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Abstract
1-bit detectors show impressive performance com-
parable to their real-valued counterparts when
detecting commonly sized objects while exhibit-
ing significant performance degradation on tiny
objects. The challenge stems from the fact that
high-level features extracted by 1-bit convolutions
seem less compelling to reveal the discriminative
foreground features. To address these issues, we
introduce a Discriminative Feature Refinement
method for 1-bit Detectors (DFR-Det), aiming to
enhance the discriminative ability of foreground
representation for tiny objects in aerial images.
This is accomplished by refining the feature repre-
sentation using an information bottleneck (IB) to
achieve a distinctive representation of tiny objects.
Specifically, we introduce a new decoder with a
foreground mask, aiming to enhance the discrimi-
native ability of high-level features for the target
but suppress the background impact. Additionally,
our decoder is simple but effective and can be eas-
ily mounted on existing detectors without extra
burden added to the inference procedure. Exten-
sive experiments on various tiny object detection
(TOD) tasks demonstrate DFR-Det’s superiority
over state-of-the-art 1-bit detectors. For example,
1-bit FCOS achieved by DFR-Det achieves the
12.8% AP on AI-TOD dataset, approaching the
performance of the real-valued counterpart.

1. Introduction
Recently, the tiny object detection (TOD) task (Wang et al.,
2021; Ding et al., 2021) has significantly been promoted
due to advances in deep neural networks (DNNs) (He et al.,
2016), which is widely used in various real-world scenarios
such as driving assistance, traffic management, and maritime

*Equal contribution 1Beihang University 2Skywork AI
3Zhongguancun Laboratory 4University at Buffalo 5Shanghai Ar-
tificial Intelligence Laboratory. Correspondence to: Baochang
Zhang <bczhang@buaa.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

A
P

Datasets

4.1%

5.0%

2.1%

1.1%

A
P

Datasets

4.2%

5.1%

1.9%

1.2%

(a) AP of Faster-RCNN (b) AP of FCOS

Figure 1. Average precision (AP) of (a) Faster-RCNN, and (b)
FCOS using ResNet-18 backbone on various datasets with differ-
ent sizes of objects. The AP of real-valued detectors and 1-bit
counterparts are both shown.

rescue. However, such DNN-based detectors comprise many
parameters and floating-point operations (FLOPs), restrict-
ing their deployment on embedded platforms in real-world
scenarios. Techniques such as compact network design
(Howard et al., 2017; Ma et al., 2018), network pruning (Li
et al., 2016), low-rank decomposition (Denil et al., 2013),
and quantization (Xu et al., 2022b; Zhao et al., 2022; Xu
et al., 2023) have been developed to address these restric-
tions and accomplish an efficient inference on the detection
task. Among these, 1-bit detectors have contributed to ob-
ject detection by accelerating the CNN feature extracting
for real-time bounding box localization and foreground clas-
sification (Wang et al., 2020; Xu et al., 2021; 2022c).

When detecting commonly sized objects (Everingham et al.,
2009; Lin et al., 2014), current 1-bit detectors (Wang et al.,
2020; Xu et al., 2022c) show impressive performance, com-
parable to the real-valued counterparts. However, such 1-bit
detectors severely deteriorate when detecting tiny objects
featured with very few pixels. As shown in Fig. 1, the
baseline 1-bit detector shows an increasing performance
gap compared with real-valued counterparts with decreased
object size. More specifically, on images possessing com-
monly sized objects, the performance gap between 1-bit de-
tectors and their real-valued counterparts is about 1%∼2%,
relatively small. However, such performance gaps magnify
to about 4%∼5% on TOD datasets, such as DOTA (Ding
et al., 2021) and AI-TOD (Wang et al., 2021).

The severe performance degradation mainly results from
the poor capacity to refine the foreground information. This
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Figure 2. We visualize the (a) input image with ground truth label,
prediction results (left), and saliency maps (right) of (b) vanilla 1-
bit FCOS and (c) ral-valued FCOS. The green, blue, and red boxes
denote true positive, false positive, and false negative, respectively.
The saliency maps are plotted based on the ℓ2-norm gradient in
intermediate neck feature (Guo et al., 2021) at P2. The darker area
in the saliency map indicates the larger gradient.

can be observed by comparing to objects of ground-truth
green boxes in Fig. 2(a) and massive false positives of blue
boxes and false negatives of red boxes from the vanilla 1-bit
FCOS in Fig. 2(b). In addition, the corresponding saliency
maps (Guo et al., 2021) in the right part of Fig. 2(b) also
manifest too much background noise to enable robust fore-
ground information extraction. In comparison, the improved
detection performance of the real-valued counterpart is at-
tributed to the capacity to refine and discriminate salient
foreground information from the noisy background informa-
tion, as illustrated in the right part of Fig. 2(c).

