

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIDDEN IN THE HAYSTACK: SMALLER NEEDLES ARE MORE DIFFICULT FOR LLMs TO FIND

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) face significant challenges with needle-in-a-haystack tasks, where relevant information (“the needle”) must be drawn from a large pool of irrelevant context (“the haystack”). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of *gold context size*, the length of the answer-containing document, has received little attention. We present the first systematic study of gold context size in long-context question answering, spanning three diverse benchmarks (general knowledge, biomedical reasoning, and mathematical reasoning), eleven state-of-the-art LLMs (including recent reasoning models), and more than 150K controlled runs. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., **smaller gold contexts consistently degrade model performance and amplify positional sensitivity**, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of *varying lengths*. This effect persists under rigorous confounder analysis: even after controlling for gold document position, answer token repetition, gold-to-distractor ratio, distractor volume, and domain specificity, gold context size remains a decisive, independent predictor of success. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.

1 INTRODUCTION

Large language models (LLMs) increasingly power applications that require reasoning over vast amounts of information, such as synthesizing evidence across scientific literature (Sprueill et al., 2024; Bazgir et al., 2025; Wang et al., 2025; Gao et al., 2025) or navigating complex codebases (Liu et al., 2023; Zhang et al., 2023; Bogomolov et al., 2024).

A critical stage in such systems is *aggregation*, the synthesis of retrieved evidence into an accurate, actionable response. This stage determines what content to include, cite, or ignore, and has direct implications for safety, reliability, and factual correctness. **One specific, common variant of aggregation is needle-in-a-haystack (NIAH) scenarios**, where relevant evidence (the ‘gold context’) is embedded within a large volume of topically related or superficially plausible but ultimately irrelevant or misleading, ‘distractor context’ (Tay et al., 2021; Shaham et al.). Successful aggregation requires precise identification of essential evidence among a large number of distractor documents.

In NIAH scenarios, prior work has explored phenomena such as *positional bias* (Wang et al., 2023; Liu et al.), showing that models disproportionately attended to early content and that distractors degrade performance. Yet one key dimension remains underexplored: *how the size of the gold context influences model performance*. This question is critical for the design of agentic systems, where autonomous agents must perform NIAH-style aggregation over heterogeneous information streams produced by specialized components, whose evidence can *vary widely in length*.

In this study, we present a systematic analysis of gold context size as an independent variable in LLM performance in long-context, single-needle NIAH settings. Our main finding (§3) is that smaller gold contexts consistently (1) **degrade performance** and (2) **heighten sensitivity to positional bias**, as illustrated in Fig.1. This exposes a form of brittleness not captured in prior work.

To support our analysis, we adapt three diverse datasets spanning mathematics, biomedical reasoning, general knowledge, systematically varying both the size and position of the gold context *while*

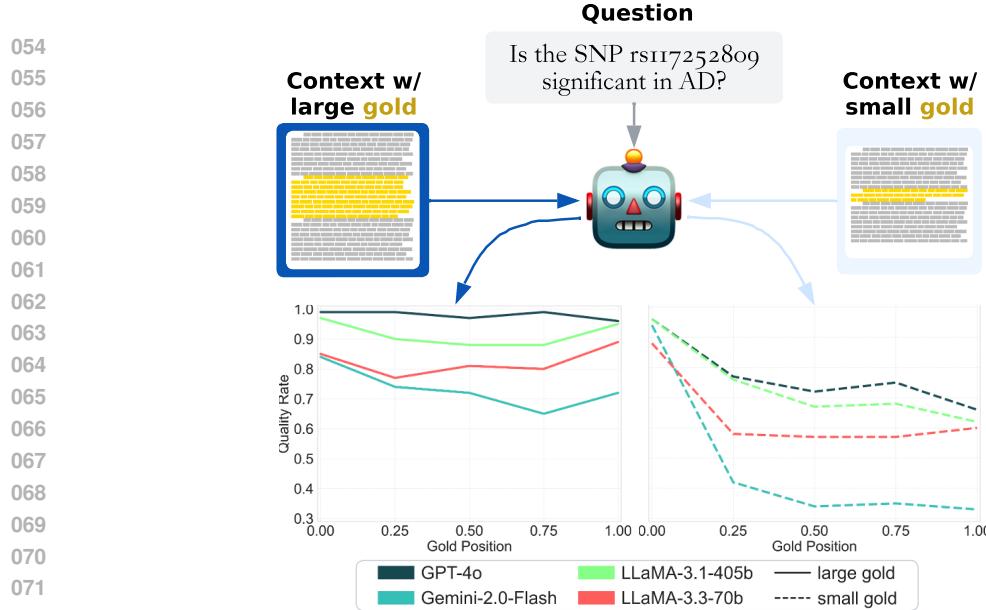


Figure 1: LLM performance on a needle-in-a-haystack task (CARDBiomedBench). The y-axis is a measure of accuracy (higher is better). Varying both the size and position of the gold context within fixed distractor content, we find that LLMs perform worse and exhibit greater positional sensitivity when given short gold documents (dashed line) compared to long ones (solid line).

keeping the distractor content fixed (§2). Our study comprises over 150K controlled runs across eleven state-of-the-art LLMs, both general-purpose and reasoning-focused, ensuring that the observed effects hold across architectures and tasks.

We conduct extensive confounder analyses to ensure that our findings are not driven by spurious factors (§4). Even after controlling for gold position, answer-token repetition, gold-to-distractor ratio, distractor volume, and domain specificity, gold context size remains a strong, independent predictor of performance. The overall pattern is consistent—larger gold contexts outperform smaller ones—though the magnitude of the effect varies across conditions. For instance, smaller gold contexts are particularly vulnerable to primacy bias, whereas larger gold ones exhibit greater robustness to both positional variation and distractor interference.

These findings have practical implications. In real-world deployments, factors such as context size, position, distractor length, and noise are typically uncontrolled. Our results show that heterogeneity in document length can induce aggregation failures, particularly when small but critical evidence is overshadowed by much longer passages. This situation naturally arises in retrieval-augmented and agentic systems, where an aggregator must isolate a single relevant piece of evidence from a mixture of heterogeneous sources. Practitioners can mitigate this fragility by monitoring length disparities among retrieved documents and by avoiding pipelines that combine extremely short and very long contexts, thereby reducing size-induced attention asymmetries.

In summary, our contributions are as follows:

- **Novel determinant of long-context performance:** To the best of our knowledge, we are the first to demonstrate that the size of gold contexts functions as a hidden variable in LLM performance on long-context NIAH. Smaller golds degrade accuracy and amplify positional bias, underscoring a potential fragility in real-world applications.
- **Robust to confounders:** We identify and analyze five potential confounding variables, (1) gold document position, (2) answer token repetition, (3) gold-to-distractor ratio, (4) distractor volume, and (5) domain specificity, demonstrating that gold context size remains a decisive predictor of success despite these factors.
- **Large-scale experimentation:** We repeat our experiments and aggregate findings across eleven state-of-the-art LLMs, three diverse benchmarks, three sizes of gold, and six positions in the context window totaling over 150k controlled runs.

108

2 EXPERIMENTAL SETUP

109
110 This section outlines our design objectives, benchmark adaptations, baseline validations.
111112

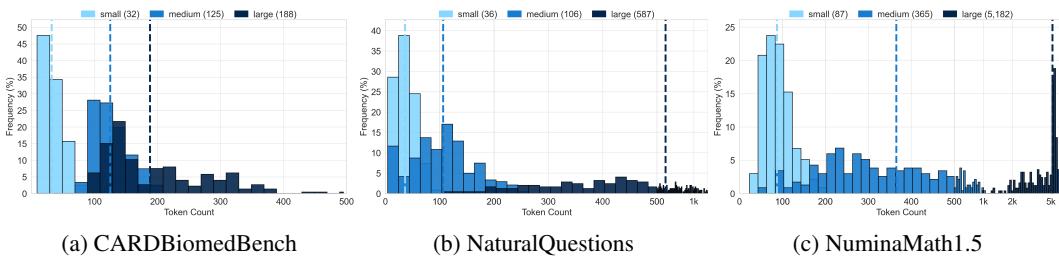
2.1 DESIDERATA

113
114 We begin by outlining the core desiderata guiding our experimental design.
115116 **Realism.** In real-world agentic systems, aggregation involves synthesizing outputs from multiple
117 specialized agents, each retrieving information from their domain of expertise. Usually, one agent
118 returns the document containing the correct answer (the “gold” document), while others provide
119 distractors, topically relevant but ultimately uninformative. We simulate this by inserting a gold docu-
120 ment of varying size at different positions within a fixed-length sequence of distractors. Document
121 order is randomized to reflect natural uncertainty in agent contributions and retrieval quality.
122123 **Gold Size Variability.** We constructed three nested gold variants for each benchmark:
124125

- **Small Gold:** Minimal span sufficient to answer the question.
- **Medium Gold:** Additional explanatory or supporting content.
- **Large Gold:** Complete reasoning process and/or extended relevant context.

126 These were wrapped in pseudo-documents (titles, questions). Variants are hierarchically structured
127 (small \subset medium \subset large) and validated for sufficiency. See Figure 9 for examples. Performance is
128 high and uniform when observing only the gold of any size (Appendix B.1).
129130 **Distractors.** To simulate realistic scenarios, we curate distractors topically relevant and lexically
131 similar to the question but lacking the answer. The total distractor budget per benchmark is $\sim 20k$
132 tokens—a deliberate design choice that provides a sufficiently long distractor context to be considered
133 ‘long-context’ while remaining computationally manageable for extensive experimentation.
134135 **Generality.** We select three diverse benchmarks spanning biomedical, general knowledge, and
136 mathematical reasoning, and evaluate performance across eleven leading LLMs of varying architecture
137 and scale. This ensures that our findings generalize across domains and model classes.
138139

2.2 TASK CONSTRUCTION: NEEDLES AND HAYSTACKS

140 We adapt three established question and answering benchmarks—CARDBiomedBench (biomedical
141 reasoning), NaturalQuestions (general knowledge), and NuminaMath1.5 (mathematical reasoning)—to
142 create controlled NIAH settings. Gold context sizes were varied, accompanied by distractors
143 explicitly designed to be topically relevant yet answer-free. Figure 2 displays token count distributions
144 for the varying sizes of gold. We provide further details on datasets and their metrics in §A.1.
145153
154 Figure 2: Token count distributions for varying sizes of gold context on each benchmark. Median
155 token count is in parenthesis in the legend. X-axis is scaled as linear (0-500) and logarithmic (500+).
156157 **CARDBiomedBench (CBB).** CBB is a question-answering dataset focused on neurodegenerative
158 diseases, designed to evaluate LLM performance on biomedical reasoning tasks involving genetic,
159 molecular, and clinical information. The BiomedSQL (for Alzheimer’s & , CARD) variant augments
160 each example with SQL queries and database rows to support structured reasoning experiments:
161

$$\text{Full answer} \subset \text{SQL query + answer} \subset \text{SQL query + rows + answer}$$

162 Distractors were drawn from documents retrieved by four independent domain-specific agents with
 163 access to biomedical knowledge bases. These documents are semantically relevant but verifiably do
 164 not contain the answer, presenting realistic aggregation challenges.

165 **NaturalQuestions (NQ).** NQ is an open-domain QA benchmark of Google queries, with Wikipedia
 166 passages from the KILT corpus as evidence (Petroni et al., 2021):
 167

168 Sentence with the answer \subset Paragraph with the sentence \subset Paragraph \pm 4 paragraphs

169 Distractors were drawn from the HELMET (Yen et al., 2025) adaptation of NQ-KILT as 100-token
 170 segments. We exclude any documents labeled as evidence or containing the answer. This ensures
 171 distractors remain lexically and topically aligned with the question, but free of the answer.
 172

173 **NuminaMath1.5 (NM).** NM is the largest open-source dataset for math reasoning, with problems
 174 ranging from high school to International Mathematical Olympiad (IMO)-level difficulty, originating
 175 from diverse sources like Chinese K-12 exams, AMC/AIME contests, and global math forums. We
 176 used the OpenR1Math (R1, 2024) variant, which includes model-generated solution traces from
 177 DeepSeekR1 (DeepSeek-AI et al., 2025) verified for correctness. We filter for examples with complete
 178 reasoning streams and define gold variants as:

179 Full answer \subset Textbook-style solution + answer \subset Full LLM-generated chain-of-thought + solution + answer

180 Distractors were reasoning traces to different questions. Due to length variability, we cap large gold
 181 contexts at the final $5k$ tokens, which include concluding reasoning and answers.
 182

183 2.3 BASELINE EXPERIMENTS

185 We run three baseline conditions to validate that observed performance differences in main ex-
 186 periments result from changes to gold size, rather than underlying flaws in datasets or distractor
 187 construction. **Baseline results across all benchmarks and models can be found in Appendix B.1:**

- 188 • **Closed-book.** No context is provided, assessing whether models could answer from internal
 189 knowledge. This gauges possible benchmark saturation.
- 190 • **Gold-only.** Each gold context is presented alone, without distractors. This confirms variants
 191 were sufficient to solve the task and that downstream performance drops are due to aggregation
 192 effects (e.g., distractor interference or gold placement).
- 193 • **Distractor-only.** Models are given only distractor documents. For CBB, we also test distractors
 194 from each agent separately to confirm they were individually non-informative. These checks
 195 ensure that distractors lack sufficient signal to answer correctly.

196 2.4 MAIN EXPERIMENTS

198 We simulate realistic aggregation scenarios by embedding each gold context size at varying po-
 199 sitions within a fixed sequence of distractors. This tests both gold size and positional sensitivity
 200 simultaneously. We evaluate eleven leading LLMs:

- 201 • **Closed-weight:** o3-mini, GPT-4o (OpenAI et al., 2024), GPT-4o-Mini (OpenAI, 2024), Gemini-
 202 2.5-Flash, Gemini-2.0-Flash, and Gemini-2.0-Flash-Lite (Mallick & Kilpatrick, 2025)
- 203 • **Open-weight:** DeepSeek-R1 (DeepSeek-AI et al., 2025), Phi-4-reasoning (Abdin et al., 2025),
 204 LLaMA-3.1-405B, LLaMA-3.3-70B, and LLaMA-3.1-8B (Dubey et al., 2024)

206 We evaluate each model on every size-position combination in a deterministic setting. Prompts were
 207 standardized within each benchmark. This enables rigorous, cross-model evaluation of gold context
 208 sensitivity and simulates the type of unpredictable document ordering in LLM systems.

209 3 MAIN FINDING: SMALLER GOLD CONTEXTS LOWER THE PERFORMANCE

211 Our experiments reveal that gold context size has a substantial and consistent effect on long-context
 212 performance, irrespective of confounding variables, across different benchmarks and models.

