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Figure 1: An overview of semantic segmentation (TOP) and object detection (BOTTOM) methods
proposed over time and their reliability and generalization ability on ADE20K (Zhou et al., 2019)
and MS-COCO (Lin et al., 2014), respectively. The y-axes represent TOP: the mean Intersection
over Union (mIoU) and BOTTOM: the mean Average Precision (mAP), i.e. higher is better. The
performance of methods on i.i.d. samples has increased over time, however, their reliability and
generalization ability have not improved at the same rate, and lag behind.

ABSTRACT

Reliability and generalization in deep learning are predominantly studied in the
context of image classification. Yet, possible real-world applications in safety-
critical domains involve a broader set of semantic tasks, such as semantic seg-
mentation and object detection, which come with a diverse set of dedicated model
architectures. To facilitate research towards robust model design in segmentation
and detection, our primary objective is to provide benchmarking tools regarding
robustness to distribution shifts and adversarial manipulations. We propose the
benchmarking tools SEMSEGBENCH and DETECBENCH, along with the most ex-
tensive evaluation to date on the reliability and generalization of semantic segmen-
tation and object detection models. Specifically, we benchmark 76 segmentation
models across four datasets and 61 object detectors across two datasets, evaluating
their performance under diverse adversarial attacks and common corruptions. Our
findings reveal systematic weaknesses in state-of-the-art models and uncover key
trends based on architecture, backbone, and model capacity. SEMSEGBENCH and
DETECBENCH are open-sourced in an Anonymous Repository with our complete
set of 6139 evaluations. We anticipate the collected data to foster and encourage
future research towards improved model reliability beyond classification.

1 INTRODUCTION

Deep Learning (DL)-based models can provide highly accurate predictions. At the same time, they
are known to behave unstably under distribution shifts (Hendrycks & Dietterich, 2019; Kar et al.,
2022; Hooker et al., 2019) or when probed using attacks (Kurakin et al., 2017; Croce & Hein, 2020;
Schmalfuss et al., 2022a). This known drawback casts serious doubts over their use for safety-critical
applications such as medical image analysis (Sobek et al., 2024; Ran et al., 2023; Ronneberger et al.,
2015; Dumitru et al., 2023) or autonomous driving (Balasubramaniam & Pasricha, 2022; Khan et al.,

1
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2023; Menze & Geiger, 2015; Cordts et al., 2016). Most prior works (Geirhos et al., 2018; Prasad,
2022; Geirhos et al., 2020; Liu et al., 2025) studied these shortcomings for image classification mod-
els, yielding large studies and benchmarks (Croce et al., 2021; Hendrycks & Dietterich, 2019; Kar
et al., 2022; Jung et al., 2023) that foster research towards improved model reliability and robustness.
However, this incentive hardly transfers from classification models to models for semantic segmen-
tation and object detection. At the same time, findings from image classification might not directly
transfer to e.g. segmentation models due to systematic differences in architecture design and loss,
while the role of model design was highlighted e.g. in (Schrodi et al., 2022; Agnihotri et al., 2023b;
2024a) who exemplified architectural design choices that improve model robustness independent of
training strategies.

Most current segmentation and detection models are evaluated on and optimized for performance on
independent and identically distributed (i.i.d.) in-domain samples. Arguably, evaluating recent state-
of-the-art models also incurs relevant compute costs. Therefore, while highly relevant in practice, no
large-scale studies exist regarding model robustness and reliability for semantic segmentation and
object detection, potentially stagnating progress towards improved robustness and reliability. This
is observed in Fig. 1 for both semantic segmentation and object detection methods over time.

To alleviate this gap, we perform a comprehensive benchmarking of semantic segmentation and
object detection methods for reliability under adversarial attacks and generalization to 2D and 3D
common corruptions. Additionally, to ensure smooth, continued work in this direction, we pro-
pose two new benchmarking tools, SEMSEGBENCH and DETECBENCH for semantic segmentation
and object detection, respectively. SEMSEGBENCH is built upon “mmsegmentation” (Contributors,
2020) and DETECBENCH is built upon “mmdetection” (Chen et al., 2019). This allows our pro-
posed benchmarking tools to cover most relevant DL-based methods for the tasks and to be easily
updated over time as methods are added to “mmsegmentation” and “mmdetection” while getting
community-trusted documentation.

The proposed SEMSEGBENCH and DETECBENCH are the first unified benchmarking tools for eval-
uating the adversarial and OOD robustness of their respective downstream tasks. These benchmarks
uniquely enable joint analysis of semantic segmentation and object detection, leveraging their com-
mon architectural backbones and vulnerabilities. With 6,139 evaluations covering 76 segmentation
models and 61 object detectors, the extensive benchmark provides multiple pre-logged metrics per
evaluation, allowing the community to immediately explore further analyses without computation
positioning SEMSEGBENCH and DETECBENCH as not just tools, but comprehensive resources for
research towards reliable models.

Our analysis provides a novel understanding of various methods across datasets and allows to iden-
tify trends for model reliability and generalization. Thus, we anticipate insights from this work to
help researchers build better models that are not limited to improved performance on i.i.d. sam-
ples but are additionally less vulnerable to adversarial attacks while generalizing better to image
corruptions, ultimately allowing for their safer deployment in practice. Our main contributions are:

• For semantic segmentation, we evaluate 76 checkpoints over 4 datasets, 3 SotA adversarial
attacks, and 15 2D Common Corruptions with a total of 2052 evaluations.

• For object detection, we evaluate 61 methods across 2 different datasets under 3 diverse
adversarial attacks and 25 established common corruptions with a total of 4087 evaluations.

• We perform the most comprehensive analysis of semantic tasks beyond classification to
date, analyzing correlations between performance, reliability, and the generalization abil-
ities of semantic segmentation and object detection methods under various architectural
design choices, such as model capacity or the type of model backbone used.

• We empirically show that synthetic image corruptions can serve as a proxy for real-world
distribution shifts (included as Appendix A.1 due to page limit).

• We propose SEMSEGBENCH and DETECBENCH, the first unified benchmarking tools for
in-distribution performance, OOD, and adversarial robustness of most DL-based methods
over the most commonly used datasets for the respective tasks.

• New summary metrics: Reliability Measure (ReM) and Generalization Ability Measure
(GAM), which condense robustness results into interpretable worst-case evaluations across
corruptions and attacks.

2
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2 RELATED WORK

Previous works have benchmarked either OOD robustness (Kamann & Rother, 2020; Gupta et al.,
2024; Michaelis et al., 2019; Ding et al., 2024) or adversarial robustness (Arnab et al., 2018; Croce
et al., 2024; Awais et al., 2023; Dong et al., 2022; Xie et al., 2017a; Du et al., 2022) for segmentation
and object detection. SEMSEGBENCH and DETECBENCH are the first to unify these evaluations for
the respective tasks, inspired by benchmarks for image classification (Croce et al., 2021).

Adversarial Attacks DL-based models tend to rely on unreliable features (Geirhos et al., 2020),
which makes them susceptible to adversarial attacks (Goodfellow et al., 2015) that exploit these vul-
nerabilities and have thus become a community-accepted protocol for measuring model reliability.
Early methods like FGSM (Goodfellow et al., 2015) led to more advanced attacks such as BIM (Ku-
rakin et al., 2018), PGD (Kurakin et al., 2017), and CosPGD (Agnihotri et al., 2024b). Attacks like
SegPGD (Gu et al., 2022) and CosPGD are specialized for semantic segmentation, and are thus used
in SEMSEGBENCH. For DETECBENCH, we use generic attacks (BIM, PGD) for consistency across
architectures as the predominant use of generic attacks allows a more generic framework. This does
not depreciate the importance of the benchmark’s findings since we are interested in the relative
performance of the methods and not the absolute performance. Moreover, extending prior object
detection attacks (Xie et al., 2017a; Wei et al., 2019) to all architectures is not straightforward and
might need adapting them to specific architectures.

OOD Robustness Deep learning models often fail under distribution shifts, making OOD robust-
ness a critical measure of generalization (Hendrycks et al., 2020; Hoffmann et al., 2021). For se-
mantic segmentation, OOD robustness has been evaluated using synthetic corruptions like Common
Corruptions (Hendrycks & Dietterich, 2019) and 3D Common Corruptions (Kar et al., 2022), as well
as real-world conditions in ACDC (Sakaridis et al., 2021). For object detection, prior works focus
on weather shifts (Gupta et al., 2024), challenging environments (Ding et al., 2024), and corruption
benchmarks (Michaelis et al., 2019). Our SEMSEGBENCH extends these by using both synthetic and
real-world corruptions for semantic segmentation, while DETECBENCH uses synthetic corruptions
exclusively, providing a unified framework to assess OOD robustness as a measure of generalization.

Robustness Benchmarking Tools RobustBench (Croce et al., 2021) and RobustArts (Tang et al.,
2021) are popular robustness benchmarks for image classification. While several works have bench-
marked OOD robustness for semantic segmentation (Kamann & Rother, 2020; Sakaridis et al., 2021)
and object detection (Gupta et al., 2024; Michaelis et al., 2019), their evaluations are often limited
to specific architectures, datasets, or corruption types. For adversarial robustness, existing tools
like Torchattacks (Kim, 2020) and Foolbox (Rauber et al., 2020) focus on classification. (Chan
et al., 2021) provides a benchmark for segmentation model robustness to anomalies. Complement-
ing the above works, SEMSEGBENCH and DETECBENCH provide the first unified framework for
large-scale evaluation of both OOD and adversarial robustness for semantic segmentation and object
detection, covering a diverse set of architectures and datasets.

3 METRICS FOR ANALYSIS AT SCALE

This work is the first to analyze semantic segmentation and object detection under the lens of relia-
bility and generalization at such a large scale.

For semantic segmentation, we use the standard metrics: mean Intersection over Union (mIoU),
mean class Accuracy (mAcc), and mean pixel Accuracy (aAcc) (Zhao et al., 2017; Arnab et al.,
2018; Agnihotri et al., 2024b). In the Appendix, we show a strong correlation between these metrics.

For object detection, we follow standard practice (Ren, 2015; Lin, 2017; He et al., 2017; Cai &
Vasconcelos, 2019; Li et al., 2022b) and use mean Average Precision (mAP). For MS-COCO, we
also report mAPsmall, mAPmedium, and mAPlarge, while for PASCAL VOC, we include mAP, mAP25,
mAP50, and mAP75. Correlation among these metrics is detailed in the Appendix.

Given the extensive evaluations using SEMSEGBENCH and DETECBENCH across diverse corrup-
tions and attacks, we introduce two metrics to simplify analysis: Reliability Measure and Gener-
alization Measure. These capture the worst-case performance (mIoU for segmentation, mAP for
detection) across all corruptions and attacks on a dataset, answering the question: ”What is the

3
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worst-case performance of a method?” Our findings remain consistent when using average values,
as shown in the Appendix.

3.1 RELIABILITY MEASURE

As discussed by (Agnihotri et al., 2024b; Gu et al., 2022; Schmalfuss et al., 2022b), white box
adversarial attacks serve as a proxy for the worst-case scenario for a method, and thus a method’s
performance against such attacks serves as a viable measure of its reliability. Thus, we propose
using ReliabilityMeasure (ReM) as the measure of performance against adversarial attacks. Here,
we consider iterative non-targeted adversarial attacks. For SEMSEGBENCH, we use PGD, SegPGD,
and CosPGD and calculate the mIoU of the predicted segmentation mask under attack w.r.t. the
ground truth segmentation mask. For DETECBENCH, we use BIM and PGD and calculate the mAP
of the predicted bounding boxes under attack w.r.t. the ground truth bounding boxes. A higher ReM
value indicates better reliability. Some prior works (Xie et al., 2017a; Wei et al., 2019; Jia et al.,
2022; Cai et al., 2022; Huang et al., 2023) have proposed adversarial attacks, especially transfer
attacks, specifically for some object detection methods. However, the goal of this work is to measure
the reliability and generalization ability of methods as a whole. Thus, for fairness in evaluations, we
need attacks that work across all model architectures without the need for adapting the attack. Thus,
we focus on generic and widely used vision attacks like BIM and PGD in DETECBENCH.

Constrained adversarial attacks can be optimized under various ℓp-norms. We focus on the two most
commonly used (Agnihotri et al., 2024b; Kurakin et al., 2017; Madry et al., 2017; Wong et al., 2020;
Schmalfuss et al., 2022b) ℓp-norms, i.e. ℓ∞-norm and ℓ2-norm. The notation for this metric is, ℓp-
ReMϵ

attack iterations, where the subscript informs the number of attack iterations used for optimizing
the attack, and the superscript is the permissible perturbation budget ϵ. For example, when 20
attack iterations were used to optimize an ℓ∞-norm bounded attack with ϵ = 8

255 under ℓ∞-norm
constrain then the metric would be ℓ∞-ReM8

20. We limit the analysis to 20 attack iterations since
most previous works (Gu et al., 2022; Schmalfuss et al., 2022b; Agnihotri et al., 2024b; 2023a) on
adversarial robustness for various tasks have shown that 20 attack iterations is enough optimization
budget for attacks, especially when reporting relative performance of methods.

3.2 GENERALIZATION ABILITY MEASURE

Multiple image classification works (Croce et al., 2021; Hendrycks et al., 2020; Hoffmann et al.,
2021) and some semantic segmentation (Kamann & Rother, 2020) and Object Detection (Gupta
et al., 2024; Michaelis et al., 2019) works use OOD Robustness of methods for evaluating the gener-
alization ability of the method, however, different image corruptions impact the performance of the
semantic segmentation methods differently. As we are interested in the worst possible case, we de-
fine GeneralizationAbilityMeasure (GAM), as the worst mIoU (SEMSEGBENCH) or worst mAP
(DETECBENCH) across all image corruptions at a given severity level. We find the minimum of the
mIoU of the segmentation masks predicted under image corruptions w.r.t. the ground truth masks
for a given method, across all corruptions at a given severity and report this as the GAMseverity level.
For example, for severity=3, the measure would be denoted by GAM3. The higher the GAM value,
the better the generalization ability of the given semantic segmentation method.

