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Abstract

Recent advances in deep generative models have led to impressive results in a
variety of application domains. Motivated by the possibility that deep learning
models might memorize part of the input data, there have been increased efforts
to understand how memorization arises. In this work, we extend a recently pro-
posed measure of memorization for supervised learning (Feldman, 2019) to the
unsupervised density estimation problem and adapt it to be more computationally
efficient. Next, we present a study that demonstrates how memorization can occur
in probabilistic deep generative models such as variational autoencoders. This
reveals that the form of memorization to which these models are susceptible differs
fundamentally from mode collapse and overfitting. Furthermore, we show that
the proposed memorization score measures a phenomenon that is not captured by
commonly-used nearest neighbor tests. Finally, we discuss several strategies that
can be used to limit memorization in practice. Our work thus provides a framework
for understanding problematic memorization in probabilistic generative models.

1 Introduction

In the last few years there have been incredible successes in generative modeling through the
development of deep learning techniques such as variational autoencoders (VAEs) [1, 2], generative
adversarial networks (GANs) [3], normalizing flows [4, 5], and diffusion networks [6, 7], among
others. The goal of generative modeling is to learn the data distribution of a given data set, which
has numerous applications such as creating realistic synthetic data, correcting data corruption, and
detecting anomalies. Novel architectures for generative modeling are typically evaluated on how
well a complex, high dimensional data distribution can be learned by the model and how realistic the
samples from the model are. An important question in the evaluation of generative models is to what
extent training observations are memorized by the learning algorithm, as this has implications for
data privacy, model stability, and generalization performance. For example, in a medical setting it is
highly desirable to know if a synthetic data model could produce near duplicates of the training data.

A common technique to assess memorization in deep generative models is to take samples from the
model and compare these to their nearest neighbors in the training set. There are several problems
with this approach. First, it has been well established that when using the Euclidean metric this test
can be easily fooled by taking an image from the training set and shifting it by a few pixels [8]. For
this reason, nearest neighbors in the feature space of a secondary model are sometimes used, as well
as cropping and/or downsampling before identifying nearest neighbors (e.g., [9—-11]). Second, while
there may not be any neighbors in the training set for a small selection of samples from the model,
this does not demonstrate that there are no observations that are highly memorized. Indeed, in several
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(a) Memorization (b) Overfitting

Figure 1: Memorization and overfitting. In (a) the solid blue curve reflects the probability density
when all observations are included, whereas the dashed curve is the density when only yellow
observations are included. The local change in density that occurs when an observation is removed
from the training data indicates the extent to which the model memorized the observation. The density
typically associated with overfitting due to overtraining is shown by the solid red curve in (b).

recent publications on deep generative models it is possible to identify observations highly similar to
the training set in the illustrations of generated samples (see Supplement A).

Memorization in generative models is not always surprising. When the training data set contains a
number of highly similar observations, such as duplicates, then it would be expected that these receive
an increased weight in the model and are more likely to be generated. The fact that commonly-used
data sets contain numerous (near) duplicates [12] therefore provides one reason for memorization of
training observations. While important, memorization due to duplicates is not the focus of this work.
Instead, we are concerned with memorization that arises as an increased probability of generating a
sample that closely resembles the training data in regions of the input space where the algorithm has
not seen sufficient observations to enable generalization. For example, we may expect that highly
memorized observations are either in some way atypical or are essential for properly modeling a
particular region of the data manifold.

Figure 1a illustrates this kind of local memorization in probabilistic generative models. We focus
on explicit density models as these are more amenable to a direct analysis of the learned probability
distribution (as opposed to implicit density models such as GANs). The figure shows that in certain
regions of the input space the learned probability density can be entirely supported by a single,
potentially outlying, observation. When sampling from the model in these parts of the space it is thus
highly likely that a sample similar to an input observation will be generated. The figure also illustrates
that in regions of the input space that are densely supported by closely-related observations, sampling
will yield observations that resemble the input data. The change in the probability density of an
observation that occurs when it is removed from the data forms the basis of the memorization score
we propose in Section 3. This form of memorization should be contrasted with what is commonly
associated with memorization due to overfitting (illustrated in Figure 1b). Overfitting is a global
property of a model that typically occurs when it is trained for too long or with too high a learning
rate (i.e., overtraining), so that a gap develops between the training and test performance. Thus, we
emphasize that in generative models memorization and generalization can occur simultaneously at
distinct regions of the input space, and that memorization is not necessarily caused by overtraining.