214 Increasing the size of the gold context significantly improves accuracy (Figure 3). On CBB, Gemini-
 215 2.0-Flash went from 48% with small to 62% with medium and 73% with large. GPT-4o performs
 similarly, rising from 77% (small) to 98% (large), while LLaMA-3.1-405B went from 74% to 92%.

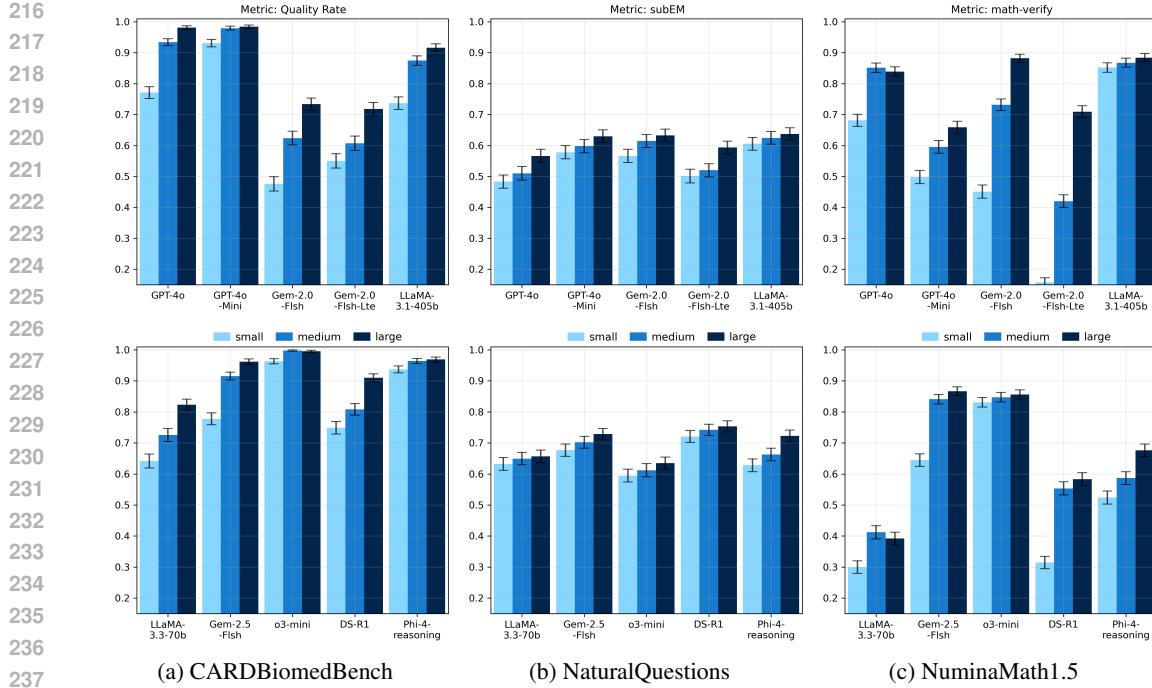


Figure 3: Average performance across all gold positions for each benchmark and gold context size. Metrics are benchmark-specific (BioScore, subEM, math-verify). Higher is better. Error bars indicate 90% confidence intervals. Colors correspond to gold context sizes: small, medium, large. **Across all settings, performance improves monotonically with gold context size.**

Notably, performance with large gold contexts approaches the *gold-only baselines* (i.e., accuracy when the gold context is shown without any distractors) recorded at 96% for Gemini-2.0-Flash, and 100% for both GPT-4o and LLaMA-3.1-405B. This suggests that large gold contexts allow models to nearly recover ideal aggregation performance, while small golds fall significantly short.

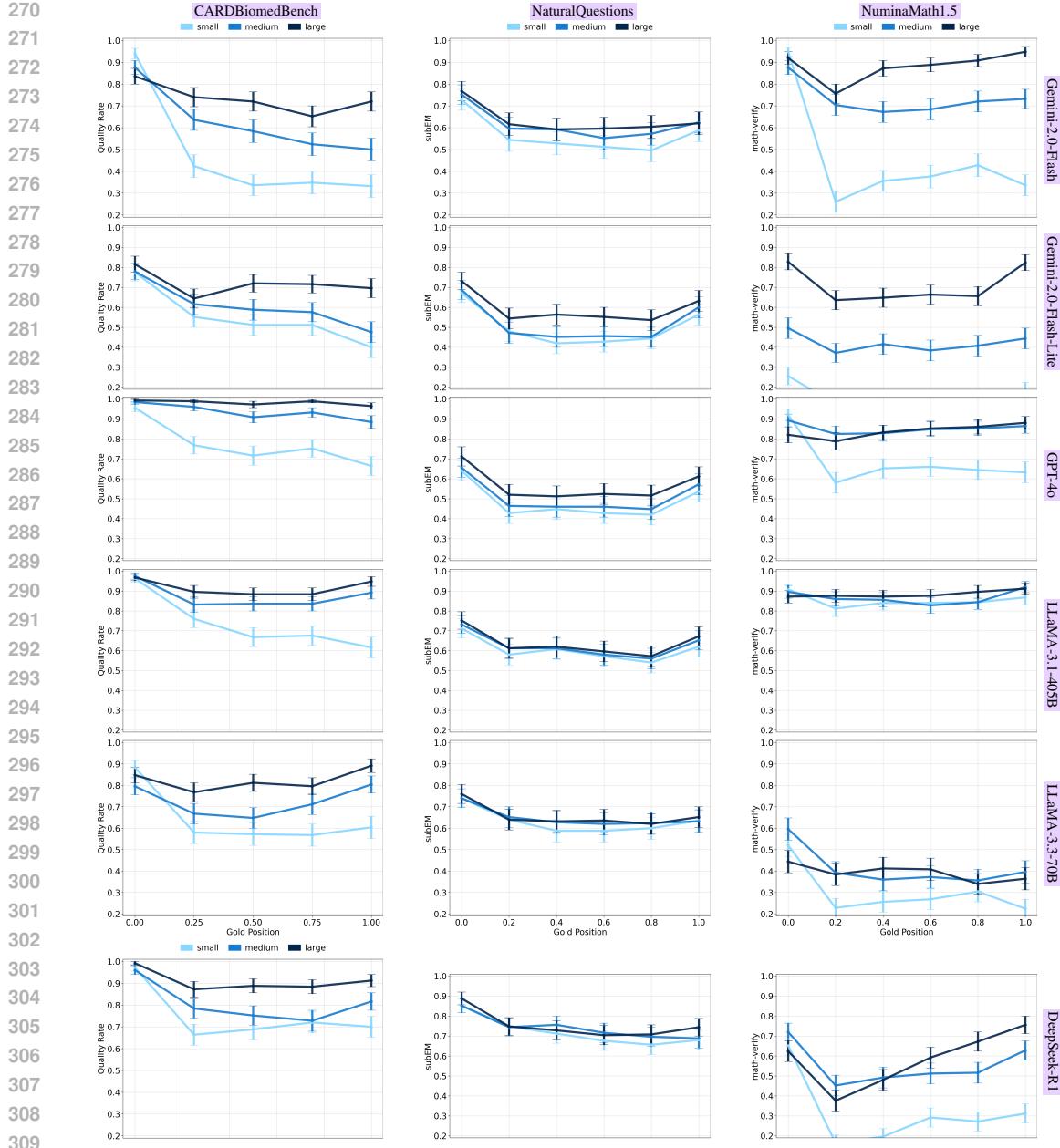
4 ANALYSIS OF CONFOUNDING FACTORS

Our goal is to isolate the effect of *gold context size* as an independent factor in LLM performance. However, there are various other factors that confounded or correlated with our target variable, making the attribution of the observed effect non-trivial. To better understand the underlying phenomenon here, one must control for any potential confounding factors that may impact the outcome of the findings. Specifically, in this section we study and control the following confounds: gold document position in the context window (§4.1), the total number of repetitions of the answer in the context (§4.2), relative length of gold document to the total distractor evidence length (§4.3), total distractor length (§4.4) and domain specificity (§4.5).

4.1 GOLD DOCUMENT POSITION

From the results in Figure 4, we observe that **smaller gold documents are hard to find regardless of their position**. Nevertheless, **certain positions amplify the bias against smaller gold documents**. Performance systematically declines when small gold contexts appear later in the input, while large gold contexts are more robust to position (Full results in Appendix B.5).

For instance, in CBB, Gemini-2.0-Flash achieves 94% accuracy when the small gold context is placed at the start of the context window, but only 33% when placed near the end, a 61-point drop. In contrast, the large gold context declines more gradually, from 84% to 65%, demonstrating greater positional resilience. This pattern held across all evaluated models and benchmarks **with some effects more amplified than others**.



310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 Figure 4: Model performance by gold context position (early to late in input), higher is better and error bars are 90% CIs. Each row is a model, columns are benchmarks. **Smaller gold contexts exhibit sharper performance degradation with later placement, especially in specialized domains (CBB, NM).** Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of richer input.

Importantly, the positional effect is more pronounced in domain-specific tasks (CBB and NM) than in general knowledge (NQ), suggesting that task type and gold size compound aggregation difficulty.

We also observe that models **exhibit stronger primacy bias with smaller gold contexts**: performance is consistently higher when the gold context appears early in the input window. This effect is especially pronounced for small gold contexts. In some cases, small gold contexts placed at the beginning of the input even outperformed medium or large contexts placed later. This occurs often in the left and right columns of Figure 4, where the **small gold** line starts at the top at gold position 0.0 before crossing to the bottom.

324 This inversion highlights the sensitivity of model attention to positional cues when dealing with
 325 minimal evidence. While some bias exists for larger contexts, they are substantially more robust to
 326 position and do not exhibit the same sharp drop in middle and tail placements.
 327

328 4.2 ANSWER TOKEN REPETITION

329
 330 If larger gold documents contained the exact answer tokens more frequently, this could
 331 partly explain the phenomenon we observed—
 332 repeated encoding of the answer tokens would
 333 make it easier for the model to detect and at-
 334 tend to them. To test this, we compute *ans-
 335 wer token repetition*, defined for an answer *a*
 336 and a context *c* as: $\text{AnsTokRepetition}(a, c) =$
 337 $\frac{1}{|T(a)|^*} \sum_{t \in T(c)} \mathbf{1}[t \in T(a)]$, where $T(x)$ are the
 338 tokens of *x*, $|T(x)|^*$ is the number of *unique*
 339 tokens in *x*, and $\mathbf{1}[\cdot]$ is the indicator function. Distr-
 340 ibutions of this metric across gold sizes and bench-
 341 marks are provided in Appendix C.2. We then
 342 bucket tasks using the median repetition value
 343 (1.5) and compare performance within each bin
 344 for CBB (Figure 5).
 345

346 When answer repetition is low, larger gold con-
 347 texts still outperform smaller ones, showing that
 348 repetition alone cannot explain the size effect.
 349 When repetition is high, performance improves for
 350 medium and large golds but not for small ones,
 351 indicating that repetition further amplifies the size effect. **While repetition is beneficial for LLM**
352 performance, it is insufficient to explain the observed size effect. Small gold contexts remain
353 consistently harder to detect and use.

354 4.3 GOLD-TO-DISTRACTOR RATIO

355 Given a fixed distractor budget, changing the
 356 size of the gold document also changes the
 357 proportion of **gold tokens** to **distractor tokens**
 358 within a context window. For a gold docu-
 359 ment *g* and a distractor set *D*, we can compute:
 360 $\text{Gold-to-Distractor Ratio}(g, D) = \frac{|T(g)|}{\sum_{d \in D} |T(d)|}$,
 361 where $T(x)$ are the tokens of *x* and $|T(x)|$ is the
 362 total number of tokens. This raises the question
 363 of, if the positive effect of larger gold documents
 364 is due to the size itself, or the increased ratio?
 365 Bucketing the tasks using the mean ratio (0.029)
 366 into similar ranges of gold-to-distractor ratio, we
 367 can see if size still has an effect when the ratio
 368 is held constant. Figure 6 shows just this, and
 369 larger golds consistently outperform smaller ones
 370 within bins. **Even after controlling for gold-to-**
 371 **distractor ratio, gold context size remains a**
 372 **strong indicator of performance.**

373 4.4 DISTRACTOR VOLUME

374 To evaluate the robustness of the gold context size effect under varying degrees of context noise,
 375 we systematically increased the number of distractor documents. We leveraged our adaptation of
 376 NuminMath1.5 to run experiments with 5, 10, and 15 distractors, approximately 25k, 50k, and
 377 75k distractor tokens, respectively. Figure 7 shows that performance is strongly influenced by gold

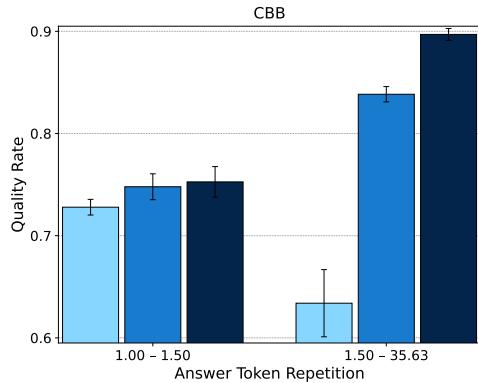


Figure 5: Performance across all models on CARDBiomedBench when bucketing tasks into two categories: answer token repetition less than or equal to, and greater than, 1.5. **Smaller golds** yield lower accuracy compared to **larger golds** across both bins. Error bars are 95% confidence intervals, with some wider due to sample size.

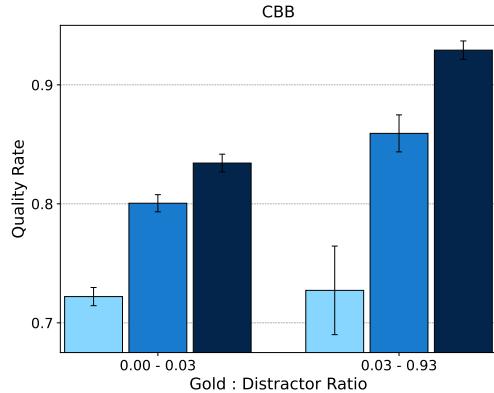
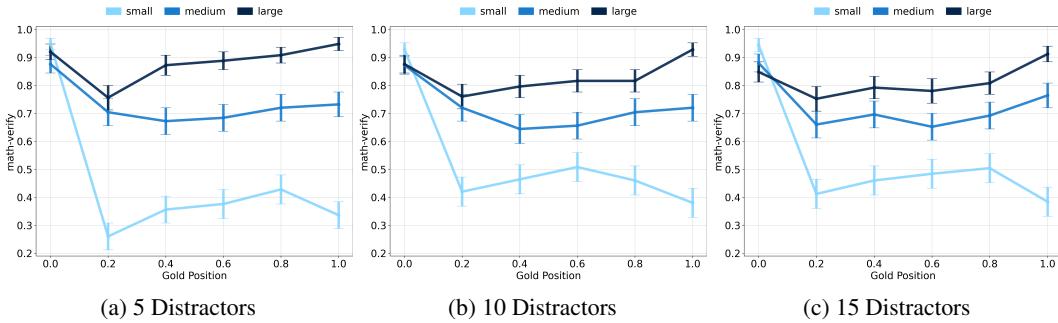


Figure 6: Performance across all models on CARDBiomedBench when bucketing tasks by the mean (0.029) for gold-to-distractor ratio. **Smaller golds** yields lower accuracy compared to **larger golds**. Error bars are 95% confidence intervals, some are larger due to small sample size in that bin.

