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ABSTRACT

Large language models (LLMs) face significant challenges with needle-in-a-
haystack tasks, where relevant information (“the needle“) must be drawn from a
large pool of irrelevant context (“the haystack“). Previous studies have highlighted
positional bias and distractor quantity as critical factors affecting model perfor-
mance, yet the influence of gold context size, the length of the answer-containing
document, has received little attention. We present the first systematic study of gold
context size in long-context question answering, spanning three diverse benchmarks
(general knowledge, biomedical reasoning, and mathematical reasoning), eleven
state-of-the-art LLMs (including recent reasoning models), and more than 150K
controlled runs. Our experiments reveal that LLM performance drops sharply when
the gold context is shorter, i.e., smaller gold contexts consistently degrade model
performance and amplify positional sensitivity, posing a major challenge for
agentic systems that must integrate scattered, fine-grained information of varying
lengths. This effect persists under rigorous confounder analysis: even after control-
ling for gold document position, answer token repetition, gold-to-distractor ratio,
distractor volume, and domain specificity, gold context size remains a decisive,
independent predictor of success. Our work provides clear insights to guide the
design of robust, context-aware LLM-driven systems.

1 INTRODUCTION

Large language models (LLMs) increasingly power applications that require reasoning over vast
amounts of information, from synthesizing evidence across scientific literature (Gao et al., 2025;
Baek et al., 2024; Sprueill et al., 2024; Bazgir et al., 2025; Wysocki et al., 2024; Cui et al., 2025; Wang
et al., 2025), to navigating complex codebases (Liu et al., 2023; Zhang et al., 2023; Bogomolov et al.,
2024), to maintaining coherence in multi-turn conversations. These applications share a common
requirement: strong long-context understanding. This is particularly vital for agentic systems,
in which autonomous agents must integrate heterogeneous information streams from specialized
components to reason, plan, and act effectively.

A critical stage in such systems is aggregation, the synthesis of retrieved evidence into an accurate,
actionable response. This stage determines what content to include, cite, or ignore, and has direct im-
plications for safety, reliability, and factual correctness. Aggregation becomes especially challenging
in needle-in-a-haystack scenarios, where relevant evidence (the ‘gold context’) is embedded within
a large volume of topically related or superficially plausible but ultimately irrelevant or mislead-
ing, ‘distractor context’ (Tay et al., 2021; Shaham et al.). Successful aggregation requires precise
identification and prioritization of minimal but essential content while discarding noisy signals.

Although LLMs now support context windows stretching into the millions of tokens, recent studies
show that simply increasing input length does not ensure strong long-context reasoning. Prior
work has explored positional bias (Wang et al., 2023; Liu et al.; Zheng et al., 2023), showing that
early content is more likely to be attended to, and that distractors degrade performance. However,
one key dimension remains underexplored: how does the size of the gold context influence model
performance?

In this study, we present the first systematic analysis of gold context size as an independent variable
in LLM long-context performance. We adapt three diverse benchmarks, CARDBiomedBench
(Bianchi et al., 2025) (biomedical reasoning), NaturalQuestions (Kwiatkowski et al., 2019) (general
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Qu est ion

Is the SNP rs117252809 
significant in AD?Con t ex t  w / 
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sm al l  g o ld  

Figure 1: Changing both the size and position of gold context (relevant information) within a set of
distractor context (irrelevant information), we observe that LLM Needle-In-A-Haystack Performance
is overall lower and more sensitive to position when models are given short gold documents (dashed
line) as opposed to long (solid line).

knowledge), and NuminaMath1.5 (LI et al., 2024) (mathematical reasoning), to vary both the size
and position of the gold context while keeping the distractor content fixed (see Section 2). Our
study spans over 150K controlled runs on eleven state-of-the-art LLMs, both general-purpose and
reasoning-focused, ensuring that the observed effects hold across architectures and tasks. Smaller
gold contexts lead to (1) significantly worse performance and (2) higher positional sensitivity.

These results complicate the common narrative that longer inputs degrade model performance. We
find instead that larger gold documents can improve accuracy, while smaller golds are dispropor-
tionately vulnerable to positional bias. This reveals a brittleness not captured in prior work. Notably,
models achieve near-perfect scores in no-distractor settings, confirming that these failures are due to
aggregation breakdowns rather than task difficulty (see Section 3).

We conduct extensive confounder analyses to ensure that this effect is not an artifact. Controlling
for gold document position, answer token repetition, gold-to-distractor ratio, distractor volume,
and domain specificity, gold context size remains a decisive, independent predictor of performance.
Smaller golds are more vulnerable to primacy bias, whereas larger golds show greater robustness to
position and distractors.

These findings carry practical implications. In real-world deployments, context size, position,
distractor size, and noise are rarely controllable. Aggregation failures due to overlooked gold context
size can degrade trust, safety, and downstream task performance. Based on our empirical findings,
designers of agentic systems should monitor length disparities across evidence documents—especially
when shorter documents may carry critical information—to mitigate potential fragility.

In summary, our contributions are as follows:

• Novel determinant of long-context performance: To the best of our knowledge, we are
the first to demonstrate that the size of gold contexts functions as a hidden variable in LLM
long-context performance. Smaller golds degrade accuracy and amplify positional bias,
underscoring a potential fragility in real-world applications.

• Robust to confounders: We identify and analyze five potential confounding variables,
(1) gold document position, (2) answer token repetition, (3) gold-to-distractor ratio, (4)
distractor volume, and (5) domain specificity, demonstrating that gold context size remains
a decisive predictor of success despite these factors.

