Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Jianan Zhou'!

Abstract

Learning heuristics for vehicle routing problems
(VRPs) has gained much attention due to the less
reliance on hand-crafted rules. However, exist-
ing methods are typically trained and tested on
the same task with a fixed size and distribution
(of nodes), and hence suffer from limited gen-
eralization performance. This paper studies a
challenging yet realistic setting, which considers
generalization across both size and distribution
in VRPs. We propose a generic meta-learning
framework, which enables effective training of
an initialized model with the capability of fast
adaptation to new tasks during inference. We fur-
ther develop a simple yet efficient approximation
method to reduce the training overhead. Exten-
sive experiments on both synthetic and bench-
mark instances of the traveling salesman prob-
lem (TSP) and capacitated vehicle routing prob-
lem (CVRP) demonstrate the effectiveness of
our method. The code is available at: https:
//github.com/RoyalSkye/Omni—-VRP.

1. Introduction

Combinatorial optimization problems (COPs) are of great
importance in computer science and operation research. The
exact methods suffer from the scalability issue due to the
NP-hardness, while the heuristic ones need substantial hand-
crafted rules and domain expertise for each specific problem.
Recently, the neural method, which leverages machine learn-
ing (ML) to automatically learn or discover heuristics for
a wide range of COPs, has gained much attention (Bengio
et al., 2021). By exploiting the underlying pattern among a

!School of Computer Science and Engineering, Nanyang
Technological University, Singapore *Department of Informa-
tion Systems, Eindhoven University of Technology, The Nether-
lands *Institute of Marine Science and Technology, Shandong
University, China *School of Computing and Information Sys-
tems, Singapore Management University, Singapore. Correspon-
dence to: Yaoxin Wu <wyxacc @hotmail.com>, Wen Song <wen-
song @email.sdu.edu.cn>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Yaoxin Wu? Wen Song? Zhiguang Cao* Jie Zhang'

group of COP instances, the neural method has the potential
to reduce computational efforts while achieving desirable
solution quality. In this paper, we focus on vehicle routing
problems (VRPs), which is a class of canonical NP-hard
COPs with wide applications in transportation (Garaix et al.,
2010; Zhou et al., 2023; Wu et al., 2023) and logistics (Cat-
taruzza et al., 2017; Konstantakopoulos et al., 2022). The
neural methods for VRPs usually employ advanced deep
models (e.g., pointer network (Vinyals et al., 2015), atten-
tion mechanism (Vaswani et al., 2017) and graph neural
network (Bresson & Laurent, 2017)) to learn heuristics for
route construction or improvement with supervised learning
or reinforcement learning. They have achieved competitive
or even superior performance to the conventional heuristics.

However, most of the neural methods are trained and tested
on the same task with a fixed size and distribution, and thus
suffer from poor generalization. For example, the popu-
lar attention-based models (Kool et al., 2018; Kwon et al.,
2020) are only trained and tested on instances of fixed size
(e.g., 100), with node coordinates sampled from the uniform
distribution. The performance of the learned heuristic dras-
tically decreases when it is applied to an unseen task during
training (see POMO* in Table 1). This generalization issue
severely hinders the application of these neural methods
in practice. A simple measure for improvement is to train
them on diverse data. However, covering the whole problem
space is intractable (e.g., the "Catch-22" for NP-hard prob-
lems (Yehuda et al., 2020)). Thus how to effectively learn
from diverse data for VRPs is still a challenging problem.

While some attempts have been made to tackle the gener-
alization issue of neural methods for VRPs, most of them
solely focus on either size (Lisicki et al., 2020; Bdeir et al.,
2022; Kim et al., 2022b) or distribution (Zhang et al., 2022;
Jiang et al., 2022; Wang et al., 2022; Geisler et al., 2022; Bi
et al., 2022). We argue that it is more realistic to simulta-
neously consider the generalization of size and distribution,
since the real-world VRP instances (e.g., TSPLIB (Reinelt,
1991) and CVRPLIB (Uchoa et al., 2017)) may vary in both.
As a promising work, Manchanda et al. (2022) handles this
challenging setting by exploiting a meta-learning technique,
i.e., Reptile (Nichol et al., 2018), which only relies on the
first-order derivatives for training. However, it is still far
from satisfaction in that, 1) Reptile is less sample efficient as
it typically needs multiple inner-loop updates to incorporate

https://github.com/RoyalSkye/Omni-VRP
https://github.com/RoyalSkye/Omni-VRP

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

information from higher-order derivatives (see Appendix A)
to achieve desirable performance (see Appendix D.2). More-
over, theoretical and empirical evidences of its effectiveness
are only demonstrated on the few-shot supervised learning
setting (Nichol et al., 2018) rather than the reinforcement
learning setting, the latter of which is more favored by the
neural methods for VRPs; 2) it simply selects the training
task by randomly sampling from the task set in each iter-
ation, which overlooks the training dynamics and fails to
fully make use of the diverse data information.

In this paper, we tackle the omni-generalization issue of
neural VRP methods by training on diverse tasks, each of
which relates to a unique size and distribution. According to
the No Free Lunch Theorems of Machine Learning (Wolpert
& Macready, 1997), it is unrealistic to train a one-size-fits-
all model that could perform well on any task. Therefore,
we also resort to meta-learning (Vilalta & Drissi, 2002;
Hospedales et al., 2021) to learn a good initialized model
for fine-tuning afterwards, while bypassing the limitations
in Manchanda et al. (2022). Specifically, we propose a
generic meta-learning framework, which is model-agnostic
and compatible with any model trained with gradient up-
dates. It learns a good initialization of model parameters by
performing meta-training on tasks, which are adaptively se-
lected from the training task set via a hierarchical scheduler.
The trained model is able to efficiently adapt to new tasks
only using limited data during inference. Despite being
effective, it needs the second-order derivatives to perform
meta-model updates, making it computationally expensive
when training on instances of large sizes. Therefore, we
further develop a simple yet efficient approximation method
by early stopping the usage of second-order derivatives, and
only leveraging the first-order ones afterwards.

Our contributions are summarized as follows. 1) We study
a challenging yet realistic setting for neural VRP methods
by considering the omni-generalization across both size and
distribution. 2) We propose a generic meta-learning frame-
work, where we leverage a second-order technique to enable
effective learning of an initialized model with the capabil-
ity of efficient adaptation to new tasks only using limited
data during inference. 3) To reduce the meta-training cost,
we develop a simple yet efficient approximation method,
which performs comparable to the one with full second-
order derivatives. 4) We evaluate the effectiveness of our
method on the traveling salesman problem (TSP) and ca-
pacitated vehicle routing problem (CVRP) by meta-training
POMO (Kwon et al., 2020) and L2D (Li et al., 2021). The
experimental results demonstrate that our method could im-
prove the omni-generalization of the base models even on
the zero-shot setting. We also observe consistent superiority
on the few-shot settings, and on the classical benchmark
datasets such as TSPLIB and CVRPLIB.

2. Related Work

Neural Methods for VRPs. Most of recent neural methods
for VRPs could be divided into two categories: 1) Learn-
ing Construction Heuristics: the solution is constructed
sequentially or in a one-shot manner by the learned heuris-
tic without iterative modifications. Vinyals et al. (2015)
proposes the Pointer Network (Ptr-Net) to solve TSP with
supervised learning. Subsequent works train Ptr-Net using
reinforcement learning to solve TSP (Bello et al., 2017)
and CVRP (Nazari et al., 2018). Kool et al. (2018) intro-
duces the attention model (AM) based on the Transformer
architecture (Vaswani et al., 2017) to solve a wide range
of COPs including TSP and CVRP. Kwon et al. (2020) fur-
ther proposes the policy optimization with multiple optima
(POMO), which improves upon AM by exploiting solution
symmetries. Besides Ptr-Net and attention-based models,
graph neural networks are also exploited to solve VRPs (Dai
et al., 2017; Joshi et al., 2019). Other works have also been
proposed to improve upon them (Ma et al., 2019; Kwon
et al., 2021; Xin et al., 2021a; Kim et al., 2022a). 2) Learn-
ing Improvement Heuristics: an initial complete solution
is iteratively refined by the learned heuristic until a termi-
nation condition is satisfied. In this line of research, the
classical local search methods (e.g., 2-opt (Croes, 1958) or
large neighborhood search (LNS) (Shaw, 1998)) or (part of)
specialized heuristic solvers for VRPs (e.g., Lin-Kernighan-
Helsgaun (LKH) (Helsgaun, 2000; 2017)) are usually ex-
ploited (Chen & Tian, 2019; Lu et al., 2020; Hottung &
Tierney, 2020; d O Costa et al., 2020; Wu et al., 2021; Wang
et al., 2021; Ma et al., 2021; Xin et al., 2021b; Kim et al.,
2021; Hudson et al., 2022). In general, the improvement
heuristics could achieve better performance than the con-
struction ones, but at the expense of much longer inference
time. Besides VRPs, neural methods have also been ap-
plied to solve other COPs, such as the job shop scheduling
problem (JSSP) (Zhang et al., 2020), maximal independent
set (MIS) (Dai et al., 2017; Ahn et al., 2020) and boolean
satisfiability (SAT) (Selsam et al., 2019). In this paper, we
mainly focus on the neural methods for VRPs.

Generalization of Neural Methods. Previous works
mainly train and test on instances with the same size and
distribution, which results in poor generalization perfor-
mance (Joshi et al., 2021; Liu et al., 2022). Recently, some
works attempt to improve the generalization capability of
neural methods for VRPs, which could be further divided
into two classes: 1) Size Generalization: the aim is to gen-
eralize the learned heuristics to instances smaller or larger!
than the training ones. Lisicki et al. (2020) trains a model
on multiple sizes via the curriculum learning strategy (Ben-
gio et al., 2009). Kim et al. (2022b) and Bdeir et al. (2022)

'The community cares more about the larger instances since
they are usually much harder than the smaller ones.

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

study the size generalization upon the attention-based mod-
els by improving their structures, such as incorporating a
scale conditioned network and a sparse dynamic attention,
respectively. We also would like to mention another line of
research that deals with the scalability, which is less related
to the generalization issue studied in this paper. Specifi-
cally, they mainly rely on the heat-map (Joshi et al., 2019;
Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023) or
decomposition (Li et al., 2021; Hou et al., 2023) so as to
scale up to larger instances. 2) Distribution Generalization:
the aim is to generalize the learned heuristics to instances
sampled from various (unseen) distributions. Some works
augment the training instances with diverse distributions
either by jointly training an instance generator (Wang et al.,
2022) or adversarial training (Zhang et al., 2022; Geisler
et al., 2022). Other than the data perspective, Jiang et al.
(2022) and Bi et al. (2022) exploit the group distributionally
robust optimization (Sagawa et al., 2020) and knowledge
distillation (Hinton et al., 2015) to improve the distribution
generalization, respectively.

Although some efforts have been made either for the size
or distribution generalization, rare works consider both of
them. Manchanda et al. (2022) first studies this setting using
Reptile (Nichol et al., 2018). It gradually updates the meta-
model towards the task-specific model on each task such that
the learned meta-model could serve as a good initialization
for fine-tuning during inference. In this paper, we also focus
on this challenging yet realistic problem setting.

3. Preliminaries

In this section, we introduce the problem statement for VRPs
and the Markov Decision Process (MDP) formulation for
constructing solutions to VRP instances. Without loss of
generality, we define a VRP instance of size n over a graph
G = {V,&}, where v; € V (V = {v;},) represents the
node (e.g., customer in TSP) and e(v;, v;) € & represents
the edge between node v; and v;. The solution (i.e., tour)
T is represented as a sequence of nodes in V. In this paper,
we consider the Euclidean VRPs with the cost function ¢(+)
defined as the total length of the tour. The objective of VRPs
is to find the optimal tour 7* with the minimal cost:

X .
7 = arg min c(r|G), M)
where S is the discrete search space that contains all the
feasible tours, subject to the problem-specific constraints.
Specifically, a feasible tour in TSP should visit each (cus-
tomer) node exactly once and return to the starting node in
the end. On top of TSP, a depot node vy is introduced in
CVRP, where each customer node is featured by a demand
d;, and a capacity limit @) is set for each vehicle. A tour in
CVRP consists of multiple sub-tours, each of which repre-
sents a vehicle starting from the depot, visiting a subset of

nodes in V and returning to the depot. It is feasible if each
customer node is visited exactly once and the total demand
in each sub-tour does not exceed the capacity limit Q).