The GAM value is calculated over the following 2D Common Corruptions (Hendrycks & Dietterich,
2019): ‘gaussian noise’, ‘shot noise’, ‘impulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion
blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. Ad-
ditionally, in DETECBENCH, we also evaluate the following 3D Common Corruptions (Kar et al.,
2022): ‘color quant’, ‘far focus’, ‘fog 3d’, ‘iso noise’, ‘low light’, ‘near focus’, ‘xy motion blur’,
and ‘z motion blur’. Please refer to the Appendix for mean performance over all corruptions.

4 ANALYSIS AND KEY FINDINGS

4.1 SEMANTIC SEGMENTATION

SEMSEGBENCH supports all semantic segmentation methods included in mmsegmentation, multi-
ple ℓp-norms for adversarial attacks, and all severity levels for common corruptions. However, using
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(a) Correlations between (1) i.i.d. performance and reliability under ℓ∞-norm attacks, (2) reliability under ℓ∞-
norm and ℓ2-norm attacks, (3) i.i.d. performance and reliability under ℓ2-norm attacks, (4) i.i.d. performance
and generalization ability, and (5) reliability under ℓ2-norm attacks and generalization ability. See Appendix
for further analysis.
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Figure 2: Semantic Segmentation using the ADE20K dataset. The colors represent the architecture
of the method, while marker shapes represent the backbone of the respective method. All methods
were trained on the train set of ADE20K. Please refer to the Appendix for results with other datasets
i.e. Cityscapes and PASCAL VOC2012. Additionally, in the Appendix, we show high correlation
between performance across different datasets. Subfigure numbers are left to right.

all the methods and performing all possible evaluations is not realistic due to it being computation-
ally very expensive (e.g. training all missing model checkpoints or running all possible combinations
of attacks). Thus, for this benchmark, we use the most prominent semantic segmentation methods
proposed and used over the years. As most semantic segmentation works show that the model back-
bone has a huge impact on the performance of the method, we attempt to include a broad spectrum
of backbones in the analysis. Please refer to the Appendix for dataset details, additional implemen-
tation details, and additional results (detailed for each threat model) from the benchmarking.

4.1.1 PERFORMANCE V/S RELIABILITY V/S GENERALIZATION

As discussed in Sec. 1, semantic segmentation methods proposed over the years have improved their
performance on i.i.d. samples. Using SEMSEGBENCH we can now provide a large-scale analysis
for correlations between the performance and reliability, and generalization abilities of semantic
segmentation models First, we can confirm observations by (Gu et al., 2022; Agnihotri et al., 2024b)
that semantic segmentation methods are not inherently robust to strong adversarial attacks, espe-
cially those bounded by the ℓ∞-norm.
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Second, we also observe that typical ℓ∞-norm attacks with ϵ = 8
255 as used by (Agnihotri et al.,

2024b; Gu et al., 2022) are simply too strong to analyze correlations. They cause almost all semantic
segmentation methods to completely fail. This raises credible concerns regarding the reliability
of semantic segmentation methods under ℓ∞-norm attacks. Some methods like (Xu et al., 2021;
Croce et al., 2024) attempt to address this, please refer to the appendix for evaluations using these.
However, semantic segmentation methods seem slightly more robust to ℓ2-norm bounded adversarial
attacks. For reliability under ℓ2-norm attacks, we find that there does exist a strong correlation
between i.i.d. performance and reliability.

Next, we find some correlation between i.i.d. performance and generalization ability. Some methods
like InternImage achieve both, descent i.i.d. performance and OOD robustness. However, methods
such as DeepLabV3 (Chen et al., 2017) do not appear to have a good generalization ability. Please
note that even InternImage, while generalizing better than the other models, still lacks true gen-
eralization abilities, which would ensure a minimal drop in performance between i.i.d. and OOD
samples. However, we see a significant drop for InternImage. Additionally, we observe that while
SegFormer (Xie et al., 2021) and InternImage (Wang et al., 2023b) are not robust against ℓ∞-norm
attacks, they are robust to some extent against ℓ2-norm attack when using large backbones (relatively
higher number of parameters). This aligns with the observations made for image classification mod-
els, where models with a large number of parameters were found to be more robust (Croce et al.,
2021) and will be subject to discussion in the following subsection.

For reliability and generalization ability, we observe a positive, but not strong, correlation between
the two only when using ℓ2-norm as the reliability measure. Thus, future methods addressing
one aspect, reliability (especially under ℓ∞-norm attacks) or OOD generalization, might not
inherently address the other, and each aspect requires intentional focus.

4.1.2 ANALYZING THE BACKBONE TYPE

The feature extractor used by a semantic segmentation method significantly impacts its performance.
Common backbones are primarily of two types, Convolution Neural Network (CNN) based (He
et al., 2016; Liu et al., 2022b; Chen et al., 2017; Zhao et al., 2017; Agnihotri et al., 2023b), or are
Vision Transformer based (Liu et al., 2021; Wang et al., 2023b; Xie et al., 2021). Thus, to better
understand the reliability and generalization abilities of semantic segmentation methods, we analyze
them based on the backbone type used by them in Fig. 2b. Please note that a given method comprises
an architecture and a backbone, and each architecture can be coupled with different backbones.

We observe in Fig. 2b that models with transformer-based backbones have significantly better
generalization abilities. Previous works (Paul & Chen, 2022; Hoyer et al., 2022; Xie et al., 2021)
explain this by showing that transformer-based models are inherently more OOD robust than CNN-
based models. Lastly, we observe that transformer-based models also have slightly better i.i.d. per-
formance, this can especially be seen using Mask2Former, which performs better with transformer-
based backbones than with CNN-based backbones.

4.2 OBJECT DETECTION

DETECBENCH supports all object detection methods provided by mmdetection. However, with
similar reasons as for SEMSEGBENCH, we restrict our evaluation to a practically feasible setting:
We identify and benchmark the most prominent object detection methods proposed over the years,
including some recent SotA methods. As for segmentation, previous works (Zong et al., 2023; Zhang
et al., 2023; Li et al., 2022c; Lin, 2017; Ren, 2015; Li et al., 2022b; Cai & Vasconcelos, 2019; Zhang
et al., 2020b) highlight the importance of the feature extraction backbone for model performance.
We account for this fact in our analysis. We focus our experiments on the MS-COCO dataset (Lin
et al., 2014). Please refer to the Appendix for details on the dataset, additional implementation
details, and additional results (detailed for each threat model).

4.2.1 PERFORMANCE V/S RELIABILITY V/S GENERALIZATION

In Fig. 3a, we first analyze correlations between the object detection methods’ reliability and gen-
eralization ability. We also look for a correlation between both separately with i.i.d. performance.
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(a) Correlations between (1) i.i.d. performance and reliability under ℓ∞-norm attacks, (2) i.i.d. performance
and generalization ability, and (3) reliability under ℓ∞-norm attacks and generalization ability.
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(b) Analysis of i.i.d. performance, reliability, and generalization ability based on backbone type (CNN-based
at top, vision transformer-based at bottom). From left to right: (1) i.i.d. performance, (2) reliability under
ℓ∞-norm attacks, and (3) generalization ability. Legend as in Fig. 3a.
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(c) Correlation of i.i.d. performance, reliability, and generalization ability with the number of learnable param-
eters (log scale). From left to right: (1) i.i.d. performance, (2) reliability under ℓ∞-norm attacks, (3) reliability
under ℓ2-norm attacks, and (4) generalization ability. Legend as in Fig. 3a.

Figure 3: Object Detection on MS-COCO. The colors represent the backbone of the respective
method, while marker shapes represent the architecture of the method. All methods were trained on
the MS-COCO train set. The numbers in subcaptions for the respective subfigures are left to right.

First, when looking at the i.i.d. performance and reliability under adversarial attacks, we see a
weak positive correlation. Few methods like MM Grounding DINO (Zhao et al., 2024), DDQ-
DETR (Zhang et al., 2023), GLIP (Li et al., 2022c), DINO (Caron et al., 2021), and RTMDet (Lyu
et al., 2022) stand out, however, only when using a large backbone like Swin-L (Liu et al., 2021),
Swin-B (Liu et al., 2021), ResNet101 (He et al., 2016) or ResNeXt101 (Xie et al., 2017b). They
show good i.i.d. performance and good reliability under adversarial attacks.

Second, we consider the correlation between i.i.d. performance and generalization ability to image
corruptions. Again, we observe that DDQ-DETR, GLIP, RTMDet, and DINO show good i.i.d. per-
formance and relatively better generalization ability, however, only when using a Swin-L, Swin-B, or
ConvNeXt-B (Liu et al., 2022b) backbone. With other backbones such as ResNet50: DDQ-DETR,
DINO, and Co-DETR have only descent i.i.d. performance and very poor OOD robustness. There
is a strong positive correlation between i.i.d. performance and the generalization ability of object
detection methods. This aligns with our findings for semantic segmentation. Please note that all
considered object detection methods have a very low GAM3 value, which aggregates 2D and 3D
common corruptions.We report the individual values in the Appendix.1.

1We observe that for most corruptions, the values are reasonable, though still significantly lower than their
i.i.d. performance. However, the methods seem to completely fail against a few 3D common corruptions (Kar
et al., 2022) such as xy motion blur, z motion blur, and fog image corruptions. This brings down the resultant
GAM3. Yet we argue for including these in the GAM3 values because these are very realistic. Moreover,
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Third, Fig. 3a (right) correlates reliability and generalization ability. However, the low GAM3 scores
hardly allow to draw any conclusions and we do not observe any correlation between reliability
under attack and OOD generalization. Please note, given that Co-DETR and MM Grounding DINO
exhibit the best relative generalization ability and i.i.d. performance, it would be interesting to assess
their reliability under adversarial attacks, which however exceeds our computational resources.

From observations made on Fig. 3a, we conclude that there exists no correlation between per-
formance and reliability, and reliability and generalizations, but there exists a strong correlation
between performance and generalization. Since most works on object detection only focus on
i.i.d. performance, this observation provides reasoning to the arguments made using Fig. 1 in Sec. 1.
Reliability and OOD generalization do not necessarily improve with improved i.i.d. model per-
formance. Thus, to obtain reliable and OOD generalizable object detection, conscious effort
needs to be focused in this direction.

4.2.2 ANALYZING BACKBONES TYPE

Next, we analyze the backbone design decision in more detail by dividing them into two broad cat-
egories, Convolution Neural Network (CNN) based backbones such as ResNets (He et al., 2016),
ResNeXts (Xie et al., 2017b), and ConvNeXts (Liu et al., 2022b), and vision transformer based
backbones such as Swin transformers (Liu et al., 2021) Swin-S, Swin-B and Swin-L. In Fig. 3b, we
observe that i.i.d. performance and reliability against adversarial attacks are comparable for both the
types of backbones, with methods with transformer-based backbones achieving marginally better
values. However, when considering generalization to OOD samples, transformer-based backbones
clearly outperform CNN-based backbones, with the exception of ConvNeXt-B, which achieves
relatively similar generalization ability. From these observations, we draw the conclusion that
transformer-based backbones have a slight edge over CNN-based backbones when it comes
to i.i.d. performance, reliability against adversarial attacks, and generalization ability to OOD
samples. This observation aligns with our findings for semantic segmentation in Sec. 4.1.2 and with
(Paul & Chen, 2022; Hoyer et al., 2022; Xie et al., 2021).

4.3 KEY FINDING OF THE JOINT ANALYSIS

We observe that despite semantic segmentation and object detection both being semantic tasks that
often employ similar backbone encoders, the reliability and generalization abilities of their meth-
ods have some contrasting behaviors. For semantic segmentation, we observe a strong positive
correlation in i.i.d. performance, reliability under ℓ2-norm attacks, and generalization ability. How-
ever, for object detection, we do not see this correlation, only a strong positive correlation between
i.i.d. performance and generalization ability. Our key findings are summarized in Tab. 1. In both
applications, our analysis indicates that reliability and generalization ability of models do not always
improve with i.i.d. performance, i.e. dedicated effort has to be invested to make models behave in
a reliable way. Some of the observed tendencies align with the observations made for image clas-
sification; e.g., methods with vision transformer backbones exhibit relatively better generalization
ability to OOD data for both semantic segmentation and object detection (Paul & Chen, 2022; Hoyer
et al., 2022). Conversely, some observations do not align for both tasks and past observations made
for classification (Hooker et al., 2019). One such often discussed example for image classification is
the impact of the model capacity (the number of learnable parameters) (Hooker et al., 2019; Hoefler
et al., 2021). As last point, we extend this analysis to semantic segmentation and object detection in
SEMSEGBENCH and DETECBENCH, respectively.

Impact Of The Number Of Learnable Parameters For semantic segmentation (Fig. 2c), we see
a moderate correlation between the number of learnable parameters and i.i.d. performance. How-
ever, the correlation with reliability and generalization is weaker. Notably, Mask2Former, with
significantly fewer parameters than InternImage, shows higher robustness under ℓ∞ and ℓ2-norm
attacks, suggesting that simply increasing model size does not guarantee better reliability or gener-
alization. However, this could be due to inherent gradient obfuscation introduced by its attention
masking mechanism and merits further investigation.

these poor GAM3 values draw attention to an almost complete lack of generalization, even for methods like
Co-DETR (Zong et al., 2023) and MM Grounding DINO (Zhao et al., 2024).
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Table 1: Summary of key findings, made in our main paper and in the Appendix, of our analysis of
model reliability and generalization on semantic tasks beyond classification.