• Large-scale experimentation: We repeat our experiments and aggregate findings across
eleven state-of-the-art LLMs, three diverse benchmarks, three sizes of gold, and six positions
in the context window totaling over 150k controlled runs.
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2 EXPERIMENTAL SETUP

We have designed our experiments to systematically evaluate how gold context size affects long-
context LLM performance. This section outlines our design objectives, benchmark adaptations,
baseline validations, primary evaluations simulating realistic aggregation, and potential confounding
variables.

2.1 DESIDERATA

To systematically evaluate the impact of gold context size on long-context LLM performance, our
guiding desiderata were (1) Realism, (2) Gold Size Variability, (3) Distractors, and (4) Generality.

Realism. In real-world agentic systems, aggregation involves synthesizing outputs from multiple
specialized agents, each retrieving information from their domain of expertise. Usually, one agent
returns the document containing the correct answer (the “gold” document), while others provide
distractors, topically relevant but ultimately uninformative. We simulate this by inserting a gold docu-
ment of varying size at different positions within a fixed-length sequence of distractors. Document
order is randomized to reflect natural uncertainty in agent contributions and retrieval quality.

Gold Size Variability. We constructed three nested gold variants for each benchmark:

• Small Gold : Minimal span sufficient to answer the question.

• Medium Gold : Additional explanatory or supporting content.

• Large Gold : Complete reasoning process and/or extended relevant context.

These were wrapped in pseudo-documents (titles, questions). Variants are hierarchically structured
(small ⊂ medium ⊂ large) and validated for sufficiency. See Figure 8 for examples. Performance is
high and uniform when observing only the gold of any size (Appendix B.1).

Distractors. To simulate realistic scenarios, we curate distractors topically relevant and lexically
similar to the question but lacking the answer. Quantities per benchmark were calibrated to match
token distributions observed in a real-world multi-agent retrieval system (∼ 20k tokens).

Generality. We select three diverse benchmarks spanning biomedical, general knowledge, and
mathematical reasoning, and evaluate performance across eleven leading LLMs of varying architecture
and scale. This ensures that our findings generalize across domains and model classes.

2.2 TASK CONSTRUCTION: NEEDLES AND HAYSTACKS

We adapt three established question and answering benchmarks—CARDBiomedBench (biomedi-
cal reasoning), NaturalQuestions (general knowledge), and NuminaMath1.5 (mathematical reason-
ing)—to create controlled needle-in-a-haystack settings. Gold context sizes were varied, accompanied
by distractors explicitly designed to be topically relevant yet answer-free. Figure 2 displays token
count distributions for the varying sizes of gold.

(a) CARDBiomedBench (b) NaturalQuestions (c) NuminaMath1.5

Figure 2: Token count distributions for varying sizes of gold context on each benchmark. Median
token count is in parenthesis in the legend. X-axis is scaled as linear (0-500) and logarithmic (500+).

CARDBiomedBench (CBB). CBB is a question-answering dataset focused on neurodegenerative
diseases, designed to evaluate LLM performance on biomedical reasoning tasks involving genetic,
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molecular, and clinical information. The BiomedSQL (for Alzheimer’s & , CARD) variant augments
each example with SQL queries and database rows to support structured reasoning experiments:

Full answer ⊂ SQL query + answer ⊂ SQL query + rows + answer

Distractors were drawn from documents retrieved by four independent domain-specific agents in
a real-world system. These documents are semantically relevant but verifiably do not contain the
answer, presenting realistic aggregation challenges.

NaturalQuestions (NQ). NQ is an open-domain QA benchmark of Google queries, with Wikipedia
passages from the KILT corpus as evidence (Petroni et al., 2021):

Sentence with the answer ⊂ Paragraph with the sentence ⊂ Paragraph ± 4 paragraphs

Distractors were drawn from the HELMET (Yen et al., 2025) adaptation of NQ-KILT as 100-token
segments. We exclude any documents labeled as evidence or containing the answer. This ensures
distractors remain lexically and topically aligned with the question, but free of the answer.

NuminaMath1.5 (NM). NM is the largest open-source dataset for math reasoning, with problems
ranging from high school to International Mathematical Olympiad (IMO)-level difficulty, originating
from diverse sources like Chinese K-12 exams, AMC/AIME contests, and global math forums. We
used the OpenR1Math (R1, 2024) variant, which includes model-generated solution traces from
DeepSeekR1 (DeepSeek-AI et al., 2025) verified for correctness. We filter for examples with
complete reasoning streams and define gold variants as:

Full answer ⊂ Textbook-style solution + answer ⊂ Full LLM-generated chain-of-thought + solution + answer

Distractors were reasoning traces to different questions. Due to length variability, we cap large gold
contexts at the final 5k tokens, which include concluding reasoning and answers.

2.3 BASELINE EXPERIMENTS

We run three baseline conditions to validate that observed performance differences in main ex-
periments result from changes to gold size, rather than underlying flaws in datasets or distractor
construction. Baseline results across all benchmarks and models can be found in Appendix B.1:

• Closed-book. No context is provided, assessing whether models could answer from internal
knowledge. This gauges possible benchmark saturation.

• Gold-only. Each gold context (sm, md, lg) is presented alone, without distractors. This
confirms variants were sufficient to solve the task and that downstream performance drops
are due to aggregation effects (e.g., distractor interference or gold placement).

• Distractor-only. Models are given only distractor documents. For CBB, we also test
distractors from each agent separately to confirm they were individually non-informative.
These checks ensure that distractors lack sufficient signal to answer correctly (Appendix B.1).