To understand memorization further, consider the simple case of fitting a multivariate normal distribu-
tion. In this scenario, the presence or absence of a particular observation in the data set will have a
small effect on the learned model unless the observation is an outlier. By contrast, a kernel density
estimate (KDE) [13, 14] of the probability density may be more sensitive to the presence or absence
of a particular observation. To see why this is the case, consider that in sparsely-populated regions of
the input space the KDE can be supported by a relatively small number of observations. Although
deep generative models typically operate in much higher dimensional spaces than the aforementioned
methods, the same problem can arise when generalizing to regions of the space that are weakly
supported by the available data. Because these models are optimized globally, the model has to place
some probability mass in these regions. As we will demonstrate below, it is not necessarily the case
that the model places low probability on such observations, resulting in observations that are both
highly memorized and not significantly less likely under the model than other observations.

In this work, we extend a recently proposed measure of memorization for supervised learning [15, 16]
to probabilistic generative models and introduce a practical estimator of this memorization score. We
subsequently investigate memorization experimentally, where we focus on the variational autoencoder.



In our experiments we demonstrate that highly memorized observations are not necessarily outliers,
that memorization can occur early during the training process, and show the connection between
nearest neighbor tests for memorization and the proposed memorization score. Finally, we discuss
approaches that can limit memorization in practice.

2 Related Work

Here we review work on memorization in deep learning, memorization as it relates to membership
inference, the evaluation of generative models, as well as influence functions and stability.

Memorization in deep learning. The observation that deep learning models can learn from patterns
of random data has been a catalyst for recent efforts to understand memorization in supervised
learning [17-19]. A number of approaches have been proposed to test for memorization in specific
applications. In [20] memorization in language models is evaluated using a “canary” string (e.g., if
“my social security number is 2” is in the training data, how often does the model complete the
prompt “my social security number is” using x instead of a comparable y # z that is not in the
training set). Unfortunately, this approach does not translate easily to other contexts, such as images.
Moreover, language models often contain explicit memory cells such as LSTMs [21] that can facilitate
memorization, which are absent in most generative models.

A memorization score for supervised learning was proposed in [15], which forms the inspiration for
our formulation in Section 3. A related “consistency score” for supervised learning was proposed in
[22]. We argue, however, that memorization in supervised learning differs fundamentally from that
in generative models, as the label prediction task affects the training dynamics, and label noise is
known to induce memorization in supervised learning [23, 24]. Building on earlier work by [25, 26],
a hypothesis test is proposed in [27] that is based on the premise that memorization has occurred
when samples from the trained model are “closer” to the training data than observations from the test
set. While this is a useful test for aggregate memorization behavior in (a region of) the input space,
our proposed score function allows us to quantify the memorization of a single observation.

Membership inference. A topic closely related to memorization is the problem of membership
inference. Here, the goal is to recover whether a particular observation was part of the unknown
training data set, either using knowledge of the model, access to the model, or in a black-box setting.
Membership inference is particularly important when models are deployed [28], as potentially private
data could be exposed. In the supervised learning setting, [29] propose to use an attack model that
learns to classify whether a given sample was in the training set. Later work [30, 31] focused on
generative models and proposed to train a GAN on samples from the target model. The associated
discriminator is subsequently used to classify membership of the unknown training set. A related
approach to recovering training images is described in [32], using an optimization algorithm that
identifies for every observation the closest sample that can be generated by the network. However this
requires solving a highly non-convex problem, which isn’t guaranteed to find the optimal solution.

Evaluating generative models. Memorization is a known issue when evaluating generative models,
in particular for GANs [26, 33]. Several approaches are discussed in [8], with a focus on the pitfalls
of relying on log-likelihood, sample quality, and nearest neighbors. Using the log-likelihood can be
particularly problematic as it has been shown that models can assign higher likelihood to observations
outside the input domain [34]. Nowadays, generative models are frequently evaluated by the quality
of their samples as evaluated by other models, as is done in the Inception Score (IS) [35] and Fréchet
Inception Distance (FID) [36]. Since these metrics have no concept of where the samples originate,
the pathological case where a model memorizes the entire training data set will yield a near-perfect
score. Motivated by this observation, [37] propose to use neural network divergences to measure
sample diversity and quality simultaneously, but this requires training a separate evaluation model
and there is no guarantee that local memorization will be detected.