378 context size, regardless of distractor volume. This reinforces that size remains a dominant variable,
 379 even when noise levels change.
 380



392 Figure 7: Gemini-2.0-Flash performance on NuminaMath1.5 as the number of distractor documents
 393 increases (error bars are 90% CIs). Despite growing distractor noise (up to ~ 75 k tokens), the
 394 performance gap between small and large gold contexts persists. **This confirms that gold context**
 395 **size remains a key factor in long-context reasoning under high-noise conditions.**

397 4.5 DOMAIN SPECIFICITY OF TASKS

399 The effects of gold context size are notably am-
 400 plified in domain-specific tasks compared to
 401 general knowledge. Figure 8 quantifies this for
 402 CBB by measuring the range in model per-
 403 formance across different gold context positions.
 404 (The results for other benchmarks are in Ap-
 405 pendix B.6). For each model and gold size, we
 406 compute the performance range as the differ-
 407 ence between maximum and minimum scores
 408 across all positions:

$$\text{Range} = \max_{i \in \{1, \dots, n\}} \text{perf}(\text{position}_i) - \min_{i \in \{1, \dots, n\}} \text{perf}(\text{position}_i) \quad (1)$$

413 For example, on NuminaMath1.5, Gemini-2.0-
 414 Flash showed a performance range of 72% for
 415 small gold contexts, compared to only 20% for
 416 large gold. A similar pattern held in CARD-
 417 BiomedBench. In contrast, NaturalQuestions
 418 exhibited smaller variation across all sizes,
 419 likely due to easier questions and higher closed-book baseline scores. This suggests that general
 420 knowledge tasks may be inherently more resilient to gold context variability.

422 4.6 JOINT MODELING OF GOLD-SIZE & CONFOUNDERS WITH MULTIVARIATE REGRESSION

424 To assess the independent contribution of gold size relative to other factors, we fit a multivariate
 425 logistic regression predicting correctness from gold size, answer-token repetition, gold-to-distractor
 426 ratio, and position across all tasks and models. Earlier sections analyzed these variables *in isolation*,
 427 but in realistic long-context settings they co-vary, making it unclear which effects genuinely stem
 428 from gold size. The joint regression provides a unified *estimate of each factor’s partial effect*.

429 **Model specification.** For each benchmark, we regress the binary correctness outcome on four
 430 categorical predictors:

$$\Pr(\text{correct}) = \sigma(\beta_0 + \beta_{\text{size}} X_{\text{size}} + \beta_{\text{rep}} X_{\text{rep}} + \beta_{\text{ratio}} X_{\text{ratio}} + \beta_{\text{pos}} X_{\text{pos}}) \quad (2)$$

432 All variables are encoded categorically for direct interpretability. Repetition and ratio are binarized
 433 into *high* vs. *low* relative to within-benchmark means, and all predictors enter the model through their
 434 corresponding indicator variables X_{size} , X_{rep} , X_{ratio} , X_{pos} .

435 Here are how these variables defined: (1) **Gold Size** (X_{size}). A categorical factor encoding gold
 436 size, with *small* as the reference and indicators for *medium* and *large*. β_{size} gives the change in
 437 log-odds when moving from *small* to larger contexts. (2) **Answer Token Repetition** (X_{rep}). Token
 438 overlap with the answer, binarized at the benchmark mean into *low* (reference) vs. *high*. β_{rep} gives the
 439 log-odds difference between the two levels. (3) **Gold-to-Distractor Ratio** (X_{ratio}). The proportion of
 440 gold to distractor tokens in the context window, binarized at the benchmark mean into *low* (reference)
 441 vs. *high*. The coefficient β_{ratio} quantifies the effect of moving from a lower share of gold tokens
 442 to a higher one. (4) **Position** (X_{pos}). The gold document’s normalized start position, with 0.0 as
 443 the reference. Indicators represent other positions, and β_{pos} captures how placement in the window
 444 affects correctness.

445 **Results.** We show CBB results in Table 1
 446 where we see that gold size has a strong inde-
 447 pendent effect: medium and large contexts sig-
 448 nificantly boost correctness after adjusting for
 449 all confounders. Repetition and ratio also help,
 450 while position has the largest negative impact—
 451 performance drops sharply when the gold ap-
 452 pears anywhere other than at the start of the win-
 453 dow. **CBB performance improves reliably with**
 454 **larger gold contexts, in ways not explained by**
 455 **repetition, ratio, or position alone.**

456 Appendix C.3 also reports all three benchmarks.
 457 **Across all benchmarks, gold context size re-**
 458 **mains a significant, independent predictor of**
 459 **correctness even after controlling for repeti-**
 460 **tion, ratio, and position.** Medium and large
 461 golds consistently increase the log-odds of pro-
 462 ducing the correct answer relative to small ones.

Predictor	Coef	95% CI
Intercept	1.6459	[1.571, 1.720]
<i>Gold Size</i>		
md vs. sm	0.3933	[0.336, 0.451]
lg vs. sm	0.5354	[0.466, 0.605]
<i>Answer Token Repetition</i>		
high vs. low	0.5924	[0.511, 0.674]
<i>Gold-to-Distractor Ratio</i>		
high vs. low	0.3699	[0.279, 0.461]
<i>Position</i>		
0.25 vs. 0.0	-0.8087	[-0.896, -0.721]
0.50 vs. 0.0	-0.9001	[-0.987, -0.813]
0.75 vs. 0.0	-0.8930	[-0.980, -0.806]
1.00 vs. 0.0	-0.8701	[-0.957, -0.783]

Table 1: Logistic Regression Results (CBB)

463 5 RELATED WORK

464 We review related work in the context of long-context reasoning, focusing on three themes: positional
 465 biases in LLMs, long-context evaluation frameworks, and mitigation strategies.

466 **Long-context biases in LLMs.** Position bias, the tendency of LLMs to over- or under-attend to
 467 different parts of the input, has emerged as a fundamental challenge. Prior work has identified
 468 several variants: *primacy bias*, where early content is favored (Wang et al., 2023); *recency bias*,
 469 where later content dominates (Zheng et al., 2023); and *U-shaped bias*, where mid-context is under-
 470 attended (Liu et al.). These effects persist across model architectures, alignment strategies (Liu
 471 et al.), extended context lengths (Lee et al., 2024; Veseli et al., 2025), and, to some extent, in
 472 internal representations (Lu et al., 2024). Our work contributes to this literature by introducing a new
 473 dimension: we show that *the size of the gold context modulates the strength of positional bias*.

474 A few recent works have examined different trade-offs in NIAH settings. Levy et al. (2024) study
 475 variable input lengths and show that, *for a fixed gold document, adding more distractors degrades*
 476 *performance. This is essentially the inverse of our setup, where we fix the distractor content and*
 477 *systematically vary the length of the gold context.* The parallel work of Levy et al. (2025) investigates
 478 *the case where all documents have equal length while the total context length is held fixed.* They
 479 find that *longer documents* (with fewer total documents) make the gold easier to discover. This is
 480 complementary to our work: instead of varying absolute length under equal-length constraints, we
 481 *keep distractors fixed and vary the relative size of the same gold evidence.* Finally, Dai et al. (2024)
 482 study NIAH performance in synthetic key-value retrieval tasks, focusing on varying answer-span
 483 lengths and task lengths. In contrast, we *hold the question and answer fixed* and vary the size of the
 484 surrounding gold context in open-ended QA, enabling a controlled analysis of how gold context size
 485 alone affects aggregation robustness.

486 **Frameworks for long-context evaluation.** Long-context evaluation has progressed from synthetic
 487 toy tasks to increasingly realistic settings. Early work such as Long-Range Arena (Tay et al.,
 488 2021) introduced standardized tasks for comparing transformer variants. Subsequent benchmarks
 489 expanded this space (Bai et al.; Li et al., a; Gao et al.; Li et al., b; Modarressi et al., 2025; Ling
 490 et al., 2025; Zhang et al.; Ye et al., 2024; Yen et al., 2024), exploring document synthesis (Shaham
 491 et al.; 2023), document-level retrieval (Yen et al., 2025), citation verification (Zhang et al., 2024a),
 492 and biomedical reasoning (Adams et al., 2024; Cui et al., 2025). Most adopt a needle-in-a-haystack
 493 (NIAH) formulation (Kamradt, 2023; Hsieh et al., 2024a), where a small relevant span must be
 494 recovered from distractors. Others move beyond strict NIAH by incorporating aggregation, multi-hop
 495 inference (Zhuang et al.; Katsis et al.), or mixed-modality inputs (Wu et al.). **Our work builds on this**
 496 **trajectory by adapting natural, domain-specific datasets to simulate realistic NIAH aggregation.**

497 **Mitigation strategies for long-context biases.** Prior work proposes various methods for reducing
 498 positional sensitivity, including context compression (Jiang et al., 2024), distilling long-context
 499 information into model weights (Cao et al., 2025), attention calibration (Hsieh et al., 2024b), modified
 500 positional encodings (Zhang et al., 2024b; Zheng et al., 2024), and debiased fine-tuning (Xiong et al.,
 501 2024). While these methods can alleviate positional bias, many introduce side effects (Zhao et al.,
 502 2024), and robust long-context generalization remains challenging. Our contribution is diagnostic
 503 rather than corrective: we uncover a novel bias connected to the gold context size. Whether existing
 504 mitigation strategies can address this effect remains an open question.

505 506 507 6 DISCUSSION, LIMITATIONS, AND CONCLUSION

510 **Why does gold context size strongly affect the accuracy?** At a high level, the finding here is
 511 pretty intuitive: Larger gold contexts spread semantically relevant information across more tokens,
 512 making the signal more resilient to positional noise and less likely to be overlooked amid distractors.
 513 However, we do not claim this is the only mechanism involved. Our findings suggest that interacting
 514 factors may be at play here, as discussed in §4—including positional dynamics, answer-context
 515 richness, evidence competition, and domain effects. While the overall trend (large > medium > small)
 516 is consistent across all analyses, the precise interaction among these factors remains open and is an
 517 important direction for future work.

518 **Practical implications of our findings.** While prior work has studied factors like positional bias and
 519 distractor count, our results highlight an overlooked factor: the effect of heterogeneity in the size of
 520 evidence documents. Aggregation quality can degrade sharply when small-but-critical evidence is
 521 mixed with much longer retrieved passages. This naturally arises in retrieval-augmented systems or
 522 agentic pipelines where an aggregator must select a single piece of evidence from a concatenation of
 523 heterogeneous sources. Practitioners may mitigate this by ensuring that the documents are balanced
 524 in lengths before being aggregated or by avoiding pipelines that combine extremely short and very
 525 long contexts, thereby reducing size-induced attention asymmetries.

526 **Limitations of our study.** We fixed distractor lengths to better reflect real-world conditions, resulting
 527 in varying gold-to-distractor ratios. This may confound whether performance differences stem
 528 from gold context size alone or its relative share. Parallel work has investigated this, offering
 529 complementary results to ours (Levy et al., 2025). Second, the tasks we use could be further grounded
 530 in real deployment scenarios. **Third, our study focuses on aggregating a single needle; extending this**
 531 **to multi-needle or multi-hop settings is an important next step.** Future work should address these.

532 **Conclusion.** Our study reveals a fundamental yet previously overlooked limitation in LLM aggrega-
 533 tion capabilities: **the size of relevant information critically influences aggregation effectiveness**
 534 **in long-context tasks.** Through systematic evaluation, we demonstrated that smaller gold contexts
 535 degrade model performance substantially and exacerbate positional sensitivity, especially in domain-
 536 specific tasks. This discovery underscores a crucial vulnerability in real-world agentic deployments,
 537 where relevant evidence often appears unpredictably scattered amidst extensive distractors. As
 538 language models become central to applications requiring precise and trustworthy reasoning—from
 539 scientific discovery to personalized assistants—our findings highlight the urgent need to rethink ag-
 540 gregation strategies. Future LLM-driven systems must explicitly address context-size variability to
 541 ensure reliability, safety, and user trust in the face of complex, noisy real-world information streams.

540 7 REPRODUCIBILITY STATEMENT
541

542 In the Supplementary Material, we have included a folder with our self-contained code and instructions
543 to reproduce all of the experimental results from this paper. Upon publication, we plan to push the
544 code to a public GitHub repository, along with the data used to run the experiments, in order to
545 support reproducible research.

546
547 REFERENCES
548

549 Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
550 Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
551 Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
552 Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
553 Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL <https://arxiv.org/abs/2504.21318>.

554 Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Löser,
555 Hugo JWL Aerts, Jakob Nikolas Kather, Daniel Truhn, and Keno Bressem. Longhealth: A
556 question answering benchmark with long clinical documents, 2024. URL <https://arxiv.org/abs/2401.14490>.

557 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
558 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
559 multitask benchmark for long context understanding. In *Proceedings of the 62nd Annual Meeting*
560 *of the Association for Computational Linguistics (Volume 1: Long Papers)*. URL <https://aclanthology.org/2024.acl-long.172>.

561 Adib Bazgir, Rama chandra Praneeth Madugula, and Yuwen Zhang. Agentichypothesis: A sur-
562vey on hypothesis generation using LLM systems. In *Towards Agentic AI for Science: Hy-
563pothesis Generation, Comprehension, Quantification, and Validation*, 2025. URL <https://openreview.net/forum?id=UeeyfR4CUg>.

564 Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,
565 Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, et al. Long
566 code arena: a set of benchmarks for long-context code models. *arXiv preprint arXiv:2406.11612*,
567 2024.

568 Bowen Cao, Deng Cai, and Wai Lam. Infiniteicl: Breaking the limit of context window size via long
569 short-term memory transformation. *arXiv preprint arXiv:2504.01707*, 2025.

570 Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter Chris-
571 tian Norgaard, Nayantara Mudur, Martyna Beata Plomecka, Paul Raccuglia, Yasaman Bahri,
572 Victor V. Albert, Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian A Rohr, Michael J. Statt,
573 Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara, Matthew Abraham, Muqthar Mo-
574 hammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman, Eun-Ah Kim, Michael Brenner,
575 Sameera S Ponda, and Subhashini Venugopalan. CURIE: Evaluating LLMs on multitask scientific
576 long-context understanding and reasoning. In *The Thirteenth International Conference on Learning
577 Representations*, 2025. URL <https://openreview.net/forum?id=jw2fC6REUB>.