2.4 MAIN EXPERIMENTS

We simulate realistic aggregation scenarios by embedding each gold context size at varying po-
sitions within a fixed sequence of distractors. This tests both gold size and positional sensitivity
simultaneously. We evaluate eleven leading LLMs:

• Closed-weight: o3-mini (OpenAI, 2025), GPT-4o (OpenAI et al., 2024), GPT-4o-Mini
(OpenAI, 2024), Gemini-2.5-Flash, Gemini-2.0-Flash, and Gemini-2.0-Flash-Lite (Mallick
& Kilpatrick, 2025)

• Open-weight: DeepSeek-R1 (DeepSeek-AI et al., 2025), Phi-4-reasoning (Abdin et al.,
2025), LLaMA-3.1-405B, LLaMA-3.3-70B, and LLaMA-3.1-8B (Dubey et al., 2024)

We evaluate each model on every size-position combination in a deterministic setting. Prompts were
standardized within each benchmark. This enables rigorous, cross-model evaluation of gold context
sensitivity and simulates the type of unpredictable document ordering in LLM systems.
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3 MAIN FINDING: SMALLER GOLD CONTEXTS LEAD TO LOWER
PERFORMANCE

Our experiments reveal that gold context size has a substantial and consistent effect on long-context
performance, irrespective of confounding variables, across different benchmarks and models.

Increasing the size of the gold context significantly improves accuracy (Figure 3). On CBB, Gemini-
2.0-Flash went from 48% with small to 62% with medium and 73% with large. GPT-4o performs
similarly, rising from 77% (small) to 98% (large), while LLaMA-3.1-405B went from 74% to 92%.

Notably, performance with large gold contexts approaches the gold-only baselines (i.e., accuracy
when the gold context is shown without any distractors) recorded at 96% for Gemini-2.0-Flash, and
100% for both GPT-4o and LLaMA-3.1-405B. This suggests that large gold contexts allow models to
nearly recover ideal aggregation performance, while small golds fall significantly short.

(a) CARDBiomedBench (b) NaturalQuestions (c) NuminaMath1.5

Figure 3: Average performance across all gold positions for each benchmark and gold context size.
Metrics are benchmark-specific (BioScore, subEM, math-verify). Higher is better. Error bars indicate
90% confidence intervals. Colors correspond to gold context sizes: small , medium, large. Across
all settings, performance improves monotonically with gold context size.

4 ANALYSIS OF CONFOUNDING FACTORS

Our goal is to isolate the effect of gold context size as an independent factor in LLM performance.
Therefore, one must rule out any potential confounding factors that may impact the outcome of the
findings. Specifically, in this section we study and rule out the following confounds: gold document
position in the context window (§4.1), the total number of repetitions of the answer in the context
(§4.2), relative length of gold document to the total distractor evidence length (§4.3), total distractor
length (§4.4) and domain specificity (§4.5). Some of these factors may conflate size effects, as
variations in gold document size inherently shift their values, while others may introduce potential
interactions that complicate attribution.

4.1 GOLD DOCUMENT POSITION

From the results in Figure 4, we observe that smaller gold documents are hard to find regardless of
their position. Nevertheless, certain positions amplify the bias against smaller gold documents.
Performance systematically declines when small gold contexts appear later in the input, while large
gold contexts are more robust to position (Full results in Appendix B.5).

For instance, in CBB, Gemini-2.0-Flash achieves 94% accuracy when the small gold context is placed
at the start of the context window, but only 33% when placed near the end, a 61-point drop. In
contrast, the large gold context declines more gradually, from 84% to 65%, demonstrating greater
positional resilience. This pattern held across all evaluated models and benchmarks.

Importantly, the positional effect is more pronounced in domain-specific tasks (CBB and NM) than
in general knowledge (NQ), suggesting that task type and gold size compound aggregation difficulty.

Smaller Gold Contexts Exhibit Stronger Primacy Bias. We also observe a primacy bias across
models: performance is consistently higher when the gold context appears early in the input window.
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CARDBiomedBench NaturalQuestions NuminaMath1.5
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Figure 4: Model performance by gold context position (early to late in input), higher is better and error
bars are 90% CIs. Each row is a model, columns are benchmarks. Smaller gold contexts exhibit
sharper performance degradation with later placement, especially in specialized domains (CBB,
NM). Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of richer input.

This effect is especially pronounced for small gold contexts. In some cases, small gold contexts
placed at the beginning of the input even outperformed medium or large contexts placed later, despite
their reduced information content. This occurs often in the left and right columns of Figure 4, where
the small gold line starts at the top at gold position 0.0 before crossing to the bottom.

This inversion highlights the sensitivity of model attention to positional cues when dealing with
minimal evidence. While some bias exists for larger contexts, they are substantially more robust to
position and do not exhibit the same sharp drop in middle and tail placements.

4.2 ANSWER TOKEN REPETITION

If larger gold documents contained the exact answer span more frequently, this would explain the
phenomenon we have observed. The answer would be encoded multiple times and allow the model to
attend to it more. Distributions plotted in the Appendix C.2 demonstrate various metrics to measure
repetition among small, medium, and large gold documents. For example, given an answer a, a
context c, we can compute answer token repetition as:

AnsTokRepetition(a, c) =
1

|T (a)|
∑

t∈T (c)

1[t ∈ T (a)], (1)

where T (x) are the tokens of x, |T (a)| is the number of unique tokens in a, and 1[·] is the indicator
function. Figure 5, which shows binning task performance by similar answer token repetition, shows
larger golds are often on top. Despite the fact that repetition does occur, our claim of small gold
documents being harder to find still holds.
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Figure 5: Performance when bucketing tasks into quintiles per confounder (answer token repetition
and gold-to-distractor ratio). smaller golds typically yields lower accuracy compared to larger golds .
Error bars are 95% confidence intervals, some are larger due to small sample size in that bin.