Neural construction methods formulate the solving process
of a VRP instance G as a MDP, where they typically param-
eterize the policy by an encoder-decoder structured neural
network to learn node selection for constructing a solution.
The encoder in the policy network outputs a global repre-
sentation of the instance, which, with the representation of
the context (e.g., the partial tour in construction), captures
the current state. The decoder takes the global and con-
text representations as inputs to compute the probabilities
of nodes (i.e., actions) to be visited. The node is selected
sequentially until a complete tour 7 is constructed. Hence,
the probability of the tour is factorized via the chain rule as:

T

po(r1G) = [po(mo(t)Ima(< 1), G), 2

t=1

where 7y (t) and 7y (< t) are the selected node and the cur-
rent partial solution at time step ¢, respectively; T" denotes
the number of total steps. The reward is defined as the neg-
ative cost of a tour, i.e., R = —¢(7|G). To train the policy
network, the REINFORCE algorithm (Williams, 1992) is
commonly used to estimate the gradient of the expected
reward £(0|G) = E,, (rg)c(7) such that:

VoL(0|G) = Epy(r10)[(c(T) — b(G)) Ve logpe(7]G)], (3)

where b(-) is a baseline function to reduce gradient variance.

4. Methodology

In this section, we introduce a generic meta-learning frame-
work to tackle the omni-generalizable issue of neural meth-
ods across both size and distribution in VRPs. We further
develop a simple yet efficient approximation method to
promote the training efficiency. Without loss of general-
ity, we present our method by taking the meta-training of
POMO (Kwon et al., 2020) on TSP as an example.

4.1. Meta-Learning Framework

We define a task 7 (n,d) ~ p(T) as a class of instances
with the same size n € A and distribution d € D, where N/
= [Nmin, Nmax] 18 the range of problem sizes; D = {D; }‘jzll
is a set of distributions; p(7) is the underlying task distri-
bution. For notation simplicity, we use 7; to represent a
task. Inspired by MAML (Finn et al., 2017), we propose
a generic meta-learning framework to improve the gener-
alization capability of neural methods for VRPs, which is
model-agnostic and compatible with any model trained with
gradient updates. The framework is illustrated in Figure 1,
and we elaborate its key components below.

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

.
4 Hierarchical
2 Task Scheduler

New Task

/
0
I Sample Task
I
i
|
i

aunp-ourg

Training Task Set

Meta-Training Inference

Figure 1. The illustration of the proposed framework. The training task set consists of tasks with diverse sizes n ~ N and distributions
d ~ D. In each iteration, the hierarchical task scheduler adaptively selects a batch of tasks {7}}?:1 for meta-training, which consists of a
pair of inner-loop and outer-loop optimization. During inference, given a new task 7/, the trained meta-model 63 is used to initialize the

task-specific model 05,0), which is then adapted to 7;/ by further taking K gradient steps with a limited number of instances.

Meta-Training. In the meta-learning framework, we aim
to train a meta-model 6y, which as a good initialized model
can be efficiently adapted to new tasks during inference.
Formally, we define the meta-objective as follows:

0y = argminEy. oy Eonri £i(0,1G), @)
0

where 0§K) is the fine-tuned model after K gradient updates
of By on the task 7;; L; is the loss function on the task 7;. In
this paper, we use the same loss function (e.g., reinforcement
loss) for different tasks. To directly optimize this objective,
the meta-training procedure comprises the inner-loop and
outer-loop optimization at each iteration. The meta-training
pseudocode is presented in Algorithm 1.

Inner-loop optimization: It optimizes a task-specific model
iteratively, which is similar to the fine-tuning stage during
inference. Specifically, given a task 7; ~ p(7T), we initialize
the task-specific model by the meta-model, i.e., GEO))
(line 5), and adapt it to 7; by performing K gradient update
steps on the training instances (line 6-11). The gradient of
the loss function £; at the kyy, step is computed as follows:

M
_ 1 _
vag,@fl)z:i(eg’“ D) 72 vegk,l)z:i(eg’“ VIGm), (5
m=1

where Va(kfl)ﬁi(@(k*l) |Gr) can be estimated by the RE-
INFORCE algorithm as in Eq. (3).

Outer-loop optimization: It optimizes the meta-model with
the objective in Eq. (4). Concretely, for each task 7;, the
few-shot generalization performance of the task-specific
model 9§K) is evaluated on the validation instances. The

meta-gradient (line 13) is obtained as follows:

M

(K) 1 () o OO
veo‘ci(ei) — M Z VQSK)l:Z(ez ‘g'm) :
m=1

96y

(6)

After conducting the inner-loop optimization on a batch of
tasks {7;}E_,, the meta-model 6 is then updated once (as
in line 16). Intuitively, the inner-loop optimization serves as
the task adaption stage, imitating the fine-tuning process dur-
ing inference, while the outer-loop optimization updates the
meta-model with the objective of maximizing the few-shot
generalization performance of the task-specific model 9§K).
Therefore, after meta-training, we can get a good initialized
model 6;; with the capability of efficient adaptation to new
tasks only using limited data. Note that Eq. (6) needs the
second-order derivatives since we expect to get the gradient
direction with respect to the meta-model 6. We will discuss
and analyze its first-order approximation methods later.

Hierarchical Task Scheduler. The aim of a task scheduler
is to guide the task selection for the meta-training process,
so as to improve the optimization performance. Most exist-
ing works (Finn et al., 2017; Raghu et al., 2020; Flennerhag
et al., 2022; Manchanda et al., 2022) randomly sample train-
ing tasks from the task set with a uniform probability, which
assumes all tasks are equally important. It may overlook the
training dynamics and cannot make full use of diverse data
information. In this paper, we propose a simple yet effective
hierarchical task scheduler for VRPs.

During training, we first gradually increase the size of
training task following a linear scheduler. At the ey, it-
eration of meta-training, we select tasks of the size n, =
[min + min(EiS, 1) - (Nmax — Mmin)|, where E; is the
working duration of the scheduler. Then, a probability dis-
tribution over the tasks in {7 (n., dj)}‘jzl1 is generated for

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Algorithm 1 Meta-Training for VRPs

Input: distribution over tasks p(7"), number of tasks in a mini-
batch B, number of inner-loop updates K, batch size M, step sizes
of inner-loop and outer-loop optimization «, (3;
Output: meta-model 6;;

1: Initialize meta-model 6o

2: while not done do

3: {Ti,w;}2 , < Hierarchical task scheduler

4. fori=1,...,Bdo

5: Initialize task-specific model 950) +— 6o

6: fork=1,..., Kdo

7: { /I Inner-loop optimization }

8: Sample training instances {G, }27_; from task 7;
9: Obtain Vggk_l)ﬁi(ﬁgk*l)) using Eq. (5)

10: 95’6) — ngil) — av0§k71)£i(9£k71>)

11: end for '

12: Sample validation instances {G,, }_, from task 7;
13: Obtain Vo, £;(6')) using Eq. (6)

14: end for

15: { // Outer-loop optimization }

16: 0o« 00 — B2 wiVe, £:(0))
17: end while

training task selection, based on their hardness. The opti-
mality gap is an appropriate metric to measure the hardness
of each task. However, it is intractable to obtain optimal
solutions due to the NP-hardness. Here we use a general
VRP solver LKH3 (Helsgaun, 2017) to efﬁciently2 obtain
near-optimal solutions for a validation set of instances in a
one-shot manner. The validation instances are fixed through-
out the meta-training process, and hence we only need to
run LKH3 once. To avoid overfitting, we only sample M
instances from the validation set to calculate the relative
gap g; = ﬁ Zﬁf:l %ﬂcgf“) for each task 7;, where 7,,,
and T, are solutions to the my}, instance constructed by the
current meta-model and LKH3, respectively. Accoringly,
the probability of selecting each task 7; is defined as:

_ ewla/n)
SoIPL exp(gi/n)

where 7 is the temperature to control the entropy of probabil-
ity distribution, from which the task is sampled. The initial
probability distribution is uniform, and is updated by Eq.
(7) periodically (e.g., every 100 iterations). After a batch of
tasks {7;}2 | is sampled, we normalize their weights such
that Zle w; = 1. Then, the meta-model is optimized with

the weighted sum of their losses {wiﬁi(OEK)) B | (line 16).

(N

4

Inference. During inference, given instances sampled from
a new task 7;/, the trained meta-model §; could be used to
approximate solutions in several ways: 1) zero-shot: the
solution is directly constructed using the learned policy

We set the maximum trials of LKH3 to 100 for efficiency.

100 0.25
FOMAML

90 —— Ours-SO

Reptile-First
—— Reptile-Last

Ours FOMAML-First
0.15 —— FOMAML-Last

80

70

60

Obj.
Cos Sim.

50

40

30

20

0 20000 40000 60000 80000 100000 0
Iteration

10000 20000 30000 40000 50000
Iteration

Figure 2. Left panel: the meta-training curves; Right panel: the
cosine similarity between the second-order derivative and its first-
order approximation at the first and last layer of the model.

mp: with efficient search strategies (e.g., greedy rollout); 2)
few-shot: similar to the inner-loop optimization as shown
in line 6-11 of Algorithm 1, the task-specific model 6, is
initialized by 6§, and is adapted to the new task 7;/ by tak-
ing K gradient steps on a small set of instances (different
from test instances) sampled from 7;,. Then the solution is
constructed using the adapted policy; 3) active search: the
model is adapted to each test instance by learning instance-
dependent parameters. Bello et al. (2017) first proposes
the general active search that iteratively adjusts the model
parameters with the objective of increasing the likelihood of
constructing high-quality solutions for each instance. How-
ever, it is extremely computationally expensive. Hottung
et al. (2022) proposes the efficient active search (EAS) by
introducing extra instance-specific parameters (e.g., a MLP
layer) for each test instance while fixing the original model
parameters. We mainly consider the zero-shot and few-shot
settings in our experiments (in Section 5), and only use EAS
when evaluating on benchmark instances (in Appendix D.3).

4.2. First-Order Approximation

The meta-gradient in Eq. (6) involves a gradient through a
gradient (i.e., second-order derivative), and therefore it is
computational expensive to obtain due to the calculation of
Hessian-vector products. To tackle this issue, Finn et al.
(2017) proposes a first-order approximation method (i.e.,
FOMAML) which simply drops the second-order term. The
empirical evidence of its effectiveness has been verified in
the few-shot supervised learning, while lacking in the more
complex reinforcement learning. Specifically, the first-order
approximation of meta-model update can be expressed as:

B

fo < 00— B> wiVe, L:(0.)). 8)

i=1

However, as shown in the left panel of Figure 2, we empiri-
cally observe that meta-training POMO from scratch with
Eq. (8) may induce fluctuating validation performance. The
unstable meta-training may be attributed to the deviation of
the first-order approximation (Eq. (8)) from the (ground-
truth) gradient direction of the second-order term (line 16 in

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Algorithm 1). Intuitively, sign(Vy, Ei(HEK))) is the (steep-
est) descent direction for the task-specific model OZ(K) , but
not necessarily the descent direction for the meta-model
o, especially at the early stage of meta-training when the
optimization tends to be unstable. To justify our hypothesis,
we show the cosine similarities of the gradient directions
for meta-model updates between our method and others
in the right panel of Figure 2. The detailed experimen-
tal setups are presented in Appendix D.1. We observe that
sign(Vo, Li(egK))) cannot approximate sign(Vy, Ei(GEK)))
well (i.e., with a negative cosine similarity) at the early
stage of meta-training, while gradually having the positive
correlation as the training progresses. Therefore, in order
to reduce the computational cost and stabilize the meta-
training, we develop a simple yet efficient method by early
stopping the usage of second-order derivatives. Specifically,
we start the meta-model updates with second-order deriva-
tives, and switch to the first-order ones (i.e., by replacing
line 16 with Eq. (8)) when the optimization tends to be
stable. Recently, Manchanda et al. (2022) leverages another
first-order method called Reptile (Nichol et al., 2018), with
the form of the meta-model update as follows:

B
B0 < 0o+ 8> wi(0") —65). ©)

i=1

However, it needs multiple inner-loop updates to effectively
incorporate information from higher-order derivatives of
the loss function so as to achieve satisfactory performance
(as shown in Appendix A and D.2), making it less sample
efficient. Moreover, similar to Nichol et al. (2018) which
observes negative results after applying Reptile to the re-
inforcement learning setting, we also empirically find its
weak performance (see Meta-POMO in Section 5, Appendix
D.2 and D.3). In contrast, our method could achieve decent
performance only running a single inner-loop update.