Influence & Stability. The problem of memorization is also related to the concept of influence
functions in statistics [38, 39]. Influence functions can be used to measure the effect of upweighting
or perturbing an observation and have recently been considered as a diagnostic tool for deep learning
[40, 41]. However, it has also been demonstrated that influence function estimates in deep learning
models can be fragile [42]. Below, we therefore focus on a relatively simple estimator to gain a



reliable understanding of memorization in probabilistic deep generative models. Concurrent work in
[43] focuses on influence functions for variational autoencoders based on the “TracIn” approximation
of [44] computed over the training run. An important difference is that while the method of [43] is
computed for one particular model, our memorization score applies to a particular model architecture
by averaging over multiple K -fold cross-validation fits (see Section 3). Related to influence functions
is the concept of stability in learning theory [45]. In particular, the point-wise hypothesis stability is
an upper bound on the expected absolute change in the loss function when an observation is removed
from the training set (where the expectation is over all training sets of a given size). We instead focus
on the change in the density of a probabilistic model when trained on a specific data set.

3 Memorization Score

We present a principled formulation of a memorization score for probabilistic generative models,
inspired by the one proposed recently in [15, 16] for supervised learning. Let .4 denote a randomized
learning algorithm, and let a be an instance of the algorithm (i.e., a trained model). Here, A captures
a complete description of the algorithm, including the chosen hyperparameters, training epochs, and
optimization method. The randomness in .4 arises from the particular initial conditions, the selection
of mini batches during training, as well as other factors. Denote the training data set by D = {x; }7 ;
with observations from X C RP. Let [n] = {1,...,n} and write Dz = {x; : x; € D,i € Z} for
the subset of observations in the training data indexed by the set Z C [n]. The posterior probability
assigned to an observation x € X’ by a model a when trained on a data set D is written as p(x | D, a).

We are interested in the posterior probability of an observation assigned by the algorithm A, not
merely by an instantiation of the algorithm. Therefore we introduce the probability P4 (x| D) and its
sampling estimate as
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for some number of repetitions 7. We see that P4(x | D) is the expectation of p(x | D, a) over
instances of the randomized algorithm A.

To facilitate meaningful interpretation of the memorization score we use the difference in log
probabilities, in contrast to [15, 16]. Thus we define the leave-one-out (LOO) memorization score as

M"°(A, D, i) = log Pa(x; | D) — log Pa(xi | Dpp (1) 2

This memorization score measures how much more likely an observation is when it is included in the
training set compared to when it is not. For example, if M“C°(A, D, i) = 10, then Py(x; | D) =
exp(10) - P4(X; | Dpy) (4y). Moreover, when M™(A, D, i) = 0 removing the observation from the
training data has no effect at x;, and when M99( A, D, i) < 0 the observation is more likely under
the model when it is removed from the training data. We will abbreviate the LOO memorization
score as MO0 := MO9( A D, i) when the arguments are clear from context.

Estimation. The memorization score in (2) is a leave-one-out estimator that requires fitting the
learning algorithm .A multiple times for each observation as it is left out of the training data set. As
this is computationally infeasible in general, we introduce a practical estimator that simplifies the
one proposed in (2). Instead of using a leave-one-out method or random sampling, we use a K -fold
approach as is done in cross-validation. Let Z;, denote randomly sampled disjoint subsets of the
indices [n] = {1,...,n} of size n/K, such that UX_, 7). = [n]. We then train the model on each of
the training sets Dy,}\z, and compute the log probability for all observations in the training set and
the holdout set Dz, .

Since there is randomness in the algorithm A and in the chosen folds Z,, we repeat the cross-validation
procedure L times and average the results. Writing Z; ;. for the k-th holdout index set in run £ and



Algorithm 1 Computing the Cross-Validated Memorization Score

Input: Algorithm A, data set D, repetitions L, folds K
Output: MXPY v

U; + LOGMEANEXP({m¢ r; : £ € [L],k € [K],i & Lok }), Vi
Vi <~ LOGMEANEXP({m¢ i : £ € [L], k € [K],i € Ly i }), Vi
MK U — Vi, Y

1: for{=1,...,Ldo

2: G¢ + Random partition of [n] into K disjoint subsets

3: forZ,,, € Gowithk=1,...,K do

4: ag,, < Train A on D NTe ke

5: me,k,; < Compute logp(xZ | Din\zy. 1> @e,k), Vi € 1]

6: end for

7: end for > LOGMEANEXP({u; }/_,) = — log n + LOGSUMEXP({u; }1,)
8:

9:

0:
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abbreviating the respective training set as Dy, = Din)\z, ,,» the memorization score becomes
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where 1, is the indicator function that equals 1 if v is true and 0 otherwise. Each of the K — 1 folds
where observation ¢ is in the training set contributes to the first term in (2), and when observation % is
in the holdout set it then contributes to the second term. This approach is summarized in Algorithm 1,
where log probabilities are used for numerical accuracy. In practice, the number of repetitions L and
folds K will be dominated by the available computational resources.