4.3 GOLD-TO-DISTRACTOR RATIO

Given a fixed amount of distractor documents, varying the size of gold documents will also vary the
proportion of gold tokens to distractor tokens within a context window. Given a gold document g
and a set of distractor documents D, we can compute:

Gold-to-Distractor Ratio(g,D) =
T (g)∑

d∈D T (d)
, (2)

Where T (x) is the token count of passage x. This raises the question of if the positive effect of larger
gold documents is due to the size itself, or the increased ratio? By grouping the tasks into similar
ranges of gold-to-distractor ratio, we can see if size still has an effect when the ratio is held constant.
Figure 5 shows just this, and larger golds consistently outperform smaller ones within bins. Even
after controlling for gold-to-distractor ratio, gold context size remains a strong indicator of
performance.

4.4 DISTRACTOR VOLUME

To evaluate the robustness of the gold context size effect under varying degrees of context noise,
we systematically increased the number of distractor documents. We leveraged our adaptation of
NuminaMath1.5 to run experiments with 5, 10, and 15 distractors, approximately 25k, 50k, and 75k
distractor tokens, respectively.

Figure 6 shows that performance is strongly influenced by gold context size, regardless of distractor
volume. This reinforces that size remains a dominant variable, even when noise levels change.

4.5 DOMAIN SPECIFICITY OF TASKS

The effects of gold context size are notably amplified in domain-specific tasks compared to general
knowledge. Figure 7 quantifies this by measuring the range in model performance across different
gold context positions. For each model and gold size, we compute the performance range as the
difference between maximum and minimum scores across all positions:

Range = max
i∈{1,...,n}

perf(positioni)− min
i∈{1,...,n}

perf(positioni) (3)

For example, on NuminaMath1.5, Gemini-2.0-Flash showed a performance range of 72% for small
gold contexts, compared to only 20% for large gold. A similar pattern held in CARDBiomedBench.
In contrast, NaturalQuestions exhibited smaller variation across all sizes, likely due to easier questions
and higher closed-book baseline scores. This suggests that general knowledge tasks may be inherently
more resilient to gold context variability.
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(a) 5 Distractors (b) 10 Distractors (c) 15 Distractors

Figure 6: Gemini-2.0-Flash performance on NuminaMath1.5 as the number of distractor documents
increases (error bars are 90% CIs). Despite growing distractor noise (up to ∼75k tokens), the
performance gap between small and large gold contexts persists. This confirms that gold context
size remains a key factor in long-context reasoning under high-noise conditions.

(a) CARDBiomedBench (b) NaturalQuestions (c) NuminaMath1.5

Figure 7: Positional sensitivity by benchmark. For each model and gold context size, we compute the
range (Equation 3) of performance across positions. Smaller gold contexts exhibit much higher
sensitivity (larger ranges), especially in domain-specific tasks (CBB, NM). Larger gold contexts
yield more stable performance across positions.

Summary. These additional analyses confirm that the observed effects are not artifacts of a single
benchmark or setup. Small gold contexts not only reduce performance, but also magnify positional
bias. These effects are more severe in noisy environments and domain-specific tasks.

5 RELATED WORK

We review related work in the context of long-context reasoning, focusing on three themes: positional
biases in LLMs, long-context evaluation frameworks, and mitigation strategies.

Positional biases in LLMs. Position bias, the tendency of LLMs to over- or under-attend to different
parts of the input, has emerged as a fundamental challenge. Prior work has identified several variants:
primacy bias, where early content is favored (Wang et al., 2023); recency bias, where later content
dominates (Zheng et al., 2023); and U-shaped bias, where mid-context is under-attended (Liu et al.).
These effects persist across model architectures, alignment strategies (Liu et al.), extended context
lengths (Lee et al., 2024), and, to some extent, in internal representations (Lu et al., 2024). Our
work contributes to this literature by introducing a new dimension: we show that the size of the gold
context modulates the strength of positional bias. Specifically, smaller gold contexts are significantly
more vulnerable to primacy effects, while larger contexts confer greater robustness to variation.

The closest work to our setup is (Levy et al.) who study needle-in-a-haystack performance under
variable input lengths. While both works investigate positional dynamics in noisy settings, our
approach holds the distractor context fixed and instead varies the gold context size, allowing us
to isolate the effects of gold signal sparsity. Another related work is by (Dai et al., 2024), who
examine how in-context factors, including “data size”, affect NIAH performance in synthetic key-
value retrieval tasks. Their needle length analysis examines different data subsets, each defined by
a specific answer span length. As a result, they effectively evaluate different sets of tasks for each
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target length. Whereas we hold the questions and their answers constant and systematically vary the
size of the surrounding gold (relevant) context in open-ended QA.