In this paper, our Discriminative Feature Refinement aims
to improve the foreground discrimination of 1-bit Detectors
(DFR-Det) during the training process while bringing no
extra burden to the inference procedure. Fig. 3 illustrates
the proposed DFR-Det overview in cooperation with the
1-bit FCOS framework. Our intuition is analogous to how
human beings recognize a small object in the cluttered back-
ground by possibly including attentional guidance to elimi-
nate background regions that could be mistakenly regarded
as the target (Wolfe et al., 2011; Choi et al., 2017). This is
achieved by refining our detector upon information bottle-
neck (IB) principle (Shwartz-Ziv & Tishby, 2017), which
involves the incorporation of a novel decoder that utilizes
a foreground mask to boost the discriminative power of
high-level features w.r.t. the foreground, while concurrently
mitigating the negative impact of the background. In addi-
tion to benefiting a highly distinctive representation of tiny
objects, our decoder is simple yet effective. It can be easily
mounted on existing detectors without extra burden added
to the inference procedure. Our major contributions in this
paper are summarized as:

• We introduce a discriminative feature refinement (DFR)
method to enhance the feature representation ability
for 1-bit detectors on TOD, which is technically im-

plemented by maximizing the mutual information be-
tween the intermediate feature and the input under the
information bottleneck (IB) principle.

• We develop a new decoder network with a foreground
mask to enhance the discriminative ability of high-level
target features while simultaneously suppressing the
negative impact from the clutter background.

• We compare our DFR-Det against state-of-the-art 1-bit
detectors on various TOD datasets. Extensive results
reveal that our DFR-Det outperforms state-of-the-art
methods by a large margin. For instance, the FCOS
detector using the ResNet-18 backbone obtained by
DFR-Det achieves 12.8% AP on AI-TOD, achieving a
new state-of-the-art.

2. Related Work
1-bit Detecters. BiDet (Wang et al., 2020) effectively lever-
ages binarized convolutions by eliminating foreground re-
dundancy, thus fully exploiting their representational capac-
ity. This introduces an information bottleneck that restricts
the data in high-level feature maps while maximizing mu-
tual information between feature maps and object detection.
LWS-Det (Xu et al., 2021) introduces a layer-wise search-
ing approach, minimizing angular and amplitude errors for
1-bit detectors. Additionally, LWS-Det utilizes FGFI (Wang
et al., 2019) to further distill the backbone feature map.
The IDa-Det (Xu et al., 2022c) proposed an information
discrepancy-aware distillation (IDa) method for 1-bit detec-
tors. The IDa method localizes the distillation desired area
with maximum information discrepancy, thus improving the
effectiveness of distillation process.

Tiny Object Detection. Most current approaches for TOD
can be grouped into four main categories: data augmenta-
tion, multi-scale feature learning, training strategy for tiny
objects, and feature enhancement strategy.

In addition to conventional data augmentations, such as
rotating, flipping images, and upsampling, Krisantal et
al. (Kisantal et al., 2019) sought to enhance TOD perfor-
mance by oversampling images that contain tiny objects
and copy-pasting them. One conventional approach is to
resize input images into different scales and train individual
detectors at a particular scale range. To reduce the computa-
tion costs, some works (Liu et al., 2016; Lin et al., 2017a;
Zhao et al., 2019) construct feature-level pyramids. For
instance, SSD (Liu et al., 2016) detects objects from feature
maps of different resolutions. Feature Pyramid Network
(FPN) (Lin et al., 2017a) constructs a top-down structure
with lateral connections to combine feature information
of different scales for improving object detection perfor-
mance. Subsequently, lots of techniques have endeavored
to enhance FPN’s performance, such as PANet (Liu et al.,
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Figure 3. Overview of the proposed DFR-Det method with 1-bit FCOS framework. A sequence of feature maps with varying resolutions
is generated by inputting the image to the backbone and Feature Pyramid Network (FPN). We feed the P3, P4, and P5 layer of feature
into the proposed decoder network and generate the reconstructed image ϕ(F ). We then refine the foreground feature based on the ground
truth mask. For better illustration, we brighten the image and select a patch in the figure.

2018a), BiFPN (Cai et al., 2018), and Recursive-FPN (Qiao
et al., 2021). TridentNet (Li et al., 2019) builds multiple
detection heads with diverse receptive fields to produce that
are specific to certain scales.

