the overall
tour cost.

We begin by selecting a node (ia + n) from the current tour and evaluate potential reconnections with its candidate nodes.
To guide this process, we define an edge potential Zi,j as:

Zi,j = H̃i,j + α
ln(M + 1)

Qi,j + 1
, (23)

where H̃i,j is the heatmap score from the expanded probability matrix H̃ , M is the total number of initial solution generations,
and Qi,j denotes the number of times the edge (i, j) has been selected, initialized to zero for all entries. Excluding the node
already connected to i, we select the top k nodes with the highest potentials as candidate reconnections (with k = 10 in our
implementation). These candidates are then used to explore possible 3-OPT moves that preserve feasibility and improve the
solution.

Next, we remove the current edge from node (ia + n) to ia+1, and instead connect (ia + n) to ib+1, a node selected from
the candidate set. Since ib+1 was originally connected from (ib + n), we must also remove the edge (ib + n)→ ib+1 to
maintain tour consistency. At this stage—referred to as Step 1 in the following discussion—two edges have been removed
and one new edge has been added. This partial 3-OPT move is illustrated in Figure 10.

Figure 10. 3-OPT Move Step 1

After completing the first step, we proceed to identify a third edge for removal to complete the 3-OPT move. Starting from
node ib+1, we traverse the current tour until reaching ia + n, ensuring the tour structure remains valid throughout. Along
this segment, we consider removing the edge (ic + n)→ ic+1 for each candidate node ic.

To evaluate the quality of each third-edge candidate, we perform a quick simulation to estimate the improvement. The
improvement, denoted by ∆, is calculated as follows:

∆ =
(
dia+n,ia+1

+ dib+n,ib+1
+ dic+n,ic+1

)
−

(
dia+n,ib+1

+ dib+n,ic+1
+ dic+n,ia+1

)
, (24)

where du,v denotes the distance from node u to node v. A higher value of ∆ indicates a greater potential improvement in
the tour length resulting from the proposed 3-OPT move. Among all candidates, we select the edge with the highest ∆ (i.e.,
the most beneficial one), denoted as ∆best.

If no improvement is found, i.e., ∆best ≤ 0, we return to Step 1 and select a different node from the candidate set to serve as
ib+1, repeating the process until all candidates have been explored.

If ∆best > 0, the move is considered beneficial and is applied to the current tour. The resulting edge configuration after the
3-OPT move is illustrated in Figure 11.

16



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Figure 11. An Effective 3-OPT Move

Following a successful move, the heatmap H̃ is updated to reinforce the selected edges. Specifically, for each newly added
edge (i, j), we update its value according to the rule:

H̃i,j ← H̃i,j + β · ∆3-OPT

c(πnew)
, (25)

where β is the update rate and c(πnew) denotes the cost of the new solution πnew.

In addition to updating the heatmap, we also update the access matrix Q, where Qi,j tracks the number of times edge (i, j)
has been selected. For all edges currently in the tour, we increment their corresponding entries in Q by 1:

Qi,j ← Qi,j + 1 for all (i, j) ∈ πnew. (26)

The 3-OPT local search procedure is repeated by selecting different starting nodes (ia + n) and evaluating 3-OPT moves
for various candidates in Step 1, until all starting nodes in the tour have been considered. Once this process is complete,
the heatmap-guided initialization is invoked again using the updated heatmap H̃ to generate a new starting solution, which
is subsequently refined through another round of 3-OPT local search. This alternating cycle of initialization and local
refinement continues iteratively until the predefined time budget is exhausted.

17



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

F. Instances Generation
During training, we generate ATSP instances by randomly sampling from a simple and generic distribution. The procedure
for constructing these training instances is outlined below:

1. Sampling coordinates. Sample node coordinates xi independently and uniformly in the unit square, i.e., xi1, xi2 ∼
U(0, 1) independently. The Euclidean distance between nodes i and j is computed as:

dij = ∥xi − xj∥2. (27)

2. Constructing the relative distance matrix. We define a relative distance matrix Γ̃ ∈ Rn×n and set the final distance
matrix as Γij = Γ̃ij · dij . Although Γ̃ is generally asymmetric, we begin by constructing a symmetric base and then
inject controlled asymmetry. This approach reflects the intuition that, while Γij ̸= Γji in the ATSP, the two values are
still highly correlated. The details are provided below:

(a) Symmetric component. Generate a symmetric matrix Γ̃sym as:

Γ̃sym = exp {Y } , where Y =
1√
2

(
Ỹ + Ỹ ⊤

)
, (28)

with element-wise exponentiation: (Γ̃sym)ij = exp(Yij). The scaling factor 1√
2

ensures the variance:

Var

(
1√
2
(Ỹij + Ỹji)

)
= 2(s̄sym)2. (29)

Here, Ỹij ∼ N (0, (s̄sym)2) i.i.d., leading to a log-normal distribution over Yij . This design induces symmetry in
log-space:

P
[
1

r
< Yij <

1

t

]
= P [t < Yij < r] , ∀r > t > 1. (30)

In our implementation, we use s̄sym = 0.5.
(b) Anti-symmetric component. To introduce asymmetry, we sample an anti-symmetric matrix:

Γ̃asym =
1√
2

(
Z − Z⊤) , (31)

where Zij ∼ N (0, (s̄asym)2) i.i.d., and s̄asym = 0.05.