Frameworks for long-context evaluation. Evaluation strategies for long-context reasoning have
evolved from synthetic toy tasks to richer, more realistic setups. Long-Range Arena (Tay et al.,
2021) introduced standardized tasks for comparing various transformer variants. Recent benchmarks
explore broader benchmarking variations (Guan et al., 2022; Hudson & Al Moubayed; An et al.;
Bai et al.; Li et al., a; Gao et al.; Li et al., b; Modarressi et al., 2025; Ling et al., 2025; Jacovi et al.;
Zhang et al.; Ye et al., 2024; Yen et al., 2024), such as document synthesis (Shaham et al.; 2023),
document-level retrieval (Yen et al., 2025), citation verification (Zhang et al., 2024a), and biomedical
reasoning (Adams et al., 2024; Cui et al., 2025). Most of these setups use the “needle-in-a-haystack”
formulation (Kamradt, 2023; Hsieh et al., 2024a) where a small relevant span must be retrieved from
a large set of distractors. Some efforts push beyond this setup, incorporating aggregation, multi-hop
inference (Zhuang et al.; Katsis et al.), or mixed-modality inputs (Wu et al.). Our work builds on this
direction by adapting natural, domain-specific datasets to simulate realistic multi-agent aggregation
within a “needle-in-a-haystack” framework due to its practical relevance.

Mitigation strategies for position bias. Several mitigation approaches have been proposed to
reduce position sensitivity in LLMs. These include compressing or abstracting context (Jiang et al.,
2024), distilling long-context information into weights (Cao et al., 2025), reweighting attention via
calibration (Hsieh et al., 2024b), modifying positional encoding schemes (Zhang et al., 2024b; Zheng
et al., 2024), and fine-tuning on debiased distributions (Xiong et al., 2024). While some methods
mitigate positional biases, many introduce side effects (Zhao et al., 2024), leaving long-context
generalization an ongoing challenge. Our contribution is diagnostic rather than corrective. We
uncover a novel interaction between input structure (gold context size) and positional bias severity,
showing that simply increasing the amount of gold evidence can systemically impact position bias.
Whether existing mitigation strategies can address this effect remains an open question.

6 DISCUSSION, LIMITATIONS, AND CONCLUSION

Why does gold context size strongly affect aggregation accuracy? Our findings reveal two
interconnected factors: First, we hypothesize that larger gold contexts attract attention by offering
a higher density of semantically relevant tokens, making them more prominent within distracting
content. This richer semantic environment helps models retrieve relevant signals and reduces
positional sensitivity. The effect is especially pronounced in domain-specific tasks, where coherent
reasoning chains in larger contexts help models follow structured logic needed for accurate answers.

Practical implications of our findings. While prior work has studied factors like positional bias and
distractor count, we highlight an overlooked and less controllable factor: gold context size. Therefore,
practitioners should recognize that aggregation quality is sensitive to context length variations, even
when retrieval mechanisms functions as expected. Practitioners can address this by strategically
balancing retrieved document sizes and accounting for potential biases against shorter contexts.

Limitations of our study. First, we did not explicitly control the proportion of gold context within
the total context window. Instead, we fixed distractor lengths to better reflect real-world conditions,
resulting in varying gold-to-distractor ratios. This may confound whether performance differences
stem from gold context size alone or its relative share. Second, while our benchmarks and distractors
were curated for realism and domain diversity, only the CBB dataset used a real-world retriever; NQ
and NM relied on synthetic setups. Future work should address these.

Conclusion. Our study reveals a fundamental yet previously overlooked limitation in LLM aggrega-
tion capabilities: the size of relevant information critically influences aggregation effectiveness
in long-context tasks. Through systematic evaluation, we demonstrated that smaller gold contexts
degrade model performance substantially and exacerbate positional sensitivity, especially in domain-
specific tasks. This discovery underscores a crucial vulnerability in real-world agentic deployments,
where relevant evidence often appears unpredictably scattered amidst extensive distractors. As
language models become central to applications requiring precise and trustworthy reasoning-from
scientific discovery to personalized assistants-our findings highlight the urgent need to rethink ag-
gregation strategies. Future LLM-driven systems must explicitly address context-size variability to
ensure reliability, safety, and user trust in the face of complex, noisy real-world information streams.
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7 REPRODUCIBILITY STATEMENT

In the Supplementary Material, we have included a folder with our self-contained code and instructions
to reproduce all of the experimental results from this paper. Upon publication, we plan to push the
code to a public GitHub repository, along with the data used to run the experiments, in order to
support reproducible research.
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A APPENDIX

A EXTENDED EXPERIMENTAL DETAILS

We provide extended experimental details on benchmark construction, model configuration, and
evaluation methodology to support the reproducibility and interpretability of our results.

A.1 ORIGINAL BENCHMARKS

We describe the sources, licenses, and preprocessing procedures for each of the three adapted
benchmarks used in our experiments. All experiments were run on a sampled subset of 250 examples
per benchmark. See the code repository for exact methodology.

CARDBiomedBench

• Source: CARDBiomedBench on Hugging Face and its BiomedSQL variant on Hugging
Face. Distractor documents were retrieved using a multi-agent retrieval system at NIH,
which retrieves content from: (1) Google search over NIH domains, (2) PubTator3.0 (Wei
et al., 2024), (3) the Human Gene Mutation Database (HGMD) (Stenson et al., 2020), and
(4) NCBI gene and variant pages (National Center for Biotechnology Information (NCBI),
1988).

• License: Apache 2.0 for benchmark code and data. Some distractor sources (e.g., HGMD)
are not redistributable but are publicly accessible on their respective platforms.

• Preprocessing: None, the distractor and gold documents are as-is from the retriever.

NaturalQuestions

• Source: NQ with evidence spans aligned to Knowledge Intensive Language Tasks (KILT)
on Hugging Face. Gold documents were loaded using the Ai2 ir_datasets python package
(MacAvaney et al., 2021) and distractors were sourced from HELMET on Hugging Face.

• License: Creative Commons Share-Alike 3.0 (NQ), MIT (KILT & HELMET), and Apache
2.0 (ir_datasets).