Findings Semantic Segmentation Object Detection

Correlations between i.i.d. performance,
reliability and generalization

Strong positive correlation (except ℓ∞-norm
attacks) (Sec. 4.1.1)

Strong Positive correlation only between i.i.d.
and Generalization to OOD, None otherwise
(Sec. 4.2.1).

Are transformer-based methods more
OOD Robust?

Yes (Sec. 4.1.2) Yes (Sec. 4.2.2)

Is increased model capacity better for reli-
ability and generalization?

Moderately (Sec. 4.3) Moderately (Sec. 4.3)

Unique Findings Strong Correlation between Real and Fake
Corruptions (Appendix)

High Positive Correlation between 2D and 3D
Common Corruptions (Appendix)

Strong Positive Correlation Across Metrics Yes (Appendix) Yes (Appendix)

Similarly, in object detection (Fig. 3c), we also find a moderate correlation between model size
and performance, reliability, and generalization. Methods like DDQ-DETR, DINO, and Co-DETR
with larger backbones generally perform better, while smaller models like CenterNet with ResNet18
consistently perform worse. Yet, these trends are not absolute, and other factors, such as backbone
type (Sec. 4.2.2) and proposal technique (Appendix), appear to have a greater impact.

Overall, our analysis across both tasks reveals that while the number of parameters has a moderate
effect on performance, reliability, and generalization, this effect is far less pronounced than expected
from image classification (Hooker et al., 2019). Architectural design choices, rather than mere model
size, are more critical determinants of robustness in semantic segmentation and object detection.

5 CONCLUSION

We present SEMSEGBENCH and DETECBENCH, the most comprehensive benchmarking tools to
date for rigorously evaluating the robustness and generalization of semantic segmentation and ob-
ject detection methods. Our benchmarks cover a vast suite of experiments across multiple datasets,
diverse corruption types, and adversarial attacks, establishing an unprecedented evaluation frame-
work for in-depth analysis of these critical tasks. Our evaluation uncovers the strong impact of
architectural design choices, such as backbone type (CNN vs. vision transformer) and parameter
count, and reveals performance correlations across diverse metrics and datasets. Although the influ-
ence of design choices on robustness is not novel, our framework enables a systematic and empirical
study of which decisions most affect model reliability under varying conditions. This breadth of
analysis, extending to previously underexplored scenarios, offers a nuanced understanding of model
behavior beyond standard metrics. While our study does not propose new robustness methods or
attacks, it establishes a solid foundation for future work by providing a standardized, transparent,
and scalable way to assess robustness. By offering this unified framework, we pave the way for the
development of more reliable and generalizable models, facilitating their safer potential deployment.
Future Work We plan to extend SEMSEGBENCH and DETECBENCH with additional distribu-
tion shifts, including lens aberrations (Müller et al., 2023), enabling a broader evaluation of real-
world robustness. Moreover, while our current evaluations focus on pretrained and adversarially
trained models (Appendix), we aim to support benchmarking for adversarial training methods di-
rectly within the frameworks (Kurakin et al., 2017; Agnihotri et al., 2024b; Xu et al., 2021; Croce
et al., 2024) and inference time defenses Grabinski et al. (2022); Zhang (2019); Zou et al. (2023); Li
et al. (2020). We also plan to integrate 3D Common Corruptions (Kar et al., 2022) for more realistic
OOD evaluations in SEMSEGBENCH, and explore object detection-specific adversarial attacks (Xie
et al., 2017a; Wei et al., 2019) in DETECBENCH, providing a more comprehensive analysis.
Limitations Our benchmarks are computationally intensive, making exhaustive evaluation of all
possible architectures, settings, and attack configurations infeasible. We prioritize a limited but
diverse set of models and tasks to maintain a manageable scope. Additionally, SEMSEGBENCH
includes both real-world and synthetic distribution shifts, but DETECBENCH is currently limited to
synthetic corruptions. Finally, our choice of general-purpose adversarial attacks (BIM, PGD) for
object detection, while offering consistency, may overlook task-specific vulnerabilities. Expanding
to include dedicated object detection attacks is a key direction for future work.
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REPRODUCIBILITY STATEMENT

We are committed to the complete open-sourcing of our work to ensure reproducibility and commu-
nity engagement. However, doing so under anonymity (as required) is difficult. For now, we share
this Anonymous Repository, which includes the code and evaluations. Most model checkpoints are
already available in mmsegmentation and mmdetection. We will additionally share the remaining
checkpoints and the generated 3D Common Corruption images upon acceptance.
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Benchmarking Reliability and Generalization Beyond
Classification

Paper #18439 Supplementary Material
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The supplementary material covers the following information:

Additional analysis using benchmarking results:

• Appendix A: We provide additional key findings from the benchmarking of the semantic
segmentation task.

– Appendix A.1 Are Synthetic Corruptions Useful? : We show that synthetic corrup-
tions can be used as a proxy for real-world corruptions.

– Appendix A.2 Correlation Across Datasets: Here, we show a correlation in the per-
formance of different semantics segmentation methods across multiple datasets.

– Appendix A.3 Correlation In Metrics: Here we show a high positive correlation in
the different metrics captures for the ADE20K, Cityscapes, and PASCAL VOC2012
datasets, justifying only using mIoU for all the analysis.

– Appendix A.3.1 Extension to Performance v/s Reliability v/s Generalization: Here we
extend the analysis from Section 4.1.1.

• Appendix B: Following, we provide additional analysis for the object detection task.

– Appendix B.1 Proposal Prediction Method: Here, we compare the performance of
various object detection methods based on the proposal prediction technique used by
them.

– Appendix B.2 Correlation Between 2D And 3D Corruptions: We show a strong posi-
tive correlation in the performance of object detection methods

– Correlation in performance across metrics: Here, we show a high positive correlation
in the different metrics captured for the MS-COCO dataset, justifying only using mAP
for all the analysis.

Additional Details on the Benchmarking using SEMSEGBENCH and Evaluations:

• Appendix C: Details for the datasets used.

– Appendix C.1: ADE20K

– Appendix C.2: Cityscapes

– Appendix C.3: PASCAL VOC2012

• Appendix D: Additional implementation details for the evaluated benchmark.

• Appendix E: In detail description of the attacks.

• Appendix F: A comprehensive look-up table for all the semantic segmentation methods’
model weight and datasets pair available in SEMSEGBENCH and used for evaluating the
benchmark.
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• Appendix G: In detail explanation of the available functionalities of the SEMSEGBENCH
benchmarking tool and description of the arguments for each function.

• Appendix H: Discussing Adversarially Trained Semantic Segmentation Methods: We
discuss that efforts invested into increasing the reliability of semantic segmentation meth-
ods under adversarial attacks can be fruitful as done by some previous works, but there
still exists a large gap in reliability that needs to be covered by future work focused in this
direction.

• Appendix I: Here we provide additional results from the benchmark evaluated using SEM-
SEGBENCH.

– Appendix I.1.1: Evaluations for all models against PGD, SegPGD, and CosPGD at-
tacks under ℓ∞-norm bound and ℓ2-norm bound, as a non-targeted attack for the
ADE20K, Cityscapes, and PASCAL VOC2012 datasets.

– Appendix I.2: Evaluations for all models under 2D Common Corruptions at severity
3, for the ADE20K, Cityscapes, and PASCAL VOC2012 datasets.

Additional Details on the Benchmarking using DETECBENCH and Evaluations:

• Appendix J: Details for the datasets used.

– Appendix J.1: MS-COCO
– Appendix J.2: PASCAL VOC

• Appendix K: Additional implementation details for the evaluated benchmark.

• Appendix L: In detail description of the attacks.

• Appendix M: A comprehensive look-up table for all the object detection methods’ model
weight and datasets pair available in DETECBENCH and used for evaluating the benchmark.

• Appendix N: In detail explanation of the available functionalities of the DETECBENCH
benchmarking tool and description of the arguments for each function.

• Appendix O: Here we provide additional results from the benchmark evaluated using DE-
TECBENCH.

– Appendix O.1: Evaluation using the limited available PASCAL VOC trained models.

– Appendix O.2: All evaluations using the MS-COCO trained models.

* Appendix O.2.1: Evaluations for all models against FGSM attack under ℓ∞-norm
bound as non-targeted attack.

* Appendix O.2.2: Evaluations for all models against BIM and PGD attack under
ℓ∞-norm bound as non-targeted attack, over multiple attack iterations.

* Appendix O.2.3: Evaluations for all models under 2D Common Corruptions at
severity=3.

* Appendix O.2.3: Evaluations for all models under 3D Common Corruptions at
severity=3.
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Figure 4: To empirically determine if synthetic common corruptions such that those proposed by
Hendrycks & Dietterich (2019) truly represent the distribution and domain shifts in the real world
we try to find correlations in evaluations on ACDC and 2D Common Corruptions. Each model is
trained on the training dataset of the Cityscapes dataset. The y-axis represents values from eval-
uations on the ACDC dataset, and the x-axis represents values from evaluations on the Common
Corruptions at severity=3. Starting from the left, we find correlations between ACDC the following:
first the mean performance across all common corruptions; second the synthetic brightness corrup-
tion; third the synthetic snow corruption; and fourth the synthetic fog corruption. We observe a
positive correlation, and strong positive correlation between performance on the ACDC and mean
performance against all synthetic common corruption.
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Figure 5: To better understand the correlations from Figure 4, here we look at the correaltions
between ACDC mIoU, GAM3, and the mean mIoU across all 2D Common Corruptions.

A ADDITIONAL ANALYSIS ON SEMANTIC SEGMENTATION

A.1 ARE SYNTHETIC CORRUPTIONS USEFUL?

We attempt to study whether synthetic corruptions like those introduced by (Hendrycks & Dietterich,
2019) do represent the distribution shifts in the real world. While this assumption has driven works
such as (Hendrycks & Dietterich, 2019; Kar et al., 2022; Kamann & Rother, 2020), to the best of
our knowledge, it has not yet been proven. Previous works on robustness (Guo et al., 2023) simply
report performance on both; thus, to save compute in the future, we prove this assumption in Fig. 4
and Fig. 5.

For this analysis, we used methods trained on the training set of Cityscapes and evaluated them on
2D Common Corruptions (Hendrycks & Dietterich, 2019) and the ACDC datasets. ACDC is the
Adverse Conditions Dataset with Correspondences, consisting of images from regions and scenes
similar to Cityscapes but captured under different conditions, such as Day/Night, Fog, Rain, and
Snow. These are corruptions in the real world. Thus, we attempt to find correlations between per-
formance against synthetic corruptions from 2D Common Corruptions (severity=3) and ACDC. We
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analyze each common corruption separately and also the mean performance across all 2D Common
Corruptions.

In Fig. 4 and Fig. 5, we observe a very strong positive correlation in performance against ACDC and
mean performance across all 2D Common Corruptions. This novel finding helps the community
significantly, as this means that we do not need to go into the wild to capture images with distribu-
tion shifts, as synthetic corruptions serve as a reliable proxy for real-world conditions. Since some
synthetic corruptions attempt to directly mimic the real-world scenarios in ACDC, like changes in
lighting due to Day/Night changes or changes in weather due to snowfall or fog, we analyze the
correlation of relevant corruptions to ACDC. We find that there exists a weak positive correlation
between performance against ACDC and performance against Brightness corruption and Fog cor-
ruption. Interestingly, there is a strong positive correlation in performance against ACDC and Snow
Corruption. These positive correlations further strengthen the argument of using synthetic common
corruptions over investing effort to capture these corruptions in the wild.

A.2 CORRELATION ACROSS DATASETS
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Figure 6: To find correlations in observations across datasets, here we use the ADE20K dataset and
Cityscapes dataset. Each model is trained on the training dataset of the respective dataset on which
it is eventually evaluation. The y-axis represents values from evaluations on the ADE20K dataset,
and the x-axis represents values from evaluations on the Cityscapes dataset. Starting from the left,
we find correlations between ADE20K and Cityscapes dataset for have the following: first the i.i.d.
performance; second the reliability under ℓ∞-norm bounded adversarial attacks; third the reliability
under ℓ2-norm bounded adversarial attacks; and fourth the generalization ability.

For ease of understanding, the analysis thus far was limited to the recent and commonly used
ADE20K dataset (Zhou et al., 2019). However, there exist other commonly used datasets such
as Cityscapes (Cordts et al., 2016) and PASCAL VOC2012 (Everingham et al., 2012). Each dataset
brings in a different challenge with it, such as different scenes or different numbers of classes. We
attempt to find if a correlation exists between the model’s performance, reliability, and generaliza-
tion abilities when using different datasets. In Fig. 6, we compare models trained on the training
dataset on the respective datasets used for evaluations. We observe that there appears to be a high
correlation in the i.i.d. performance of models between the two datasets with no outliers. While
the value of the metrics is slightly lower for ADE20K compared to Cityscapes, a weak correlation
also exists for reliability under ℓ2-norm adversarial attacks. Under ℓ∞-norm adversarial attacks, the
values are very close to zero, impeding a meaningful correlation study. For the generalization abil-
ity, there appears to be a weak positive correlation between the OOD Robustness evaluations using
ADE20K and Cityscapes. Please refer to the appendix for results with PASCAL VOC2012.

This study helps us understand that given a correlation in performance across datasets, future works
need not invest compute resources in exhaustive studies across datasets, especially for i.i.d. perfor-
mance.