When is memorization significant? A natural question is what values of the memorization score
are significant and of potential concern. The memorization scores can be directly compared between
different algorithm settings on the same data set, for instance to understand whether changes in
hyperparameters or model architectures increase or decrease memorization. Statistical measures
such as the mean, median, and skewness of the memorization score or the location of, say, the 95th
percentile, can be informative when quantifying memorization of a particular model on a particular
data set, but can not necessarily be compared between data sets. In practice, we also find that the
distribution of the memorization score can differ between modes in the data set, such as distinct
object classes. This can be understood by considering that the variability of observations of distinct
classes likely differs, which affects the likelihood of the objects under the model, and in turn the
memorization score. We will return to this question in Section 6.

4 Experiments

We next describe several experiments that advance our understanding of memorization in probabilistic
deep generative models, with a focus on the variational autoencoder setting. Additional results are
available in Supplement C. Code to reproduce our experiments can be found in an online repository.>

4.1 Background

We employ the variational autoencoder (VAE) [1, 2] as the probabilistic generative model in our
experiments, although it is important to emphasize that the memorization score introduced above is
equally applicable to methods such as normalizing flows, diffusion networks, and other generative
models that learn a probability density over the input space. The VAE is a latent-variable model,
where we model the joint distribution pg(x, z) of an observation x € X C RP and a latent variable
z € Z C R%. The joint distribution can be factorized as py(x,z) = pg(x | z)p(z), and in the VAE
the prior distribution p(z) is typically assumed to be a standard multivariate Gaussian. The posterior

?See: https://github.com/alan-turing-institute/memorization.
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(a) Low memorization (b) Median memorization (c) High memorization

Figure 2: Observations with low, median, and high memorization scores in the CIFAR-10 data set,
when learning the distribution with a convolutional VAE. Memorization scores range from about
—180 in the top left of figure (a) to about 900 in the bottom right of figure (c), with a median of 97.

distribution py(z | x) is generally intractable, so it is approximated using an inference model, or
encoder, q(z | x). Analogously, the model pg(x | z) is often referred to as the decoder. The VAE is
trained by maximizing the lower bound on the evidence (ELBO), see (5), since

logpg(x) > Ey, (2| x) [log po(x,2) — log g4(z | x)] 4)
= _DKL(q¢(Z | X) H p(Z)) + IEq¢(z|x) [logpg(x | Z)] ’ (5)

with Dy (- || -) the Kullback-Leibler (KL) divergence [46]. By choosing a simple distribution for the
encoder g, (z | x), such as a multivariate Gaussian, the KL divergence has a closed-form expression,
resulting in an efficient training algorithm.

We use importance sampling on the decoder [47] to approximate log pg(x;) for the computation of
the memorization score, and focus on the MNIST [48], CIFAR-10 [49], and CelebA [50] data sets.
We use a fully connected encoder and decoder for MNIST and employ convolutional architectures
for CIFAR-10 and CelebA. For the optimization we use Adam [51] and we implement all models
in PyTorch [52]. The memorization score is estimated using L = 10 repetitions and K = 10 folds.
Additional details of the experimental setup and model architectures can be found in Supplement B.

4.2 Results

We first explore memorization qualitatively. Figure 2 shows examples of observations with low,
median, and high memorization scores in the VAE model trained on CIFAR-10. While some of the
highly-memorized observations may stand out as odd to a human observer, others appear not unlike
those that receive a low memorization score. This shows that the kind of observations that are highly
memorized in a particular model may be counterintuitive, and are not necessarily visually anomalous.