Object detectors usually end with unsatisfactory perfor-
mance on tiny objects and large objects simultaneously.
Inspired by this fact, SNIP (Singh & Davis, 2018) and
SNIPER (Singh et al., 2018) are designed to selectively train
objects within a particular scale range. In addition, Kim et
al. (Kim et al., 2018) introduced a scale-aware network that
maps the features of different spaces onto a scale-invariant
subspace, making detectors more robust to scale variation.
Several techniques have been proposed to enhance the fea-
ture representation of small objects, such as super-solution
and GAN. For example, PGAN (Li et al., 2017) introduces
a GAN for small object detection. Bai et al. (Bai et al.,
2018) proposed MT-GAN, which uses image-level super-
resolution to improve small RoI features.

Unlike the methods above, we introduce a discriminative
feature refinement strategy as a simple yet effective training
method to improve the feature discriminative ability for 1-
bit detectors from a new perspective. Also, our DFR-Det
avoids any inference burden and can be easily combined
with other enhancements for a better TOD task.

3. Methodology
In this section, we first overview the 1-bit detectors and
design our objective under the IB principle. Then, we intro-
duce a decoder network to improve the intermediate feature
representation based on the input. Finally, we design a bi-

nary mask using the ground truth to decouple the foreground
part, specifically designed to enhance the discriminative rep-
resentation ability on tiny objects.

3.1. Problem Formulation

Preliminaries. In a specific convolutional layer, where
w represents the weights, ain ∈ RCin×Win×Hin denotes
the input feature maps, and aout ∈ RCout×Wout×Hout is
the output feature maps, where Cin and Cout denote the
number of channels, and (H,W ) represent the height and
width of the feature maps, with K indicating the kernel size.
We then have

aout = ain ⊗w, (1)

where ⊗ represents the convolution operation. For sim-
plicity, we exclude batch normalization (BN) and activa-
tion layers. The objective of the 1-bit model is to quan-
tize w and ain into bw ∈ {−1,+1}Cout×Cin×K×K and
bain ∈ {−1,+1}Cin×H×W using efficient XNOR and Bit-
count operations to replace full-precision operations. Fol-
lowing (Courbariaux et al., 2015; 2016), the forward process
of the 1-bit detector is

aout = α ◦ bain ⊙ bw, (2)

where ⊙ represents the XNOR and bit-count opera-
tions, and ◦ denotes channel-wise multiplication. α =
[α1, · · · , αCout

] ∈ R+ is the vector consisting of channel-
wise scale factors. b = sign(·) denotes the binarized vari-
able using the sign function, which returns one if the input
is greater than zero and -1 otherwise. It then goes through
several non-linear layers, such as BN layer, non-linear ac-
tivation layer, and max-pooling layer. We omit these for
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simplification. Afterward, the output aout is binarized to
baout via the sign function. The fundamental objective of
BNNs is calculating w. We aim for it to be as close as
possible before and after binarization to minimize the bi-
narization effect. Then, we define the reconstruction error
as

LR(w,α) =
1

2
∥w −α ◦ bw∥22, (3)

which is employed for all 1-bit convolution layers.

The 1-bit convolution shown in Eq. (2) possesses limited rep-
resentation capacity compared with real-valued operations
in Eq. (1), as revealed in multiple works (Liu et al., 2018b;
Qin et al., 2020). Consequently, 1-bit detectors based on
1-bit convolutions show limited feature representation in
the intermediate layers (Xu et al., 2021; 2022c). As shown
in Fig. 2, such representation degradation leads to implicit
foreground information, which needs to be refined for better
detection results.

Objective Formulation. We start with a new perspective
of the information bottleneck (IB) principle (Shwartz-Ziv &
Tishby, 2017) to explore our framework. The IB advocates
minimizing data misfitting and model complexity in concert
such that the task-irrelevant information can be well dimin-
ished for better performance. A discriminative foreground
representation is significant because the background infor-
mation is often useless and disruptive and overwhelmingly
takes up the feature space in tiny object detection.

Given an input three-channel image X ∈ R3×W×H , the
conventional IB principle is written as:

min
θB ,θD

I(X;F )− δI(F ; yGT ), (4)

where F ∈ RC×W
s ×H

s is the high-level feature maps from
the neck of the detector, s denotes the down-sampling stride,
and yGT denotes the ground-truth, θB and θD are the param-
eters of backbone and detection part in student respectively.
Meanwhile, the δ is a Lagrange multiplier (Shwartz-Ziv
& Tishby, 2017). The I(·) returns the mutual information
between input variables. With I(f ; yGT ) maximizing the
mutual information between the features and ground truths,
the first item I(X; f) minimizes the mutual information be-
tween the input image and the high-level feature maps of the
decoder to control the noise introduction. This part can be
treated as the combination of original detection loss and the
reconstruction error in Eq. (3) of the 1-bit detectors (Wang
et al., 2020).