• Preprocessing: We filtered for validation examples that had matching HELMET distrac-
tors. Examples with missing KILT provenance, absent or unresolvable answer spans, or
malformed metadata were excluded. Gold and distractor documents included the title of the
article ‘Title: {title} Document: {gold_document}’ to give them context.

NuminaMath1.5

• Source: NuminaMath1.5 (NM) and its OpenR1Math (OR1M) variant on Hugging Face,
that contains DeepSeekR1 reasoning chains.

• License: Apache 2.0. (NM and OR1M).

• Preprocessing: Filtered to retain only examples with ‘complete’ and ‘verified’ fields
for question, final answer, structured solution, and long-form generation. DeepSeekR1
generations were truncated to the final 5,000 tokens using GPT-4o tiktoken (OpenAI, 2023)
tokenization to normalize document length across tasks. Distractors sampling was among
the other questions and excluded duplicates. Sizes of gold and distractors were strung into a
pseudo-document by including ‘The answer to {question} is {gold_document}’ to give them
context.
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Figure: Small, medium, and large gold document size construction 
per benchmark.

CARDBiomedBench (CBB) NaturalQuestions (NQ) NuminaMath1.5 (NM)

Question

What is the genomic location of 
rs12255438 in the GRCh38/hg38 build of 
the human genome and what gene is it 
located on or near?

Who is playing the halftime show at super 
bowl 2016?

A ship traveling along a river has covered 24 
km upstream and 28 km downstream… 
Determine the speed of the ship in still 
water and the speed of the river.

Small Gold

The SNP rs12255438 is located on or closest 
to the gene CTNNA3 on chromosome 10 at 
base pair position 66465707 in the 
GRCh38/hg38 build of the human genome.

Super Bowl 50 halftime show 
It was headlined by the British rock group 
Coldplay with special guest performers 
Beyoncé and Bruno Mars, who previously had 
headlined the Super Bowl XLVII and Super Bowl 
XLVIII halftime shows, respectively.

The answer to the question “A ship traveling 
along a river has covered 24 km …” is:

v_{R}=4\mathrm{~}/\mathrm{}, 
v_{B}=10\mathrm{~}/\mathrm{}

Medium Gold

SELECT 
'AlzheimerDisease_GeneData' AS 
source_table, UUID, SNP, chr_38, 
bp_38, nearestGene
... WHERE SNP = 'rs12255438'
 LIMIT 100
The SNP rs12255438 is located on or closest 
to the gene CTNNA3 on chromosome 10 at 
base pair position 66465707 in the 
GRCh38/hg38 build of the human genome.

Super Bowl 50 halftime show 
The Super Bowl 50 Halftime Show took place 
on February 7, 2016, at Levi's Stadium in Santa 
Clara, California as part of Super Bowl 50. It 
was headlined by the British rock group 
Coldplay with special guest performers 
Beyoncé and Bruno Mars, who previously had 
headlined the Super Bowl XLVII and Super Bowl 
XLVIII halftime shows, respectively.

Let $t$ be the time required for the boat to 
travel $24 \mathrm{~km}$ upstream and $28 
\mathrm{~km}$ downstream, $v_{R}$ the speed 
of the river, and $v_{B}$ the speed of the boat. 
When the boat is traveling upstream, its speed is 
$v_{B}-v_{R}$, and when it is traveling 
downstream, its speed is $v_{B}+v_{R}$.
…
The speed of the river is $v_{R}=4 \mathrm{~km} 
/ \mathrm{h}$, and the speed of the boat is 
$v_{B}=10 \mathrm{~km} / \mathrm{h}$.

Large Gold

SELECT 
'AlzheimerDisease_GeneData' AS 
source_table, UUID, SNP, chr_38, 
bp_38, nearestGene
... WHERE SNP = 'rs12255438'
 LIMIT 100
[{'SNP': 'rs12255438', 'chr_38': 
10, 'bp_38': 66465707, 
'nearestGene': 'CTNNA3'}, 
...
{'SNP': 'rs12255438', 'chr_38': 
10, 'bp_38': 66465707, 
'nearestGene': 'CTNNA3'}]

The SNP rs12255438 is located on or closest 
to the gene CTNNA3 on chromosome 10 at 
base pair position 66465707 in the 
GRCh38/hg38 build of the human genome.

Super Bowl 50 halftime show
The Super Bowl 50 Halftime Show took place 
on February 7, 2016, at Levi's Stadium in Santa 
Clara, California as part of Super Bowl 50. It 
was headlined by the British rock group 
Coldplay with special guest performers 
Beyoncé and Bruno Mars, who previously had 
headlined the Super Bowl XLVII and Super Bowl 
XLVIII halftime shows, respectively.

…

At that time, Mars and Beyoncé were both 
doing a diet and stressing out. One day before 
the performance they were "watching 
playback backstage", while Beyonce ate a bag 
of Cheetos. 

… (+5 more paragraphs)

<think>
Okay, so I need to find the speed of the ship in 
still water and the speed of the river. Let me 
start by recalling that when a ship is moving 
upstream, its effective speed is the speed of the 
ship minus the speed of the river.

…

Wait, actually, the problem states: "For this 
journey, it took half an hour less than for 
traveling 30 km upstream … Hmm, let me parse 
that again...

...

the final answer is 
v_{R}=4\mathrm{~}/\mathrm{},v_{B}=10\mathrm{
~}/\mathrm{}

Figure 8: Gold context construction across benchmarks. The “small” gold context is minimally
sufficient to answer the question; “medium” and “large” add further relevant information. In
CARDBiomedBench (left), this includes SQL and result rows; in NQ (center), adjacent Wikipedia
paragraphs; in NM (right), full solution traces and DeepSeekR1 reasoning chain.