A.3 CORRELATION IN METRICS

Here, we show a high positive correlation in the different metrics captured for all the three considered
datasets: ADE20K, Cityscapes, and PASCAL VOC2012, justifying only using mIoU for all the
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Figure 7: Dataset used: ADE20K. The performance of semantic segmentation methods is usually
captured across different metrics, namely: mIoU, mAcc, and aAcc. In the analysis of this work,
we only used mIoU. Here we show that there is a high positive correlation between these metrics,
and observations made using mIoU would still hold using other metrics. The top row is correlation
when using i.i.d. data for evaluations. The second row is when using ℓ∞-norm bounded CosPGD
attack with ϵ = 8

255 . The third row is when using ℓ2-norm bounded CosPGD attack with ϵ = 8
255 .

The fourth row is when using 2D Common Corruptions, here we calculate the mean for each metric
across all 2D Common Corruptions. Colors are used to show different architectures and marker
styles are used to show different backbones used by the semantic segmentation methods.

analysis. We show this for ADE20K in Figure 7, Cityscapes in Figure 8, and PASCAL VOC2012 in
Figure 9. We observe a very strong positive correlation between the different metrics: mIoU, mAcc,
and aAcc. Thus, the analysis made using mIoU would also hold if made using other metrics.

A.3.1 EXTENSION TO PERFORMANCE V/S RELIABILITY V/S GENERALIZATION

As discussed in Sec. 1, semantic segmentation methods proposed over the years have improved their
performance on i.i.d. samples. However, due to limited works towards robustness of semantic seg-
mentation methods, we lack a large-scale analysis for correlations between their performance and
reliability, performance and generalization ability, and reliability and generalization abilities. To
gather this crucial information, we analyze these important correlations in Fig. 2a. Here, we first
reiterate the observations made by (Gu et al., 2022; Agnihotri et al., 2024b) that semantic segmen-
tation methods are not inherently robust to strong adversarial attacks, especially those bounded by
the ℓ∞-norm.

Second, we also observe that typical ℓ∞-norm attacks with ϵ = 8
255 as used by (Agnihotri et al.,

2024b; Gu et al., 2022) are simply too strong to analyze correlations. They cause almost all seman-
tic segmentation methods to completely fail. Thus, we observe that when using ℓ∞-norm attacks
to measure reliability, there exists no correlation between reliability and other aspects. This raises
credible concerns regarding the reliability of semantic segmentation methods under ℓ∞-norm at-
tacks. Some methods like (Xu et al., 2021; Croce et al., 2024) attempt to address this. However,
semantic segmentation methods seem slightly more robust to ℓ2-norm bounded adversarial attacks.
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Figure 8: Dataset used: Cityscapes. The performance of semantic segmentation methods is usually
captured across different metrics, namely: mIoU, mAcc, and aAcc. In the analysis of this work, we
only used mIoU. Here we show that there is a high positive correlation between these metrics, and
observations made using mIoU would still hold using other metrics. The top row is correlation when
using i.i.d. data for evaluations. The second row is when using ℓ∞-norm bounded CosPGD attack
with ϵ = 8

255 andα=0.01. The third row is when using ℓ2-norm bounded CosPGD attack with ϵ = 64
and α=0.1. The fourth row is when using 2D Common Corruptions, here we calculate the mean for
each metric across all 2D Common Corruptions. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods.

For reliability under ℓ2-norm attacks, we find that there does exist a strong correlation between
i.i.d. performance and reliability.

Next, we find some correlation between i.i.d. performance and generalization ability. Some methods
like InternImage achieve both descent i.i.d. performance and OOD robustness. However, methods
such as DeepLabV3 (Chen et al., 2017) do not appear to have a good generalization ability. Please
note, that even InternImage, while generalizing better than the other models, still lacks true general-
ization abilities, which would ensure no drop in performance between i.i.d. and OOD samples. How-
ever, we see a significant drop for InternImage. Additionally, we observe that while SegFormer (Xie
et al., 2021) and InternImage (Wang et al., 2023b) are not robust against ℓ∞-norm attacks, they are
robust to some extent against ℓ2-norm attack when using large backbones (relatively higher number
of parameters). This is in line with the observations made for image classification models, where
models with a large number of parameters were found to be more robust (Croce et al., 2021) and
will be subject to discussion in the following subsection.

For reliability and generalization ability, we observe a lack of high correlation between the two,
even when using ℓ2-norm as the reliability measure. InternImage models are better against Common
Corruptions. Thus, future methods addressing one aspect, reliability or OOD generalization,
might not inherently address the other, and each aspect requires intentional focus.
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Figure 9: Dataset used: PASCAL VOC2012. The performance of semantic segmentation methods
is usually captured across different metrics, namely: mIoU, mAcc, and aAcc. In the analysis of
this work, we only used mIoU. Here we show that there is a high positive correlation between these
metrics, and observations made using mIoU would still hold using other metrics. The top row is
correlation when using i.i.d. data for evaluations. The second row is when using ℓ∞-norm bounded
CosPGD attack with ϵ = 8

255 . The third row is when using ℓ2-norm bounded CosPGD attack with
ϵ = 8

255 . The fourth row is when using 2D Common Corruptions, here we calculate the mean for
each metric across all 2D Common Corruptions. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods.

B ADDITIONAL ANALYSIS ON OBJECT DETECTION

B.1 PROPOSAL PREDICTION METHOD

Traditional object detection methods such as Faster-RCNN (Ren, 2015), and RetinaNet (Lin, 2017),
after feature extraction, used region-based proposals that required Non-Maximum Suppression for
detecting objects in a scene, and due to these two-stages and use of an anchor bounding box, these
methods were classified as ‘Anchor-based Two Stage’ object detection methods. These methods
were followed by ‘Anchor-based One stage’ methods that made predictions directly using the fea-
tures extracted and then ‘Anchor-free One stage’ methods. These can be further categorized based
on the specific technique used for detecting objects, for example, ATSS (Zhang et al., 2020b) uses
a Center-based approach, while CenterNet (Duan et al., 2019) uses a keypoint triplet and thus is
a keypoint-based method, and TOOD (Feng et al., 2021) presents a unique task-aligned way for
detecting objects, and RTMDet (Lyu et al., 2022) is a unique one-stage method that improves upon
YOLO series (Redmon & Farhadi, 2017; Ge, 2021; Li et al., 2022a; Wang et al., 2023a; Jocher et al.,
2020; Redmon et al., 2016; Bochkovskiy et al., 2020; Redmon & Farhadi, 2018).

Recently, DETR (Carion et al., 2020) proposed a unique attention-mechanism-based system that
replaces anchors with object queries. This inspired many works such as Co-DETR (Zong et al.,
2023), DINO (Caron et al., 2021), DDQ-DETR (Zhang et al., 2023), and others that essentially use
‘Attention-based Object Queries’ for object detection with new variants and constraints.
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Figure 10: Semantic Segmentation: Using the ADE20K dataset, here we analyze correlations in
i.i.d. performance, reliability and generalization abilities of different methods. The colors represent
the architecture of the method, while the shapes of the markers represent the backbone of the re-
spective method. This figure shows the correlations between the following: i.i.d. performance and
reliability under ℓ∞-norm bounded adversarial attacks in top row left; reliability under ℓ∞-norm
bounded adversarial attacks and reliability under ℓ2-norm bounded adversarial attacks in top row
middle; i.i.d. performance and reliability under ℓ2-norm bounded adversarial attacks in top row
right; i.i.d. performance and generalization ability in bottom row left; reliability under ℓ∞-norm
bounded adversarial attacks and generalization ability in bottom row center; and reliability under
ℓ2-norm bounded adversarial attacks and generalization ability in bottom row right. All methods
were trained on the train set of the ADE20K dataset.
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Figure 11: Using the MS-COCO dataset, here we analyze i.i.d. performance, reliability, and gener-
alization abilities based on the type of proposal technique used by the object detection methods. The
colors represent the backbone of the respective method, while different marker shapes represent the
architecture of the method. On the y-axis, all the proposal techniques as listed as ‘Proposal Type’.
On the x-axis, starting from the left have the following: first the i.i.d. performance; second the
reliability under ℓ∞-norm bounded adversarial attacks; third the generalization ability. All methods
were trained on the train set of the MS-COCO dataset.

In Fig. 11, we attempt to study these important design choices made in an object detection method
and their impact on i.i.d. performance, reliability under adversarial attacks, and generalization ability
to OOD samples.

We observe that the recently proposed methods that use ‘Attention-based Object Queries’ have the
highest i.i.d. performance. However, barring the few instances of ‘Attention-based Object Queries’
that use a large Swin backbone, these methods do not outperform other proposal prediction meth-
ods in terms of reliability and generalization abilities. Interestingly, the YOLO series method,
TOOD (Feng et al., 2021) has a rather high generalization ability, but its reliability depends on
the backbone. With a Swin-B backbone, the reliability of TOOD is relatively high, but with a
ConvNeXt-B backbone, the reliability is among the lowest.
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B.2 CORRELATION BETWEEN 2D AND 3D CORRUPTIONS
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Figure 12: Applying 3D Common Corruptions (y-axis) and 2D Common Corruptions (x-axis) to
the MS-COCO dataset and finding a strong positive correlation in the performance of all object
detection methods measured by the mean mAP values across all respective corruptions. Here the
symbolic representations are the same as Fig. 3a, Fig. 3b, Fig. 11, and Fig. 3c.

Computing the generalization ability of object detection methods against common corrup-
tions (Hendrycks & Dietterich, 2019; Kar et al., 2022) can be computationally expensive, as we
evaluate against 15 2D Common Corruptions and 10 3D Common Corruptions. However, if there
exists a very strong correlation between their performance, then future object detection methods,
when reporting relative generalization abilities, can avoid computing on both 2D and 3D Common
Corruptions, especially on 3D Common Corruptions, as these are more expensive to compute. This
is because 3D Common Corruptions take depth information into account and attempt to simulate
lighting conditions and behavior of a 3D environment. While more realistic, these renderings are
time and compute-wise very expensive. We observe in Fig. 12 that, indeed, there is a very strong
correlation between the mean mAP over all 3D Common Corruptions and the mean mAP over all
2D Common Corruptions. Thus, unless specifically addressing the lack of generalization of object
detection methods to specific 3D Common Corruptions such as xy motion blur, z motion blur, or
fog corruption, future object detection methods can focus on computing merely robustness to 2D
Common Corruptions to analyze generalization abilities relative to other object detection methods.

B.3 CORRELATION IN METRICS

Here, we show a high positive correlation in the different metrics captured for the MS-COCO
dataset, justifying only using mAP for all the analysis. We show this in Figure 13 and observe a
very strong positive correlation between different metrics.
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Figure 13: MS-COCO dataset is usually captured across different metrics, namely: mAP, mAPs,
mAPm, and mAPl. In the analysis of this work, we only used mAP. Here we show that there is a
high positive correlation between these metrics, and observations made using mAP would still hold
using other metrics. The top row is correlation when using i.i.d. data for evaluations. The middle
row is when using a randomly chosen 2D Common Corruption, Fog 2D. The bottom row is when
using a randomly chosen 3D Common Corruption Low Light. Colors are used to show different
backbones and marker styles are used to show different architectures used by the object detection
methods.
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Additional Details on the Benchmarking using SEMSEGBENCH
and Evaluations (All Benchmarking Results):

TABLE OF CONTENT

The supplementary material covers the following information:

• Appendix C: Details for the datasets used.

– Appendix C.1: ADE20K

– Appendix C.2: Cityscapes

– Appendix C.3: PASCAL VOC2012

• Appendix D: Additional implementation details for the evaluated benchmark.

• Appendix E: In detail description of the attacks.

• Appendix F: A comprehensive look-up table for all the semantic segmentation methods’
model weight and datasets pair available in SEMSEGBENCH and used for evaluating the
benchmark.

• Appendix G: In detail explanation of the available functionalities of the SEMSEGBENCH
benchmarking tool and description of the arguments for each function.

• Appendix H: Discussing Adversarially Trained Semantic Segmentation Methods: We
discuss that efforts invested into increasing the reliability of semantic segmentation meth-
ods under adversarial attacks can be fruitful as done by some previous works, but there
still exists a large gap in reliability that needs to be covered by future work focused in this
direction.

• Appendix I: Here we provide additional results from the benchmark evaluated using SEM-
SEGBENCH.

– Appendix I.1.1: Evaluations for all models against PGD, SegPGD, and CosPGD at-
tacks under ℓ∞-norm bound and ℓ2-norm bound, as a non-targeted attack for the
ADE20K, Cityscapes, and PASCAL VOC2012 datasets.

– Appendix I.2: Evaluations for all models under 2D Common Corruptions at severity
3, for the ADE20K, Cityscapes, and PASCAL VOC2012 datasets.

C DATASET DETAILS

SEMSEGBENCH supports a total of three distinct semantic segmentation datasets. Following, we
describe these datasets in detail.
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C.1 ADE20K

ADE20K (Zhou et al., 2019) dataset contains pixel-level annotations for 150 object classes, with a
total of 20,210 images for training, 2000 images for validation, and 3000 images for testing. Fol-
lowing common practice (Agnihotri et al., 2024b; Xie et al., 2021) we evaluate using the validation
images.

C.2 CITYSCAPES

The Cityscapes dataset (Cordts et al., 2016) comprises a total of 5000 images sourced from 50 differ-
ent cities in Germany and neighboring countries. The images were captured at different times of the
year and under typical meteorological conditions. Each image was subject to pixel-wise annotations
by human experts. The dataset is split into three subsets: training (2975 images), validation (500
images), and testing (1525 images). This dataset has pixel-level annotations for 30 object classes.