However, Eq. (4) shows its ineffectiveness for tiny object
detection. The main reason lies in the unbalanced propor-
tion of foreground and background features. Conventional
CNNs fail to extract the discriminative foreground feature
from the cluttered background without a unique design for
unbalanced tiny objects. Consequently, it leads to less dis-
criminative high-level features for the target and suffers

from a cluttered background. As a result, the second item
I(F ; yGT ) is hard to maximize due to the less discrimina-
tive feature F . To address this issue, we reformulate the
objective as:

min
θB ,θD

I(X;F )− δI(F ; yGT )− λI(ϕ(F );Xf ), (5)

where we add an additional item I(F ;Xf ) to refine the fore-
ground information. Xf denotes the foreground information
of the input image and ϕ(·) denotes a decoder network to
keep the shape identical. More specifically, I(ϕ(F ), Xf ) is
approximated to I(ϕ(Ff );Xf ) + I(ϕ(Fb); 0), as the fore-
ground and background feature are spatially mutually ex-
clusive. The first item I(Ff ;Xf ) denotes activating the
foreground representation and reducing the foreground in-
formation degradation during feature extraction. The sec-
ond item I(ϕ(Fb); 0) is used to denoise the background
feature and discriminate the foreground feature from targets.
I(ϕ(Fb); 0) = 0 is equivalent with ∥ϕ(Fb)∥1 = 0.

3.2. The Decoder Framework

Considering the foreground and background features are
hard to decouple during inference, we start with the vanilla
intermediate feature F . Under the IB principle, we use
mutual information between intermediate feature F and
input image X , which is formulated as

I(ϕ(F );Xf ) = H(ϕ(F ))−H(ϕ(F )|Xf ), (6)

where H(·) returns the information entropy. Considering
the self-information entropy H(ϕ(F )) remains unchanged
within each iteration, H(ϕ(F )) can be regarded as a con-
stant. However, evaluating such information items directly
is challenging since the input data X and intermediate fea-
ture F are not identically shaped. Inspired by several prior
works (Talebi & Milanfar, 2021; Cui et al., 2022), we then
introduce a decoder network to decode the intermediate fea-
ture and quantify the mutual information. Fig. 3 illustrates
how to implement our decoder on FCOS (Tian et al., 2019).
Given a down-sampled feature map group F ∈ RC×W

s ×H
s ,

we first input them into corresponding deconvolution and
bilinear interpolation operations to up-sample them to the
size of C × W

4 × H
4 . Then, we concatenate the intra-group

features alongside the channel dimension. We introduce
the sequence of residual blocks to extract the feature fol-
lowing (Talebi & Milanfar, 2021). Finally, we squeeze the
channel dimension to 12 using a linear layer and feed the
feature into a 2× pixel shuffle layer (Shi et al., 2016) to gen-
erate the reconstructed image. After the decoder network
ϕ(·) is accomplished, we thus get the reconstructed image
ϕ(F ) ∈ R3×W×H , which is equally shaped as the input
image X .
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3.3. Foreground Information Refinement

First, we propose to refine the foreground information based
on a binary mask. Given the reconstructed response of size
3×W ×H , we first generate the binary mask M according
to the ground truth box B as

Mi,j = 1[(i, j) ∈ B], (7)

where M ∈ {0, 1}W×H . The indicative function 1[(i, j) ∈
B] denotes the value of location (i, j) is 1 if it belongs to an
object and 0 otherwise. Then, we use the generated binary
mask to reformulate the IB objective as

I(ϕ(F );Xf ) = I(ϕ(F );M ⊛X)

= H(ϕ(F ))−H(ϕ(F )|M ⊛X),
(8)

where ⊛ denotes Hadamard product with broadcasting.
H(ϕ(F )|M ⊛ X) is implicit since the conditional distri-
bution is hardly computed. Alternatively, we minimize the
ℓ1 norm distance between ϕ(F ) and M ⊛X following the
super-resolution tasks (Farsiu et al., 2004). Then, we use
the generated binary mask to decouple the supervision for
discriminative feature refinement as

LDFR(ϕ(F ), X;M) = ∥ϕ(F )−M ⊛X∥1, (9)

where LDFR denotes the proposed discriminative feature
refinement loss.