578 Hui Dai, Dan Pechi, Xinyi Yang, Garvit Banga, and Raghav Mantri. Deniah: In-context features
579 influence llm needle-in-a-haystack abilities, 2024. URL <https://arxiv.org/abs/2411.19360>.

580 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
581 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
582 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
583 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
584 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
585 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
586 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
587 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,

594 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 595 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 596 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 597 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 598 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 599 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 600 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen Liu, Wenfeng
 601 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 602 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 603 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 604 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 605 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 606 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 607 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 608 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 609 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 610 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 611 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 612 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 613 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 URL <https://arxiv.org/abs/2501.12948>.

614
 615 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 616 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 617 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 618 Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
 619 Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 620 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 621 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 622 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 623 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 624 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
 625 Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
 626 Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
 627 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
 628 Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
 629 Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
 630 Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
 631 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
 632 Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
 633 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 634 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 635 Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
 636 Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
 637 Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 638 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 639 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
 640 Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
 641 Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
 642 Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
 643 Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
 644 Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
 645 Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
 646 Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
 647 Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
 648 Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
 649 Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
 650 Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
 651 Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe

648 Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 649 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
 650 Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
 651 Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
 652 Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
 653 Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
 654 Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
 655 Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
 656 Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
 657 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
 658 Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
 659 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 660 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 661 Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
 662 Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
 663 Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
 664 Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
 665 Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
 666 Suk, Henry Aspren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
 667 Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
 668 Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
 669 Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
 670 Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
 671 Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
 672 Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhota, Kyle Huang, Lailin Chen,
 673 Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
 674 Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
 675 Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
 676 Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
 677 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 678 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 679 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 680 Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
 681 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 682 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 683 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 684 Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
 685 Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
 686 Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
 687 Ramaswamy, Shaun Lindsay, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Shengxin Cindy Zha,
 688 Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
 689 Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
 690 Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
 691 Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
 692 Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu,
 693 Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
 694 Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaoqian Wu, Xiaolan Wang,
 695 Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
 696 Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
 697 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
 698 of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 699

700 Hugging Face. Math-verify: A robust mathematical expression evaluation system, 2025. URL
 701 <https://github.com/huggingface/Math-Verify>.
 702

703 Center for Alzheimer’s and Related Dementias (CARD). Biomedsql. <https://huggingface.co/datasets/NIH-CARD/BiomedSQL>, 2025. Accessed: 2025-05-14.
 704

702 Muhan Gao, Jash Shah, Weiqi Wang, and Daniel Khashabi. Science hierarchography: Hierarchical
 703 abstractions of scientific literature. *arXiv preprint arXiv:2504.13834*, 2025. URL <https://arxiv.org/abs/2504.13834>.

704

705 Yunfan Gao, Yun Xiong, Wenlong Wu, Zijing Huang, Bohan Li, and Haofen Wang. U-niah: Unified
 706 rag and llm evaluation for long context needle-in-a-haystack. URL <https://arxiv.org/abs/2503.00353>.

707

708

709 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
 710 Boris Ginsburg. Ruler: What's the real context size of your long-context language models? *arXiv
 711 preprint arXiv:2404.06654*, 2024a.

712

713 Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long Le, Abhishek Kumar,
 714 James Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, et al. Found in the middle: Cali-
 715 brating positional attention bias improves long context utilization. In *Findings of the Association
 716 for Computational Linguistics ACL 2024*, pp. 14982–14995, 2024b.

717

718 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
 719 Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt compression.
 720 In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 1658–1677, 2024.

721

722 Greg Kamradt. Needle in a haystack - pressure testing llms. *GitHub*, 2023. URL https://github.com/gkamradt/LLMTest_NeedleInAHaystack.

723

724 Yannis Katsis, Sara Rosenthal, Kshitij Fadnis, Chulaka Gunasekara, Young-Suk Lee, Lucian
 725 Popa, Vraj Shah, Huaiyu Zhu, Danish Contractor, and Marina Danilevsky. Mtrag: A multi-
 726 turn conversational benchmark for evaluating retrieval-augmented generation systems. URL
 727 <https://arxiv.org/abs/2501.03468>.

728

729 Jinyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko,
 730 Yi Luan, Sébastien MR Arnold, Vincent Perot, Siddharth Dalmia, et al. Can long-context language
 731 models subsume retrieval, rag, sql, and more? *arXiv preprint arXiv:2406.13121*, 2024.

732

733 Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
 734 on the reasoning performance of large language models. In *Proceedings of the 62nd Annual
 735 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024. URL
 736 <https://aclanthology.org/2024.acl-long.818/>.

737

738 Shahar Levy, Nir Mazor, Lihi Salmon, Michael Hassid, and Gabriel Stanovsky. More doc-
 739 uments, same length: Isolating the challenge of multiple documents in rag. *arXiv preprint
 740 arXiv:2503.04388*, 2025.

741

742 Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. LooGLE: Can long-context language
 743 models understand long contexts? In *Proceedings of the 62nd Annual Meeting of the Association
 744 for Computational Linguistics (Volume 1: Long Papers)*, a. URL <https://aclanthology.org/2024.acl-long.859/>.

745

746 Kuan Li, Liwen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Shuai Wang, and Minhao Cheng. Lara:
 747 Benchmarking retrieval-augmented generation and long-context llms – no silver bullet for lc or rag
 748 routing, b. URL <https://arxiv.org/abs/2502.09977>.

749

750 Zhan Ling, Kang Liu, Kai Yan, Yifan Yang, Weijian Lin, Ting-Han Fan, Lingfeng Shen, Zhengyin
 751 Du, and Jiecao Chen. Longreason: A synthetic long-context reasoning benchmark via context
 752 expansion, 2025. URL <https://arxiv.org/abs/2501.15089>.

753

754 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 755 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of
 756 the Association for Computational Linguistics*. URL <https://aclanthology.org/2024.tacl-1.9/>.

757

758 Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
 759 auto-completion systems. *arXiv preprint arXiv:2306.03091*, 2023.

756 Taiming Lu, Muhan Gao, Kuai Yu, Adam Byerly, and Daniel Khashabi. Insights into llm long-context
 757 failures: When transformers know but don't tell. *arXiv preprint arXiv:2406.14673*, 2024.
 758

759 Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan, and Nazli Goharian.
 760 Simplified data wrangling with ir_datasets. In *SIGIR*, 2021.

761 Shrestha Basu Mallick and Logan Kilpatrick. Gemini 2.0: Flash, flash-lite and pro. <https://developers.google.com/updates/gemini-2-0-flash-flash-lite-pro>,
 762 February 2025. Google for Developers Blog, February 5, 2025.
 763

764 Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A. Rossi, Seunghyun
 765 Yoon, and Hinrich Schütze. Nolima: Long-context evaluation beyond literal matching, 2025. URL
 766 <https://arxiv.org/abs/2502.05167>.
 767

768 National Center for Biotechnology Information (NCBI). Ncbi [internet]. <https://www.ncbi.nlm.nih.gov/>, 1988. Bethesda (MD): National Library of Medicine (US), National Center for
 769 Biotechnology Information; [1988]– [cited 2025 May 20].
 770

771 NIH Biowulf. Nih high-performance computing (hpc) biowulf cluster. <https://hpc.nih.gov>,
 772 2024. Accessed May 2025.
 773

774 OpenAI. tiktoken: A fast bpe tokenizer for use with openai's models. <https://github.com/openai/tiktoken>, 2023. Accessed: 2025-05-15.
 775

776 OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. <https://openai.com/research/gpt-4o-mini-advancing-cost-efficient-intelligence>, July
 777 2024. <https://openai.com/research/gpt-4o-mini-advancing-cost-efficient-intelligence>.
 778

779 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 780 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
 781 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
 782 Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
 783 Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
 784 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
 785 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
 786 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
 787 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
 788 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
 789 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
 790 Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
 791 Lugaressi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
 792 Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
 793 Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 794 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
 795 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
 796 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
 797 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
 798 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
 799 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
 800 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
 801 Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
 802 Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
 803 Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
 804 Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
 805 Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
 806 Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
 807 Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
 808 Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
 809 Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
 Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
 Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh

810 Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
 811 Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
 812 Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
 813 Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
 814 Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
 815 Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
 816 Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
 817 Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
 818 Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
 819 Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
 820 Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
 821 Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
 822 Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
 823 Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
 824 Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
 825 Nitish Keskar, Noah Deutscher, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
 826 Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
 827 Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
 828 Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
 829 Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
 830 Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
 831 Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
 832 Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
 833 Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
 834 Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
 835 Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
 836 Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
 837 Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
 838 Cunningham, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
 839 Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
 840 Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
 841 Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
 842 Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
 843 Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
 844 URL <https://arxiv.org/abs/2410.21276>.

845 Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
 846 Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel,
 847 and Sebastian Riedel. Kilt: a benchmark for knowledge intensive language tasks, 2021. URL
 848 <https://arxiv.org/abs/2009.02252>.

849 Open R1. Open1-math-220k. <https://huggingface.co/datasets/open-r1/OpenR1-Math-220k>, 2024. Accessed: 2025-05-15.

850 Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
 851 Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison over long
 852 language sequences. In *Proceedings of the 2022 Conference on Empirical Methods in Natural
 853 Language Processing*. URL <https://aclanthology.org/2022.emnlp-main.823/>.

854 Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot bench-
 855 mark for long text understanding. In *Findings of the Association for Computational Linguistics:
 856 EMNLP 2023*, pp. 7977–7989, 2023.

857 Henry W Sprueill, Carl Edwards, Khushbu Agarwal, Mariefel V Olarte, Udishnu Sanyal, Conrad
 858 Johnston, Hongbin Liu, Heng Ji, and Sutanay Choudhury. Chemreasoner: Heuristic search over
 859 a large language model’s knowledge space using quantum-chemical feedback. *arXiv preprint
 860 arXiv:2402.10980*, 2024.

861 Peter D. Stenson, Matthew Mort, Edward V. Ball, Molly Chapman, Katy Evans, Luisa Azevedo,
 862 Matthew Hayden, Sally Heywood, David S. Millar, Andrew D. Phillips, and David N. Cooper. The
 863 human gene mutation database (hgmd®): optimizing its use in a clinical diagnostic or research

864 setting. *Human Genetics*, 139(10):1197–1207, 2020. doi: 10.1007/s00439-020-02199-3. URL
 865 <https://doi.org/10.1007/s00439-020-02199-3>.

866

867 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
 868 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
 869 transformers. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=qVyeW-grC2k>.

870

871 Blerta Veseli, Julian Chibane, Mariya Toneva, and Alexander Koller. Positional biases shift as inputs
 872 approach context window limits. In *Second Conference on Language Modeling*, 2025.

873

874 Weiqi Wang, Jiefu Ou, Yangqiu Song, Benjamin Van Durme, and Daniel Khashabi. Can llms
 875 generate tabular summaries of science papers? rethinking the evaluation protocol. *arXiv preprint*
 876 *arXiv:2504.10284*, 2025. URL <https://arxiv.org/abs/2504.10284>.

877

878 Yiwei Wang, Yujun Cai, Muhan Chen, Yuxuan Liang, and Bryan Hooi. Primacy effect of chatgpt. In
 879 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
 880 108–115, 2023.

881

882 Chih-Hsuan Wei, Alexis Allot, Po-Ting Lai, Robert Leaman, Shubo Tian, Ling Luo, Qiao Jin,
 883 Zhizheng Wang, Qingyu Chen, and Zhiyong Lu. Pubtator 3.0: an ai-powered literature resource for
 884 unlocking biomedical knowledge. *Nucleic Acids Research*, 52(W1):W540–W546, 04 2024. ISSN
 885 0305-1048. doi: 10.1093/nar/gkae235. URL <https://doi.org/10.1093/nar/gkae235>.

886

887 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 888 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International
 889 Conference on Learning Representations*. URL <https://openreview.net/forum?id=pZiyCaVuti>.

890

891 Zheyang Xiong, Vasilis Papageorgiou, Kangwook Lee, and Dimitris Papailiopoulos. From artificial
 892 needles to real haystacks: Improving retrieval capabilities in llms by finetuning on synthetic data.
 893 *arXiv preprint arXiv:2406.19292*, 2024.

894

895 Xiao Ye, Andrew Wang, Jacob Choi, Yining Lu, Shreya Sharma, Lingfeng Shen, Vijay Tiyyala,
 896 Nicholas Andrews, and Daniel Khashabi. AnaloBench: benchmarking the identification of abstract
 897 and long-context analogies. In *Conference on Empirical Methods in Natural Language Processing*
 898 (EMNLP), 2024. URL <https://arxiv.org/abs/2402.12370>.

899

900 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 901 and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly.
 902 *arXiv preprint arXiv:2410.02694*, 2024.

903

904 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 905 and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
 906oughly, 2025. URL <https://arxiv.org/abs/2410.02694>.

907

908 Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
 909 and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
 910 generation. *arXiv preprint arXiv:2303.12570*, 2023.

911

912 Jiajie Zhang, Yushi Bai, Xin Lv, Wanjun Gu, Danqing Liu, Minhao Zou, Shulin Cao, Lei Hou, Yuxiao
 913 Dong, Ling Feng, et al. Longcite: Enabling llms to generate fine-grained citations in long-context
 914 qa. *arXiv preprint arXiv:2409.02897*, 2024a.

915

916 Yuxiang Zhang, Jing Chen, Junjie Wang, Yixin Liu, Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao
 917 Lin, Hanwen Wan, Yujiu Yang, Tetsuya Sakai, Tian Feng, and Hayato Yamana. ToolBeHonest:
 918 A multi-level hallucination diagnostic benchmark for tool-augmented large language models. In
 919 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*. URL
 920 <https://aclanthology.org/2024.emnlp-main.637/>.

921

922 Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
 923 and Zhangyang Wang. Found in the middle: How language models use long contexts better via
 924 plug-and-play positional encoding. *arXiv preprint arXiv:2403.04797*, 2024b.