5. Experiments

To demonstrate the effectiveness of the proposed framework,
we apply it to POMO? (Kwon et al., 2020), which is a strong
construction-based neural method. We consider two repre-
sentative VRP problems (i.e., TSP and CVRP). The details
of POMO are introduced in Appendix C. Moreover, we also
evaluate the generalizability of our method on L2D (Li et al.,
2021) as shown in Section 5.3 and Appendix D.5.

Baselines. 1) Traditional VRP solvers: we employ Con-
corde (Applegate et al., 2006) and LKH3 (Helsgaun, 2017)
for solving TSP, and the hybrid genetic search (HGS) (Vidal,
2022) and LKH3 for CVRP. 2) Neural methods: we com-
pare our method with POMO-based methods, including the
original POMO (Kwon et al., 2020), AMDKD-POMO (Bi

3https ://github.com/yd-kwon/POMO

et al., 2022) and Meta-POMO (Manchanda et al., 2022) for
TSP and CVRP. AMDKD-POMO is a recent method that
improves the cross-distribution generalization of POMO
using knowledge distillation. Meta-POMO uses Reptile to
improve the generalization performance across both size and
distribution. For a fair comparision, we re-train all methods
following our training setups. Note that the setting of Meta-
POMO is the most relevant to ours. As shown in Appendix
D.2, we tune the key hyperparameters (i.e., 5 and K) of
Meta-POMO since we empirically find its straightforward
adaptation to POMO (i.e., decaying (3 in Table 4) performs
poorly. We also show the results of their open-sourced pre-
trained models (i.e., POMO* and AMDKD-POMO%) in
Table 1, with the aim of demonstrating the severe gener-
alization issue of current neural methods rather than the
direct comparison. Specifically, POMO#* is trained on in-
stances with a fixed size and distribution (i.e., n = 100 with
the uniform distribution), and AMDKD-POMO* is adap-
tively distilling from teacher models trained on fixed-sized
instances following different distributions (i.e., n = 100
with the uniform, cluster and mixed distributions). More
implementation details are provided in Appendix D.1.

Training Setups. We follow most of the setups in Kwon
et al. (2020). For our method, Adam optimizer (Kingma
& Ba, 2015) is used in both inner-loop and outer-loop opti-
mization, with the weight decay of 1e — 6. The step sizes
(learning rates) are o = 3 = le — 4, and decayed by 10
in the last 10% iterations to achieve a faster convergence.
The batch size is M =64 (M = 32 for instances with sizes
larger than 150). The training task set consists of hundreds
of (i.e., 341) tasks, with diverse sizes N' = [50,200] and
distributions (i.e., uniform (U) and gaussian mixture (G M)
distributions). More details about the generation of training
and test data are presented in Appendix B. Similar to Finn
et al. (2017), we simply set B = K = 1 and empirically
observe strong performance. As suggested by Kwon et al.
(2020), most of the training is already completed by 200
epochs (i.e., 20M instances) for POMO. We give more in-
stances due to our complicated problem setting. Specifically,
we re-train all methods for roughly the same number of in-
stances (i.e., 32M) sampled from our training task set. For
example, we re-train POMO for roughly 500K iterations
(i.e., gradient updates). For our method, one iteration of
meta-training consists of a pair of inner-loop and out-loop
optimization, which needs two batches of instances. There-
fore, for a fair comparison, we train our method for roughly
250K iterations. For the hierarchical task scheduler, we
set n =1 and F; = 225K. It evaluates the hardness and
updates the weight of each task every 100 iterations. Due
to the training efficiency, we regard meta-training with the
first-order approximation (i.e., Ours) as the default method,
which uses the second-order derivatives in the first 50K it-
erations, and switch to the first-order ones afterwards. In

https://github.com/yd-kwon/POMO

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Table 1. Evaluation on cross-size or distribution generalization. (* marks results derived by open-sourced pretrained models.)

Cross-Distribution Generalization (1K ins.) Cross-Size Generalization (1K ins.)
Method (200, GM3) (200, R) (200, E) (300,U) (300, GM3°) (300, GM3Z°)

Ob;j. (Gap) Time Ob;j. (Gap) Time Ob;j. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

Concorde 8.78 (0.00%) 0.6m 8.20 (0.00%) 0.5m 8.09 (0.00%) 0.5m 12.95 (0.00%) 1.4m 9.47 (0.00%) 1.2m 5.63 (0.00%) 1.0m
LKH3 8.78 (0.00%) 3.3m 8.20 (0.00%) 3.3m 8.09 (0.00%) 3.5m 12.95(0.00%) 5.9m 9.47 (0.00%) 125m 5.63 (0.01%) 18.5m
POMO* 9.36 (6.67%) 0.5m 8.41 (2.66%) 0.5m 8.28 (2.35%) 0.5m 13.82(6.70%) 1.5m 10.73(13.38%) 1.5m 6.54 (16.04%) 1.5m
AMDKD-POMO* 9.05 (2.97%) 0.5m 8.41 (2.57%) 0.5m 8.30 (2.61%) 0.5m 13.97 (7.83%) 1.5m 10.25 (8.22%) 1.5m 6.25 (11.00%) 1.5m
POMO 9.01 (2.56%) 0.5m 8.37 (2.13%) 0.5m 8.24 (1.85%) 0.5m 13.54 (4.51%) 1.5m 9.88 (4.27%) 1.5m 5.83 (3.46%) 1.5m

é AMDKD-POMO 9.10 (3.56%) 0.5m 8.47 (3.32%) 0.5m 8.38 (3.55%) 0.5m 13.74 (6.08%) 1.5m 9.97 (5.30%) 1.5m 6.00 (6.44%) 1.5m
Meta-POMO 9.03 (2.78%) 0.5m 8.39 (2.31%) 0.5m 8.25 (2.00%) 0.5m 13.50 (4.23%) 1.5m 9.89 (4.38%) 1.5m 5.80 (2.94%) 1.5m
Ours-SO 9.01 (2.59%) 0.5m 8.36 (1.99%) 0.5m 8.23(1.72%) 0.5m 13.37 (3.22%) 1.5m 9.82 (3.72%) 1.5m 5.78 (2.61%) 1.5m
Ours 9.02 (2.71%) 0.5m 8.37 (2.14%) 0.5m 8.24 (1.86%) 0.5m 13.40 3.42%) 1.5m 9.84 (3.89%) 1.5m 5.79 (2.75%) 1.5m
Meta-POMO+FS (K = 1) 9.02 (2.74%) 2.0m 8.38 (2.24%) 2.0m 8.25 (1.92%) 2.0m 13.46 3.87%) 6.8m 9.86 (4.11%) 6.8m 5.78 (2.64%) 6.8m
Meta-POMO+FS (K = 10) | 9.02(2.67%) 157m 838 (2.17%) 157m 8.24(1.83%) 157m | 13.42(3.58%) 0.9h 9.84 (3.91%) 0.9h 5.77 (2.46 %) 0.9h
Ours-SO+FS (K = 1) 9.01 (2.53%) 2.0m 8.36 (1.95%) 2.0m 8.22(1.63%) 2.0m | 13.35(3.05%) 6.8m 9.81(3.57%) 6.8m 5.77 2.47%) 6.8m
Ours+FS (K =1) 9.01 (2.60%) 2.0m 8.37 (2.05%) 2.0m 8.23 (1.74%) 2.0m 13.37 (3.19%) 6.8m 9.82 (3.69%) 6.8m 5.78 (2.52%) 6.8m
HGS 18.89 (0.00%) 0.7h 19.36 (0.00%) 0.6h 19.45 (0.00%) 0.5h 25.61 (0.00%) 1.0h 22.20 (0.00%) 1.6h 22.11 (0.00%) 0.9h
LKH3 19.09 (1.06%) 0.6h 19.55(0.99%) 0.6h 19.66 (1.04%) 0.5h 25.97(1.39%) 0.6h 22.46 (1.19%) 0.7h 22.24 (0.59%) 0.6h
POMO* 19.93 (5.60%) 0.6m 20.45(5.74%) 0.6m 20.54 (5.69%) 0.6m | 28.72(12.32%) 1.8m 24.81(12.00%) 1.8m 24.33(10.22%) 1.8m
AMDKD-POMO* 20.29 (7.59%) 0.6m 20.89 (8.07%) 0.6m 20.96 (7.92%) 0.6m 30.49 (19.17%) 1.8m 25.65(15.92%) 1.8m 24.41(10.60%) 1.8m

., POMO 19.47 (3.12%) 0.6m 19.99 (3.32%) 0.6m 20.12 (3.49%) 0.6m 27.07 (5.714%) 1.8m 23.25 (4.80%) 1.8m 22.80 (3.16%) 1.8m
§ AMDKD-POMO 19.58 3.69%) 0.6m 20.07 (3.72%) 0.6m 20.20 (3.93%) 0.6m 26.94 (520%) 1.8m 23.28 (4.92%) 1.8m 2282 (3.27%) 1.8m
U Meta-POMO 19.48 3.19%) 0.6m 20.01 3.40%) 0.6m 20.15(3.65%) 0.6m 26.87 (4.94%) 1.8m 23.09 (4.07%) 1.8m 22.75(2.93%) 1.8m
Ours-SO 19.38 (2.66%) 0.6m 1991 (2.87%) 0.6m 20.05(3.13%) 0.6m 26.67 (4.15%) 1.8m 22.93(3.33%) 1.8m 22.60 (2.23%) 1.8m
Ours 19.39 (2.69%) 0.6m 19.91(2.88%) 0.6m 20.07 3.21%) 0.6m | 26.65(4.10%) 1.8m 22.93 (3.35%) 1.8m 22.61 (2.27%) 1.8m
Meta-POMO+FS (K = 1) 19.43 (2.92%) 24m 1996 3.13%) 2.4m 20.10(3.39%) 2.4m 26.71 (4.32%) 8.2m 22.99 (3.64%) 82m 22.70 (2.72%) 8.2m
Meta-POMO+FS (K = 10) | 19.41(2.83%) 18.8m 19.94(3.03%) 18.8m 20.08 (3.27%) 18.8m | 26.65 (4.07%) I.Th 22,95 (3.43%) 1.1h 22.67 (2.55%) 1.1h
Ours-SO+FS (K = 1) 19.38 (2.65%) 2.4m 19.90 2.81%) 24m 20.03(3.00%) 2.4m 26.61(3.93%) 82m 22.90(3.21%) 82m 22.58(2.16%) 8.2m
Ours+FS (K = 1) 19.38 (2.66%) 2.4m 1990 (2.83%) 2.4m 20.04 (3.05%) 24m | 26.61(3.92%) 8.2m 2291 (3.23%) 82m 22.59(2.20%) 8.2m

specific, the meta-training with full second-order derivatives
(i.e., Ours-SO) needs roughly 5 days and 53GB GPU mem-
ory for TSP (6 days and 71GB GPU memory for CVRP),
while Ours needs 2.5 days and 17GB GPU memory for TSP
(3 days and 25GB GPU memory for CVRP).

Inference Setups. For all neural methods, we use the greedy
rollout with x8 instance augmentations following Kwon et al.
(2020). We report the average results over the test dataset
containing 1K instances. The reported time is the total
time to solve the entire test dataset. The reported gaps are
computed with respect to the traditional VRP solvers (i.e.,
Concorde for TSP, and HGS for CVRP). Specifically, we
evaluate the effectiveness of our method on the zero-shot and
few-shot (FS) settings. For the zero-shot setting, the trained
model is directly used to construct the solutions. We further
evaluate meta-learning based methods (i.e., Meta-POMO,
Ours-SO and Ours) on the few-shot setting, where we fine-
tune the meta-model for K iterations only using extra 1K
instances sampled from the test task (0.003% of instances
used for meta-training). The instances are augmented fol-
lowing Kwon et al. (2020). Note that the instances for
fine-tuning are different from the test ones. The Adam opti-
mizer is used with the learning rate of & =1e — 5 and the
weight decay of 1e — 6. Moreover, we further combine our
method with EAS (Hottung et al., 2022) when evaluating
on benchmark instances (see Appendix D.3).