Here, we analyze our foreground refinement loss in detail.
The input image (also the label for super-resolution) is de-
coupled by a generated mask M . Hence, the proposed
foreground refinement loss can be decoupled as

LDFR(ϕ(F ), X;M) = ∥ϕ(Ff )−Xf∥1+∥ϕ(Fb)∥1, (10)

where ϕ(Ff ) and ϕ(Fb) are the reconstructed foreground
and background feature, respectively. Accordingly, we opti-
mize the detector based on the total loss as:

L = Ldetection + γLR︸ ︷︷ ︸
I(X;F )−δI(F ;yGT )

+ λ( ∥ϕ(Ff )−Xf∥1︸ ︷︷ ︸
−I(ϕ(Ff );Xf )

+ ∥ϕ(Fb)∥1︸ ︷︷ ︸
−I(ϕ(Fb);0)

),

(11)
where γ and λ are balanced hyper-parameters and Ldetection

is the original detection loss.

4. Experiments
Our DFR-Det is evaluated first on AI-TOD (Wang et al.,
2021) dataset for the tiny object detection task. Then, we
evaluate DFR-Det on the TinyPerson (Yu et al., 2020) and
DOTA-v2.0 (Ding et al., 2021). In this section, we first
introduce the implementation details of DFR-Det. Then, we
select the hyper-parameter and validate the effectiveness of
the components in the ablation study. Finally, we compare
our method with state-of-the-art 1-bit detectors on various
datasets to demonstrate the superiority of our DFR-Det.

4.1. Datasets and Implementation Details

Datasets. We evaluate the proposed method on AI-
TOD (Wang et al., 2021), DOTA-v2.0 (Xia et al., 2018) and
TinyPerson (Yu et al., 2020). The main experiments were
conducted using the AI-TOD dataset, which presented a sig-
nificant challenge to tiny object detection. The dataset com-
prises 28,036 aerial images with 800×800 pixels, featuring
700,621 object instances distributed across eight categories.
The average object size in AI-TOD is merely 12.8 pixels,
significantly smaller than other object detection datasets
such as PASCAL VOC (156.6 pixels) (Everingham et al.,
2009), MS COCO (99.5 pixels) (Lin et al., 2014).

The DOTA-v2.0 (Xia et al., 2018) dataset significantly ad-
vances object detection and aerial imagery analysis. De-
signed to meet contemporary computer vision research’s
escalating demands, this dataset is an essential resource for
scholars and practitioners alike. Comprising a diverse array
of high-resolution aerial images, the DOTA-v2.0 dataset
encapsulates real-world scenarios across various landscapes
and terrains, reflecting the challenges intrinsic to object
detection tasks in complex environments. The dataset en-
compasses a meticulously curated collection of annotated
objects, encompassing a broad spectrum of categories, sizes,
and orientations. Each annotation is meticulously refined,
contributing to a meticulously tailored benchmark that tran-
scends the boundaries of its predecessor.

Implementation Details. We conduct the experiments on
a computer with 1 NVIDIA RTX 3090 GPU, utilizing Py-
Torch (Paszke et al., 2019) for code construction. The
DFR-Det is built with three mainstream object detectors,
i.e., two-stage Faster-RCNN (Ren et al., 2015) and one-
stage FCOS (Tian et al., 2019) and RetinaNet (Lin et al.,
2017b). We utilize ResNet-18 (He et al., 2016) as the back-
bone, which is pre-trained on ImageNet (Krizhevsky et al.,
2012). Following (Wang et al., 2020), we modify the net-
work of ResNet-18 with an extra shortcut and PReLU (He
et al., 2015). We binarize all convolution and FC layers
except for the 1-st layer, shortcut layer, and last layers. The
decoder network keeps real-valued during training and is
not involved in the inference stage. All models are trained
using the Stochastic Gradient Descent (SGD) optimizer for
12 epochs with 0.9 momentum, 0.0001 weight decay, and
batch size of two. The initial learning rate is set to 0.005
and decays at the 8-th and 11-th epochs.

In the inference stage, we use the preset score of 0.05 to
filter out background bounding boxes, and NMS is ap-
plied with the IoU threshold of 0.5. We use the evalua-
tion metric from the AI-TOD (Wang et al., 2021) dataset,
which includes several metrics such as AP, AP0.5, AP0.75,
APvt, APt, APs, and APm. The AP score is calculated
by averaging mAP across different IoU thresholds, where
IoU ∈ {0.5, 0.55, · · · , 0.95}. Additionally, AP0.5 and
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Figure 4. On AI-TOD, we select λ and γ for our DFR-Det method.