918 Xinyu Zhao, Fangcong Yin, and Greg Durrett. Understanding synthetic context extension via retrieval
919 heads. *arXiv preprint arXiv:2410.22316*, 2024.
920

921 Chuanyang Zheng, Yihang Gao, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren,
922 Michael Ng, Xin Jiang, Zhenguo Li, et al. Dape: Data-adaptive positional encoding for length
923 extrapolation. *Advances in Neural Information Processing Systems*, 37:26659–26700, 2024.
924

925 Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models
926 are not robust multiple choice selectors. In *The Twelfth International Conference on Learning
927 Representations*, 2023.
928

929 Tianyi Zhuang, Chuqiao Kuang, Xiaoguang Li, Yihua Teng, Jihao Wu, Yasheng Wang, and Lifeng
930 Shang. Docpuzzle: A process-aware benchmark for evaluating realistic long-context reasoning
931 capabilities. URL <https://arxiv.org/abs/2502.17807>.
932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 **A APPENDIX**
973974 **A EXTENDED EXPERIMENTAL DETAILS**
975976 We provide extended experimental details on benchmark construction, model configuration, and
977 evaluation methodology to support the reproducibility and interpretability of our results.
978979 **A.1 ORIGINAL BENCHMARKS**
980981 We describe the sources, licenses, and preprocessing procedures for each of the three adapted
982 benchmarks used in our experiments. All experiments were run on a sampled subset of 250 examples
983 per benchmark. See the code repository for exact methodology.
984985 **CARDBiomedBench**
986987

- **Source:** CARDBiomedBench on Hugging Face and its BiomedSQL variant on Hugging Face.
988 Distractor documents were retrieved using a multi-agent retrieval system, which retrieves
989 content from: (1) Google search over NIH domains, (2) PubTator3.0 (Wei et al., 2024), (3)
990 the Human Gene Mutation Database (HGMD) (Stenson et al., 2020), and (4) NCBI gene and
991 variant pages (National Center for Biotechnology Information (NCBI), 1988).
- **License:** Apache 2.0 for benchmark code and data. Some distractor sources (e.g., HGMD) are
992 not redistributable but are publicly accessible on their respective platforms.
- **Preprocessing:** None, the distractor and gold documents are as-is from the retriever.

993994 **NaturalQuestions**
995996

- **Source:** NQ with evidence spans aligned to Knowledge Intensive Language Tasks (KILT) on
997 Hugging Face. Gold documents were loaded using the Ai2 ir_datasets python package (MacA-
998 vaney et al., 2021) and distractors were sourced from HELMET on Hugging Face.
- **License:** Creative Commons Share-Alike 3.0 (NQ), MIT (KILT & HELMET), and Apache 2.0
1000 (ir_datasets).
- **Preprocessing:** We filtered for validation examples that had matching HELMET distractors.
1001 Examples with missing KILT provenance, absent or unresolvable answer spans, or malformed
1002 metadata were excluded. Gold and distractor documents included the title of the article ‘*Title:*
1003 *{title} Document: {gold_document}*’ to give them context.

10041005 **NuminaMath1.5**
10061007

- **Source:** NuminaMath1.5 (NM) and its OpenR1Math (OR1M) variant on Hugging Face, that
1008 contains DeepSeekR1 reasoning chains.
- **License:** Apache 2.0. (NM and OR1M).
- **Preprocessing:** Filtered to retain only examples with ‘complete’ and ‘verified’ fields for
1011 question, final answer, structured solution, and long-form generation. DeepSeekR1 generations
1012 were truncated to the final 5,000 tokens using GPT-4o tiktoken (OpenAI, 2023) tokenization to
1013 normalize document length across tasks. Distractors sampling was among the other questions
1014 and excluded duplicates. Sizes of gold and distractors were strung into a pseudo-document by
1015 including ‘*The answer to {question} is {gold_document}*’ to give them context.

10161017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027 A.2 TASK CREATION1028
1029 Here we provide more context for the gold document construction as discussed in §2.2. Specifically,
1030 in Figure 9 we show examples of the gold answers, of different sizes, for each dataset.

	CARDBiomedBench (CBB)	NaturalQuestions (NQ)	NuminaMath1.5 (NM)
Question	What is the genomic location of rs12255438 in the GRCh38/hg38 build of the human genome and what gene is it located on or near?	Who is playing the halftime show at super bowl 2016?	A ship traveling along a river has covered 24 km upstream and 28 km downstream... Determine the speed of the ship in still water and the speed of the river.
Small Gold	The SNP rs12255438 is located on or closest to the gene CTNNA3 on chromosome 10 at base pair position 66465707 in the GRCh38/hg38 build of the human genome.	Super Bowl 50 halftime show It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who previously had headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively.	The answer to the question “A ship traveling along a river has covered 24 km ...” is: $v_{[R]}=4\text{mathrm{[km]}}$, $v_{[B]}=10\text{mathrm{[km]}}$
Medium Gold	SELECT 'AlzheimerDisease_GeneData' AS source_table, UUID, SNP, chr_38, bp_38, nearestGene ... WHERE SNP = 'rs12255438' LIMIT 100 The SNP rs12255438 is located on or closest to the gene CTNNA3 on chromosome 10 at base pair position 66465707 in the GRCh38/hg38 build of the human genome.	Super Bowl 50 halftime show The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who previously had headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively.	Let t be the time required for the boat to travel 24 km upstream and 28 km downstream, $v_{[R]}$ the speed of the river, and $v_{[B]}$ the speed of the boat. When the boat is traveling upstream, its speed is $v_{[B]}-v_{[R]}$, and when it is traveling downstream, its speed is $v_{[B]}+v_{[R]}$ The speed of the river is $v_{[R]}=4\text{mathrm{[km]}}$ and the speed of the boat is $v_{[B]}=10\text{mathrm{[km]}}$.
Large Gold	SELECT 'AlzheimerDisease_GeneData' AS source_table, UUID, SNP, chr_38, bp_38, nearestGene ... WHERE SNP = 'rs12255438' LIMIT 100 [{'SNP': 'rs12255438', 'chr_38': 10, 'bp_38': 66465707, 'nearestGene': 'CTNNA3'}, ... {'SNP': 'rs12255438', 'chr_38': 10, 'bp_38': 66465707, 'nearestGene': 'CTNNA3'}] The SNP rs12255438 is located on or closest to the gene CTNNA3 on chromosome 10 at base pair position 66465707 in the GRCh38/hg38 build of the human genome.	Super Bowl 50 halftime show The Super Bowl 50 Halftime Show took place on February 7, 2016, at Levi's Stadium in Santa Clara, California as part of Super Bowl 50. It was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who previously had headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively. ... At that time, Mars and Beyoncé were both doing a diet and stressing out. One day before the performance they were “watching playback backstage”, while Beyoncé ate a bag of Cheetos. ... (+5 more paragraphs)	<think> Okay, so I need to find the speed of the ship in still water and the speed of the river. Let me start by recalling that when a ship is moving upstream, its effective speed is the speed of the ship minus the speed of the river. ... Wait, actually, the problem states: “For this journey, it took half an hour less than for traveling 30 km upstream ... Hmm, let me parse that again... ... the final answer is $v_{[R]}=4\text{mathrm{[km]}}$, $v_{[B]}=10\text{mathrm{[km]}}$

1056
1057 Figure 9: Gold context construction across benchmarks. The “small” gold context is minimally
1058 sufficient to answer the question; “medium” and “large” add further relevant information. In
1059 CARDBiomedBench (left), this includes SQL and result rows; in NQ (center), adjacent Wikipedia
1060 paragraphs; in NM (right), full solution traces and DeepSeekR1 reasoning chain.

1061 A.3 LLM CONFIGURATION

1062 We evaluated seven LLMs, each configured via provider-specific APIs. All evaluations were con-
1063 ducted as deterministically as possible.1064 **API Providers.** We used the following service providers for model access:

- **GPT models** (o3-mini, GPT-4o, GPT-4o-mini) were accessed via the Azure OpenAI service.
- **Gemini models** (Gemini-2.5-Flash, Gemini-2.0-Flash, Gemini-2.0-Flash-Lite) were accessed via the Google AI GenAI SDK, using the official genai Python client.
- **DeepSeek-R1 and Phi-4-reasoning** were accessed via the Azure AI Inference service.
- **LLaMA models >= 70b params** (Meta-LLaMA-3.1-405B-Instruct, LLaMA-3.3-70B-Instruct) were accessed via the Azure AI Inference service.
- **LLaMA model < 70B parameters** (LLaMA-3.1-8B-Instruct) was evaluated locally using the meta-llama/Llama-3.1-8B-Instruct checkpoint, loaded via Hugging Face transformers. All local evaluations were conducted on the NIH High-Performance Computing (HPC) Biowulf cluster (NIH Biowulf, 2024), leveraging GPU nodes for inference.

1078
1079 **Prompting and Evaluation Configuration.** Prompts were benchmark-specific and standard-
1080 ized across model types. All non-reasoning models were queried with `max_tokens=256` and

1080 temperature=0.0. Provider-specific configurations (e.g., safety settings for Google GenAI,
 1081 and device mapping for HuggingFace) were handled automatically during model initialization.
 1082 See the code and YAML config files for full details. Reasoning models were queried with
 1083 max_tokens=2048 and their default generation params, to allow for reasoning. Reasoning
 1084 models were additionally given instructions to encourage grounding their answer in the retrieved
 1085 documents, to prevent relying on internal knowledge.

1086 **Grading LLMs.** For CARDBiomedBench, an additional grading LLM was used to assess answer
 1087 correctness via BioScore using GPT-4o, as done by the authors. It was instantiated using the same
 1088 infrastructure and configurations as the primary LLMs, with max_tokens=10.
 1089

1090 **A.4 METRICS**

1091 We used evaluation metrics that align with the original datasets' scoring protocols:
 1092

1093 **Quality Rate.** We evaluate responses to the CBB tasks following their proposed **BioScore** framework,
 1094 an LLM-as-a-judge metric implemented with GPT-4o. Each response is scored on a 3-point scale
 1095 according to the BioScore prompt 4, and a score ≥ 2 is considered factually correct. The **Quality**
 1096 **Rate** is computed as the proportion of responses meeting this threshold.

1097 Formally, given a reference set $Resp$ of expert-annotated responses and a corresponding set \hat{Resp} of
 1098 model-generated responses for n questions:
 1099

$$1100 \text{Quality Rate} = \frac{1}{N} \sum_{n=1}^N \text{Correct}(r_n, \hat{r}_n) \quad (3)$$

$$1104 \text{where } \text{Correct}(r_n, \hat{r}_n) = \begin{cases} 1, & \text{if } \text{BioScore}(r_n, \hat{r}_n) \geq 2 \\ 0, & \text{otherwise} \end{cases} \quad \text{and } r_n \in Resp, \hat{r}_n \in \hat{Resp} \quad (4)$$

1105 **SubEM.** For NQ we utilized substring exact match, which assigns a score of 1.0 if any normalized
 1106 ground truth string is a subspan of the model's response (after normalization), and 0 otherwise. This
 1107 is a correctness signal used by previous work on this data.

1108 **math-verify.** Evaluated with math-verify (Face, 2025), a symbolic equivalence checker that parses
 1109 LaTeX boxed answers and verifies correctness through structured math expression comparison.
 1110 Parsing and verification are done using an extraction and comparison pipeline derived from the
 1111 Math-Verify toolkit.

1112 **Error Bars.** All plots showing aggregate scores (e.g., Figure 3) report 90% confidence intervals (CIs)
 1113 estimated via non-parametric bootstrapping over tasks. Given N scores, we resample with replace-
 1114 ment 1,000 times and compute the middle 90% interval from the resulting bootstrap distribution.
 1115

1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 A.5 PROMPTS.
11351136 We show prompts used to collect results from the models and the BioScore grading prompt. There is
1137 a unique prompt for each benchmark, which is used on every model. {Variables} are in curly braces
1138 which are formatted with task data (question and documents). We encourage models to ground their
1139 answers in the context and abstain if unable to answer.

1140

1141 You are a highly knowledgeable and experienced expert in the healthcare and biomedical field,
1142 possessing extensive medical knowledge and practical expertise. Create an answer to the question
1143 using only the provided documents (some of which might be irrelevant). If you cannot answer the
1144 question based on the documents, explicitly state that you do not know.
1145 Question: {question}
1146 Documents: {documents}

1147

1148 Prompt 1: The CARD BiomedBench prompt is adapted from the original paper's experimental
1149 methods and includes mention of biomedical expertise.

1150

1151 Create an answer to the question using only the provided documents (some of which might be
1152 irrelevant). If you cannot answer the question based on the documents, explicitly state that
1153 you do not know.
1154 Question: {question}
1155 Documents: {documents}

1156

1157 Prompt 2: The NaturalQuestions prompt is adapted from previous work's experimental methods (Liu
1158 et al.; Yen et al., 2025).

1159

1160 Create an ANSWER to the QUESTION using only the provided DOCUMENTS (some of which might be
1161 irrelevant). Write nothing but your final answer in LaTeX within \boxed{}. If you do not
1162 know the answer to a question, explicitly state so in \boxed{I don't know}.
1163 QUESTION: {question}
1164 DOCUMENTS: {documents}
1165 QUESTION: {question}
1166 ANSWER:

1167

1168 Prompt 3: The NuminaMath1.5 prompt uniquely repeats the question and has formatting guidelines,
1169 to comply with the math-verify metric. Without repeating the question models exhibited extremely
1170 poor performance in every configuration.