5.1. Performance Evaluation

Below, we demonstrate the effectiveness of our method on
synthetic and real-world datasets. For the synthetic data,
we evaluate the generalization performance across size, dis-
tribution and the both. Note that we conduct t-test (with
threshold of 5%) to verify the statistical significance, if the
average objectives of two neural methods are close.

Cross-Size or Distribution Generalization. We first con-
sider a simple setting where either the cross-size or distribu-
tion generalization is evaluated. For the cross-distribution
setting, we test on instances of size n = 200 € [50, 200],
while following diverse distributions that are unseen dur-
ing training. Note that we do not strictly choose the test
tasks sampled from the presumed training task distribution
p(T) since it only covers a small part of the entire problem
space. Therefore, we also evaluate all methods on several
complex distributions, e.g., rotation (R) and explosion (£)
distributions (Bossek et al., 2019). For the cross-size setting,
we evaluate on instances of the size n = 300 ¢ [50, 200]
following distributions used in training. Besides the zero-
shot setting, we further compare with another meta-learning
based method (i.e., Meta-POMO) on the few-shot setting,
where we fine-tune the learned model for K steps only us-
ing limited data. The detailed results are shown in Table
1, where we observe that our method can achieve superior
performance on both settings. The inferior performance

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Table 2. Evaluation on cross-size and distribution generalization.

Cross-Size and Distribution Generalization (1K ins.)
Method (300, R) (300, E) (500, R) (500, E) (1000, R) (1000, E)

Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time
Concorde 9.79 (0.00%) 12m 9.48(0.00%) 1.5m | 12.39(0.00%) 5.0m 11.73 (0.00%) 5.8m 17.09 (0.00%) 0.7h 15.66 (0.00%) 0.9h
LKH3 9.79 (0.00%) 6.0m 9.48 (0.00%) 6.8m | 12.39(0.00%) 11.8m 11.73(0.00%) 13.8m | 17.09 (0.00%) 0.4h 15.66 (0.00%) 0.5h
POMO 1023 (4.43%) 1.5m 9.88 (4.20%) 1.5m | 13.63 (10.00%) 6.0m 12.89(9.88%) 6.0m | 20.74 (21.38%) 0.8h 18.94(20.97%) 0.8h
AMDKD-POMO 10.35(5.69%) 1.5m 10.06 (6.15%) 1.5m | 13.74 (10.85%) 6.0m 13.08 (11.52%) 6.0m | 20.73 (21.25%) 0.8h 19.08 (21.85%) 0.8h
o Meta-POMO 1022 (4.37%) 1.5m 9.87 (4.14%) 1.5m | 13.56 (9.41%) 6.0m 12.84 (9.44%) 6.0m | 20.51(19.97%) 0.8h 18.77(19.88%) 0.8h
= Ours-SO 10.14 3.54%) 1.5m 9.78 (3.13%) 1.5m | 1339 (8.07%) 6.0m 12.64(7.73%) 6.0m | 20.37 (19.20%) 0.8h 18.59 (18.74%) 0.8h
Ours 10.16 (3.74%) 1.5m 9.80 (3.35%) 1.5m | 13.42(8.30%) 6.0m 12.66 (7.90%) 6.0m | 20.40(19.36%) 0.8h 18.60 (18.80%) 0.8h
Meta-POMO+FS (K = 1) 10.18 (3.96%) 6.8m 9.83 (3.70%) 6.8m | 13.34 (7.60%) 0.5h 12.63 (7.66%) 0.5h 19.58 (14.52%) 6.5h 17.92(14.48%) 6.5h

Meta-POMO+FS (K = 10) | 10.16 (3.69%) 0.9h 9.80 (3.41%) 0. 13.23 (6.75%) 4.1h 12.54 (6.84%) 4.1h - - - -
Ours-SO+FS (K = 1) 10.12 3.32%) 6.8m 9.76 (291%) 6.8m | 13.19 (6.45%) 0.5h 12.45 (6.11%) 0.5h 19.53 (14.28%) 6.5h 17.79 (13.65%) 6.5h
Ours+FS (K = 1) 10.13(3.41%) 6.8m 9.77(3.05%) 6.8m | 13.20(6.52%) 0.5h 12.51 (6.64%) 0.5h 19.53 (14.30%) 6.5h 17.75 (13.38%) 6.5h
HGS 22.40(0.00%) 1.3h 23.02(0.00%) 1.3h | 26.62(0.00%) 4.5h 26.89 (0.00%) 4.6h 3236 (0.00%) 30.9h 32.01(0.00%) 37.7h
LKH3 22.68(1.28%) 0.7h 23.32(1.28%) 0.7h | 27.06 (1.69%) 0.9h 27.32 (1.61%) 0.9h 33.16 (2.51%) 1.6h 32.78 (2.43%) 1.6h
POMO 23.56(5.30%) 1.8m 24.20(5.30%) 1.8m | 29.06 (9.48%) 69m 2929(9.29%) 69m | 39.33(22.44%) 10h 38.63(21.73%) 1.0h
AMDKD-POMO 23.54(5.18%) 1.8m 24.24(539%) 1.8m | 29.06(9.32%) 69m 29.33(9.29%) 69m | 39.72(23.17%) 1.0h 38.86(21.90%) 1.0h
& Meta-POMO 23.39 (4.54%) 1.8m 24.08 (4.71%) 1.8m | 28.53(7.34%) 69m 28.80(7.32%) 69m | 37.46(16.09%) 09h 36.85(15.52%) 0.9h
5 Ours-SO 2324 (3.83%) 1.8m 23.93(4.07%) 1.8m | 28.34(6.60%) 6.7m 28.63(6.69%) 6.7m | 37.30(15.62%) 0.8h 36.61(14.83%) 0.8h
Ours 23.23(3.79%) 1.8m 2394 (4.08%) 1.8m | 28.29(6.41%) 6.7m 28.60 (6.56%) 6.7m | 37.02(14.73%) 0.8h 36.40 (14.15%) 0.8h
Meta-POMO+FS (K = 1) 2329 (4.05%) 82m 23.96 (420%) 8.2m | 28.13 (5.80%) 0.6h 28.43 (5.90%) 0.6h 36.14 (11.93%) 7.5h 3578 (12.07%) 7.5h

Meta-POMO+FS (K =10) | 23.23(3.79%) 1.1h 2390 (3.92%) 1.1h | 27.95(5.14%) 4.9h 28.24 (5.19%) 4.7h - - - -
Ours-SO+FS (K = 1) 23.19(3.61%) 82m 23.87(3.78%) 8.2m | 28.03 (5.41%) 0.6h 28.33 (5.52%) 0.6h 35.69 (10.52%) 7.4h 35.40(10.92%) 7.4h
Ours+FS (K = 1) 23.19(3.59%) 82m 2387 (3.79%) 82m | 28.01(5.34%) 0.6h 28.31 (5.44%) 0.6h | 35.60 (10.26%) 7.4h 35.25(10.45%) 7.4h

of AMDKD-POMO may be attributed to its design for the
trivial problem setting and sample inefficiency. While it
is specialized for the cross-distribution generalization, its
original problem setting is much easier than ours, with only
three distributions on the fixed size (i.e., 100) considered
during training. To achieve satisfactory performance, a good
pretrained model for each training task is needed, which
requires a huge amount of training instances.

Cross-Size and Distribution Generalization. We further
evaluate all methods on a much more complex setting, where
the generalization across both size and distribution is consid-
ered. Specifically, we choose the test task with the unseen
size n € [300, 500, 1000] and distribution d € [R, E] during
training. The results are presented in Table 2, where we ob-
serve our method has consistently better performance than
baselines. Notably, our method achieves superior results on
the large-scale CVRP1000 task with totally unseen distribu-
tions, showing a strong omni-generalization capability.

Results on Benchmark Datasets. We further evalu-
ate all methods on the well-konwn benchmark datasets
TSPLIB (Reinelt, 1991) and CVRPLIB (Set-X (Uchoa et al.,
2017) and Set-XML100 (Queiroga et al., 2022)). Detailed
results can be found in Appendix D.3, where we observe
our method performs well in most cases.

5.2. Analyses

In this section, we conduct further analyses, including the
ablation studies and few-shot experiments, to demonstrate

Table 3. Ablation study on Components.

‘ (200,GM3) (300,U) (500, R) (1000, E)
POMO 3.12% 5.74% 9.48% 21.73%
+ task scheduler 2.67% 4.44% 7.53% 19.03%
+ meta-training 3.08% 4.79% 7.02% 15.39%
Ours 2.69% 4.10% 6.41% 14.15%

the effectiveness and sensitivity of the proposed framework.
More ablation studies on hyperparameters, optimizers and
normalization layers are presented in Appendix D.4.

Ablation Study on Components. In Section 5.1, we have
shown the effect of the first-order approximation. Compared
with the full second-order method, it could achieve simi-
lar or even better zero-shot and few-shot performance, and
meanwhile greatly reduce the training complexity. Here,
following the training setups presented in Section 5, we fur-
ther conduct the ablation study on CVRP to demonstrate the
benefit of each component in our framework. The results are
shown in Table 3, where we observe that the meta-training
significantly improves POMO (zero-shot) performance on
the large-scale instances, and the task scheduler can further
boost the overall performance of the meta-training.

Efficient Adaptation. As shown in Table 1 and 2, given
the same amount of training instances, our method achieves
strong zero-shot performance, which enables efficient adap-
tation to a new task afterwards. To demonstrate it, we fur-
ther conduct two experiments on the adaptation to CVRP
(500, R) only using 100 and 1000 instances. As shown

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

7.5 7.5
1 ~— Meta-POMO 1
\ —— Ours-SO

7.0] 1\ 7.0

+~— Meta-POMO
—+— Ours-SO

—— Ours —— Ours

Gap (%)

10 0

4 6 4 6
Step Step

Figure 3. Adaptation to CVRP (500, R) test task using (a) 100
instances; (b) 1000 instances.

in Figure 3, our methods can be efficiently adapted to the
new task, while Meta-POMO needs to run multiple steps to
achieve similar few-shot performance (e.g., the dotted line
for K = 1) to our method. Moreover, we observe that the
number of instances is crucial to the few-shot performance
in the reinforcement learning. Meta-POMO may need more
instances in order to achieve strong few-shot performance.

5.3. Generalizability

To evaluate the generalizability of the proposed framework,
we further apply it to L2D (Li et al., 2021), which is an
improvement-based method outperforming LKH3 on large-
scale CVRP instances. Specifically, it decomposes the large-
scale problem instance into several subproblems, which
are selected by a (supervised) learned policy, and uses an
existing solver (e.g., LKH3 or HGS) to solve each subprob-
lem. We train the model on the omni-generalization setting,
where the training task set consists of various sizes and dis-
tributions. The results show that our method could improve
the generalization of L2D, demonstrating the effectiveness
and generalizability of our method. The detailed training
setups and empirical results are shown in Appendix D.5.

6. Conclusion

This paper studies the omni-generalization issue of neural
methods across both problem size and distribution in VRPs.
We propose a generic meta-learning framework to tackle
this issue, which is model-agnostic and compatible with any
model trained with gradient updates. We further provide
analyses of the first-order approximation methods on the
reinforcement learning setting, and propose a simple yet
efficient method to reduce the meta-training complexity.

The limitations of this work are the training efficiency and
scalability. However, they heavily depend on the base model
and meta-learning algorithm. If a pretrained model exists,
it would be better to conduct meta-training on it. We refer
to Appendix E for further discussions. We leave advanced
algorithms and other neural VRP methods to the future work.
We hope our work could provide new insights for learning a
more generalizable neural VRP heuristic in the community.