A.2 TASK CREATION

A.3 LLM CONFIGURATION

We evaluated seven LLMs, each configured via provider-specific APIs. All evaluations were con-
ducted as deterministically as possible.

API Providers. We used the following service providers for model access:

• GPT models (o3-mini, GPT-4o, GPT-4o-mini) were accessed via the Azure OpenAI
service.

• Gemini models (Gemini-2.5-Flash, Gemini-2.0-Flash, Gemini-2.0-Flash-Lite) were ac-
cessed via the Google AI GenAI SDK, using the official genai Python client.

• DeepSeek-R1 and Phi-4-reasoning were accessed via the Azure AI Inference ser-
vice.

• LLaMA models >= 70b params (Meta-LLaMA-3.1-405B-Instruct, LLaMA-3.3-70B-
Instruct) were accessed via the Azure AI Inference service.

• LLaMA model < 70B parameters (LLaMA-3.1-8B-Instruct) was evaluated locally using
the meta-llama/Llama-3.1-8B-Instruct checkpoint, loaded via Hugging Face
transformers. All local evaluations were conducted on the NIH High-Performance
Computing (HPC) Biowulf cluster (NIH Biowulf, 2024), leveraging GPU nodes for infer-
ence.

Prompting and Evaluation Configuration. Prompts were benchmark-specific and standard-
ized across model types. All non-reasoning models were queried with max_tokens=256 and
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temperature=0.0. Provider-specific configurations (e.g., safety settings for Google GenAI,
and device mapping for HuggingFace) were handled automatically during model initialization.
See the code and YAML config files for full details. Reasoning models were queried with
max_tokens=2048 and their default generation params, to allow for reasoning. Reasoning
models were additionally given instructions to encourage grounding their answer in the retrieved
documents, to prevent relying on internal knowledge.

Grading LLMs. For CARDBiomedBench, an additional grading LLM was used to assess answer
correctness via BioScore using GPT-4o, as done by the authors. It was instantiated using the same
infrastructure and configurations as the primary LLMs, with max_tokens=10.

A.4 METRICS

We used evaluation metrics that align with the original datasets’ scoring protocols:

Quality Rate. We evaluate responses to the CBB tasks following their proposed BioScore framework,
an LLM-as-a-judge metric implemented with GPT-4o. Each response is scored on a 3-point scale
according to the BioScore prompt 4, and a score ≥ 2 is considered factually correct. The Quality
Rate is computed as the proportion of responses meeting this threshold.

Formally, given a reference set Resp of expert-annotated responses and a corresponding set ˆResp of
model-generated responses for n questions:

Quality Rate =
1

N

N∑
n=1

Correct(rn, r̂n) (4)

where Correct(rn, r̂n) =

{
1, if BioScore(rn, r̂n) ≥ 2

0, otherwise
and rn ∈ Resp, r̂n ∈ ˆResp (5)

SubEM. For NQ we utilized substring exact match, which assigns a score of 1.0 if any normalized
ground truth string is a subspan of the model’s response (after normalization), and 0 otherwise. This
is a correctness signal used by previous work on this data.

math-verify. Evaluated with math-verify (Face, 2025), a symbolic equivalence checker that parses
LaTeX boxed answers and verifies correctness through structured math expression comparison.
Parsing and verification are done using an extraction and comparison pipeline derived from the
Math-Verify toolkit.

Error Bars. All plots showing aggregate scores (e.g., Figure 3) report 90% confidence intervals (CIs)
estimated via non-parametric bootstrapping over tasks. Given N scores, we resample with replace-
ment 1,000 times and compute the middle 90% interval from the resulting bootstrap distribution.

A.5 PROMPTS.

We show prompts used to collect results from the models and the BioScore grading prompt. There is
a unique prompt for each benchmark, which is used on every model. {Variables} are in curly braces
which are formatted with task data (question and documents). We encourage models to ground their
answers in the context and abstain if unable to answer.

You are a highly knowledgeable and experienced expert in the healthcare and biomedical field,
possessing extensive medical knowledge and practical expertise. Create an answer to the question
using only the provided documents (some of which might be irrelevant). If you cannot answer the
question based on the documents, explicitly state that you do not know.
Question: {question}
Documents: {documents}

Prompt 1: The CARDBiomedBench prompt is adapted from the original paper’s experimental
methods and includes mention of biomedical expertise.
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Create an answer to the question using only the provided documents (some of which might be
irrelevant). If you cannot answer the question based on the documents, explicitly state that
you do not know.
Question: {question}
Documents: {documents}

Prompt 2: The NaturalQuestions prompt is adapted from previous work’s experimental methods (Liu
et al.; Yen et al., 2025).

Create an ANSWER to the QUESTION using only the provided DOCUMENTS (some of which might be
irrelevant). Write nothing but your final answer in LaTeX within \\boxed{}. If you do not
know the answer to a question, explicitly state so in \\boxed{I don’t know}.
QUESTION: {question}
DOCUMENTS: {documents}
QUESTION: {question}
ANSWER:

Prompt 3: The NuminaMath1.5 prompt uniquely repeats the question and has formatting guidelines,
to comply with the math-verify metric. Without repeating the question models exhibited extremely
poor performance in every configuration.