If highly memorized observations are always given a low probability when they are included in the
training data, then it would be straightforward to dismiss them as outliers that the model recognizes
as such. However, we find that this is not universally the case for highly memorized observations,
and a sizable proportion of them are likely only when they are included in the training data. If we
consider observations with the 5% highest memorization scores to be “highly memorized”, then we
can check how many of these observations are considered likely by the model when they are included
in the training data. Figure 3a shows the number of highly memorized and “regular” observations
for bins of the log probability under the VAE model for CelebA, as well as example observations
from both groups for different bins. Moreover, Figure 3b shows the proportion of highly memorized
observations in each of the bins of the log probability under the model. While the latter figure shows
that observations with low probability are more likely to be memorized, the former shows that a
considerable proportion of highly memorized observations are as likely as regular observations when
they are included in the training set. Indeed, more than half the highly memorized observations fall
within the central 90% of log probability values (i.e., with log P4 (x| D) € [—14500, —12000]).

The memorization score can be a useful diagnostic tool to evaluate the effect of different hyperpa-
rameter settings and model architectures. For example, in Figure 4c we illustrate the distribution
of the memorization score for a VAE trained on MNIST with two different learning rates, and we
show the train and test set losses during training in Figure 4a. With a learning rate of 7 = 10~ (blue
curves), a clear generalization gap can be seen in the loss curves, indicating the start of overtraining
(note the test loss has not yet started to increase). This generalization gap disappears when training
with the smaller learning rate of 7 = 10~* (yellow curves). The absence of a generalization gap is
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Figure 3: In (a) we show a histogram of the number of highly memorized ( ) and regular

(blue) observations for bins of the log probability under a VAE model trained on the CelebA data set
(where n = 162, 770). The numbers above the bars correspond to the number of highly memorized
observations in each bin. Randomly selected training observations from several bins are shown as well,
with dashed lines illustrating the bin where the images in a particular column can be found. Images
with a yellow frame are highly memorized whereas those with a blue frame have low memorization
scores. Figure (b) shows the proportion of highly memorized and regular observations for each bin.

sometimes used as evidence for the absence of overfitting and memorization [53], but the distribution
of the memorization scores for = 10~* in Figure 4c shows that this is insufficient. While the
memorization scores are reduced by lowering the learning rate, relatively high memorization values
can still occur. In fact, the largest memorization score for 7 = 10~% is about 80, and represents a
shift from 3a far outlier when the observation is absent from the training data to a central inlier when it
is present.

4.3 Memorization during training

To continue on the relation between memorization and overtraining, we look at how the memorization
score evolves during training. In Figure 4b we show the 0.95 and 0.999 quantiles of the memorization
score for the VAE trained on MNIST using two different learning rates. The quantiles are chosen such
that they show the memorization score for the highly memorized observations. For both learning rates
we see that the memorization score quantiles increase during training, as can be expected. However
we also see that for the larger learning rate of = 10~ the memorization score quantiles already take
on large values before the generalization gap in Figure 4a appears. This is additional evidence that
determining memorization by the generalization gap is insufficient, and implies that early stopping
would not fully alleviate memorization. Moreover, we see that the rate of increase for the peak
memorization quantiles slows down with more training, which suggests that the memorization score
stabilizes and does not keep increasing with the training epochs. This is reminiscent of [20], who
demonstrated that their metric for memorization in language models peaks when the test loss starts to
increase. The difference is that here memorization appears to stabilize even before this happens.

4.4 Nearest Neighbors

As discussed in the introduction, nearest neighbor illustrations are commonly used to argue that
no memorization is present in the model. Moreover, hypothesis tests and evaluation metrics have
been proposed that measure memorization using distances between observations and model samples
[26, 27]. Because of the prevalence of nearest neighbor tests for memorization, we next demonstrate
the relationship between our proposed memorization score and a nearest neighbor metric.

As an example of a nearest neighbor test, we look at the relative distance of observations from
the training set to generated samples and observations from the validation set. Let S C & be a

3For this particular observation, log P.a(x; | Din\{i}) = —178 when the observation is excluded from the
training data, and log P (x; | D) &~ —97 when it is included, and the latter value is approximately equal to the
average log probability of the other observations with the same digit.
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Figure 4: Loss curves, memorization score quantiles, and memorization score distributions for a VAE
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vertical lines mark the 95th percentile of the memorization scores, and the axes are cropped for clarity
(the maximum memorization score for n = 10~2 is about 210 and for n = 10~* it is about 80).

set of samples from the model and let V C X be the validation set, with |S| = |V|. Denote by
d: X x X — R a distance metric, which we choose here to be the Euclidean distance between
images in pixel space after downsampling by a factor of 2. For all x; in the training set D, we then
compute the ratio between the closest distance to a member of the validation set and a member of the
sample set,

mingey d(X;, X)

pi = (6)

Minyes d(x;,x)
If p; > 1, then the nearest neighbor of x; in the sample set is closer than the nearest neighbor in the
validation set, and vice versa. Thus p; > 1 suggests memorization is occurring, but as it depends
on sampling it is expected to be very noise at an individual data point. Investigating if the average
ratio for a set of observations differs significantly from 1 is an example of using hypothesis testing
approaches to measure memorization.