C.3 PASCAL VOC2012

The PASCAL VOC 2012 (Everingham et al., 2012), contains 20 object classes and one background
class, with 1464 training images, and 1449 validation images. We follow common practice (Hariha-
ran et al., 2015; Gu et al., 2022; Zhao, 2019; Zhao et al., 2017), and use work by (Hariharan et al.,
2011), augmenting the training set to 10,582 images. We evaluate using the validation set.

D IMPLEMENTATION DETAILS OF THE BENCHMARK

Following we provide details regarding the experiments done for creating the benchmark used in the
analysis.

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100
GPU each, however, SegFormer (Xie et al., 2021) and Mask2Former (Cheng et al., 2022) with large
backbones are more compute-intensive, and thus 80GB NVIDIA A100 GPUs or NVIDIA H100
were used for these models, a single GPU for each experiment. Training some of the architectures
with large backbones required using two to four GPUs in parallel.

Datasets Used. Performing adversarial attacks and OOD robustness evaluations are very ex-
pensive and compute-intensive. Thus, for the benchmark, we only use ADE20k, Cityscapes, and
PASCAL VOC2012 as these are the most commonly used datasets for evaluation (Agnihotri et al.,
2024b; Xie et al., 2021; Cheng et al., 2022; Zhao et al., 2017; Kamann & Rother, 2020).

Metrics Calculation. In Sec. 3 we introduce two new metrics for better understanding our anal-
ysis, given the large scale of the benchmark created. For calculating ReM values we used PGD,
SegPGD, and CosPGD attack with step size α=0.01, perturbation budget ϵ = 8

255 under the ℓ∞-
norm bound, as non-targeted attacks. Under the ℓ2-norm bound, we use ϵ=64, and α=0.1, as also
used by (Agnihotri et al., 2024b). We use 20 attack iterations for calculating the ReM values because
as shown by (Agnihotri et al., 2024b) and (Schmalfuss et al., 2022b), 20 iterations are enough to op-
timize an attack to truly understand the performance of the attacked method. For calculating GAM,
we use all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defo-
cus Blur’, ‘Frosted Glass Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’,
‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG Compression’. All the common corruptions are
at severity 3.

Calculating the mIoU. mIoU is the mean Intersection over Union of the predicted segmentation
mask with the ground truth segmentation mask.

Other Metrics. Apart from mIoU, SEMSEGBENCH also enables calculating the mean accuracy
over all pixels (mAcc) and the mean accuracy over all classes (allAcc).
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Models Used. All available checkpoints, as shown in Tab. 2 for ADE20K, Cityscapes, and PAS-
CAL VOC2012 were used for creating the benchmark, these methods include some of the first
efforts in DL-based semantic segmentation methods like UNet (Ronneberger et al., 2015), and some
of the most recent SotA methods like InterImage (Wang et al., 2023b).

E DESCRIPTION OF SEMSEGBENCH

Following, we describe the benchmarking tool, SEMSEGBENCH. It is built using mmsegmenta-
tion (Contributors, 2020), and all architectures, backbones, and datasets supported by mmsegmenta-
tion (please refer Appendix C for additional details on the datasets). It enables training and evalua-
tions on all aforementioned combinations including evaluations using SotA adversarial attacks such
as CosPGD (Agnihotri et al., 2024b) and SegPGD (Gu et al., 2022), and other commonly used ad-
versarial attacks like FGSM (Goodfellow et al., 2015), and PGD (Kurakin et al., 2017) under various
lipshitz (lp) norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich, 2019).

We follow the nomenclature set by RobustBench (Croce et al., 2021) and use “threat model” to
define the kind of evaluation to be performed. When “threat model” is defined to be “None”, the
evaluation is performed on unperturbed and unaltered images, if the “threat model” is defined to
be an adversarial attack, for example “PGD”, “CosPGD” or “SegPGD”, then SEMSEGBENCH per-
forms an adversarial attack using the user-defined parameters. We elaborate on this in Appendix E.1.
Whereas, if “threat model” is defined to be “2DCommonCorruptions”, the SEMSEGBENCH per-
forms evaluations after perturbing the images with 2D Common Corruptions. We elaborate on this
in Appendix E.2.

If the queried evaluation already exists in the benchmark provided by this work, then SEMSEG-
BENCH simply retrieves the evaluations, thus saving computation.

E.1 ADVERSARIAL ATTACKS

Due to significant similarity, most of the text here has been adapted from (Agnihotri et al., 2025).
SEMSEGBENCH enables the use of all the attacks mentioned in Sec. 2 to help users better study the
reliability of their semantic segmentation methods. We choose to specifically include these white-
box adversarial attacks as they either serve as the common benchmark for adversarial attacks in
classification literature (FGSM, PGD) or they are unique attacks proposed specifically for pixel-
wise prediction tasks (CosPGD) and semantic segmentation (SegPGD). These attacks are currently
designed to be Non-targeted which simply fool the model into making incorrect predictions, irre-
spective of what the model eventually predicts. Attacks can also be Targeted, where the model is
fooled to make a certain prediction, we intend to add this functionality in future iterations of SEM-
SEGBENCH.

Following, we discuss these attacks in detail and highlight their key differences.

FGSM. Assuming a non-targeted attack, given a model fθ and an unperturbed input sample
Xclean and ground truth label Y , FGSM attack adds noise δ to Xclean as follows,

Xadv = Xclean + α · sign∇XcleanL(fθ(X
clean),Y ), (1)

δ = ϕϵ(Xadv −Xclean), (2)

Xadv = ϕr(Xclean + δ). (3)

Here, L(·) is the loss function (differentiable at least once) which calculates the loss between the
model prediction and ground truth, Y . α is a small value of ϵ that decides the size of the step to
be taken in the direction of the gradient of the loss w.r.t. the input image, which leads to the input
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sample being perturbed such that the loss increases. Xadv is the adversarial sample obtained after
perturbing Xclean. To make sure that the perturbed sample is semantically indistinguishable from
the unperturbed clean sample to the human eye, steps from Eq. (2) and Eq. (3) are performed. Here,
function ϕϵ is clipping the δ in ϵ-ball for ℓ∞-norm bounded attacks or the ϵ-projection in other
lp-norm bounded attacks, complying with the ℓ∞-norm or other lp-norm constraints, respectively.
While function ϕr clips the perturbed sample ensuring that it is still within the valid input space.
FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and α is multiplied
by -1 so that a step is taken to minimize the loss between the model’s prediction and the target
prediction, we intend to add this option in future iterations of SEMSEGBENCH.

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, Xclean was
perturbed just once. While in BIM, Xclean is perturbed iteratively for time steps t ∈ [0,T ], such
that t ∈ Z+, where T are the total number of permissible attack iterations. This changes the steps
of the attack from FGSM to the following,

Xadvt+1 = Xadvt + α · sign∇XadvtL(fθ(X
advt),Y ), (4)

δ = ϕϵ(Xadvt+1 −Xclean), (5)
Xadvt+1 = ϕr(Xclean + δ). (6)

Here, at t=0, Xadvt=Xclean.

PGD. Since in BIM, the initial prediction always started from Xclean, the attack required a sig-
nificant amount of steps to optimize the adversarial noise and yet it was not guaranteed that in the
permissible ϵ-bound, Xadvt+1 was far from Xclean. Thus, PGD proposed introducing stochasticity
to ensure random starting points for attack optimization. They achieved this by perturbing Xclean

with U(−ϵ, ϵ), a uniform distribution in [−ϵ, ϵ], before making the first prediction, such that, at t=0

Xadvt = ϕr(Xclean + U(−ϵ, ϵ)). (7)

APGD. Auto-PGD (Wong et al., 2020) is an effective extension to the PGD attack that effectively
scales the step size α over attack iterations considering the compute budget and the success rate of
the attack.

SegPGD. SegPGD (Gu et al., 2022) is an effective white-box adversarial attack proposed specif-
ically for semantic segmentation methods. It optimizes the PGD attack by splitting the pixel-wise
predictions into correctly classified and wrongly classified and then scales the loss differently for
these two categories of pixels over attack optimization iterations (steps). The intent of this sep-
aration and different scaling is that in initial attack optimization iterations there would be many
correctly classified pixels and only a few incorrectly classified pixels, thus if the loss for the cor-
rectly classified pixels is scaled higher and the loss of the incorrectly classified pixels is scaled lower
then the attack focuses on changing model predictions on pixels that are correctly classified rather
than focusing on increasing the loss on already incorrectly classified pixels. As the attack iterations
increase, reaching their limit, ideally, there exist more incorrectly classified pixels than correctly
classified ones, in this case, the loss of the incorrectly classified pixels is scaled higher, while the
loss for the correctly classified pixels is scaled lower so that the attack can still optimize further. The
optimization strategy of SegPGD can be summarized using Eq. (8).

Xadvt+1 = Xadvt + α · sign∇Xadvt

(∑
i

(
1−

∣∣∣∣λ− |(argmax (fθ(X
advt)i)−Ψ(Yi)|
2

∣∣∣∣)
· L

(
fθ(X

advt)i,Yi

))
(8)

for all locations i ∈ PT ∪ PF , i.e. |λ − |(argmax(f(Xadvt)) − Y |/2| equals 1 − λ for incorrect
predictions, it equals λ for correct predictions, and Ψ(·) is used to one-hot encode the labels. Here
PT are the correctly classified pixels and PF are the incorrectly classified pixels, and λ is a scaling
factor set heuristically. L is explained in Eq. (9).
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Figure 14: Illustrating changes in prediction due to different ℓ∞-norm and ℓ2-norm bounded at-
tacks on a randomly chosen input image from the Cityscapes dataset, when attaching the semantic
segmentation method InterImage-Base. In the subfigures with semantic segmentation mask pre-
dictions, Left: Ground Truth Mask, and Right: Predicted Mask.
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CosPGD. Almost all previously discussed attacks were proposed for the image classification task,
or like SegPGD were constrained to one pixel-wise prediction task of semantic segmentation. Here,
the input sample is a 2D image of resolution H×W, where H and W are the height and width of the
spatial resolution of the sample, respectively. Pixel-wise information is inconsequential for image
classification. This led to the pixel-wise loss L(·) being aggregated to L(·), as follows,

L(fθ(X
advt),Y ) =

1

H×W

∑
i∈H×W

L(fθ(Xadvt)i,Yi). (9)

This aggregation of L(·) fails to account for pixel-wise information available in tasks other than im-
age classification, such as pixel-wise prediction tasks like Optical Flow estimation, Image Restora-
tion, and others. Thus, in their work (Agnihotri et al., 2024b) propose an effective extension of
the PGD attack that takes pixel-wise information into account by scaling L(·) by the alignment be-
tween the distribution of the predictions and the distributions of Y before aggregating leading to a
better-optimized attack, modifying Eq. (4) as follows,

Xadvt+1 = Xadvt + α · sign∇Xadvt

∑
i∈H×W

cos
(
ψ(fθ(X

advt)i),Ψ(Yi)
)
· L

(
fθ(X

advt)i,Yi

)
.

(10)
Where, functions ψ and Ψ are used to obtain the distribution over the predictions and Yi, respec-
tively, and the function cos calculates the cosine similarity between the two distributions. CosPGD
is the unified SotA adversarial attack for pixel-wise prediction tasks.

Fig. 14, shows adversarial examples created using the SotA attacks and how they affect the model
predictions.

E.2 OUT-OF-DISTRIBUTION ROBUSTNESS

Due to significant similarity, most of the text here has been adapted from (Agnihotri et al., 2025).
While adversarial attacks help explore vulnerabilities of inefficient feature representations learned
by a model, another important aspect of reliability is generalization ability. Especially, generaliza-
tion to previously unseen samples or samples from significantly shifted distributions compared to the
distribution of the samples seen while learning model parameters. As one cannot cover all possible
scenarios during model training, a certain degree of generalization ability is expected from models.
However, multiple works (Hendrycks & Dietterich, 2019; Kamann & Rother, 2020; Hoffmann et al.,
2021) showed that models are surprisingly less robust to distribution shifts, even those that can be
caused by commonly occurring phenomena such as weather changes, lighting changes, etc. This
makes the study of Out-of-Distribution (OOD) robustness an interesting avenue for research. Thus,
to facilitate the study of robustness to such commonly occurring corruptions, SEMSEGBENCH en-
ables evaluation against prominent image corruption methods. Following we describe these methods
in detail.

2D Common Corruptions. (Hendrycks & Dietterich, 2019) propose introducing a distribution
shift in the input samples by perturbing images with a total of 15 synthetic corruptions that could
occur in the real world. These corruptions include weather phenomena such as fog, and frost, digital
corruptions such as jpeg compression, pixelation, and different kinds of blurs like motion and zoom
blur, and noise corruptions such as Gaussian and shot noise, amongst others corruption types. Each
of these corruptions can perturb the image at 5 different severity levels between 1 and 5. The final
performance of the model is the mean of the model’s performance on all the corruptions, such that
every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are
applied to a 2D image, they are collectively termed 2D Common Corruptions.

We show examples of perturbed images over some corruptions and the changed predictions in Fig-
ure 15.