Acknowledgements

Wen Song was supported by the National Natural Science
Foundation of China under Grant 62102228, and the Natu-
ral Science Foundation of Shandong Province under Grant
ZR2021QF063. We would like to thank the anonymous
reviewers and (S)ACs of ICML 2023 for their constructive
comments and dedicated service to the community. Jianan
Zhou would like to personally express deep gratitude to his
grandmother, Zhiling Kang, for her meticulous care and
love during last 25 years. Eternal easy rest in sweet slumber.

References

Ahn, S., Seo, Y., and Shin, J. Learning what to defer for max-
imum independent sets. In /ICML, pp. 134—144. PMLR,
2020.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-
corde tsp solver. 2006.

Augerat, P. Approche polyédrale du probléme de tournées
de véhicules. PhD thesis, Institut National Polytechnique
de Grenoble-INPG, 1995.

Bachlechner, T., Majumder, B. P., Mao, H., Cottrell, G., and
McAuley, J. Rezero is all you need: Fast convergence at
large depth. In UAIL pp. 1352-1361. PMLR, 2021.

Bdeir, A., Falkner, J. K., and Schmidt-Thieme, L. Attention,
filling in the gaps for generalization in routing problems.
In ECMLPKDD, 2022.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. In ICLR Workshop Track, 2017.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In ICML, pp. 41-48, 2009.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

Bi, J., Ma, Y., Wang, J., Cao, Z., Chen, J., Sun, Y., and Chee,
Y. M. Learning generalizable models for vehicle routing
problems via knowledge distillation. In NeurIPS, 2022.

Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neu-
mann, F., and Trautmann, H. Evolving diverse tsp in-
stances by means of novel and creative mutation operators.
In Proceedings of the 15th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms, pp. 58-71, 2019.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Cattaruzza, D., Absi, N., Feillet, D., and Gonzalez-Feliu, J.
Vehicle routing problems for city logistics. EURO Journal
on Transportation and Logistics, 6(1):51-79, 2017.

Chen, X. and Tian, Y. Learning to perform local rewriting
for combinatorial optimization. In NeurIPS, volume 32,
2019.

Croes, G. A. A method for solving traveling-salesman
problems. Operations research, 6(6):791-812, 1958.

d O Costa, P. R., Rhuggenaath, J., Zhang, Y., and Akcay, A.
Learning 2-opt heuristics for the traveling salesman prob-
lem via deep reinforcement learning. In Asian Conference
on Machine Learning, pp. 465-480. PMLR, 2020.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. In NeurIPS, volume 30, 2017.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli,
J.-M. Bg-nco: Bisimulation quotienting for generaliz-
able neural combinatorial optimization. arXiv preprint
arXiv:2301.03313, 2023.

Finn, C., Abbeel, P, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
pp. 1126-1135. PMLR, 2017.

Flennerhag, S., Schroecker, Y., Zahavy, T., van Hasselt, H.,
Silver, D., and Singh, S. Bootstrapped meta-learning. In
ICLR, 2022.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small pre-
trained model to arbitrarily large tsp instances. In AAAIL,
volume 35, pp. 7474-7482, 2021.

Garaix, T., Artigues, C., Feillet, D., and Josselin, D. Vehicle
routing problems with alternative paths: An application
to on-demand transportation. European Journal of Oper-
ational Research, 204(1):62-75, 2010.

Geisler, S., Sommer, J., Schuchardt, J., Bojchevski, A., and
Giinnemann, S. Generalization of neural combinatorial
solvers through the lens of adversarial robustness. In
ICLR, 2022.

Helsgaun, K. An effective implementation of the lin—
kernighan traveling salesman heuristic. European journal
of operational research, 126(1):106—130, 2000.

Helsgaun, K. An extension of the lin-kernighan-helsgaun
tsp solver for constrained traveling salesman and vehicle
routing problems. Roskilde: Roskilde University, pp.
24-50, 2017.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

10

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
A. Meta-learning in neural networks: A survey. IEEE

transactions on pattern analysis and machine intelligence,
2021.

Hottung, A. and Tierney, K. Neural large neighborhood
search for the capacitated vehicle routing problem. In
European Conference on Artificial Intelligence, pp. 443—
450. I0S Press, 2020.

Hottung, A., Kwon, Y.-D., and Tierney, K. Efficient active
search for combinatorial optimization problems. In ICLR,
2022.

Hou, Q., Yang, J., Su, Y., Wang, X., and Deng, Y. Generalize
learned heuristics to solve large-scale vehicle routing
problems in real-time. In /CLR, 2023.

Hudson, B., Li, Q., Malencia, M., and Prorok, A. Graph
neural network guided local search for the traveling sales-
person problem. In ICLR, 2022.

Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. Learning to solve
routing problems via distributionally robust optimization.
In AAAL 2022.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., and Laurent,
T. Learning tsp requires rethinking generalization. In
International Conference on Principles and Practice of
Constraint Programming, 2021.

Kim, M., Park, J., et al. Learning collaborative policies to
solve np-hard routing problems. In NeurIPS, volume 34,
pp. 10418-10430, 2021.

Kim, M., Park, J., and Park, J. Sym-NCO: Leveraging
symmetricity for neural combinatorial optimization. In
NeurlPS, 2022a.

Kim, M., SON, J., Kim, H., and Park, J. Scale-conditioned
adaptation for large scale combinatorial optimization. In
NeurIPS 2022 Workshop on Distribution Shifts: Connect-
ing Methods and Applications, 2022b.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Konstantakopoulos, G. D., Gayialis, S. P., and Kechagias,
E. P. Vehicle routing problem and related algorithms for
logistics distribution: A literature review and classifica-
tion. Operational research, pp. 1-30, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In /CLR, 2018.

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Kwon, Y.-D., Choo, J., Kim, B., Yoon, 1., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. In NeurIPS, volume 33, pp.
21188-21198, 2020.

Kwon, Y.-D., Choo, J., Yoon, 1., Park, M., Park, D., and
Gwon, Y. Matrix encoding networks for neural combi-
natorial optimization. In NeurIPS, volume 34, pp. 5138—
5149, 2021.

Li, S, Yan, Z., and Wu, C. Learning to delegate for large-
scale vehicle routing. In NeurIPS, volume 34, pp. 26198—
26211, 2021.

Lisicki, M., Afkanpour, A., and Taylor, G. W. Evaluating
curriculum learning strategies in neural combinatorial
optimization. In NeurIPS 2020 Workshop on Learning
Meets Combinatorial Algorithms, 2020.

Liu, S., Zhang, Y., Tang, K., and Yao, X. How good
is neural combinatorial optimization? arXiv preprint
arXiv:2209.10913, 2022.

Lu, H.,, Zhang, X., and Yang, S. A learning-based iterative
method for solving vehicle routing problems. In ICLR,
2020.

Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. Com-
binatorial optimization by graph pointer networks and
hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In NeurIPS,
volume 34, pp. 11096-11107, 2021.

Manchanda, S., Michel, S., Drakulic, D., and Andreoli, J.-M.
On the generalization of neural combinatorial optimiza-
tion heuristics. In ECMLPKDD, 2022.

Nazari, M., Oroojlooy, A., Snyder, L., and Takdc, M. Rein-
forcement learning for solving the vehicle routing prob-
lem. In NeurIPS, volume 31, 2018.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Qiu, R., Sun, Z., and Yang, Y. DIMES: A differentiable
meta solver for combinatorial optimization problems. In
NeurIPS, 2022.

Queiroga, E., Sadykov, R., Uchoa, E., and Vidal, T. 10,000
optimal cvrp solutions for testing machine learning based
heuristics. In AAAI Workshop on Machine Learning for
Operations Research (ML4OR), 2022.

11

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. Rapid
learning or feature reuse? towards understanding the
effectiveness of maml. In /CLR, 2020.

Reinelt, G. Tsplib—a traveling salesman problem library.
ORSA journal on computing, 3(4):376-384, 1991.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. In ICLR, 2020.

Selsam, D., Lamm, M., Benedikt, B., Liang, P., de Moura,
L., Dill, D. L., et al. Learning a sat solver from single-bit
supervision. In ICLR, 2019.

Shaw, P. Using constraint programming and local search
methods to solve vehicle routing problems. In Interna-
tional conference on principles and practice of constraint
programming, pp. 417-431. Springer, 1998.

Smith-Miles, K., Hemert, J. v., and Lim, X. Y. Under-
standing tsp difficulty by learning from evolved instances.
In International conference on learning and intelligent
optimization, pp. 266-280. Springer, 2010.

Sun, Z. and Yang, Y. Difusco: Graph-based diffusion
solvers for combinatorial optimization. arXiv preprint
arXiv:2302.08224, 2023.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and
Subramanian, A. New benchmark instances for the ca-
pacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845-858, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NeurIPS, volume 30, 2017.

Vidal, T. Hybrid genetic search for the cvrp: Open-source
implementation and swap* neighborhood. Computers &
Operations Research, 140:105643, 2022.

Vilalta, R. and Drissi, Y. A perspective view and survey of
meta-learning. Artificial intelligence review, 18(2):77-95,
2002.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In NeurIPS, volume 28, 2015.

Wang, C., Yang, Y., Slumbers, O., Han, C., Guo, T., Zhang,
H., and Wang, J. A game-theoretic approach for im-
proving generalization ability of tsp solvers. In ICLR
2022 Workshop on Gamification and Multiagent Solu-
tions, 2022.

Wang, R., Hua, Z., Liu, G., Zhang, J., Yan, J., Qi, F., Yang,
S., Zhou, J., and Yang, X. A bi-level framework for
learning to solve combinatorial optimization on graphs.
In NeurlPS, volume 34, pp. 21453-21466, 2021.

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3):229-256, 1992.

Wolpert, D. H. and Macready, W. G. No free lunch theo-
rems for optimization. IEEFE transactions on evolutionary
computation, 1(1):67-82, 1997.

Wu, Y., Song, W., Cao, Z., Zhang, J., and Lim, A. Learn-
ing improvement heuristics for solving routing problems.
IEEE transactions on neural networks and learning sys-
tems, 2021.

Wu, Y., Zhou, J., Xia, Y., Zhang, X., Cao, Z., and Zhang, J.
Neural airport ground handling. IEEE Transactions on
Intelligent Transportation Systems, 2023.

Xin, L., Song, W., Cao, Z., and Zhang, J. Multi-decoder
attention model with embedding glimpse for solving ve-
hicle routing problems. In AAAI, volume 35, pp. 12042—
12049, 2021a.

Xin, L., Song, W., Cao, Z., and Zhang, J. Neurolkh: Com-
bining deep learning model with lin-kernighan-helsgaun
heuristic for solving the traveling salesman problem. In
NeurIPS, volume 34, pp. 7472-7483, 2021b.

Yehuda, G., Gabel, M., and Schuster, A. It’s not what
machines can learn, it’s what we cannot teach. In /CML,
pp- 10831-10841. PMLR, 2020.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and
Chi, X. Learning to dispatch for job shop scheduling via
deep reinforcement learning. In NeurIPS, volume 33, pp.
1621-1632, 2020.

Zhang, Z., Zhang, Z., Wang, X., and Zhu, W. Learning to
solve travelling salesman problem with hardness-adaptive
curriculum. In AAAI, 2022.

Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Chen,
Z. Learning large neighborhood search for vehicle rout-
ing in airport ground handling. IEEE Transactions on
Knowledge and Data Engineering, 2023.