AP0.75 correspond to the APs at IoU thresholds of 0.5 and
0.75, respectively. We also use APvt, APt, APs, and APm

metrics to evaluate objects of very tiny (2-8 pixels), tiny
(8-16 pixels), small (16-32 pixels), and medium (32-64 pix-
els) scales. Such criterion is also applied to experiments on
DOTA-v2.0 (Xia et al., 2018).

4.2. Ablation Study

Hyper-Parameter Selection. As mentioned, we select
hyper-parameters γ and λ in this part using the FCOS (Tian
et al., 2019) with ResNet-18 backbone. We show the model
performance (AP) with different setups of hyper-parameters
λ and γ in Fig. 4, where we conduct ablative experiments
on the baseline detector. The performances increase first
and then decrease with the increase of γ from left to right.
Since γ controls the proportion of the applied reconstruction
error for the binarization process, we find the 1-bit FCOS
achieves the best performance when γ is set as 1e-4. Thus,
we set γ as 1e-4 for an extended ablation study. For the λ
controlling discriminative feature refinement loss, we show
that the vanilla baseline (λ = 0) performs worse than any
versions with discriminative feature refinement loss (λ > 0),
showing the proposed loss is necessary. With the varying
value of λ, we find λ = 0.04 boosts the performance of our
DFR, achieving 12.8% mAP on AI-TOD using the FCOS
detector. Based on the ablative study above, we set hyper-
parameter λ as 0.04 for the experiments in this paper.

Effectiveness of Components. We show quantitative im-
provements of components in the DFR method in Tab. 1.
We first reveal the impact of levels of decoded features. On
1-bit FCOS using the P2 ∼ P6 features for detection, we
first separately select the single-level features from P2 to P6.
As seen in the first seven rows, singly decoding the features
from P2 to P4 positively affects the performance. However,
decoding the features of P5 and P6 defects the baseline.

Table 1. The effects of different components in DFR-Det with 1-
bit FCOS framework on AI-TOD dataset. We evaluate different
decoded features and formulation of foreground refinement loss
function with {γ, λ} set as {1e− 4, 0.05}.

Method
Decoded
feature

Formulation
of LDFR

AP

Baseline % % 10.1

Baseline + DFR

P2

Eq. (10)

10.9
P3 10.6
P4 10.2
P5 9.8
P6 9.1

Baseline + DFR
{P2, P3}

Eq. (10)
12.0

{P2, P3, P5} 11.7
{P2, P3, P6} 11.1

Baseline + DFR
{P2, P3, P4} ∥ϕ(F )−X∥1 10.6
{P2, P3, P4} ∥ϕ(Ff )−Xf∥1 11.2
{P2, P3, P4} ∥ϕ(Fb)∥1 11.7

Baseline + DFR
(DFR-Det) {P2, P3, P4} Eq. (10) 12.8

Then, we evaluate the combination of different levels of
features. As can be seen in the following lines, decoding
feature group {P2, P3, P4} boosts the baseline most, up to
2.7%. This enlightens us on deploying the decoder network
from the largest-scaled feature to the P4 level.

After finding the optimal feature group for discrimina-
tive refinement, we further validate the rationality of the
proposed discriminative feature refinement loss (Ldfr in
Eq. (10)). Intuitively, a straightforward solution is to fully
consider the entire image as ∥ϕ(F ) −X∥1 (equivalent as
∥ϕ(Ff )−Xf∥1+∥ϕ(Fb)−Xb∥1), which shows less effec-
tiveness with only 0.5% performance improvement gained.
This inspires us that an attended region refinement is desired.
We further show the situation when only foreground is con-
sidered, i.e., ∥ϕ(Ff )−Xf∥1. As seen in the last two lines,
this equation brings 0.5% performance improvement, de-
feating the complete imitation. This reveals that foreground
reconstruction boosts the network, whereas the background
information defects it. Then, we aim to regularize the back-
ground information based on ∥ϕ(Fb)∥1, which significantly
brings a 1.6% performance gain. Inspired by the above
phenomenons, we find the proposed discriminative feature
refinement loss (Eq. (10)) achieves an outstanding 2.7% per-
formance improvement, which subtly validates our theory
and derivations.

4.3. Results on AI-TOD

We first compared our method with other state-of-the-art
BNN ReActNet (Liu et al., 2020), as well as the 1-bit detec-
tors BiDet (Wang et al., 2020), LWS-Det (Xu et al., 2021),
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Table 2. Main results with various frameworks ResNet-18 backbone on AI-TOD. Note that models are trained on the AI-TOD trainval
and validated on the AI-TOD test. We report APs (%) with different IoU thresholds and APs (%) for objects of various sizes based on
the AI-TOD criterion. The bold denotes the best result.