F MODEL ZOO

The trained checkpoints for all models available in SEMSEGBENCH can be obtained using the fol-
lowing lines of code:
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Figure 15: Illustrating changes in prediction due to different 2D Common Corruptions on a randomly
chosen input image from the Cityscapes dataset, when attaching the semantic segmentation method
InterImage-Base. In the subfigures with semantic segmentation mask predictions, Left: Ground
Truth Mask, and Right: Predicted Mask.
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from semsegbench.evals import load_model
model = load_model(model_name='upernet',
backbone='InterImage-H', dataset='ADE20k')

Users need to specify the triplet of architecture name: ‘model name’, backbone used: ‘backbone’,
and training dataset used: ‘dataset’ to get the respective checkpoint. We term each triplet as a seman-
tic segmentation method. In Table 2, we provide a comprehensive look-up table for all ‘model name’
and ‘dataset’ pairs for which trained checkpoints are available in SEMSEGBENCH.

Table 2: An Overview of all the semantic segmentation methods used in the benchmark in this work
made using SEMSEGBENCH. Each of the mentioned backbones has been evaluated using each of
the architectures and datasets mentioned in the row in this table.

Backbone Architecture Datasets Time Proposed
(yyyy-mm-dd)

ResNet101 He et al. (2016)
DeepLabV3 Chen et al. (2017), DeepLabV3+ Chen et al. (2018),

Mask2Former Cheng et al. (2022), PSPNet Zhao et al. (2017)
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

ResNet18 He et al. (2016)
DeepLabV3 Chen et al. (2017), DeepLabV3+ Chen et al. (2018),

PSPNet Zhao et al. (2017) Cityscapes 2017-12-05

ResNet50 He et al. (2016)
DeepLabV3 Chen et al. (2017), DeepLabV3+ Chen et al. (2018),

Mask2Former Cheng et al. (2022), PSPNet Zhao et al. (2017)
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

Swin-Base Liu et al. (2021) Mask2Former Cheng et al. (2022)
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Small Liu et al. (2021) Mask2Former Cheng et al. (2022)
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Tiny Liu et al. (2021) Mask2Former Cheng et al. (2022)
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

MIT-B0 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B1 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B2 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B3 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B4 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B5 Xie et al. (2021) SegFormer Xie et al. (2021)
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

UNet Convolutions UNet Ronneberger et al. (2015) Cityscapes 2015-05-18

BEiT-Base Bao et al. (2021) UPerNet Xiao et al. (2018a) ADE20K 2022-09-03

BEiT-Large Bao et al. (2021) UPerNet Xiao et al. (2018a) ADE20K 2022-09-03

InternImage-Base Wang et al. (2023b) UPerNet Xiao et al. (2018a)
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Huge Wang et al. (2023b) UPerNet Xiao et al. (2018a) ADE20K 2023-04-17

InternImage-Large Wang et al. (2023b) UPerNet Xiao et al. (2018a) ADE20K, Cityscapes 2023-04-17

InternImage-Small Wang et al. (2023b) UPerNet Xiao et al. (2018a)
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Tiny Wang et al. (2023b) UPerNet Xiao et al. (2018a)
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-XLarge Wang et al. (2023b) UPerNet Xiao et al. (2018a) ADE20K, Cityscapes 2023-04-17

G SEMSEGBENCH USAGE DETAILS

Following, we provide a detailed description of the evaluation functions and their arguments
provided in SEMSEGBENCH. The codebase is available at: https://anonymous.
4open.science/r/benchmarking_reliability_generalization/semantic_
segmentation/README.md.
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G.1 ADVERSARIAL ATTACKS

To evaluate a model for a given dataset on an attack, the following lines of code are required.

from semsegbench.evals import evaluate
model, results = evaluate(
model_name='upernet', backbone='InterImage-H',
dataset='ADE20k', retrieve_existing=True,
threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration for the threat model, for example, when the threat
model is a PGD attack, ‘config.yml’ could contain ‘threat model=“PGD”’, ‘iterations=20’, ‘al-
pha=0.01’, ‘epsilon=8’, and ‘lp norm=“Linf”’. The argument description is as follows:

• ‘model name’ is the name of the semantic segmentation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used, also given as a string.

• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else SEMSEGBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’, then SEMSEGBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

• The ‘config.yml’ contains the following:

– ‘threat model’ is the name of the adversarial attack to be used, given as a string.
– ‘iterations’ are the number of attack iterations, given as an integer.
– ‘epsilon’ is the permissible perturbation budget ϵ given a floating point (float).
– ‘alpha’ is the step size of the attack, α, given as a floating point (float).
– ‘lp norm’ is the Lipschitz continuity norm (lp-norm) to be used for bounding the per-

turbation, possible options are ‘Linf’ and ‘L2’ given as a string.

G.2 2D COMMON CORRUPTIONS

To evaluate a model for a given dataset with 2D Common Corruptions, the following lines of code
are required.

from semsegbench.evals import evaluate
model, results = evaluate(
model_name='upernet', backbone='InterImage-H',
dataset='ADE20k', retrieve_existing=True,
threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration for the threat model, for exam-
ple, when the threat model is 2D Common Corruption, ‘config.yml’ could contain
‘threat model=“2DCommonCorruption”’, and ‘severity=3’. Please note, when the ‘threat model’
is a common corruption type, SEMSEGBENCH performs evaluations on all corruptions under the
respective ‘threat model’ and returns the method’s performance on each corruption at the requested
severity. The argument description is as follows:

• ‘model name’ is the name of the semantic segmentation method to be used, given as a
string.

• ‘dataset’ is the name of the dataset to be used also given as a string.

• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation
from the benchmark if the queried evaluation exists in the benchmark provided by this
work, else SEMSEGBENCH will perform the evaluation. If the ‘retrieve existing’ boolean
flag is set to ‘False’ then SEMSEGBENCH will perform the evaluation even if the queried
evaluation exists in the provided benchmark.

• The ‘config.yml’ contains the following:
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– ‘threat model’ is the name of the common corruption to be used, given as a string,
i.e. ‘2DCommonCorruption’.

– ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both
inclusive).

SEMSEGBENCH supports the following 2D Common Corruption: ‘gaussian noise’, shot noise’,
‘impulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion blur’, ‘zoom blur’, ‘snow’, ‘frost’,
‘fog’, ‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. For the evaluation, SEMSEGBENCH will
evaluate the model on the validation images from the respective dataset corrupted using each of the
aforementioned corruptions for the given severity, and then report the mean performance over all of
them.

H DISCUSSING ADVERSARIALLY TRAINED SEMANTIC SEGMENTATION
METHODS

Table 3: Comparing the “Robust” PSPNet from Xu et al. (2021) and “Robust” UPerNet Xiao et al.
(2018a) with a ConvNeXt-tiny Liu et al. (2022b) backbone against white-box adversarial attacks.
Here, same as Xu et al. (2021); Agnihotri et al. (2024b); Croce et al. (2024), ϵ = 8

255 and α=0.01.
These results are obtained from Croce et al. (2024) and Agnihotri et al. (2024b).

Proposed Method Training Method
i.i.d. Performance

Attack Method
10 Attack
Iterations

mIoU (%) mAcc (%) mIoU (%) mAcc (%)

Robust PSPNet Xu et al. (2021)

No Defense 76.90 84.60
CosPGD 0.13 0.40
SegPGD 1.88 5.36

BIM 4.14 12.22

SAT Xu et al. (2021) 74.78 83.36
CosPGD 17.05 38.75
SegPGD 20.59 43.13

BIM 20.67 40.05

DDC-AT Xu et al. (2021) 75.98 84.72
CosPGD 23.04 41.02
SegPGD 25.40 42.72

BIM 26.90 45.27

Robust UPerNet-ConvNeXt-t backbone Croce et al. (2024) PIR-AT Croce et al. (2024) 75.20 92.70
CosAPGD 43.73 76.36
SegAPGD 79.47 48.60

SEA Croce et al. (2024) (100 iterations) 34.6 71.70

Some works like (Gu et al., 2022; Agnihotri et al., 2024b; Croce et al., 2024; Xu et al., 2021; Xiao
et al., 2018b) have attempted to address the lack of reliability of semantic segmentation methods
under adversarial attacks. In Table 3 we bring together some publicly available data on the perfor-
mance of these methods against SotA adversarial attacks and observe that if an effort is directed
towards increasing the reliability of semantic segmentation methods, then this can be achieved using
training strategies to some extent. Though, as observed in Table 3, there is still a significant gap
between the i.i.d. performance and performance under adversarial attacks, especially SotA attack
CosPGD (here CosAPGD, is CosPGD attack, but using APGD (Wong et al., 2020) as an optimizer
instead of PGD.), and an ensemble of attacks with 100 attack iterations, Segmentation Ensemble
Attack (SEA) as proposed by (Croce et al., 2024). Thus, semantic segmentation methods still need
to cover a significant gap to achieve true reliability under attacks.

I ADDITIONAL RESULTS

Following, we include additional results from the benchmark made using SEMSEGBENCH.

I.1 ADVERSARIAL ATTACKS

Here, we report additional results for all adversarial attacks.

I.1.1 ITERATIVE ATTACK

Here, we report the evaluations using the PGD, SegPGD, and CosPGD attacks and the correlations
between the performance of all considered semantic segmentation methods against these attacks.
For ℓ∞-norm bound, perturbation budget ϵ = 8

255 , and step size α=0.01, while for ℓ2-norm bound,
perturbation budget ϵ = 64 and step size α=0.1.
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Figure 16: Dataset used: PASCAL VOC2012. The correlation in the performance of semantic seg-
mentation methods against different attacks under the ℓ∞-norm and ℓ2-norm bounded attacks. The
respective axis shows the name of the attack used. Colors are used to show different architectures
and marker styles are used to show different backbones used by the semantic segmentation methods.
We observe that ℓ∞-norm bounded CosPGD attack is very strong, bringing down the performance
of almost all methods to almost 0.0 mIoU, and thus it does not have any observable correlation with
other attacks. However, in other cases, there is a strong correlation in the performance of methods
under different attacks.
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Figure 17: Dataset used: Cityscapes. The correlation in the performance of semantic segmentation
methods against different attacks under the ℓ∞-norm and ℓ2-norm bounded attacks. The respective
axis shows the name of the attack used. Colors are used to show different architectures and marker
styles are used to show different backbones used by the semantic segmentation methods. We observe
that ℓ∞-norm bounded CosPGD attack is very strong, bringing down the performance of almost all
methods to almost 0.0 mIoU, and thus it does not have any observable correlation with other attacks.
However, in other cases, there is a strong correlation in the performance of methods under different
attacks.

We show the correlation between different attacks for PASCAL VOC2012 in Figure 16, Cityscapes
in Figure 17, and for ADE20K in Figure 18.

We show individual attack evaluations for PASCAL VOC2012 in Figure 19, Cityscapes in Figure 20,
and for ADE20K in Figure 21.

Please note that due to the architectural implementation of Mask2Former (Cheng et al., 2022), it is
not possible to get pixel-wise loss for this architecture. Therefore, evaluations using SegPGD and
CosPGD for Mask2Former are not possible without substantial changes to the architecture’s imple-
mentation. To the best of our knowledge, such a change is beyond the scope of this work. Under 20
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Figure 18: Dataset used: ADE20K. The correlation in the performance of semantic segmentation
methods against different attacks under the ℓ∞-norm and ℓ2-norm bounded attacks. The respective
axis shows the name of the attack used. Colors are used to show different architectures and marker
styles are used to show different backbones used by the semantic segmentation methods. We observe
that ℓ∞-norm bounded CosPGD attack is very strong, bringing down the performance of almost all
methods to almost 0.0 mIoU, and thus it does not have any observable correlation with other attacks.
However, in other cases, there is a strong correlation in the performance of methods under different
attacks.

attack iterations, it appears that Mask2Former is marginally more robust than other methods under
PGD attack. To validate this, we perform attacks on Mask2Former and SegFormer with a different
setting. Under 40 iterations ϵ = 2

255 ℓ∞-norm PGD attack using ADE20K, SegFormer MIT-B1
has 3.8% mIoU and 6.73% mAcc while Mask2Former has 0.35% mIoU and 0.97% mAcc. Thus,
Mask2Former is merely harder to attack. One explanation for this phenomenon is that the sparsity
in the feature representation by Mask2Former due to masking of the attention heads is inherently
increasing the model’s robustness to some extent; this explanation is supported by findings from
(Liao et al., 2022; Chen et al., 2022; Peng et al., 2023).

I.2 2D COMMON CORRUPTIONS

Following we provide an overview of the performance of all the semantic segmentation methods over
all of the common corruptions, for PASCAL VOC2012 in Figure 22, for Cityscapes in Figure 23,
and for ADE20K in Figure 24.
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Figure 19: Dataset used: PASCAL VOC2012. Reliability of semantic segmentation methods
against individual attacks. TOP: PGD, MIDDLE: SegPGD and BOTTOM: CosPGD, constrained
under ℓ∞-norm (y-axis) and the ℓ2-norm (x-axis).
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Figure 20: Dataset used: Cityscapes. Reliability of semantic segmentation methods against in-
dividual attacks. TOP: PGD, MIDDLE: SegPGD and BOTTOM: CosPGD, constrained under ℓ∞-
norm (y-axis) and the ℓ2-norm (x-axis).
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Figure 21: Dataset used: ADE20K. Reliability of semantic segmentation methods against individ-
ual attacks. TOP: PGD, MIDDLE: SegPGD and BOTTOM: CosPGD, constrained under ℓ∞-norm
(y-axis) and the ℓ2-norm (x-axis).
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Figure 22: Dataset used: PASCAL VOC2012. The correlation in the performance of semantic
segmentation methods against different 2D Common Corruptions. The respective axis shows the
name of the common corruption used. Colors are used to show different architectures and marker
styles are used to show different backbones used by the semantic segmentation methods. For the
limited PASCAL VOC2012 evaluations we observe some correlation between the number of learn-
able parameters and the performance against common corruptions, however, more evaluations (more
publicly available checkpoints) are required for a meaningful analysis.
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Figure 23: Dataset used: Cityscapes. The correlation in the performance of semantic segmenta-
tion methods against different 2D Common Corruptions. The respective axis shows the name of the
common corruption used. Colors are used to show different architectures and marker styles are used
to show different backbones used by the semantic segmentation methods. Except for DeepLabV3+
with a ResNet18 backbone, most other methods show a weak positive correlation between the num-
ber of learnable parameters used by a method and its performance against most of the common
corruption. Multiple occurrences of an Architecture and Backbone pair are due to their evaluations
being performed at two different crop sizes i.e. 512×512, and 512×1024.
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Figure 24: Dataset used: ADE20K. The correlation in the performance of semantic segmentation
methods against different 2D Common Corruptions. The respective axis shows the name of the
common corruption used. Colors are used to show different architectures and marker styles are used
to show different backbones used by the semantic segmentation methods. Except for DeepLabV3,
all other methods show some positive correlation between the number of learnable parameters used
by a method and its performance against any common corruption.
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Additional Details on the Benchmarking using DETECBENCH
and Evaluations (All Benchmarking Results):

TABLE OF CONTENT

The supplementary material covers the following information:

• Appendix J: Details for the datasets used.
– Appendix J.1: MS-COCO
– Appendix J.2: PASCAL VOC

• Appendix K: Additional implementation details for the evaluated benchmark.