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

```

1188
1189 You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing
1190 extensive medical knowledge and practical expertise.
1190 ### Scoring Instructions for Evaluating Analyst Responses
1191
1191 **Objective:** Evaluate an analyst's response against a gold standard.
1192
1193 **Scoring Criteria:**
1193 - **Exact Match:** 3 points for an exact or equally accurate response.
1193 - **Close Match:** 2 points for a very close response with minor inaccuracies.
1194 - **Partial Match:** 1 point for a partially accurate response with significant omissions.
1195 - **Irrelevant Information (Harmless):** Deduct 0.5 points for harmless irrelevant information.
1196 - **Irrelevant Information (Distracting):** Deduct 1 point for distracting irrelevant information.
1196 - **No Match:** 0 points for no match.
1197 - **Not Knowing Response:** -1 point for stating lack of knowledge or abstaining. An example
1197 of this scenario is when Analyst Response says 'There are various studies, resources or
1197 databases on this topic that you can check ... but I do not have enough information on this topic.
1198
1199 **Scoring Process:**
1199 1. **Maximum Score:** 3 points per question.
1200 2. **Calculate Score:** Apply criteria to evaluate the response.
1201
1201 **Question:** {question}
1202 **Golden Answer:** {gold_ans}
1202 **Analyst Response:** {pred_ans}
1203
1203 ## Your grading
1204 Using the scoring instructions above, grade the Analyst Response return only the numeric score
1205 on a scale from 0.0-3.0. If the response is stating lack of knowledge or abstaining, give it
1205 -1.0.
1206