Framework Method #Bits Size(MB) OPs(G) AP AP0.5 AP0.75 APvt APt APs APm

FCOS

Real-valued 32-32 76.44 318.25 13.5 31.3 9.2 5.0 15.5 16.9 17.2
LSQ 4-4 21.37 55.88 12.7 31.5 7.9 4.3 14.0 16.2 17.3

ReActNet

1-1 15.47 23.08

7.9 19.5 4.0 1.3 8.6 9.9 10.1
BiDet 8.2 20.7 4.6 1.8 9.2 10.9 10.7

LWS-Det 9.0 23.1 5.0 2.2 10.4 11.6 11.1
IDa-Det 10.7 27.8 6.2 3.4 11.9 14.0 14.2

DFR-Det 12.8 32.5 7.7 4.8 13.7 16.4 17.7

RetinaNet

Real-valued 32-32 79.73 321.16 11.3 30.1 7.6 3.4 12.9 16.5 20.6
LSQ 4-4 21.78 56.25 10.4 29.9 7.2 3.2 12.3 15.8 20.4

ReActNet

1-1 15.57 23.13

6.1 18.9 3.9 1.3 8.0 9.7 11.8
BiDet 7.1 20.7 4.6 1.7 8.9 10.7 14.9

LWS-Det 8.4 23.7 5.3 2.1 9.9 12.1 16.3
IDa-Det 9.1 27.4 6.1 2.7 10.6 14.7 18.8

DFR-Det 10.6 29.6 7.1 3.2 12.6 16.0 20.1

Faster-RCNN

Real-valued 32-32 113.26 102.83 10.2 24.7 6.8 0.0 7.8 20.1 28.5
LSQ 4-4 22.19 28.96 9.1 21.7 5.7 0.0 7.2 18.7 25.9

ReActNet

1-1 16.78 19.72

4.8 14.5 3.2 0.0 4.5 10.1 17.9
BiDet 5.9 15.2 3.6 0.0 4.9 11.2 18.8

LWS-Det 6.9 17.4 3.9 0.0 5.2 13.7 20.1
IDa-Det 7.8 19.6 4.6 0.0 5.6 16.0 23.4

DFR-Det 8.6 20.7 5.3 0.4 6.4 17.1 24.8

and IDa-Det (Xu et al., 2022c), using the AI-TOD bench-
mark (Xu et al., 2022a). We also report the detection result
of the 4-bit quantization method LSQ (Esser et al., 2019) for
reference. We evaluate the proposed DFR-Det method with
various detectors using ResNet-18 (He et al., 2016) back-
bone and the P2∼P6 feature of FPN (Lin et al., 2017a) for
detection. Tab. 2 compares several quantization approaches
and detection frameworks regarding computing complex-
ity, storage cost, and the mAP. Our DFR-Det significantly
accelerates computation and reduces storage requirements
for various detectors. We follow BiDet (Wang et al., 2020)
to calculate memory usage, which is calculated by adding
32× the number of full-precision kernels and 1× the num-
ber of binary kernels in the networks. The number of float
operations (FLOPs) is calculated in the same way as Bi-
Real-Net (Liu et al., 2018b). The current CPUs can handle
both bit-wise XNOR and bit-count operations in parallel.
The number of real-valued FLOPs plus 1

64 of the number of
1-bit multiplications equals OPs.

FCOS: Compared with the state-of-the-art 1-bit methods,
our DFR-Det outperforms other methods by significant mar-
gins. As shown in the 2-nd∼9-th rows of Tab. 2, with the
FCOS (Tian et al., 2019) framework, our DFR-Det improves
the AP by 4.6%, 3.8%, and 2.1% compared with state-of-the-
art BiDet, LWS-Det, and IDa-Det, respectively. Compared

with the vanilla real-valued counterpart, the proposed DFR-
Det achieves comparable performance as real-valued FCOS
with apparent computation acceleration and storage sav-
ings by 13.79× and 4.94×. The above results are of great
significance in the real-time inference of object detection.

RetinaNet: We further validate the effectiveness of DFR-
Det on the RetinaNet (Lin et al., 2017b) framework. In the
10-th to 17-th rows of Tab. 2, it is evident that utilizing the
RetinaNet framework, our DFR-Det demonstrates improve-
ments in AP by 3.5%, 2.2%, and 1.5% when compared to
the state-of-the-art methods BiDet, LWS-Det, and IDa-Det,
respectively. Compared to the standard real-valued model,
DFR-Det performs on par with the real-valued RetinaNet
while significantly accelerating computation and saving stor-
age by 13.88× and 5.12×, respectively.