12

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

A. Analysis of First-Order Approximation

Without loss of generality, we consider optimization with the stochastic gradient descent (SGD), and treat each task equally.
Therefore, the meta-model update in Reptile (Nichol et al., 2018) (i.e., Eq. (9)) could be rewritten as:

B
1
o ¢ o+ B > (6 — o). (10)

i=1

For each task 7;, (6o — 9§K>) /a could be viewed as the (Reptile) gradient term g in the SGD formulation, and «, 3 are the
step sizes of inner-loop and outer-loop optimization, respectively. When K = 1, Reptile is equivalent to the joint training on
the expected loss of the training tasks:

0y — le)] _E, (7—)[00 — (90 — ()cv%ﬁi(@o))
- i~p

; : | =B Vali@)l b

1
9r = E1inp(m]
However, in this case, it is equivalent to the naive pretraining on a large training task set, which requires ad-hoc tricks
to achieve desirable fine-tuning performance. When performing multiple gradient updates (X > 1) in the inner-loop
optimization, Reptile is able to incorporate information from higher-order derivatives of the loss function. For the simplicity
of notations, we omit the index for task ¢, and use the following definitions:

(k) — M (k) _ oL(O™) i) _ aL2(e™))

00 ¢ 9T g = 0y k€ [0,K], (12)

9

where (%), g(’“{ are the gradients of the loss function with respect to (w.r.t.) the task-specific model (%) and meta-model
6©) = g, and h(¥) is the hessian w.r.t. the meta-model. With the Taylor expansion, the gradient of the loss function w.r.t
the task-specific model can be expressed as:

g™ = |9 ORN @b:e(m + Wb:e(@) (9(k) — 9(0))
oLOF) aL2(H®) LOL(OW) o
T 9600 + 8(9(0 Z 900 6*) (13)

Indeed, FOMAML (Finn et al., 2017) simply drops the higher-order term and uses g(*) as the approximation to the
second-order derivative, while Reptile approximates it in the following way:

K—-1
1
gk = (0 —0") =~ Lo (o—aZg@ => g¥. (14)
7=0

For example, if we run K = 2 steps in the inner-loop optimization, based on Egs. (13)-(14), the gradient of Reptile is
g% = g9 + g =~ §O 4 51 — ah(MWgO® and the gradient of FOMAML is g2 = ¢® =~ §) — ah® (g + gM)),
However, it is non-trivial to execute the above derivations on our more complicated reinforcement learning (RL) setting
(with Adam optimizer). Therefore, empirically, we further conduct an experiment to check whether g5 could serve as a
good approximation on our setting. Specifically, similar to the setups presented in Appendix D.1, we meta-train POMO with
Ours-SO for K € [1,2,5,10] steps in the inner-loop optimization. We collect the gradient direction of the second-order
derivative sign(§(®)) and that of the Reptile’s approximation sign(g%), and compute their cosine similarity. Moreover,
since we use the Adam optimizer, we also try to load the gradient statistics (e.g., momentum in the optimizer for outer-loop
optimization) when conducting the inner-loop optimization. As indicated in Figure 4, Reptile fails to well approximate the
second-order derivatives on our RL setting. As the step K increases, the cosine similarity decreases accordingly, which may
be attributed to the accumulated effect throughout the K steps. However, a larger step K empirically results in a relatively
better zero-shot generalization performance (given the same amount of training instances) as shown in Appendix D.2.

13

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

0.20 K=1 k=1 010 K=1 02 k=1
k=2 02 K=2 K=2 k=2
0.15 K=5 K=5 0.05 K=5 0.1 K=5
— K=10 — K=10
— K=10 — K=10
) 0.00 X 0.0
€ £ £ —0.05 £
@ o I 0 -01
) u " _, ")
o 0.10 8
8 S S ©-02
-0.15
-0.20 —03
-0.25 -0.4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration Iteration Iteration
(a) First layer (b) Last layer (c) First layer (d) Last layer

Figure 4. (a)-(b): the cosine similarity of gradient directions between the second-order derivative and the Reptile’s approximation when
not loading gradient statistics. Note that the results of K = 1 and K = 2 are almost the same; (c)-(d): the cosine similarity of gradient
directions between the second-order derivative and the Reptile’s approximation when loading gradient statistics.

B. Data Generation

We consider VRP instances with various sizes and distri-
butions. Since generating instances with different sizes

» is relatively easy, here we focus on the details regarding
the generation of different distributions of node coordi-
* & @ nates. To provide diverse data for meta-training, we gen-

erate instances following the uniform distribution, and the
) gaussian mixture distribution, which is demonstrated to
(@)) (b) © be effective in capturing different hardness levels of the
instances (Smith-Miles et al., 2010). We further generate
instances following rotation and explosion distributions*
to evaluate the generalization of the learned model. Below,
we provide the details on the data generation procedure.

Uniform distribution. Following the convention (Kool
(d) (e) ® et al., 2018; Kwon et al., 2020), as shown in Figure 5(d),
the node coordinate of each node is uniformly sampled
from the unit square U (0, 1).

Figure 5. TSP500 instances following various distributions: (a)
GMS3: Gaussian mixture distribution with ¢ = 2,1 = 5; (b) GM3°:
Gaussian mixture distribution with ¢ = 3,1 = 10; (c) GM=2°: Gaus- Gaussian mixture distribution. Following Zhang et al.
sian mixture distribution with ¢ = 7,1 = 50; (d) U: Uniform distri- ~ (2022); Manchanda et al. (2022), we parameterize the
bution; (¢) R: Rotation distribution; (f) E: Explosion distribution. gaussian mixture distribution with two hyperparameters,

cluster ¢ and scale . For the simplicity of notations,

we denote it as GM!. Specifically, we first generate the
coordinate of the center node v, of each cluster ¢; by uniformly sampling from U(0,). Other nodes V \ {v,, }¢_; are then
equally distributed into c clusters, where the coordinates of nodes in each cluster forms a (multivariate) gaussian distribution.
For example, if a node belongs to the cluster ¢;, its coordinate is sampled from A (n.,, I), where the mean is the coordinate
of the center node, and the covariance matrix is the identity matrix. Finally, we scale and translate the range of coordinates
into [0, 1] using the min-max normalization. Some exemplary instances are shown in Figure 5(a)-5(c).

Rotation distribution. Following Bossek et al. (2019), we mutate nodes, which originally follow the uniform distribution,
by rotating a subset of them (anchored in the origin of the Euclidean plane) as shown in Figure 5(e). The coordinates of
cos(p) sin(p)

—sin(p) cos() |’ where ¢ ~ [0, 27] is the rotation angle.

selected nodes are transformed by multiplying with

*nttps://github.com/jakobbossek/tspgen

14

https://github.com/jakobbossek/tspgen

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Explosion distribution. Following Bossek et al. (2019), we mutate nodes, which originally follow the uniform distribution,
by simulating a random explosion. Specifically, we first randomly select the center of the explosion v, (i.e., the hole in
Figure 5(f)). All nodes v; within the explosion radius R = 0.3 is moved away from the center with the transformation form

ofv;=v.+ (R+s)- Toemoy» Where s ~ Exp(A = 1/10) is a random value drawn from an exponential distribution.

In this paper, we mainly consider the distribution of node coordinates. For CVRP instances, following Kool et al. (2018);
Kwon et al. (2020), the coordinate of the depot node vy is uniformly sampled from the unit square U (0, 1). The demand
of each node ¢; is randomly sampled from a discrete uniform distribution {1,---,9}. The capacity of each vehicle is
setto @ = [30 4+ %1, where n > 50 is the size of CVRP instances. The demand and capacity are further normalized
to §; = §/@Q and 1, respectively. During meta-training, we generate the diverse task set with hundreds of tasks 7 (n, d),
where n € N' = {50,55,---,200} and d(c,1) € D = {(0,0), (1,1)} U {¢[3,5, 7] x 1[10, 30, 50]}. We denote the uniform
distribution as d(c = 0,1 = 0). For each size, there are 11 tasks with different distributions in the training task set, and
therefore 31 x 11 = 341 tasks in total.

C.POMO

POMO (Kwon et al., 2020) significantly improves upon AM (Kool et al., 2018) by exploiting the symmetry property, which
inherently exists in the VRP solution. For example, a solution to a TSP instance is represented as a sequence of nodes.
Multiple representations (with different start nodes) exist for the same solution. Previous method (Kool et al., 2018) selects
the start node by the model (using a trainable START token from the NLP community). Since the solution construction
process is formulated as a MDP, the first action (i.e., start node) may considerably affect the following actions. However, a
desirable model should always be able to construct the optimal solution given different start nodes. POMO considers this
symmetry property into the objective function, and the estimated gradient (i.e., Eq. (3)) could be rewritten as:

S
VoL(0]G) ~ Z)) Vs log pe(7:|G), (15)

O)M—‘

where TS is the solution with start node vs € V, S is the number of start nodes (e.g., the size of an instance in TSP), and
b(G) =3 ZS 1 ¢(75). Intuitively, Eq. (15) forces diverse trajectories towards optimal solution(s). Besides, POMO also
leverages instance augmentations to enhance the inference performance. A brief summary is presented in Algorithm 2.

Algorithm 2 POMO with REINFORCE

Input: training instances {gm}ﬂf:l, number of start nodes S, model 6;
Output: estimated gradient Vo L(6);
L {05, - -+ ,v&} « SelectStartingNodes(G,,) Vm € {l,---, M}
2: T (G, v™) Vmed{l,--- ,M},Vse{l,---,5}
3 b(Gm) ;zf pe(r) ¥me {1 M}
4: VoL(0) < 515 Some1 Yooy (¢(72") = b(Gim)) Vg log po (72 Gm)

D. Experiments
D.1. Extra Setups

Setups for Experiments in Figure 2. We follow the training setups presented in Section 5. For the left panel of Figure 2,
we show the validation result of each method on CVRP (300, R). Specifically, Ours-SO refers to the second-order method
presented in Algorithm 1, FOMAML refers to its first-order approximation, where we replace the line 16 of Algorithm 1
with Eq. (8), and Ours refers to the proposed approximation method, where we simply early-stop using the second-order
derivative when the training tends to be stable (i.e., at the SOKyy, iteration), and leverage the first-order one afterwards. For the
right panel of Figure 2, the training process follows Ours-SO. However, in each iteration of meta-training, besides calculating
the direction of the second-order derivative sign(Vy, Ei(egm)), we also collect that of FOMAML sign(Vy, £i(95K))) and
Reptile sign(6y — HEK)) using the same batch of instances. Note that these two gradients are not used for meta updates.

Then, we compute the cosine similarities of these gradient directions with the second-order one (i.e., sign(Vg, L; (OEK) s
and show the average result over 500 iterations in the right panel of Figure 2.

15

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Training Setups for Baselines. We conduct all experiments on a machine with NVIDIA A100 PCle (80GB) cards and
AMD EPYC 7513 CPU at 2.6GHz. As shown in Section 5, we compare our method with several strong baselines. Following
the conventional setups in the community (Kool et al., 2018; Kwon et al., 2020; Hottung et al., 2022), for traditional
VRP solvers such as Concorde, LKH3 and HGS, we run them on 32 CPU cores for solving TSP and CVRP instances,
while running neural VRP methods on one GPU card. Below, we provide implementation details of all baselines. 1)
Concorde (Applegate et al., 2006): We use Concorde® Version 03.12.19 with the default setting, to solve TSP instances.
2) LKH3 (Helsgaun, 2017): We use LKH3° Version 3.0.7 to solve TSP and CVRP instances. For each instance, we run
LKH3 with 10000 trails and 10 runs. 3) HGS (Vidal, 2022): We run HGS” with the default hyperparameters to solve
CVRP instances. The maximum number of iterations (without improvement) is set to 20000. 4) For POMO (Kwon et al.,
2020), following the training setups presented in Section 5, we re-train it for 500K iterations with totally 32M instances,
which are randomly sampled from our training task set. 5) AMDKD-POMO (Bi et al., 2022) tackles the cross-distribution
generalization of neural methods using knowledge distillation. Specifically, it leverages the knowledge from multiple teacher
models pretrained on different distributions to yield a generalizable student model. However, it is computationally intractable
to obtain a pretrained model for each task since we have hundreds of training tasks on our problem setting. Therefore,
following the default setting of Bi et al. (2022), we pretrain three teacher models on instances of size n = 200, but with
distributions chosen from our training task set (i.e., the uniform U and gaussian mixture distributions GM3°, G M2°). We
train each teacher model using 6.4M instances. After pretraining, we train a light-weight yet generalizable student model
by adaptively distilling from the teacher models on another set of 12.8M instances (n = 200), so that the total amount of
training instances (i.e., 32M) is close to other methods. 6) Meta-POMO (Manchanda et al., 2022) leverages Reptile (Nichol
et al., 2018), which does not need to split data into training and validation sets. Therefore, based on its default setting and
our experiments in Appendix D.2, we set § = 0.9, B = 1, K = 50 and meta-train POMO using Reptile for 10K iterations
to keep the same amount of training instances as other methods.