```

Prompt 4: BioScore grading prompt for LLM-as-a-judge on CBB tasks, awarding points for correct information and deducting points for incorrect information. It differentiates an abstention (-1) from an incorrect answer (0 or 1).

```

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

B EXTENDED RESULTS

As discussed in §2.3 we evaluated *gold-only* baselines where each gold context size (small, medium, large) was presented alone, without distractors. This verified that all variants were independently sufficient to solve the task and that downstream performance drops are due to aggregation effects (e.g., distractor interference or gold placement). We provide baselines for all benchmarks in B.1 Figure 10. Additionally, we provide full results for CBB in Figure 11, for NQ in Figure 12, and for NM in Figure 13. Finally, we provide positional curves for all models in Figure 15.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297

B.1 BASELINES

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

(a) CARDBiomedBench

	Distractor	Closed Book	Small Gold	Medium Gold	Large Gold
GPT-4o	0.41±0.05	0.46±0.05	0.98±0.01	1.00±0.00	1.00±0.00
GPT-4o-Mini	0.31±0.05	0.43±0.05	1.00±0.00	1.00±0.00	1.00±0.00
Gemini-2.0-Flash	0.29±0.05	0.34±0.05	0.96±0.02	0.95±0.02	0.96±0.02
Gemini-2.0-Flash-Lite	0.25±0.04	0.36±0.05	0.96±0.02	0.97±0.02	0.99±0.01
LLaMA-3.1-405b	0.35±0.05	0.24±0.04	0.98±0.01	1.00±0.00	1.00±0.00
LLaMA-3.3-70b	0.30±0.05	0.35±0.05	0.98±0.01	1.00±0.00	1.00±0.00
LLaMA-3.1-8b	0.10±0.03	0.22±0.04	0.42±0.05	0.58±0.05	0.73±0.04
Gemini-2.5-Flash	0.50±0.05	0.62±0.05	0.95±0.02	0.96±0.02	0.99±0.01
o3-mini	0.58±0.05	0.62±0.05	0.99±0.01	1.00±0.00	1.00±0.00
DeepSeek-R1	0.46±0.05	0.63±0.05	0.99±0.01	0.98±0.02	0.99±0.01
Phi-4-reasoning	0.48±0.05	0.30±0.05	1.00±0.00	0.99±0.01	1.00±0.00

(b) NaturalQuestions

	Distractor	Closed Book	Small Gold	Medium Gold	Large Gold
GPT-4o	0.28±0.05	0.68±0.05	0.70±0.05	0.74±0.04	0.74±0.04
GPT-4o-Mini	0.43±0.05	0.61±0.05	0.72±0.04	0.76±0.04	0.77±0.04
Gemini-2.0-Flash	0.34±0.05	0.50±0.05	0.86±0.04	0.84±0.04	0.80±0.04
Gemini-2.0-Flash-Lite	0.27±0.05	0.56±0.05	0.80±0.04	0.80±0.04	0.78±0.04
LLaMA-3.1-405b	0.46±0.05	0.62±0.05	0.81±0.04	0.81±0.04	0.80±0.04
LLaMA-3.3-70b	0.51±0.05	0.62±0.05	0.82±0.04	0.81±0.04	0.80±0.04
LLaMA-3.1-8b	0.12±0.04	0.46±0.05	0.52±0.05	0.63±0.05	0.64±0.05
Gemini-2.5-Flash	0.43±0.05	0.66±0.05	0.81±0.04	0.82±0.04	0.84±0.04
o3-mini	0.44±0.05	0.55±0.05	0.87±0.04	0.86±0.04	0.82±0.04
DeepSeek-R1	0.53±0.05	0.71±0.05	0.90±0.03	0.88±0.03	0.87±0.03
Phi-4-reasoning	0.47±0.05	0.51±0.05	0.90±0.03	0.87±0.04	0.86±0.04

(c) NuminaMath1.5

	Distractor	Closed Book	Small Gold	Medium Gold	Large Gold
GPT-4o	0.10±0.03	0.14±0.04	0.93±0.02	0.90±0.03	0.88±0.03
GPT-4o-Mini	0.05±0.02	0.09±0.03	0.92±0.03	0.90±0.03	0.92±0.03
Gemini-2.0-Flash	0.11±0.03	0.25±0.05	0.97±0.02	0.89±0.03	0.94±0.02
Gemini-2.0-Flash-Lite	0.08±0.03	0.22±0.04	0.94±0.02	0.93±0.03	0.96±0.02
LLaMA-3.1-405b	0.16±0.04	0.17±0.04	0.90±0.03	0.92±0.03	0.92±0.03
LLaMA-3.3-70b	0.06±0.03	0.16±0.04	0.89±0.03	0.92±0.03	0.92±0.03
LLaMA-3.1-8b	0.05±0.02	0.08±0.03	0.80±0.04	0.81±0.04	0.70±0.05
Gemini-2.5-Flash	0.02±0.02	0.38±0.05	0.94±0.02	0.88±0.03	0.95±0.02
o3-mini	0.35±0.05	0.57±0.05	0.88±0.03	0.87±0.04	0.88±0.03
DeepSeek-R1	0.19±0.04	0.12±0.04	0.84±0.04	0.68±0.05	0.92±0.03
Phi-4-reasoning	0.42±0.05	0.50±0.05	0.90±0.03	0.87±0.03	0.84±0.04

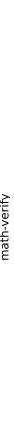
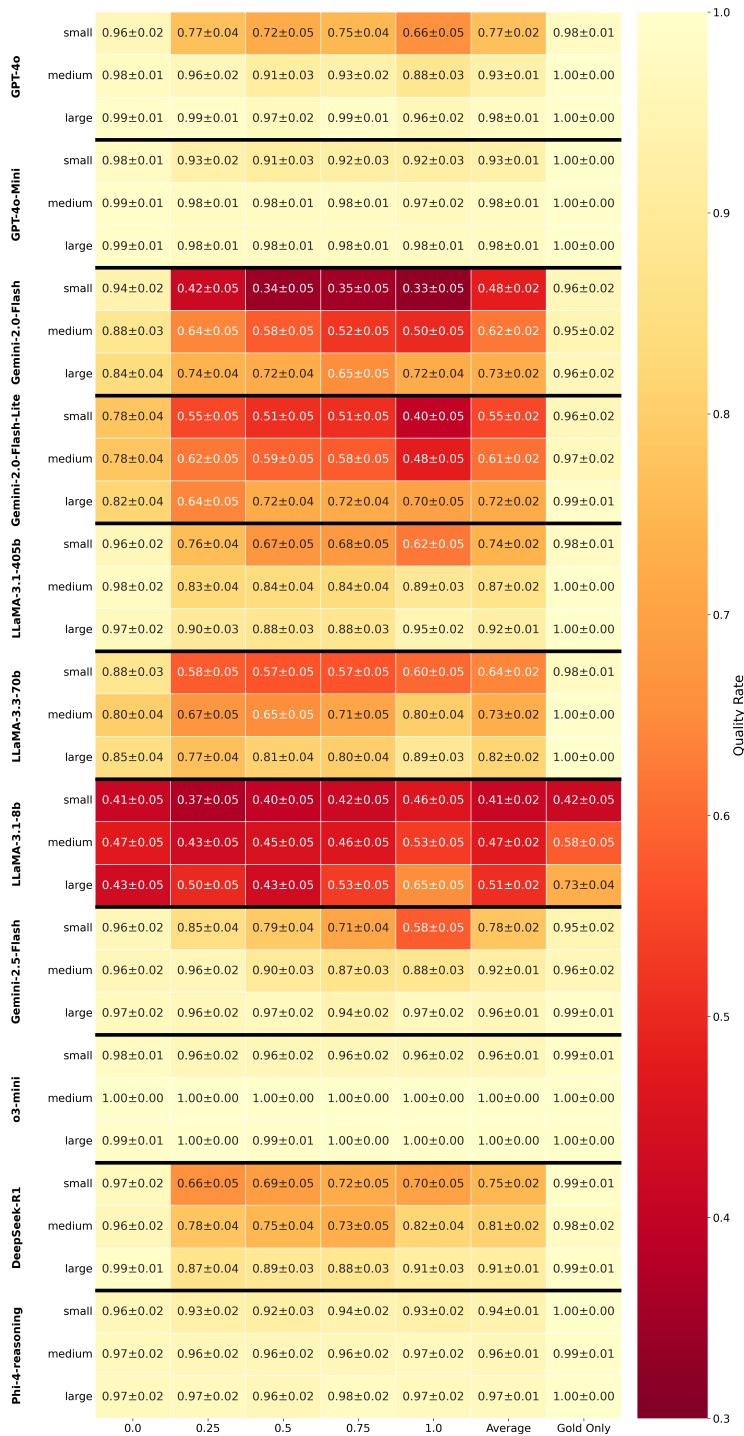


Figure 10: Baseline performance when viewing distractors only, closed book (no documents), and varying sizes of gold. This confirms both (1) performance is near perfect when viewing any size of gold document and (2) models perform poorly without the gold documents.

1350 B.2 CARDBIOMEDBENCH
13511398 Figure 11: CARDBiomedBench performance for each model and size of gold for varying positions
1399 in the context window (0.0, 0.25, 0.5, 0.75, 1.0), the average across all positions, and baseline
1400 performance when seeing gold only. Higher scores (light yellow) is more desirable than low scores
1401 (dark red), 90% CI are reported.
1402
1403

B.3 NATURALQUESTIONS

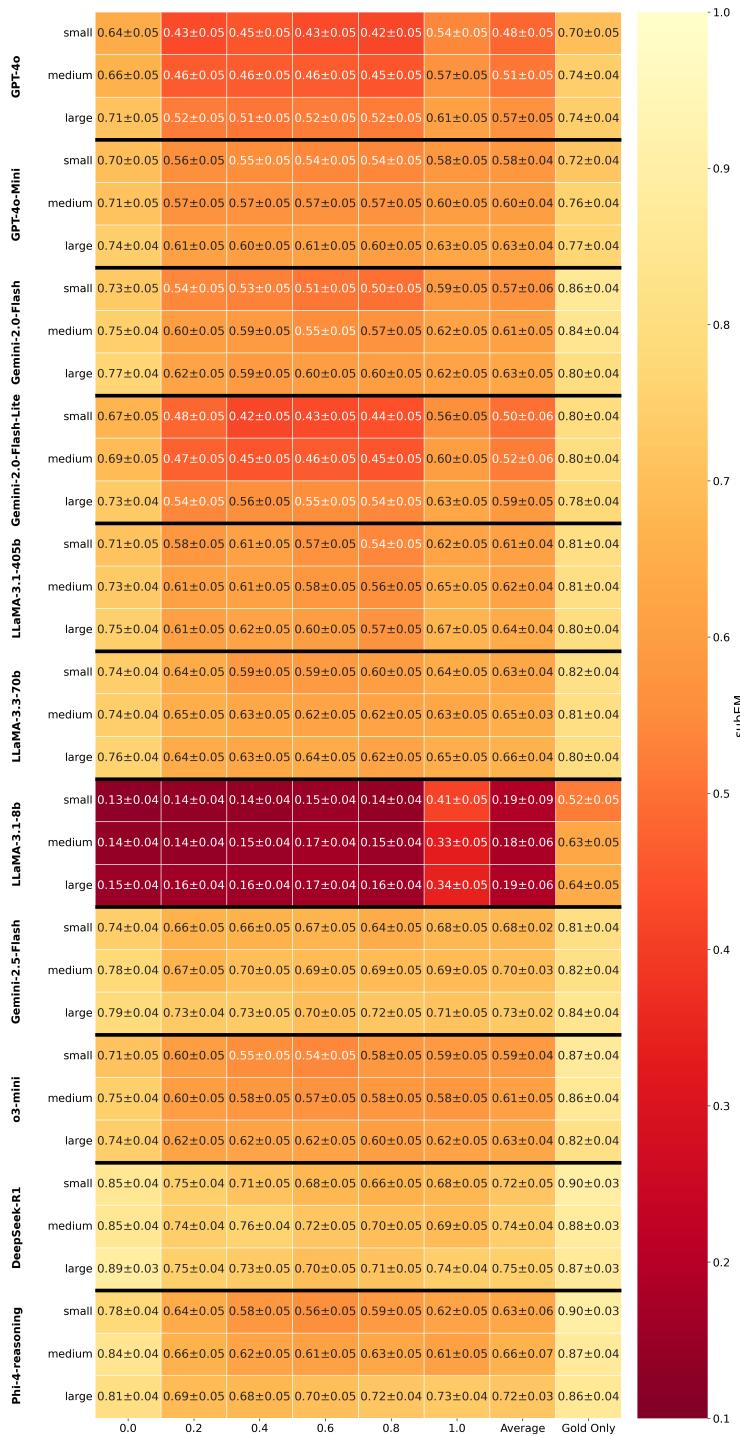


Figure 12: NaturalQuestions performance for each model and size of gold for varying positions in the context window (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), the average across all positions, and baseline performance when seeing gold only. Higher scores (light yellow) are more desirable than low scores (dark red), 90% CI are reported.

1458 B.4 NUMINAMATH1.5
1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

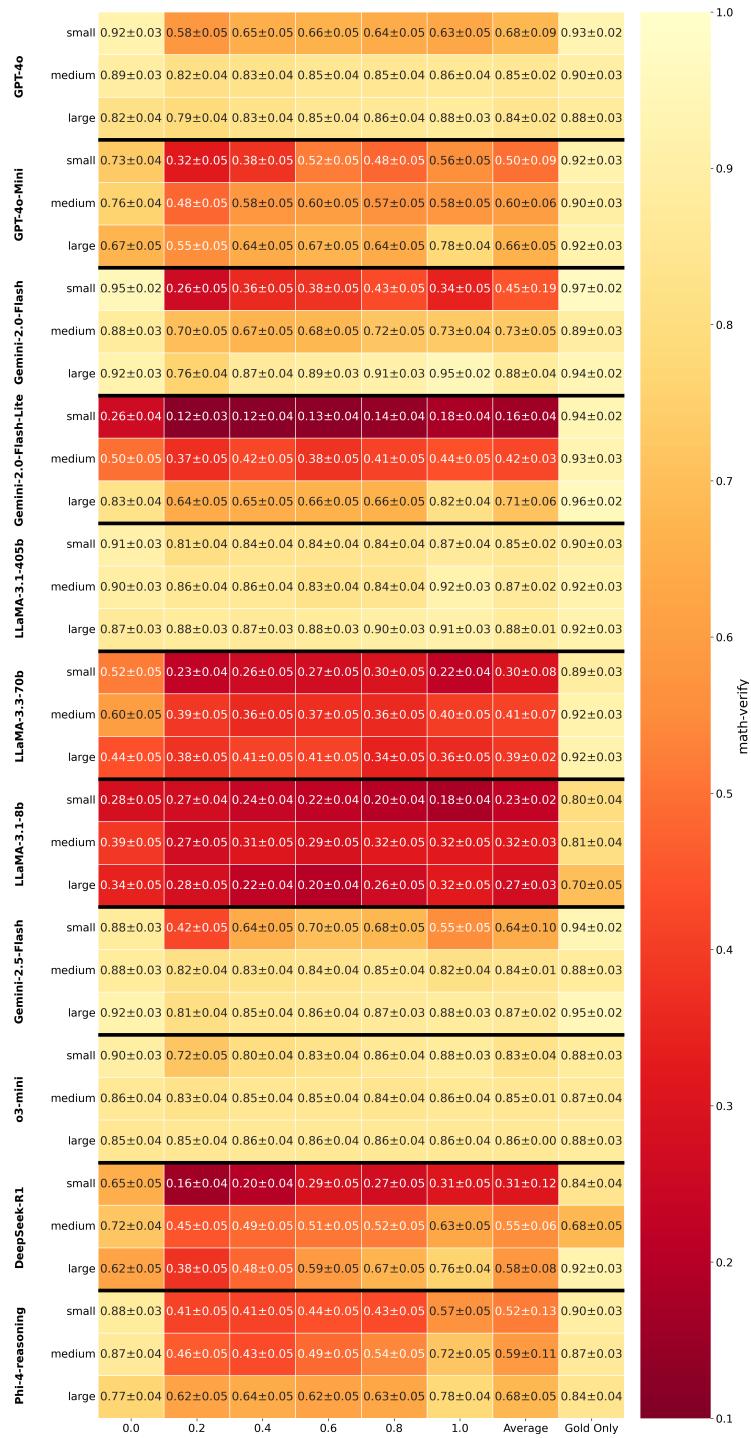
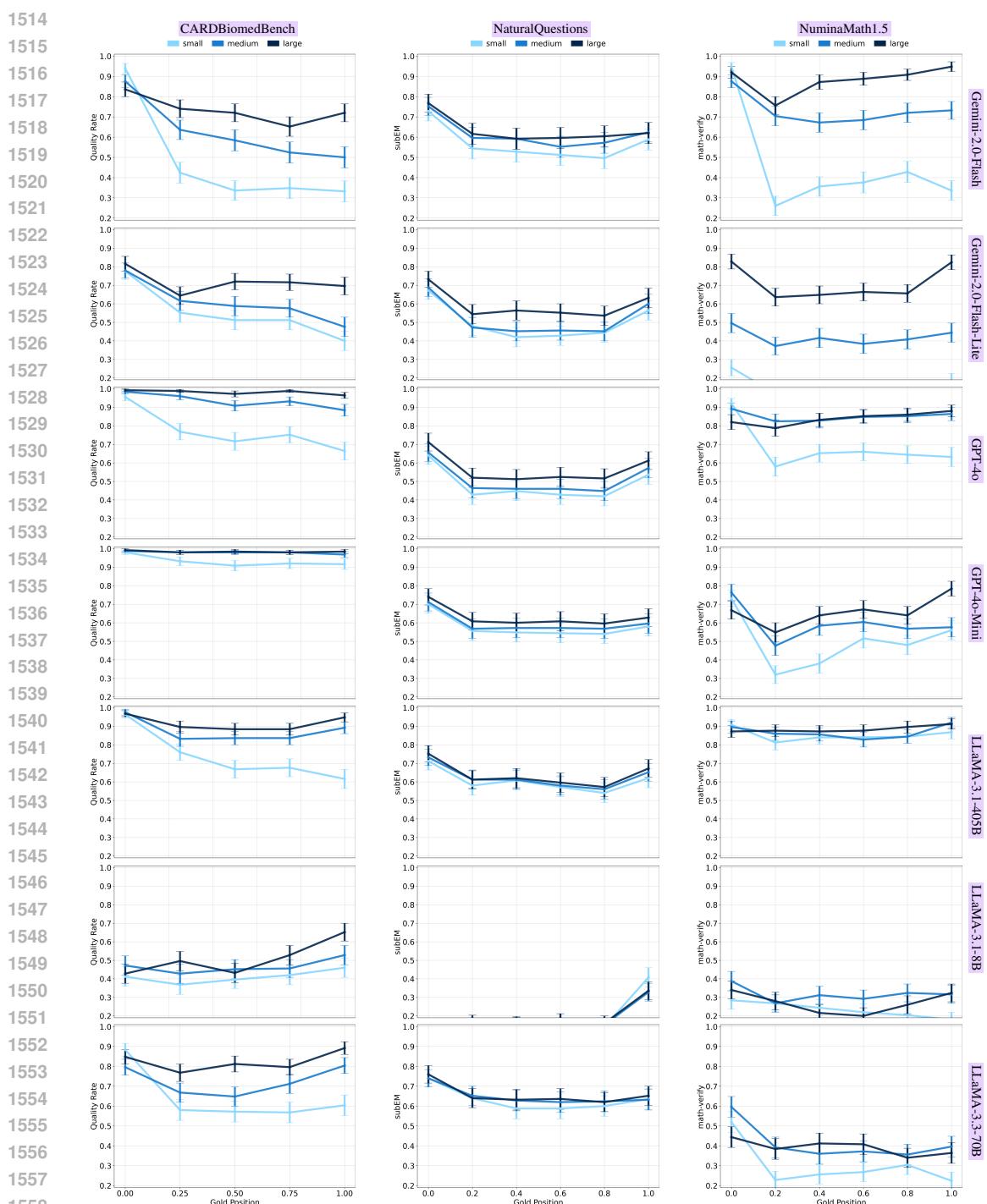


Figure 13: NuminaMath1.5 performance for each model and size of gold for varying positions in the context window (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), the average across all positions, and baseline performance when seeing gold only. Higher scores (light yellow) are more desirable than low scores (dark red), 90% CI are reported.

1512 B.5 PERFORMANCE BY POSITION
1513

1559 Figure 14: Model performance by gold context position (early to late in input), higher is better and
1560 error bars are 90% CIs. Each row is a model, columns are benchmarks. **Smaller gold contexts exhibit**
1561 **sharper performance degradation with later placement, especially in specialized domains (CBB,**
1562 **NM).** Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of richer input. All
1563 non-reasoning models, including the ones in Figure 4, are here for comparison.

1564
1565

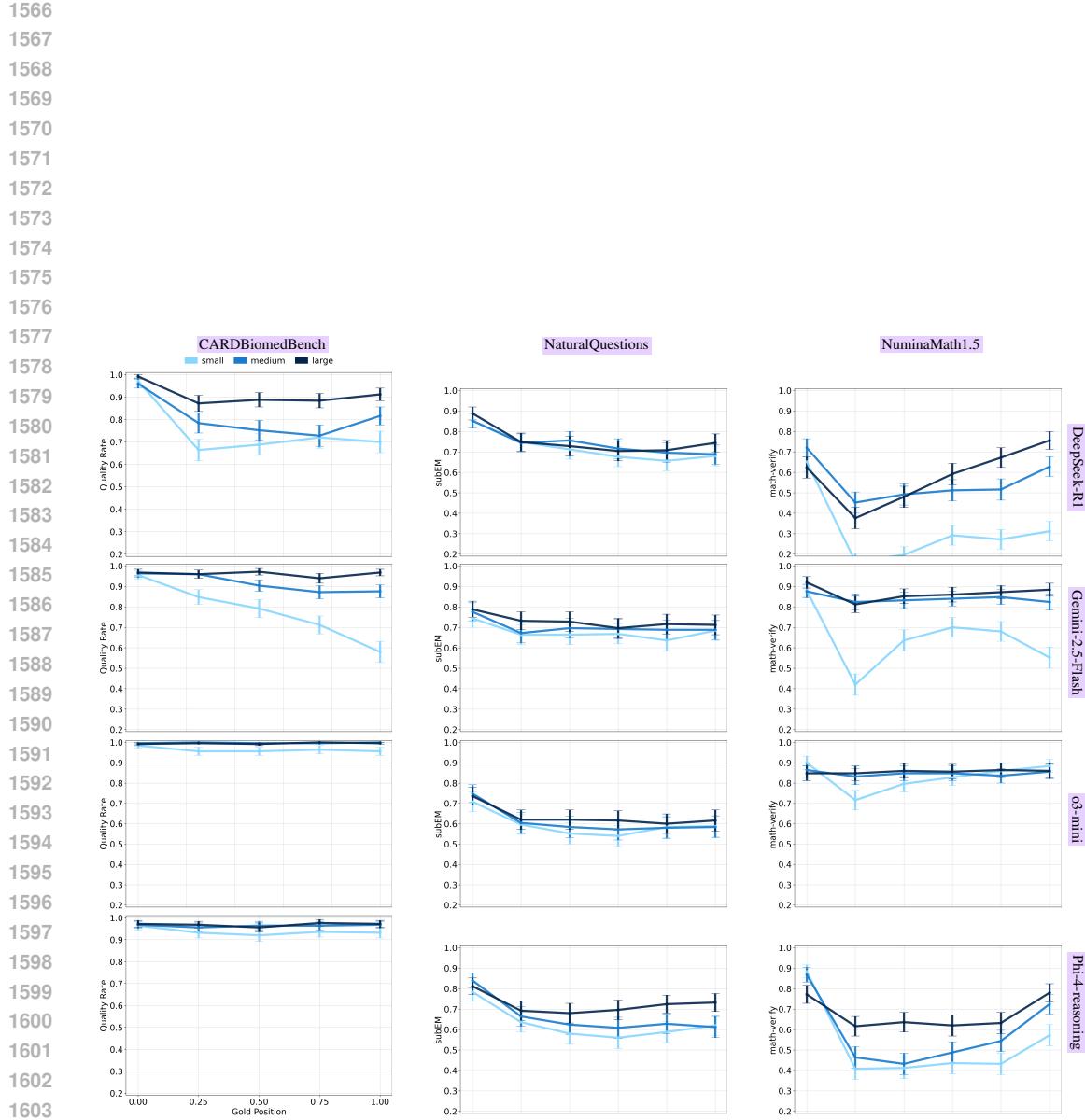


Figure 15: Reasoning model performance by gold context position (early to late in input), higher is better and error bars are 90% CIs. Each row is a model, columns are benchmarks. **Smaller gold contexts exhibit sharper performance degradation with later placement, especially in specialized domains (CBB, NM).** Larger contexts mitigate this sensitivity, highlighting the stabilizing effect of richer input.

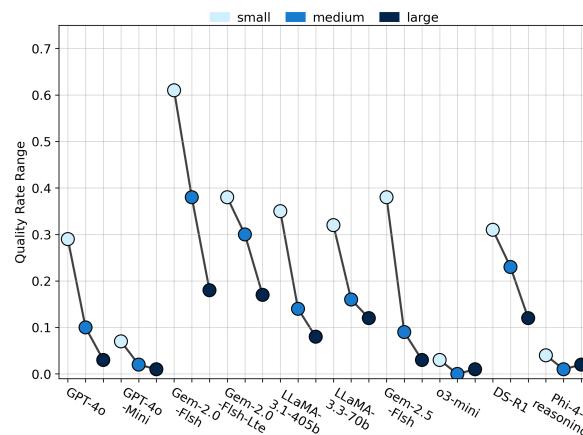
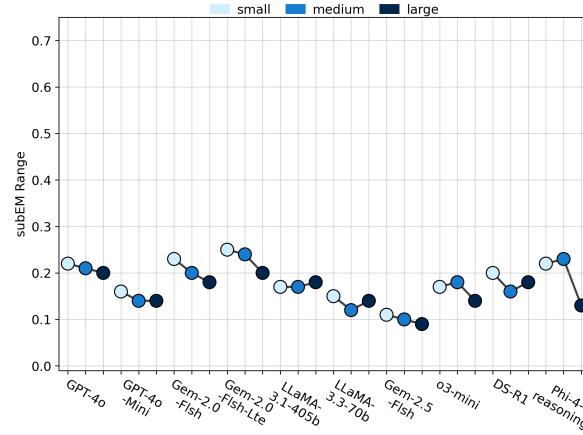
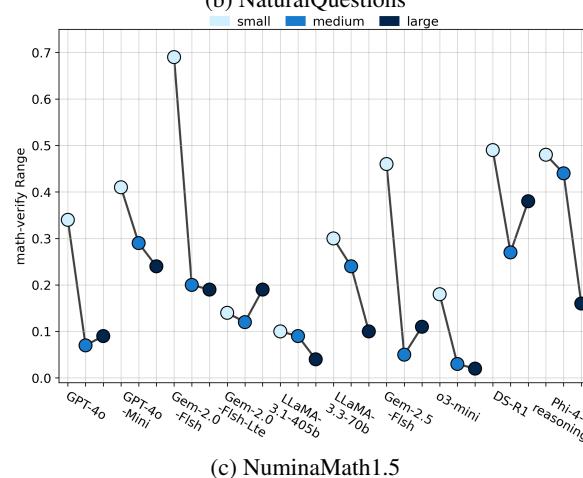
1620 B.6 POSITIONAL SENSITIVITY
1621

Figure 16: Positional sensitivity by benchmark. For each model and gold context size, we compute the range (Equation 1) of performance across positions. **Smaller gold contexts exhibit much higher sensitivity (larger ranges), especially in domain-specific tasks (CBB, NM). Larger gold contexts yield more stable performance across positions.**

1674 **C CONFOUNDER ANALYSIS**
 1675

1676 We provide details, formulas, distributions, and performance across benchmarks when considering
 1677 the potential confounding variables.

1678 **C.1 MEASURING GOLD CONTEXT RATIOS AND ANSWER OVERLAP**
 1679

1680 We define several metrics to quantify the repetition of the answer across gold passages, as well as the
 1681 gold-to-distractor ratio.

1682 **Gold-to-Distractor Ratio.** To measure the ratio of gold to distractor tokens, we define $T(x)$ as the
 1683 tokens of passage x and $|T(x)|$ is the total number of tokens in x :

$$\text{Gold-to-Distractor Ratio}(g, D) = \frac{|T(g)|}{\sum_{d \in D} |T(d)|} \quad (5)$$

1688 **Exact Mentions.** We count exact string occurrences of the answer in the context, case-insensitive
 1689 and word-bounded:

$$\text{ExactMentions}(a, c) = \sum_{a_i \in \mathcal{A}} \#\{\text{occurrences of } a_i \text{ in } c\} \quad (6)$$

1693 where \mathcal{A} is the set of provided answer strings and c is the context.

1694 **Answer Token Hits.** At the token level, we measure how many context tokens match any token from
 1695 the answer:

$$\text{AnsTokHits}(a, c) = \sum_{t \in T(c)} \mathbf{1}[t \in T(a)] \quad (7)$$

1698 where $T(x)$ is the tokenized version of x . This counts duplicates, i.e., repeated matches.

1700 **Answer Token Repetition.**

1701 To normalize for answer length, we define repetition as raw answer-token hits per unique answer
 1702 token:

$$\text{AnsTokRepetition}(a, c) = \frac{\text{AnsTokHits}(a, c)}{|T(a)|^*} \quad (8)$$

1705 where $|T(a)|^*$ is the number of unique tokens in the answer. This measures a normalized degree of
 1706 repetition relative to the answer's own size.

1708 Exact mentions are rare (sparse), making them an unreliable measure, thus we opt for repetition rate
 1709 to capture meaningful growth in answer-token recurrence.

1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

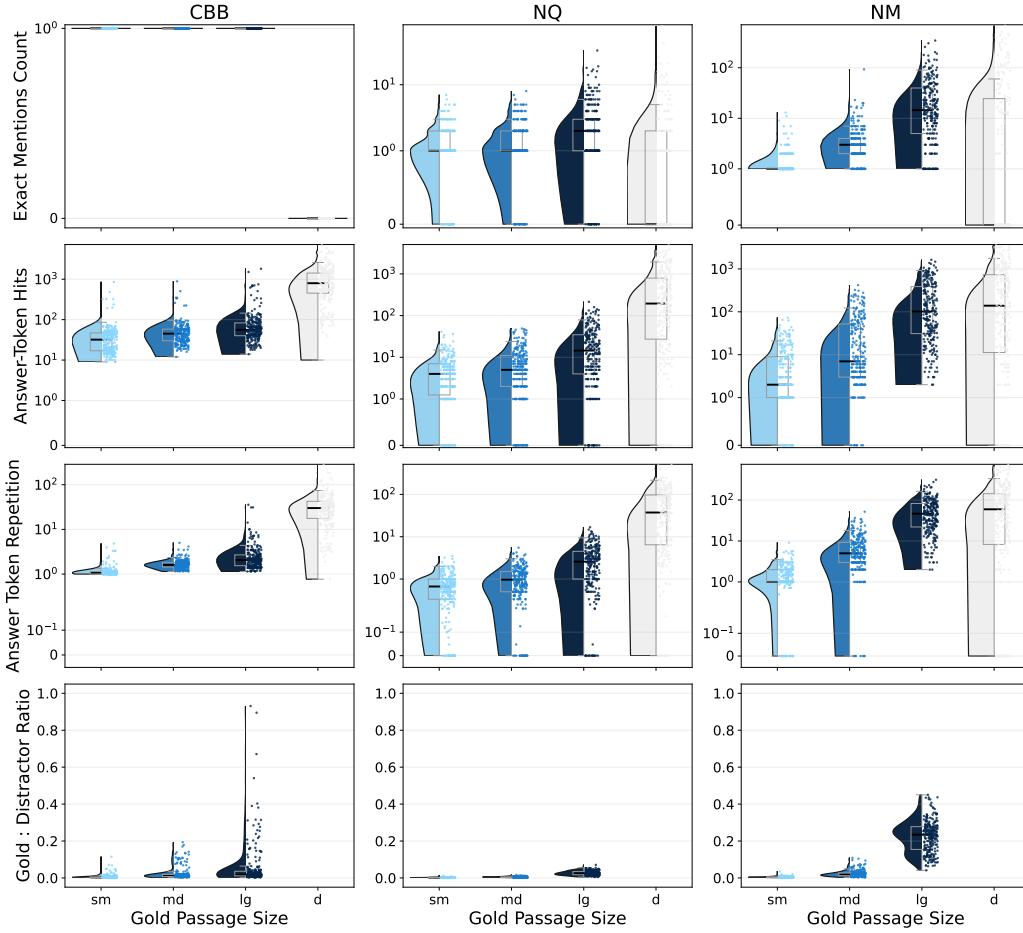
1728
1729

C.2 CONFOUNDER DISTRIBUTIONS

1730
1731

Gold Passages (sm/md/lg) and Distractor (d) Repeat Metrics by Benchmark

1732



1761

Figure 17: Raincloud plots across all benchmarks of Exact Mentions Counts, Answer-Token Hits, Redundancy, and Gold : Distractor Ratio across all sizes of gold and distractor documents for reference.

1762
1763
1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782
1783

C.3 CONFOUNDER BINNED RESULTS

1784