• Appendix L: In detail description of the attacks.

• Appendix M: A comprehensive look-up table for all the object detection methods’ model
weight and datasets pair available in DETECBENCH and used for evaluating the benchmark.

• Appendix N: In detail explanation of the available functionalities of the DETECBENCH
benchmarking tool and description of the arguments for each function.

• Appendix O: Here we provide additional results from the benchmark evaluated using DE-
TECBENCH.

– Appendix O.1: Evaluation using the limited available PASCAL VOC trained models.

– Appendix O.2: All evaluations using the MS-COCO trained models.

* Appendix O.2.1: Evaluations for all models against FGSM attack under ℓ∞-norm
bound as non-targeted attack.

* Appendix O.2.2: Evaluations for all models against BIM and PGD attack under
ℓ∞-norm bound as non-targeted attack, over multiple attack iterations.

* Appendix O.2.3: Evaluations for all models under 2D Common Corruptions at
severity=3.

* Appendix O.2.3: Evaluations for all models under 3D Common Corruptions at
severity=3.

J DATASET DETAILS

DETECBENCH supports a total of two object detection datasets. Following, we describe these
datasets in detail.

J.1 MS-COCO

The MS-COCO dataset (Lin et al., 2014): Common Objects in Context is a large-scale image recog-
nition dataset proposed for object detection, semantic segmentation, and captioning tasks. For the
tasks considered in this work, we use the 2017 version, which has 120k labeled images with anno-
tations for 80 different object categories split into 115k for training and 5k for validation.
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J.2 PASCAL VOC

The PASCAL VOC 2007 (Everingham et al., 2010) dataset has 20 object classes and a total of 9963
images split 50-50 into training and testing.

K IMPLEMENTATION DETAILS OF THE BENCHMARK

Following we provide details regarding the experiments done for creating the benchmark used in the
analysis.

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU
each, however, some recently proposed models with large backbones are more compute-intensive,
and thus 80GB NVIDIA A100 GPUs or NVIDIA H100 were used for these models, a single GPU
for each experiment. Training some of the architectures with large backbones required using two to
four GPUs in parallel.

Datasets Used. Performing adversarial attacks and OOD robustness evaluations are very expen-
sive and compute-intensive. Thus, performing training for all model-dataset pairs is not possible
given the limited computing resources at our disposal. Thus, we benchmark publicly available mod-
els while training a few on the MS-COCO dataset.

Metrics Calculation. In Sec. 3 we introduce two new metrics for better understanding our anal-
ysis, given the large scale of the benchmark created. For calculating ReM values we used the BIM,
and PGD attacks with step size α=0.01, perturbation budget ϵ = 8

255 under the ℓ∞-norm bound, as
non-targeted attacks. We use 20 attack iterations for calculating ReM as we observe inAppendix O,
that even after just 10 attack iterations, the attacks seem to saturate, and as shown by (Agnihotri et al.,
2024b) and (Schmalfuss et al., 2022b), 20 iterations are enough to optimize an attack to truly under-
stand the performance of the attacked method. For calculating GAM, we use all 15 2D Common
Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted Glass Blur’,
‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic Transform’,
‘Pixelate’, ‘JPEG Compression’, and eight 3D Common Corruptions: ‘Color Quantization’, ‘Far
Focus’, ‘Fog 3D’, ‘ISO Noise’, ‘Low Light’, ‘Near Focus’, ‘XY Motion Blur’, and ‘Z Motion Blur’.
We could not use ‘h265 crf’ and ‘h265 abr’ as computing these for Conditional-DETR and Co-
DETR was computationally infeasible given the limited compute resources. For the other methods
we compute evaluations against ‘h265 crf’ and ‘h265 abr’, however, for fairness, we do not use them
when calculating the GAM values. All the common corruptions are at severity 3.

Calculating the mAP. mAP is the mean Average Precision calculated over the entire evaluation set,
this is the primary metric used for object detection method evaluations across datasets. Additionally,
for MS-COCO, we also record the mAPsmall (mAPs) for small sized objects, mAPmedium (mAPm) for
medium sized objects, and mAPlarge (mAPl) for large sized objects. Moreover, we also capture
mAP50 and mAP75 for 50% and 75% mIoU with the ground truth bounding boxes.

Models Used. All available checkpoints, as shown in Tab. 4 for the MS-COCO and PASCAL
VOC dataset were used for creating the benchmark. Our evaluations include old DL-based object
detection methods Faster-RCNN (Ren, 2015), as well as recent state-of-the-art methods like MM
Grounding DINO (Zhao et al., 2024).

L DESCRIPTION OF DETECBENCH

Following, we describe the benchmarking tool, DETECBENCH. It is built using mmdetection (Chen
et al., 2019), and supports almost all prominent object detection method architectures and backbones
and 3 distinct datasets, namely MS-COCO (Lin et al., 2014), PASCAL VOC 2007 (Everingham
et al., 2010), LVIS (Gupta et al., 2019) datasets (please refer Appendix J for additional details on
the datasets). DETECBENCH goes beyond mmdetection as it enables training and evaluations on all
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aforementioned datasets including evaluations using adversarial attacks such as BIM (Kurakin et al.,
2018), PGD (Kurakin et al., 2017), and FGSM (Goodfellow et al., 2015), under various lipshitz (lp)
norm bounds.

Additionally, it enables evaluations for Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions (Hendrycks & Dietterich, 2019) and 3D Common
Corruptions (Kar et al., 2022).

We follow the nomenclature set by RobustBench (Croce et al., 2021) and use “threat model” to
define the kind of evaluation to be performed. When “threat model” is defined to be “None”, the
evaluation is performed on unperturbed and unaltered images, if the “threat model” is defined to
be an adversarial attack, for example “FGSM”, “PGD” or “BIM”, then DETECBENCH performs
an adversarial attack using the user-defined parameters. We elaborate on this in Appendix L.1.
Whereas, if “threat model” is defined to be “2DCommonCorruptions” or “3DCommonCorruptions”,
the DETECBENCH performs evaluations after perturbing the images with 2D Common Corruptions
and 3D Common Corruptions respectively. We elaborate on this in Appendix L.2.

If the queried evaluation already exists in the benchmark provided by this work, then DETECBENCH
simply retrieves the evaluations, thus saving computation.

L.1 ADVERSARIAL ATTACKS

Due to significant similarity, most of the text here has been adapted from (Agnihotri et al., 2025).
DETECBENCH enables the use of all the attacks mentioned in Sec. 2 to help users better study the
reliability of their object detection methods. We choose to specifically include these white-box ad-
versarial attacks as they serve as the common benchmark for adversarial attacks in classification
literature (FGSM, BIM, PGD) for testing the reliability of methods. These attacks are currently de-
signed to be both Non-targeted when they simply fool the model into making incorrect predictions,
irrespective of what the model eventually predicts, and Targeted, when they fool the model into
making specific incorrect predictions. Following, we discuss these attacks in detail and highlight
their key differences.

FGSM. Assuming a non-targeted attack, given a model fθ and an unperturbed input sample
Xclean and ground truth label Y , FGSM attack adds noise δ to Xclean as follows,

Xadv = Xclean + α · sign∇XcleanL(fθ(X
clean),Y ), (11)

δ = ϕϵ(Xadv −Xclean), (12)

Xadv = ϕr(Xclean + δ). (13)

Here, L(·) is the loss function (differentiable at least once) which calculates the loss between the
model prediction and ground truth, Y . α is a small value of ϵ that decides the size of the step to
be taken in the direction of the gradient of the loss w.r.t. the input image, which leads to the input
sample being perturbed such that the loss increases. Xadv is the adversarial sample obtained after
perturbing Xclean. To make sure that the perturbed sample is semantically indistinguishable from
the unperturbed clean sample to the human eye, steps from Eq. (12) and Eq. (13) are performed.
Here, function ϕϵ is clipping the δ in ϵ-ball for ℓ∞-norm bounded attacks or the ϵ-projection in other
lp-norm bounded attacks, complying with the ℓ∞-norm or other lp-norm constraints, respectively.
While function ϕr clips the perturbed sample ensuring that it is still within the valid input space.
FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and α is multiplied
by -1 so that a step is taken to minimize the loss between the model’s prediction and the target
prediction.

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, Xclean was
perturbed just once. While in BIM, Xclean is perturbed iteratively for time steps t ∈ [0,T ], such
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Figure 25: Using DeFormable-DETR with a ConvNeXt-small Backbone and MS-COCO dataset
we show for an example input image the changes in prediction under PGD attack, under Zoom Blur
corruption from 2D Common Corruptions and under Fog corruption from 3D Common Corruptions.
In each image, the left image is the ground truth bounding box and class prediction, while the
right image is the predicted bounding box and class. We observe that under each threat model,
the predictions are incorrect when compared to the ground truth. While the common corruptions
cause the model to incorrectly predict the bounding boxes and miss most objects, the PGD attack is
fooling the model into hallucinating objects that do not exist in the input image. This is a critical
threat for the real-world deployment of object detection methods.
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that t ∈ Z+, where T are the total number of permissible attack iterations. This changes the steps
of the attack from FGSM to the following,

Xadvt+1 = Xadvt + α · sign∇XadvtL(fθ(X
advt),Y ), (14)

δ = ϕϵ(Xadvt+1 −Xclean), (15)

Xadvt+1 = ϕr(Xclean + δ). (16)
Here, at t=0, Xadvt=Xclean.

PGD. Since in BIM, the initial prediction always started from Xclean, the attack required a sig-
nificant amount of steps to optimize the adversarial noise and yet it was not guaranteed that in the
permissible ϵ-bound, Xadvt+1 was far from Xclean. Thus, PGD proposed introducing stochasticity
to ensure random starting points for attack optimization. They achieved this by perturbing Xclean

with U(−ϵ, ϵ), a uniform distribution in [−ϵ, ϵ], before making the first prediction, such that, at t=0

Xadvt = ϕr(Xclean + U(−ϵ, ϵ)). (17)

Fig. 25, shows adversarial examples created using an adversarial attack and how it affects the
model’s predictions.

L.2 OUT-OF-DISTRIBUTION ROBUSTNESS

Due to significant similarity, most of the text here has been adapted from (Agnihotri et al., 2025).
While adversarial attacks help explore vulnerabilities of inefficient feature representations learned by
a model, another important aspect of reliability is generalization ability. Especially, generalization
to previously unseen samples or samples from significantly shifted distributions compared to the
distribution of the samples seen while learning model parameters. As one cannot cover all possible
scenarios during model training, a certain degree of generalization ability is expected from models.
However, multiple works (Hendrycks & Dietterich, 2019; Kar et al., 2022; Hoffmann et al., 2021)
showed that models are surprisingly less robust to distribution shifts, even those that can be caused
by commonly occurring phenomena such as weather changes, lighting changes, etc. This makes the
study of Out-of-Distribution (OOD) robustness an interesting avenue for research. Thus, to facilitate
the study of robustness to such commonly occurring corruptions, DETECBENCH enables evaluating
against prominent image corruption methods. Following, we describe these methods in detail.

2D Common Corruptions. (Hendrycks & Dietterich, 2019) propose introducing distribution
shift in the input samples by perturbing images with a total of 15 synthetic corruptions that could
occur in the real world. These corruptions include weather phenomena such as fog, and frost, digital
corruptions such as jpeg compression, pixelation, and different kinds of blurs like motion, and zoom
blur, and noise corruptions such as Gaussian and shot noise amongst others corruption types. Each
of these corruptions can perturb the image at 5 different severity levels between 1 and 5. The final
performance of the model is the mean of the model’s performance on all the corruptions, such that
every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are
applied to a 2D image, they are collectively termed 2D Common Corruptions.

3D Common Corruptions. Since the real world is 3D, (Kar et al., 2022) extend 2D Common
Corruptions to formulate more realistic-looking corruptions by leveraging depth information (syn-
thetic depth information when real depth is not readily available) and luminescence angles. They
name these image corruptions as 3D Common Corruptions. Fig. 25, shows examples of MS-COCO
image corrupted using 2D Common Corruption and 3D Common Corruption, and how these affect
the model’s prediction, making the model predict incorrect bounding boxes.