D.2. Tuning on Meta-POMO

As shown in Table 4, we empirically observe the inferior performance of Meta-POMO with a decaying step size 3, which is
the straightforward adaptation of Manchanda et al. (2022) to POMO. Specifically, the step size is gradually decayed with
the form of 3; = By x ¢, where By = 0.99 is the initial step size, v = 0.999 is the decay rate and # is the iteration index.
The undesirable results may be attributed to below factors: a) originally, they only consider around 10 training tasks and
randomly select tasks to train, therefore failing to deal with our more complex experimental setting; b) further designs may
be needed in order to be successfully adapted to POMO, since POMO inherently improves the generalization upon AM.
Moreover, the reinforcement learning setting is empirically found to be challenging for Reptile (Nichol et al., 2018). We
further tune its key hyperparameters (e.g., the step size 8 and number of inner-loop updates K') on TSP. We follow the same
experimental setups described in Section 5, and show the zero-shot performance (i.e., gaps with respect to Concorde) in
Table 4. In summary, we empirically observe that a fixed and relatively large step size works better. Therefore, we report the
results of Meta-POMO with 5 = 0.9 and K = 50 in Section 5.

Table 4. Tuning of Meta-POMO (Manchanda et al., 2022) on TSP.

K =50 B =09
B=01 B=03 B=05 B=07 B=09 B=099 decaying | K=2 K=5 K=10 K=25
8.53% 637% 543% 5.03% 437% 4.78% 9.03% 6.18% 620% 5.16% 4.89%
8.16% 587% 505% 4.76% 414% 4.50% 8.50% 572% 581% 4.78% 4.56%

()
()
(500, R) 1439% 12.10% 1091% 1041% 9.41% 10.12% 15.24% 11.86% 1191% 10.41% 10.02%
() 14.16% 11.69% 10.68% 10.46% 9.44% 10.01% 14.80% 11.55% 11.62% 10.24% 9.94%

Test Task

Shttps://www.math.uwaterloo.ca/tsp/concorde/index.html
*http://akira.ruc.dk/~keld/research/LKH-3/
"https://github.com/vidalt/HGS—-CVRP

16

https://www.math.uwaterloo.ca/tsp/concorde/index.html
http://akira.ruc.dk/~keld/research/LKH-3/
https://github.com/vidalt/HGS-CVRP

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

D.3. Results on Benchmark Instances

We evaluate all methods on the classical benchmark datasets, such as TSPLIB® (Reinelt, 1991) and CVRPLIB? (Set-
X) (Uchoa et al., 2017), where we choose representative instances with size n € [100, 1002]. We also combine our method
with the efficient active search (Hottung et al., 2022). Specifically, following their original implementation'®, we run
EAS-Lay and EAS-Emb (with 1 run and 200 iterations) on each instance, and report the best result. Due to the huge GPU
memory it needs, we only run it on instances with size n. € [100, 750]. The detailed results are shown in Table 5 and Table 6.

Table 5. Results on TSPLIB (Reinelt, 1991) instances.

POMO AMDKD-POMO Meta-POMO Ours Ours+EAS
Instance Opt. Ob;j. Gap Ob;. Gap Ob;j. Gap Ob;. Gap Ob;j. Gap

kroA100 21282 21282 0.00% 21360 0.37% 21308 0.12% 21305 0.11% 21282 0.00%
kroA150 26524 26823 1.13% 26997 1.78% 26852 1.24% 26873 1.32% 26566 0.16%
kroA200 29368 29745 1.28% 30196 2.82% 29749 1.30% 29823 1.55% 29460 0.31%
kroB200 29437 30060 2.12% 30188 2.55% 29896 1.56% 29814 1.28% 29445 0.03%
5225 126643 | 131208 3.60% 128210 1.24% 131877 4.13% 128770 1.68% 127281 0.50%
tsp225 3916 4040 3.17% 4074 4.03% 4047 3.35% 4008 2.35% 3933 0.43%
pr226 80369 81509 1.42% 82430 2.56% 81968 1.99% 81839 1.83% 81235 1.08%
pr264 49135 50513 2.80% 51656 5.13% 50065 1.89% 50649 3.08% 49212 0.16%
a280 2579 2714 5.23% 2773 7.52% 2703 4.81% 2695 4.50% 2591 0.47%
pr299 48191 50571 4.94% 51270 6.39% 49773 3.28% 49348 2.40% 48449 0.54%
1lin318 42029 44011 4.72% 44154 5.06% 43807 4.23% 43828 4.28% 43090 2.52%
rd400 15281 16254 6.37% 16610 8.70% 16153 5.71% 15948 4.36% 15531 1.64%
1417 11861 12940 9.10% 13129 10.69% 12849 8.33% 12683 6.93% 12754 7.53%
pr439 107217 | 115651 7.87% 117872 9.94% 114872 7.14% 114487 6.78% | 111902 4.37%
pcb442 50778 55273 8.85% 56225 10.73% 55507 9.31% 54531 7.39% 53069 4.51%

d493 35002 38388 9.67% 38400 9.71% 38641 10.40% 38169 9.05% 37850 8.14%
u574 36905 41574 12.65% 41426 12.25% 41418 1223% 40515 9.78% 39295 6.48%
rat575 6773 7617 12.46 % 7707 13.79% 7620 12.51% 7658 13.07% 7333 8.27%
p654 34643 38556 11.30% 39327 13.52% 38307 10.58% 37488 8.21% 39141 12.98%
d6s57 48912 55133 12.72% 55143 12.74% 54715 11.86% 54346 11.11% | 53077 8.52%
u724 41910 48855 16.57% 48738 16.29% 48272 15.18% 48026 14.59% | 48144 14.87%

rat783 8806 10401 18.11% 10338 17.40% 10228 16.15% 10300 16.97% -
pr1002 259045 | 310855 20.00% 312299 20.56% 308281 19.01% 305777 18.04% -

Table 6. Results on CVRPLIB (Set-X) (Uchoa et al., 2017) instances.

POMO AMDKD-POMO Meta-POMO Ours Ours+EAS
Instance Opt. Ob;j. Gap Ob;j. Gap Ob;j. Gap Ob;. Gap Ob;j. Gap

X-n101-k25 27591 28804 4.40% 28947 491% 29647 7.45% 29442 6.71% | 27750 0.58%
X-n153-k22 21220 23701 11.69% 23179 9.23% 23428 1041% 22810 7.49% | 21864 3.03%
X-n200-k36 58578 60983 4.11% 61074 4.26% 61632 521% 61496 4.98% | 59765 2.03%
X-n251-k28 38684 40027 347% 40262 4.08% 40477 4.63% 40059 3.55% | 39198 1.33%
X-n303-k21 21736 22724 4.55% 22861 5.18% 22661 4.26% 22624 4.09% | 22035 1.38%
X-n351-k40 25896 27410 5.85% 27431 5.93% 27992 8.09% 27515 6.25% | 26644 2.89%
X-n401-k29 66154 68435 3.45% 68579 3.67% 68272 3.20% 68234 3.14% | 67365 1.83%
X-n459-k26 24139 26612 10.24% 26255 8.77% 25789 6.84% 25706 6.49% | 25144 4.16%
X-n502-k39 69226 71435 3.19% 71390 3.13% 71209 2.86% 70769 2.23% | 70277 1.52%
X-n548-k50 86700 90904 4.85% 90890 4.83% 90743 4.66% 90592 4.49% | 89542 3.28%
X-n599-k92 108451 | 115894 6.86% 115702 6.69% 115627 6.62% 116964 7.85% | 113089 4.28%
X-n655-k131 106780 | 110327 3.32% 111587 4.50% 110756 3.72% 110096 3.11% | 108433 1.55%
X-n701-k44 81923 86933 6.12% 88166 7.62% 86605 5.72% 86005 4.98% | 85432 4.28%
X-n749-k98 77269 83294 7.80% 83934 8.63% 84406 9.24% 83893 8.57% | 81040 4.88%
X-n801-k40 73311 80584 9.92% 80897 10.35% 79077 7.87% 78171 6.63% -

X-n856-k95 88965 96398 8.35% 95809 7.69% 95801 7.68% 96739 8.74% -

X-n895-k37 53860 61604 1438% 62316 1570% 59778 10.99% 58947 9.44% -

X-n957-k87 85465 93221 9.08% 93995 9.98% 92647 8.40% 92011 7.66% -

X-n1001-k43 72355 82046 13.39% 82855 14.51% 79347 9.66% 78955 9.12% -

$http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp
‘http://vrp.galgos.inf.puc-rio.br/index.php
Ohttps://github.com/ahottung/EAS

17

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp
http://vrp.galgos.inf.puc-rio.br/index.php
https://github.com/ahottung/EAS

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

We further evaluate all methods on Set-XML100 (Queiroga et al., 2022), which is a newly proposed CVRP benchmark
dataset, with the size of instances n € [100, 5000]. The instances have a broader range of distribution shifts, such as depot
positioning (A), customer positioning (B), demand distribution (C'), and average route size (D). Since the original dataset
only contains VRP100 instances, we randomly sample 5 instances and further generate 30 (= 5 x 6) instances with size
n € {500, 1000, 2000, 3000, 4000, 5000}. We randomly sample the four characteristics from the Cartesian product of
Ae{l,2,3} x Be{1,2,3} xC €{1,2,3,4,5,6,7} x D € {1,2,3,4,5,6}. We use the given optimal solutions for
CVRP100 instances, and use HGS to obtain (sub-)optimal solutions for other newly generated instances. The setting of
HGS is the same as the one in Appendix D.1. The solving time varies from hours to days depends on n. The results are
shown in Table 7, where each instance has the form of XML{n}_{ABCD}_{ID}. We omit the ID (i.e., 01) for simplicity.

Table 7. Results on CVRPLIB (Set-XML100) (Queiroga et al., 2022) instances.

POMO AMDKD-POMO Meta-POMO Ours

Instance (Sub-)Opt. Ob;. Gap Ob;. Gap Ob;. Gap Ob;. Gap

XML100_1113 14740 15049 2.10% 15182 3.00% 15125 2.61% 15076 2.28%
XML100_1341 24931 25927 4.00% 25796 3.47 % 26560 6.53% 26143 4.86%
XML100_2271 20100 21782 8.37% 21109 5.02% 21333 6.13% 20877 3.87%
XML100_3123 20370 20704 1.64% 20978 2.98% 20907 2.64% 20883 2.52%
XML100_3372 33926 37235 9.75% 37301 9.95% 37082 9.30% 36292 6.97 %
XML500_1215 37174 39302 5.72% 39152 5.32% 38817 4.42% 38689 4.08%
XML500_1246 23205 25532 10.03% 25516 9.96% 25212 8.65% 25096 8.15%
XML500_1344 47944 51257 6.91% 51452 7.32% 50541 5.42% 50657 5.66%
XML500_3134 65408 69527 6.30% 69675 6.52% 69284 5.93% 68703 5.04 %
XML500_3315 44783 47556 6.19% 47595 6.28% 47294 5.61% 47104 5.18%
XML1000_1276 42095 48226 14.56% 49132 16.72% 46358 10.13% 46342 10.09 %
XML1000_1335 63968 72555 13.42% 72733 13.70% 70118 9.61% 69470 8.60 %
XML1000_2256 30862 36202 17.30% 36448 18.10% 34908 13.11% 34182 10.76 %
XML1000_2363 85618 96685 12.93% 95985 12.11% 94893 10.83% 93445 9.14%
XML1000_3113 169377 179276 5.84% 180583 6.62% 178765 5.54% 178171 5.19%
XML2000_1172 336322 392613 16.74% 416007 23.69% 414319 23.19% 395090 17.47%
XML2000_1214 194617 209676 7.74% 211107 8.47% 206678 6.20% 205204 5.44%
XML2000_1326 69613 97656 40.28% 95535 37.24% 84193 20.94% 83356 19.74%
XML2000_2216 56550 75417 33.36% 70690 25.00% 65542 15.90% 63906 13.01%
XML2000_3316 105108 120956 15.08% 129375 23.09% 119440 13.64% 116758 11.08%
XML3000_1141 800995 890313 11.15% 980642 22.43% 938765 17.20% 910961 13.73%
XML3000_2221 615170 667875 8.57% 703465 14.35% 656973 6.80% 674764 9.69%
XML3000_2322 400934 450847 12.45% 487873 21.68% 448146 11.78% 446922 11.47%
XML3000_3155 244524 328102 34.18% 308877 26.32% 285693 16.84% 271352 10.97%
XML3000_3313 427510 471327 10.25% 488874 14.35% 467088 9.26% 459396 7.46 %
XML4000_1211 1296150 1397205 7.80% 1451127 11.96% 1360158 4.94% 1336333 3.10%
XML4000_1246 149850 190303 27.00% 198247 32.30% 173269 15.63% 174495 16.45%
XML4000_2153 330364 684832 107.30% 540420 63.58% 379186 14.78% 502960 52.24%
XML4000_3161 1516100 1694469 11.76% 1805507 19.09% 1755874 15.82% 1658308 9.38%
XML4000_3246 156226 292968 87.53% 206601 32.24% 184648 18.19% 183801 17.65%
XML5000_1241 1584020 1741474 9.94% 1778777 12.30% 1826274 1529% 1718791 8.51%
XML5000_1321 1466910 1597897 8.93% 1886757 28.62% 1677306 14.34% 1647989 12.34%
XML5000_2224 315739 386773 22.50% 403097 27.67% 345626 9.47 % 352382 11.61%
XMLS5000_3135 396487 892760 125.17% 755735 90.61% 477590 20.46% 449778 13.44%
XML5000_3372 1135140 1273886 12.22% 1522414 34.12% 1438497 26.72% 1293027 13.91%