You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing
extensive medical knowledge and practical expertise.
### Scoring Instructions for Evaluating Analyst Responses

**Objective:** Evaluate an analyst’s response against a gold standard.

**Scoring Criteria:**
- **Exact Match:** 3 points for an exact or equally accurate response.
- **Close Match:** 2 points for a very close response with minor inaccuracies.
- **Partial Match:** 1 point for a partially accurate response with significant omissions.
- **Irrelevant Information (Harmless):** Deduct 0.5 points for harmless irrelevant information.
- **Irrelevant Information (Distracting):** Deduct 1 point for distracting irrelevant information.
- **No Match:** 0 points for no match.
- **Not Knowing Response:** -1 point for stating lack of knowledge or abstaining. An example
of this scenario is when Analyst Response says \’There are various studies, resources or
databases on this topic that you can check ... but I do not have enough information on this topic.

**Scoring Process:**
1. **Maximum Score:** 3 points per question.
2. **Calculate Score:** Apply criteria to evaluate the response.

**Question:** {question}

**Golden Answer:** {gold_ans}

**Analyst Response:** {pred_ans}

## Your grading
Using the scoring instructions above, grade the Analyst Response return only the numeric score
on a scale from 0.0-3.0. If the response is stating lack of knowledge or abstaining, give it
-1.0.

Prompt 4: BioScore grading prompt for LLM-as-a-judge on CBB tasks, awarding points for correct
information and deducting points for incorrect information. It differentiates an abstention (-1) from
an incorrect answer (0 or 1).

B EXTENDED RESULTS

We provide extended baselines for all benchmarks in Figure 9 and main results for CBB in Figure
10, for NQ in Figure 11, and for NM in Figure 12. Additionally, we provide positional curves for all
models in Figure 14.
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B.1 BASELINES

(a) CARDBiomedBench

(b) NaturalQuestions

(c) NuminaMath1.5

Figure 9: Baseline performance when viewing distractors only, closed book (no documents), and
varying sizes of gold. This confirms both (1) models perform poorly without the gold documents and
(2) performance is near perfect when viewing any size of gold document.
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B.2 CARDBIOMEDBENCH

Figure 10: CARDBiomedBench performance for each model and size of gold for varying positions
in the context window (0.0, 0.25, 0.5, 0.75, 1.0), the average across all positions, and baseline
performance when seeing gold only. Higher scores (light yellow) is more desirable than low scores
(dark red), 90% CI are reported.
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B.3 NATURALQUESTIONS

Figure 11: NaturalQuestions performance for each model and size of gold for varying positions
in the context window (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), the average across all positions, and baseline
performance when seeing gold only. Higher scores (light yellow) are more desirable than low scores
(dark red), 90% CI are reported.
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B.4 NUMINAMATH1.5

Figure 12: NuminaMath1.5 performance for each model and size of gold for varying positions in the
context window (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), the average across all positions, and baseline performance
when seeing gold only. Higher scores (light yellow) are more desirable than low scores (dark red),
90% CI are reported.
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B.5 PERFORMANCE BY POSITION

CARDBiomedBench NaturalQuestions NuminaMath1.5
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Figure 13: Model performance by gold context position (early to late in input), higher is better and
error bars are 90% CIs. Each row is a model, columns are benchmarks. Smaller gold contexts exhibit
sharper performance degradation with later placement, especially in specialized domains (CBB,
NM). Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of richer input. All
non-reasoning models, including the ones in Figure 4, are here for comparison.
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CARDBiomedBench NaturalQuestions NuminaMath1.5

D
eepSeek-R
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Phi-4-reasoning

Figure 14: Reasoning model performance by gold context position (early to late in input), higher
is better and error bars are 90% CIs. Each row is a model, columns are benchmarks. Smaller gold
contexts exhibit sharper performance degradation with later placement, especially in specialized
domains (CBB, NM). Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of
richer input.
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C CONFOUNDER ANALYSIS

We provide details, formulas, distributions, and performance across benchmarks when considering
the potential confounding variables.

C.1 MEASURING GOLD CONTEXT RATIOS AND ANSWER OVERLAP

We define several metrics to quantify the repetition of the answer across gold passages, as well as the
gold-to-distractor ratio.

Gold-to-Distractor Ratios. To measure the ratio of gold to distractor tokens, we define T (x) as the
token count of passage x:

Gold-to-Distractor Ratio(g,D) =
T (g)∑

d∈D T (d)
, (6)

Exact Mentions. We count exact string occurrences of the answer in the context, case-insensitive
and word-bounded:

ExactMentions(a, c) =
∑
ai∈A

#{occurrences of ai in c}, (7)

where A is the set of provided answer strings and c is the context.

Answer Token Hits. At the token level, we measure how many context tokens match any token from
the answer:

AnsTokHits(a, c) =
∑

t∈T (c)

1[t ∈ T (a)], (8)

where T (x) is the tokenized version of x. This counts duplicates, i.e., repeated matches.

Answer Token Repetition. To normalize for answer length, we define redundancy as raw answer-
token hits per unique answer token:

AnsTokRepetition(a, c) =
AnsTokHits(a, c)

|T (a)|
, (9)

where |T (a)| is the number of unique tokens in the answer. This measures the degree of repetition
relative to the answer’s own size.
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C.2 CONFOUNDER DISTRIBUTIONS

Figure 15: Raincloud plots across all benchmarks of Exact Mentions Counts, Answer-Token Hits,
Redundancy, and Gold : Distractor Ratio across all sizes of gold and distractor documents for
reference.

D LLM DECLARATION

LLMs were used to assist in editing and revising some of the language used throughout the manuscript.
Additionally, LLMs were used to edit code to create some of the figures that appear in the manuscript.
The authors take full responsibility for the work in its entirety.
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