1785**Binning Procedure.** To analyze how accuracy varies with a given feature, we partition the feature into binary bins based on the mean value across all examples (small, medium, and large).

1786

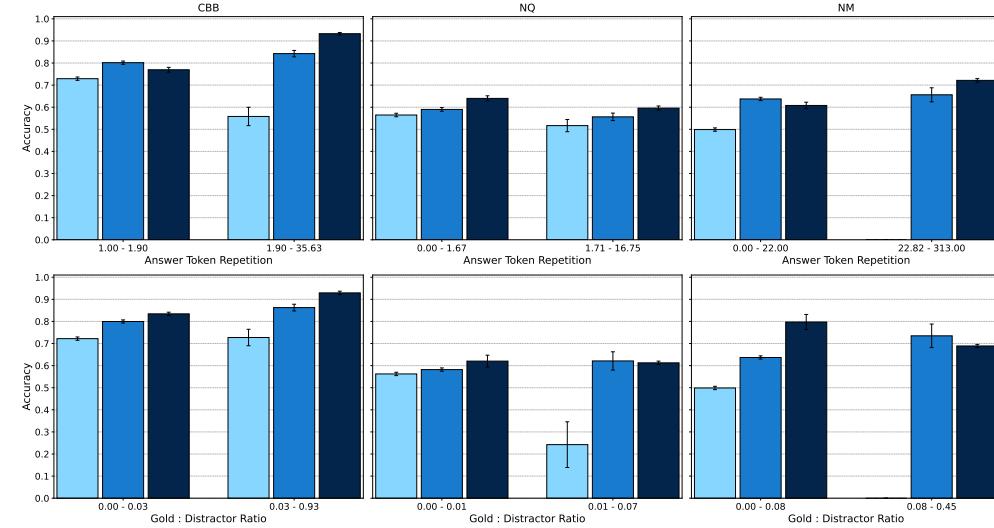
1787
1788
1789
1790
1791
1792
1793
17941795
1796
1797
1798
1799
1800
1801
1802
1803

Figure 18: Performance (across all models) when bucketing tasks into binary bins per confounder: below and above the mean value. Smaller golds typically yields lower accuracy compared to larger golds. Error bars are 95% confidence intervals, some are larger due to small sample size in that bin.

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838 **C.4 CONFOUNDER LOGISTIC REGRESSION ANALYSIS**

1839

1840 To examine the statistical strength of each variable—gold size, answer token repetition, gold-to-
 1841 distractor ratio, and position—we fit a multivariate logistic regression to predict correctness across
 1842 all tasks and models for each benchmark. While the earlier analyses attempt to isolate each factor
 1843 independently, these variables often co-vary in realistic long-context settings. The regression therefore
 1844 provides a unified framework to estimate the partial contribution of each factor and determine whether
 1845 gold context size remains an independent driver of performance.

1846 **C.4.1 SETUP**1847 **Motivation.**

1849 Smaller gold contexts naturally coincide with several conditions that make retrieval harder: they tend
 1850 to repeat answer tokens less often, occupy a smaller share of the input window, and are more sensitive
 1851 to position. These correlations can obscure the true source of the performance gap. By modeling
 1852 correctness jointly over all variables, we separate genuine size effects from those attributable to
 1853 repetition, ratio, or positional bias.

1854 **Model Specification.**

1855 For each benchmark (CBB, NQ, NM), we regress the binary correctness outcome on four categorical
 1856 predictors:

$$1858 \quad \Pr(\text{correct}) = \sigma(\beta_0 + \beta_{\text{size}} X_{\text{size}} + \beta_{\text{rep}} X_{\text{rep}} + \beta_{\text{ratio}} X_{\text{ratio}} + \beta_{\text{pos}} X_{\text{pos}}) \quad (9)$$

1860 All predictors are encoded as categorical variables to keep coefficients directly interpretable—
 1861 particularly for the confounders, where ‘high vs. low’ bins provide a clear contrast between conditions.

1863 **Variables.** The regression includes four categorical predictors, each represented by a set of indicator
 1864 variables X_{size} , X_{rep} , X_{ratio} , and X_{pos} in the model above. Both confounder variables (repetition and
 1865 ratio) are binarized into *high* vs. *low* using within-benchmark means to keep coefficients directly
 1866 interpretable.

- 1867 **1. Gold Size (X_{size}).** A categorical factor with *small* gold contexts as the reference level; the indicator
 1868 variables encode the *medium* and *large* gold conditions. The coefficient β_{size} captures the change
 1869 in log-odds of correctness when moving from a small gold context to a larger one (small →
 1870 medium and medium → large).
- 1871 **2. Answer Token Repetition (X_{rep}).** Token-level overlap between the gold context and the answer,
 1872 binarized at the benchmark mean into *low* (reference) vs. *high* repetition. The coefficient β_{rep}
 1873 represents the difference in log-odds between below-mean and above-mean repetition levels.
- 1874 **3. Gold-to-Distractor Ratio (X_{ratio}).** The proportion of gold to distractor tokens in the context
 1875 window, binarized at the benchmark mean into *low* (reference) vs. *high*. The coefficient β_{ratio}
 1876 quantifies the effect of moving from a lower share of gold tokens to a higher one.
- 1877 **4. Position (X_{pos}).** The normalized start position of the gold document, treated categorically with 0.0
 1878 (start of window) as the reference; indicator variables encode all other positions. The coefficient
 1879 β_{pos} captures how changes in placement within the input window influence correctness relative to
 1880 appearing first.

1882 **Results.**

1883 **Across all three benchmarks, gold context size remains a significant and independent predictor**
 1884 **of correctness after controlling for answer token repetition, gold-to-distractor ratio, and gold**
 1885 **document position.** Medium and large gold documents consistently increase the log-odds of
 1886 producing the correct answer relative to small gold contexts.

1887

1888

1889

1890 C.4.2 CBB LOGISTIC REGRESSION OUTPUT
1891

Predictor	Coef	Std. Err.	z	P> z	95% CI
Intercept	1.6459	0.038	43.284	0.00	[1.571, 1.720]
Gold Size					
md vs. sm	0.3933	0.029	13.340	0.00	[0.336, 0.451]
lg vs. sm	0.5354	0.036	15.034	0.00	[0.466, 0.605]
Ans Tok Rep					
high vs. low	0.5924	0.041	14.309	0.00	[0.511, 0.674]
Gold-to-Dis Ratio					
high vs. low	0.3699	0.047	7.936	0.00	[0.279, 0.461]
Position					
0.25 vs. 0.0	-0.8087	0.045	-18.089	0.00	[-0.896, -0.721]
0.50 vs. 0.0	-0.9001	0.044	-20.305	0.00	[-0.987, -0.813]
0.75 vs. 0.0	-0.8930	0.044	-20.132	0.00	[-0.980, -0.806]
1.00 vs. 0.0	-0.8701	0.044	-19.576	0.00	[-0.957, -0.783]

1907 Table 2: Logistic Regression Results (CBB)
1908

1909 Gold context size shows a clear independent effect on CBB: medium and large golds significantly
1910 increase correctness relative to small ones, even after adjusting for all confounders. Answer-token
1911 repetition and gold-to-distractor ratio also provide meaningful boosts, while position has the strongest
1912 negative impact. Performance drops sharply when the gold appears anywhere other than the start of
1913 the window. **CBB performance improves reliably with larger gold contexts, offering gains that**
1914 **cannot be explained by repetition, ratio, or position alone.**

1944
1945

C.4.3 NQ LOGISTIC REGRESSION OUTPUT

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961

Predictor	Coef	Std. Err.	z	P> z	95% CI
Intercept	0.7280	0.027	26.829	0.00	[0.675, 0.781]
Gold Size					
md vs. sm	0.1129	0.023	4.992	0.00	[0.069, 0.157]
lg vs. sm	0.2916	0.051	5.682	0.00	[0.191, 0.392]
Ans Tok Rep					
high vs. low	-0.1737	0.023	-7.395	0.00	[-0.220, -0.128]
Gold-to-Dis Ratio					
high vs. low	0.0206	0.050	0.414	0.679	[-0.077, 0.118]
Position					
0.2 vs. 0.0	-0.5486	0.033	-16.795	0.00	[-0.613, -0.485]
0.4 vs. 0.0	-0.5920	0.033	-18.148	0.00	[-0.656, -0.528]
0.6 vs. 0.0	-0.6279	0.033	-19.264	0.00	[-0.692, -0.564]
0.8 vs. 0.0	-0.6397	0.033	-19.630	0.00	[-0.704, -0.576]
1.0 vs. 0.0	-0.3815	0.033	-11.601	0.00	[-0.446, -0.317]

1962
1963

Table 3: Logistic Regression Results (NQ)

1964
1965
1966
1967
1968
1969

Gold context size remains a significant predictor on NQ, though its effect is smaller than in the other benchmarks. Position exerts a substantial influence, with performance declining steadily as the gold moves deeper into the window. High answer-token repetition has a *negative effect on NQ*, and gold-to-distractor ratio shows no meaningful impact. **NQ is less sensitive to gold size and confounders than the domain-specific benchmarks, but larger gold contexts provide a consistent advantage.**

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998 C.4.4 NM LOGISTIC REGRESSION OUTPUT
1999

2000	Predictor	Coef	Std. Err.	z	P> z	95% CI
2001	Intercept	0.5660	0.028	20.348	0.00	[0.511, 0.621]
2002	Gold Size					
2003	md vs. sm	0.5675	0.023	24.926	0.00	[0.523, 0.612]
2004	lg vs. sm	0.9641	0.080	12.005	0.00	[0.807, 1.122]
2005	Ans Tok Rep					
2006	high vs. low	0.4998	0.036	14.046	0.00	[0.430, 0.569]
2007	Gold-to-Dis Ratio					
2008	high vs. low	-0.5138	0.083	-6.220	0.00	[-0.676, -0.352]
2009	Position					
2010	0.2 vs. 0.0	-0.8926	0.034	-26.408	0.00	[-0.959, -0.826]
2011	0.4 vs. 0.0	-0.7459	0.034	-22.000	0.00	[-0.812, -0.679]
2012	0.6 vs. 0.0	-0.6666	0.034	-19.611	0.00	[-0.733, -0.600]
2013	0.8 vs. 0.0	-0.6333	0.034	-18.610	0.00	[-0.700, -0.567]
2014	1.0 vs. 0.0	-0.4755	0.034	-13.867	0.00	[-0.543, -0.408]
2015						

2016 Table 4: Logistic Regression Results (NM)
2017

2018 NM shows the strongest size effect: medium and especially large gold contexts yield substantial
2019 gains over small ones, even after accounting for confounders. High answer-token repetition improves
2020 performance, but gold-to-distractor ratio has a negative coefficient, indicating that ratio alone does
2021 not explain the size advantage. Position is highly impactful, with penalties for placement beyond the
2022 beginning of the window. NM is the **most position-sensitive and gold-size-dependent benchmark**,
2023 **underscoring that larger gold contexts are crucial for stabilizing NIAH performance.**

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052 **D LLM DECLARATION**

2053
2054 LLMs were used to assist in editing and revising some of the language used throughout the manuscript.
2055 Additionally, LLMs were used to edit code to create some of the figures that appear in the manuscript.
2056 The authors take full responsibility for the work in its entirety.

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105