18

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

D.4. Ablation Study

Here, we conduct further ablation studies on hyperparameters and technical choices. For training efficiency, we run the
experiments for 125K iterations (i.e., 16M instances) using the proposed first-order approximation method on TSP. The
other training setups are kept the same as the ones presented in Section 5.

Ablation Study on Hyperparameters. There are several key hyperparameters in the proposed framework: 1) the number of
tasks in a mini-batch B; 2) the number of inner-loop updates K; 3) the step sizes of inner-loop and outer-loop updates «, [3;
4) the temperature 1), which controls the entropy of the probability distribution, from which our hierarchical task scheduler
samples. The results are shown in Table 8. Note that the performance comparison is based on the same number of training
instances. Since the training instances in the inner-loop and outer-loop optimization are different, increasing B or K will
decrease the total number of meta-model updates in the outer-loop optimization, resulting in inferior zero-shot performance.
In this paper, we follow the setting in Finn et al. (2017), with B = K = 1. If we would like to increase B or K, 1) the step
sizes «, /3 need to be tuned in order to achieve decent performance; 2) the advanced meta-learning algorithms (e.g., MAML
with bootstrapping (Flennerhag et al., 2022)) could be used to improve training efficiency. Moreover, we could observe that
carefully tuning the temperature 1 may further boost the performance.

Table 8. Ablation study on Hyperparameters.

B K o B 7 (300,U) | (500,R)

1 1 led led 1 1351 (4.26%) | 13.54 (9.29%)
11 led 1e3 1 13.61(5.03%) | 13.71(10.61%)
1 3 led led 1 14.04(841%) | 13.45(14.61%)
31 led led 1 14.00(8.09%) | 14.39 (16.16%)
1 1 led led 02 1349(4.13%) | 13.53 (9.18%)
11 led led 5 13.62(5.07%) | 13.73(10.80%)

Ablation Study on Optimizers. 1) Optimizer: when training with REINFORCE (Williams, 1992), the Adam optimizer
has much better performance than SGD, as shown in Kool et al. (2018); Kwon et al. (2020). We also empirically observe
the superior performance when meta-training POMO with the Adam optimizer in the out-loop optimization (where the
meta-model is updated). Another question is which optimizer should we use in the inner-loop optimization? We conduct the
ablation study pertaining to this question, and the results in Table 9 demonstrate similar performance for different optimizers
in the inner loop. Therefore, in this paper, we use the same optimizer (i.e., Adam) as the one used during fine-tuning, which
is more convenient than tuning different optimizers in the same framework. 2) Meta-Gradient: the Adam optimizer (Kingma
& Ba, 2015) is known for its performance and stability, and requires fewer hyperparameters for tuning. The internal
implementation of Adam incorporates bias correction, scaling and momentum. Here the question is could it be helpful to
load the information of meta-gradients to the inner-loop optimizer? The intuition is that the information of the meta-gradient
(from the outer-loop optimizer) may serve as a good initialization of the gradient for the inner-loop optimization, so that the
meta-training may achieve better convergence or final performance. Based on the results in Table 9, we observe that loading
meta-gradients has no improvements. Therefore we ignore it to keep the simplicity of the framework.

Table 9. Ablation study on Optimizers.

Outer-Loop Inner-Loop Load Meta-Gradient | (300,U) (500, R)
Adam Adam X 13.51 (4.26%) 13.54 (9.29%)
SGD SGD X 16.56 (27.83%) 17.47 (41.16%)
Adam SGD x 13.51 (4.32%) 13.55(9.37%)
Adam Adam v 13.53 (4.47%) 13.60 (9.72%)

Ablation Study on Normalization Layers. Similar to Drakulic et al. (2023), we empirically observe that the choice of
the normalization layer (in attention-based models (Kool et al., 2018; Kwon et al., 2020)) has a significant effect on the
final performance. We denote the batch normalization without tracking the running mean and variance as batch_no_track.
Empirically, the batch_no_track and instance normalization could achieve decent zero-shot performance, while no normal-
ization or batch normalization (with the first-order approximation) may destabilize the meta-training. We also try the rezero
normalization layer (Bachlechner et al., 2021) without observing significant improvements. Therefore, in this paper, we use
batch_no_track as the default normalization layer for our method. Although the above empirical observations may only
valid for attention-based models, the choice of the normalization layer may be worthy of attention for the future work.

19

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

D.5. Generalizability

To demonstrate the generalizability of the proposed framework, we further apply it to L2D'! (Li et al., 2021). Concretely,
we train a regression model (rather than a classification model) since: (1) the training of the regression model is more
efficient (i.e., around 6 hrs); (2) it has better flexibility in training multiple sizes and distributions, which is quite suitable
for the omni-generalization setting. We use the datasets provided by Li et al. (2021) to construct the training task set.
Concretely, it contains six mixed CVRP distributions with n € {500, 1000} x d € {3, 5, 7}, where n is the problem size
and d is the cluster center. We use HGS as the subsolver, and keep the other settings the same as Li et al. (2021). During the
evaluation, we set the number of runs to 1 for each instance, and set the time limit for solving each subproblem to 1s. For a
fair comparison, we retrain the regression model (i.e., L2D with the batch size of 512 and 2048), and meta-train a regression
model (i.e., Ours with the batch size of 512) on the training task set. We show the average cost over 10 instances on each
test dataset, and the number of achieved best solutions (in brackets) among all methods. As shown in Table 10, our method
could further improve the generalization of L2D when meta-training with diverse tasks in terms of sizes and distributions,
demonstrating the effectiveness and generalizability of the proposed framework.

Table 10. Performance evaluation on L2D (Li et al., 2021).

In-Distribution Cross-Size Cross-Distribution | Cross-Size & Distribution
mixed_d3_n1000 mixed_d5_nl1000 mixed_d7_nl1000 | mixed_d3_n2000 mixed_d5_n2000 mixed_d7_n2000 cluster_n1000 cluster_n2000
L2D (512) 142.53 (2) 119.33(2) 102.96 (5) 287.64 (2) 245.55 (3) 201.84 (1) 149.43 (2) 194.70 (2)
L2D (2048) 140.90 (1) 161.61 (2) 208.95 (1) 312.07 (0) 194.84 (3) 300.44 (0) 81.21 (4) 265.26 (1)
Ours (512) 80.95 (7) 95.53 (6) 124.95 (4) 101.28 (8) 139.44 (4) 96.03 (9) 91.96 (4) 97.18 (7)

E. Discussion

Training Efficiency and Scalability. The training efficiency and scalability of the proposed framework could be analyzed
from two perspectives. 1) Meta-learning algorithm: the second-order meta-learning algorithm is computationally expensive
due to the calculation of Hessian-vector products and the needs of keeping computational graphs in memory (so that we
could backward through them a second time). The improved first-order approximation method could greatly improve the
training efficiency while maintaining performance. 2) Base model: we use POMO (Kwon et al., 2020), which is a popular
autoregressive construction-based method, as our base model in Section 5. It leverages the attention mechanism and augments
each training instance by starting with different nodes. Therefore, the (meta-)training of POMO is computationally expensive
especially for the large-scale problems. In addition to the autoregressive construction-based methods, non-autoregressive
construction-based and improvement-based methods also receive much attention in the literature, and they have the potential
to mitigate the training efficiency and scalability issue. Typically, non-autoregressive construction-based methods learn
an edge adjacency matrix (i.e., heat-map), from which the advanced post-hoc search strategies (e.g., Monte-Carlo Tree
Search) construct solutions. Improvement-based methods could leverage decomposition (or divide-and-conquer) to first
solve small-scale subproblems, and then obtain the feasible solution to the global problem. In general, they are more
computationally efficient or effective to solve large-scale problems (e.g., TSP10000 in Fu et al. (2021); Qiu et al. (2022); Sun
& Yang (2023) or VRP2000 in Li et al. (2021)), but at the expense of much longer inference time or extra domain knowledge
(e.g., advanced search strategies). As shown in Appendix D.5, we further apply our method to L2D (Li et al., 2021),
where we find its meta-training is much more efficient than that of POMO. For example, its second-order meta-training (on
VRP500-1000) only takes 9 hours on a NVIDIA V100 GPU (32GB). Therefore, the choices of meta-learning algorithms
and base models may have significant effects on the training efficiency and scalability of the proposed framework.

Meta-training on Pretrained Models. We would like to note that meta-training from scratch is non-trivial based on
our experiments. If a pretrained model exists, it is suggested to conduct meta-training on it. Intuitively, the pretrained
model could be regarded as a good initialization for the meta-learning framework (i.e., both the inner-loop and outer-loop
optimization), and therefore could improve the training efficiency.

Performance on Small-Scale VRP Instances. In this paper, we mainly consider evaluating the generalization performance
on large-scale instances. Here, we provide empirical results on small-scale instances, which are chosen from CVRPLIB
(Set-P) (Augerat, 1995), with n < 30. The results are shown in Table 11. We observe that the performance on small
instances may not be necessarily good if training on large sizes (i.e., CVRP50-200). The zero-shot performance is around

"https://github.com/mit-wu-lab/learning-to-delegate

20

https://github.com/mit-wu-lab/learning-to-delegate

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Table 11. Results on CVRPLIB (Set-P) (Augerat, 1995) instances.

Ours Ours+EAS
Instance ~ Opt. | Obj. Gap Ob;. Gap

P-n16-k8 450 | 450 0.00% 450 0.00%
P-n19-k2 212 | 219 330% 212 0.00%
P-n20-k2 216 | 225 4.17% 216 0.00%
P-n21-k2 211 213 095% 211 0.00%
P-n22-k2 216 | 219 139% 216 0.00%
P-n22-k8 603 | 610 1.16% 603 0.00%
P-n23-k8 529 | 548 3.59% 529 0.00%

0.00%-4.17% with greedy search. However, for small-scale instances, it is quite efficient to use advanced search strategies
(e.g., EAS (Hottung et al., 2022)), resulting in 0.00% on all these benchmark instances.

Sensitivity on Training Task Distribution. The training task set is expected to contain instances with diverse distributions.
As discussed in Appendix B, in addition to the uniform distribution, we use the gaussian mixture distribution due to its
elegance and flexibility in changing distributions (via hyperparameters) into various patterns. Moreover, we also try to
use different training task distributions. For example, we only use uniform, gaussian and cluster distributions, which are
commonly used in the literature, to construct the training task set. Although our method outperforms baselines, all methods
cannot achieve decent omni-generalization performance during evaluation. This might be led by the monotonous training
tasks, which could not provide the model with sufficient or diverse information, making it hard to generalize well.

21