Finally, the two components are combined to form the relative distance matrix:

Γ̃ = Γ̃sym ⊙
(
1 + Γ̃asym

)
, (32)

where ⊙ denotes element-wise multiplication. The resulting ATSP distance from node i to node j is given by:

Γij = Γ̃ij · dij . (33)

18



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

G. Experiemnt Details
G.1. Autoencoder Training

Training Hyperparameters The autoencoder is trained on a dataset of normalized ATSP distance matrices using the
Adam optimizer with an initial learning rate of 1 × 10−3. Training is conducted over 100 epochs with a batch size of
32. A StepLR scheduler with a decay factor of 0.2 is applied every 10 epochs to progressively reduce the learning rate.
The model incorporates a learnable positional embedding of dimension 8 for each node, which is concatenated with both
the corresponding row and column of the distance matrix before encoding. The encoder consists of two fully connected
layers with ReLU activation, projecting the input into a 16-dimensional latent space. The decoder mirrors this structure and
reconstructs the original distance row from the latent embedding.

Training Curves Figure 12 shows the training and validation loss curves of the autoencoder over 100 epochs. The model
converges rapidly within the first 10 epochs, with both training and validation losses dropping significantly from their
initial values. After this initial phase, the loss plateaus and stabilizes around a mean squared error of approximately 0.035,
indicating that the model has effectively learned to reconstruct the distance rows from the latent embeddings. The close
alignment between training and validation curves suggests that the model generalizes well to unseen instances and does not
suffer from overfitting.

Figure 12. Autoencoder Training Loss & Validation Loss Curve

G.2. GCN Training

Training Hyperparameters The Graph Convolutional Network (GCN) is trained using a weighted binary cross-entropy
loss, with edge supervision derived from optimal ATSP tours. The model takes as input both the normalized distance matrix
and node embeddings generated by the pretrained autoencoder. Training is conducted for up to 100 epochs with a batch size
of 64, using the Adam optimizer and an initial learning rate of 1× 10−3. The network architecture comprises 4 GCN layers,
each with 64 hidden units, followed by a two-layer multilayer perceptron (MLP) for edge prediction.

Training Curves As shown in Figure 13, both the training and validation losses decrease steadily during the initial epochs,
reflecting effective learning and convergence of the model. After approximately 40 epochs, the loss values begin to plateau,
indicating that the model has reached a stable state. Notably, the training and validation losses remain closely aligned
throughout the training process, suggesting good generalization performance without signs of overfitting. By epoch 100,
both losses converge to around 0.075, demonstrating that the model achieves consistent performance on both the training
and validation sets.

19



Learning-Guided Local Search for Asymmetric Traveling Salesman Problem

Figure 13. GCN Training Loss & Validation Loss Curve

G.3. Test

Test Hyperparameters During testing, we employ a heatmap-guided MCTS framework followed by a 3-OPT local
search. In the initialization phase, the next node is selected using a softmax-based stochastic policy with temperature
τ = 0.01, which promotes exploitation of high-probability edges suggested by the heatmap. During the 3-OPT refinement,
each node evaluates up to 10 candidate reconnections based on an edge potential function, defined in Equation 23, with
α = 0.1. After a successful 3-OPT move, the heatmap is updated according to Equation 25, using a parameter β = 1.0.

Time Scaling Curves To evaluate the trade-off between solution quality and computational effort, we analyze the
optimality gap as a function of search time. The model is tested under varying time budgets on the same set of 50 ATSP
instances with 100 nodes, and the average optimality gap is computed for each setting. As shown in Figure 14, the optimality
gap decreases rapidly during the initial phase as search time increases. Within the first 2 seconds, the gap drops from over
3% to approximately 1.5%, indicating that most of the improvement occurs early. Beyond this point, the rate of improvement
slows, and the curve begins to plateau. After 6 seconds, additional search yields only marginal gains, with the optimality
gap stabilizing around 1.12%. In this work, we typically allocate 0.6 seconds of search time per 100-node ATSP instance to
balance efficiency and performance.

Figure 14. Optimality Gap vs Search Time Curve

20