M MODEL ZOO

The trained checkpoints for all models available in DETECBENCH can be obtained using the follow-
ing lines of code:
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from detecbench import load_model
model = load_model(model_folder='models/DINO_Swin-L')

Users need to specify the path to the model folder: ‘model folder’. This path should contain the
weights and configuration for the model to be loaded. In Table 4, we provide a comprehensive
look-up table for all configurations and weights for architecture and dataset pairs for which trained
checkpoints are available in DETECBENCH.

Table 4: An Overview of all the object detection methods used in the benchmark in this work made
using DETECBENCH.

Architecture Backbones Time Proposed

MS-COCO Dataset

ATSS Zhang et al. (2020b) ResNet101 He et al. (2016) 20.06.2020
Cascade Mask R-CNN Cai & Vasconcelos (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 24.06.2019
Cascade R-CNN Cai & Vasconcelos (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b), ConvNeXt-S Liu et al. (2022b), Swin-S Liu et al. (2021) 24.06.2019
CenterNet Duan et al. (2019) ResNet18 He et al. (2016) 25.04.2019
Co-DETR Zong et al. (2023) ResNet50 He et al. (2016), Swin-L Liu et al. (2021) 10.08.2023
Conditional DETR Meng et al. (2021) ResNet50 He et al. (2016) 29.09.2023
DAB-DETR Liu et al. (2022a) ResNet50 He et al. (2016) 30.03.2022
DDOD-ATSS Chen et al. (2021) ResNet50 He et al. (2016) 27.07.2021
DDQ DETR Zhang et al. (2023) Swin-L Liu et al. (2021), ResNet50 He et al. (2016) 05.07.2023
Deformable DETR Zhu et al. (2021) ResNet50 He et al. (2016), ConvNeXt-S Liu et al. (2022b), Swin-S Liu et al. (2021) 18.03.2021
DETR Carion et al. (2020) ResNet50 He et al. (2016) 28.05.2020
DINO Caron et al. (2021) ResNet50 He et al. (2016), Swin-L Liu et al. (2021) 11.07.2022
Double Heads Wu et al. (2020) ResNet50 He et al. (2016) 02.04.2020
Dynamic R-CNN Zhang et al. (2020a) ResNet50 He et al. (2016) 26.07.2020
Faster R-CNN Ren (2015) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 06.01.2016
FCOS Tian et al. (2022) ResNeXt101 Xie et al. (2017b) 20.08.2019
FoveaBox Kong et al. (2020) ResNet101 Xie et al. (2017b) 16.07.2020
FreeAnchor Zhang et al. (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 12.11.2019
FSAF Zhu et al. (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 02.03.2019
GA-Faster R-CNN Wang et al. (2019) ResNeXt101 Xie et al. (2017b) 12.04.2019
GA-RetinaNet Wang et al. (2019) ResNeXt101 Xie et al. (2017b) 12.04.2019
GLIP-L Li et al. (2022c) Swin-L Liu et al. (2021) 17.06.2022
Grid R-CNN Lu et al. (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 29.11.2018
Libra R-CNN Pang et al. (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 04.04.2019
PAA Kim & Lee (2020) ResNet101 He et al. (2016), ConvNeXt-S Liu et al. (2022b), Swin-S Liu et al. (2021) 05.09.2020
RepPoints Yang et al. (2019) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 19.08.2019
RetinaNet Lin (2017) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 07.02.2018
RTMDet-l Lyu et al. (2022) ConvNeXt-B Liu et al. (2022b), Swin-B Liu et al. (2021) 16.12.2022
SABL Cascade R-CNN Wang et al. (2020) ResNet101 He et al. (2016) 26.08.2020
SABL Faster R-CNN Wang et al. (2020) ResNet101 He et al. (2016) 26.08.2020
SABL RetinaNet Wang et al. (2020) ResNet101 He et al. (2016) 26.08.2020
Sparse R-CNN Sun et al. (2021) ResNet101 He et al. (2016), ConvNeXt-S Liu et al. (2022b), Swin-S Liu et al. (2021) 26.04.2021
TOOD Feng et al. (2021) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b), ConvNeXt-S Liu et al. (2022b), Swin-S Liu et al. (2021) 28.08.2021
VarifocalNet Zhang et al. (2021) ResNet101 He et al. (2016), ResNeXt101 Xie et al. (2017b) 04.03.2021
MM Grounding DINO Zhao et al. (2024) Swin-L Liu et al. (2021) 05.01.2024

PASCAL VOC Dataset

Faster R-CNN Ren (2015) ResNet50 He et al. (2016) 06.01.2016
RetinaNet Lin (2017) ResNet50 He et al. (2016) 07.02.2018

N DETECBENCH USAGE DETAILS

Following we provide a detailed description of the evaluation functions and their arguments provided
in DETECBENCH.

The codebase is available at: https://anonymous.4open.science/r/benchmarking_
reliability_generalization/object_detection/README.md.

N.1 ADVERSARIAL ATTACKS

To evaluate a model for a given dataset, in an attack, the following lines of code are required.

from detecbench import attacks, evaluate
pgd = attacks.PGD(

epsilon = 8,
alpha = 2.55,
steps = 20,
norm = "inf",
target = False,
random_start = True,

)
evaluate(task=pgd, model_folder="./models/DINO_Swin-L", log_dir =

"./logs", wandb_project = None, wandb_entity = None)↪→
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Here, the ‘model folder’ accepts the configuration and weights for the model, for example, when
the model is DINO Swin-L, ‘model folder’ should be passed a folder that contains the configuration
and the weights for the model, the dataset can be controlled with this as well, that is by providing the
name of the dataset and the data root folder in the configuration file. Here, the threat model=“PGD”,
‘steps=20’, ‘alpha=2.55’, ‘epsilon=8’, and ‘norm=“inf”’. ‘random start=False’ leads to BIM attack
and ‘random start=True’ leads to a PGD attack. We additionally provide two types of logging, either
using ‘logger’ and/or ’wandb’. The argument description is as follows:

• ‘model folder’ is the directory that contains the model weights and configurations.

• ‘dataset’ is the name of the dataset to be used, also given as a string.

• The arguments for attack.PGD() contains the following:

– ‘steps’ is the number of attack iterations, given as an integer.
– ‘epsilon’ is the permissible perturbation budget ϵ given a floating point (float).
– ‘alpha’ is the step size of the attack, α, given as a floating point (float).
– ‘norm’ is the Lipschitz continuity norm (lp-norm) to be used for bounding the pertur-

bation, possible options are ‘inf’ and ‘two’ given as a string.
– ‘target’ is false by default, but to do targeted attacks, either the user can set ‘tar-

get’=True, to use the default class label 42 as the target, or can pass an integer for the
class label to be used as the target image-wide, or can pass the path (as string) to a
specific tensor to be used as a target.

Please refer to our code, https://anonymous.4open.science/r/benchmarking_
reliability_generalization/object_detection/README.md, for additional at-
tack settings.

N.2 2D COMMON CORRUPTIONS

To evaluate a model for a given dataset, with 2D Common Corruptions, the following lines of code
are required.

from detecbench import corruptions, evaluate
cc_contrast = corruptions.CommonCorruption(name="contrast", severity=3)
evaluate(task=cc_contrast, model_folder="./models/RetinaNet_R-101-FPN",

log_dir = "./logs", wandb_project = None, wandb_entity = None)↪→

Here, the ‘model folder’ contains the configuration and weights for the model for a given dataset.
Please note, the ‘threat model’ is a common corruption type, for example, here ‘contrast’. To use
DETECBENCH to perform evaluations on all corruptions under the respective ‘threat model’, use
‘all’ as the ‘name’. We additionally provide two types of logging, either using ‘logger’ and/or
’wandb’.

DETECBENCH supports the following 2D Common Corruption: ‘gaussian noise’, shot noise’, ‘im-
pulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’,
‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. For the evaluation, DETECBENCH will eval-
uate the model on the validation images from the respective dataset corrupted using each of the
aforementioned corruptions for the given severity.

N.3 3D COMMON CORRUPTIONS

To evaluate a model for a given dataset, with 3D Common Corruptions, the following lines of code
are required.

from detecbench import corruptions, evaluate

cc3d_near_focus = corruptions.CommonCorruption3d(name="near_focus",
severity=3)↪→

evaluate(task=cc3d_near_focus,
model_folder="./models/RetinaNet_R-101-FPN", log_dir = "./logs",
wandb_project = None, wandb_entity = None)

↪→
↪→

52

https://anonymous.4open.science/r/benchmarking_reliability_generalization/object_detection/README.md
https://anonymous.4open.science/r/benchmarking_reliability_generalization/object_detection/README.md


2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

3.7 × 107 3.8 × 107 3.9 × 107 4 × 107 4.1 × 107

Number of Parameters

0.775

0.780

0.785

0.790

0.795

0.800

i.i
.d

. m
AP

Object Detection Method
Backbone ResNet50 Architecture Faster R-CNN RetinaNet

Figure 26: Using the PASCAL VOC dataset for object detection, we benchmark the i.i.d. perfor-
mance of the available object detection methods. The colors represent the backbone of the respective
method, while different marker shapes represent the architecture of the method. The methods were
trained on the train set from the PASCAL VOC object detection dataset. The y-axis shows the num-
ber of learnable parameters used by the method, and the x-axis shows the mAP performance on i.i.d.
samples.

Here, the ‘model folder’ contains the configuration and weights for the model for a given
dataset. Please note, the ‘threat model’ is a 3D common corruption type, for example, here
‘cc3d near focus’. To use DETECBENCH to perform evaluations on all corruptions under the re-
spective ‘threat model’, use ‘all’ as the ‘name’. We additionally provide two types of logging, either
using ‘logger’ and/or ’wandb’.

DETECBENCH supports the following 3D Common Corruption: ‘color quant’, ‘far focus’, ‘fog 3d’,
‘iso noise’, ‘low light’, ‘near focus’, ‘xy motion blur’, and ‘z motion blur’. For the evaluation,
DETECBENCH will evaluate the model on the validation images from the respective dataset cor-
rupted using each of the aforementioned corruptions for the given severity.

O ADDITIONAL RESULTS

Following we include additional results from the benchmark made using DETECBENCH.

O.1 PASCAL VOC RESULTS

Unfortunately, we could find only two methods trained on the PASCAL VOC dataset for object de-
tection. Nonetheless, we benchmark their performance here. In Figure 26 we report the performance
of the object detection methods on the i.i.d. samples. In Figure 27 we report the performance of the
object detection methods against all the 2D Common Corruptions and 3D Common Corruptions as
severity=3.

O.2 ALL MS-COCO RESULTS

O.2.1 FGSM ATTACK

In Figure 28, we report the evaluations using FGSM attack, both as a non-targeted attack optimized
under the ℓ∞-norm bound with a perturbation budget ϵ = 8

255 .

O.2.2 ITERATIVE ATTACKS

In Figure 29, we report the evaluations using BIM and PGD attacks, as non-targeted attacks op-
timized under the ℓ∞-norm bound with perturbation budget ϵ = 8

255 , and step size α=0.01, over
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Figure 27: Using the PASCAL VOC dataset for object detection, we benchmark the OOD perfor-
mance of the available object detection methods against all the 2D Common Corruptions and 3D
Common Corruptions. The methods were trained on the train set from the PASCAL VOC object de-
tection dataset. The colors represent the backbone of the respective method, while different marker
shapes represent the architecture of the method. The y-axis shows the number of learnable parame-
ters used by the method, and the x-axis shows the mAP performance against the respective common
corruption.
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Figure 28: Using the MS-COCO dataset, left: correlation between the performance against FGSM
attack and the performance on i.i.d. samples; right: correlation between the performance against
FGSM attack and the number of learnable parameters in a method. The colors represent the back-
bone of the respective method, while different marker shapes represent the architecture of the
method. All methods were trained on the train set of the MS-COCO dataset. For most of the
methods. we observe a high positive correlation between the i.i.d. performance and the performance
against the FGSM attack. However, we observe no correlation between the performance against
FGSM attack and the number of learnable parameters in a method.
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Figure 29: Using the MS-COCO dataset, here we report the mAP performance of all the object
detection methods considered in the benchmark against the BIM and PGD adversarial attacks The
colors represent the backbone of the respective method, while different marker shapes represent the
architecture of the method. The x-axis shows the number of attack iterations used for optimizing the
attack, while the y-axis shows the mAP performance. The methods were trained on the training set
of the MS-COCO dataset. For ease of understanding, we report this in two ways: the Top is a scatter
plot, while the Bottom is a line plot.

attack iterations from 0 to 20, such that at iterations=0, no attack is used i.e. for iterations=0 we
report the i.i.d. performance.

O.2.3 2D COMMON CORRUPTIONS

In Figure 30, we report evaluations using the different 2D common corruptions at severity=3 over
all the considered methods.

O.2.4 3D COMMON CORRUPTIONS

In Figure 31, we report evaluations using different considered 3D common corruptions at severity=3
over all the considered methods.
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Figure 30: Using the MS-COCO dataset, we report the mAP performance of all considered object
detection methods against each of the 2D Common Corruptions evaluated at severity=3. The colors
represent the backbone of the respective method, while different marker shapes represent the archi-
tecture of the method. The y-axis shows the number of learnable parameters in the method, and the
x-axis shows the mAP performance against the respective 2D Common Corruption. All methods
were trained on the training set from the MS-COCO dataset.
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Figure 31: Using the MS-COCO dataset, we report the mAP performance of all considered object
detection methods against each of the 3D Common Corruptions evaluated at severity=3. The colors
represent the backbone of the respective method, while different marker shapes represent the archi-
tecture of the method. The y-axis shows the number of learnable parameters in the method, and the
x-axis shows the mAP performance against the respective 3D Common Corruption. All methods
were trained on the training set from the MS-COCO dataset.
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