Faster-RCNN: Finally, we extend DFR-Det to the two-
stage Faster-RCNN (Lin et al., 2017b) for effectiveness
assessment. In the bottom rows of Tab. 2, it is evident that
when integrated into the Faster-RCNN framework, DFR-Det
showcases improvements in AP by 2.7%, 1.7%, and 0.8%,
surpassing the state-of-the-art methods BiDet, LWS-Det,
and IDa-Det, respectively. Compared to the standard real-
valued model, DFR-Det achieves comparable performance
to real-valued RetinaNet, all while significantly accelerating
computation and saving storage by 5.21× and 6.75×.
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Figure 5. We visualize the detection result of (a) Baseline and (b) DFR-Det. The green, blue, and red boxes denote true positive, false
positive, and false negative, respectively.

Table 3. Results with various frameworks using ResNet-18 backbone on DOTA-v2.0. Models are trained on the DOTA-v2.0 train and
validated on the DOTA-v2.0 val. We report APs (%) with different IoU thresholds and APs (%) for objects in various sizes following the
DOTA-v2.0 benchmark. The bold denotes the best result.

Framework Method #Bits Size(MB) OPs(G) AP AP0.5 AP0.75 APvt APt APs APm

FCOS

Real-valued 32-32 76.44 521.34 31.6 55.1 31.4 0.3 4.2 19.6 38.2
BiDet

1-1 15.47 34.65

23.1 49.1 27.6 0.2 2.8 17.9 33.5
LWS-Det 25.9 50.3 28.1 0.3 3.4 16.9 35.0
IDa-Det 28.7 52.1 29.5 0.3 4.1 18.1 36.4

DFR-Det 30.9 54.8 31.0 0.6 4.6 19.4 37.6

Faster-RCNN

Real-valued 32-32 113.26 157.13 33.7 57.4 55.1 0.0 6.4 26.3 41.3
BiDet

1-1 16.78 32.13

24.6 49.2 26.5 0.0 3.6 20.1 34.3
LWS-Det 26.7 50.4 27.7 0.0 4.5 21.3 35.9
IDa-Det 29.1 52.7 29.8 0.0 5.2 22.9 37.5

DFR-Det 31.1 54.5 31.7 0.3 5.9 24.7 39.2

Moreover, visualization results on the AI-TOD dataset are
shown in Fig. 5. When applying DFR-Det into 1-bit FCOS,
false negative predictions can be significantly eliminated.

4.4. Results on DOTA-V2.0

We further evaluate the proposed DFR-Det on the DOTA-
v2.0 (Ding et al., 2021) dataset containing both a large-scale
variance and a significant number of tiny objects. We com-
pared our method with other state-of-the-art 1-bit detec-
tors BiDet (Wang et al., 2020), LWS-Det (Xu et al., 2021),
and IDa-Det (Xu et al., 2022c). As shown in Tab. 3, on
FCOS (Tian et al., 2019) framework, our DFR-Det method
surpasses IDa-Det by 2.2% AP point, a significant improve-
ment in TOD task. Also, on Faster-RCNN (Ren et al., 2015),
the DFR-Det surpasses IDa-Det by 2.0% AP point. Com-
pared to the real-valued models, DFR-Det exhibits a rela-
tively modest performance gap, with only 0.7% and 2.6%
differences on FCOS and Faster-RCNN. Notably, DFR-Det
respectively accelerates the detectors by 15.04× and 4.89×,
which is significant and meaningful for real-time TOD.

In summary, our approach demonstrates superior perfor-

mance over state-of-the-art 1-bit detectors in both AP across
various IoU thresholds and AP for objects of different sizes
on the DOTA-v2.0 dataset. These results highlight the su-
periority and generalization of DFR-Det across a range of
application scenarios.

5. Conclusion
This paper introduces a discriminative feature refinement
for 1-bit detectors (DFR-Det) to enhance the discriminative
ability of foreground representation for tiny objects in aerial
images. Our approach obtains a more distinctive representa-
tion of tiny objects within the information bottleneck (IB)
principle by mimicking how human beings filter background
regions and focus on the differences between the target and
the background when perceiving tiny objects. To achieve
this, we design a new decoder with a foreground-aware mask
to enhance the discriminative ability of high-level features
for the target while suppressing the background impact. The
proposed method’s effectiveness is demonstrated through
extensive experiments on three datasets, which show that
our DFR-Det achieves new state-of-the-art results.
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