Figure 5 illustrates the relationship between p; and the memorization score MiK'f"ld. We see that
in general there is no strong correlation between the two score functions, which can be explained
by the fact that they measure different quantities. While the memorization score directly measures
how much the model relies on the presence of x; for the local probability density, nearest neighbor
methods test how “close” samples from the model are to the training or validation data. They thus
require a meaningful distance metric (which is non-trivial for high-dimensional data) and are subject
to variability in the sample and validation sets. We therefore argue that while nearest neighbor
examples and hypothesis tests can be informative and may detect global memorization, to understand
memorization at an instance level the proposed memorization score is to be preferred.

5 Mitigation Strategies

We describe two strategies that can be used to mitigate memorization in probabilistic generative
models. First, the memorization score can be directly related to the concept of Differential Privacy
(DP) [54, 55]. Note that the memorization score in (2) can be rewritten as

Pu(xi | D) = exp(MIO)Pa(x; | Dinp (4})5 )

and recall that a randomized algorithm A is e-differentially private if for all data sets Dy, D5 that
differ in only one element the following inequality holds

PAW|D1) < exp(e) PaAW[Dz), YW CX. (8)

Since this must hold for all subsets W of X, it must also hold for the case where W = {x; }. Moreover,
when x; is removed from D it can be expected that the largest change in density occurs at x;. It then
follows that the memorization score can be bounded by employing e-DP estimation techniques when
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figure (a) trims off one observation at M X4 ~ 6500 for clarity. Figure (b) shows the distribution of
the distance ratio for observations with a high memorization score (top 5%) and the regular ones.

training the generative model, as this will guarantee that M/-9° < ¢, Vi. The converse is however not
true: observing a maximum memorization score of M} 9° = ¢ for a particular model does not imply
that the model is also e-DP. This connection of the memorization score to differential privacy offers
additional support for the proposed formulation of the memorization score.

An alternative approach to limit memorization is to explicitly incorporate an outlier component in
the model that would allow it to ignore atypical observations when learning the probability density.
This technique has been previously used to handle outliers in factorial switching models [56] and to
perform outlier detection in VAEs for tabular data [57]. The intuition is that by including a model
component with broad support but low probability (such as a Gaussian with high variance), the log
probability for atypical observations will be small whether they are included in the training data
or not, resulting in a low memorization score. Other approaches such as using robust divergence
measures instead of the KL-divergence in VAEs [58] may also be able to alleviate memorization.

6 Discussion

We have introduced a principled formulation of a memorization score for probabilistic generative
models. The memorization score directly measures the impact of removing an observation on the
model, and thereby allows us to quantify the degree to which the model has memorized it. We
explored how the memorization score evolves during training and how it relates to typical nearest
neighbor tests, and we have shown that highly memorized observations are not necessarily unlikely
under the model. The proposed memorization score can be used to determine regions of the input
space that require additional data collection, to understand the degree of memorization that an
algorithm exhibits, or to identify training observations that must be pruned to avoid memorization by
the model.

A question that requires further study is what constitutes a “high” memorization score on a particular
data set. One of the main difficulties with this is that density estimates returned by a model, and
thus probability differences, are not necessarily comparable between data sets [34]. We expect
that future work will focus on this important question, and suggest that inspiration may be taken
from work on choosing ¢ in differential privacy [59, 60]. Furthermore, exploring the relationship
between memorization and the double descent phenomenon [61, 62] could be worthy of investigation.
Improving the efficiency of the estimator is also considered an important topic for future research.

If we want diversity in the samples created by generative models, then the model will have to learn to
generalize to regions of the data manifold that are not well represented in the input data. Whether
this is achieved by extrapolating from other regions of the space or fails due to memorization is
an important question. Our work thus contributes to the ongoing effort to understand the balance
between memorization and generalization in deep generative neural networks.
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