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Abstract
We present the Neural Covidex, a search en-
gine that exploits the latest neural ranking ar-
chitectures to provide information access to
the COVID-19 Open Research Dataset curated
by the Allen Institute for AI. This web appli-
cation exists as part of a suite of tools that
we have developed over the past few weeks to
help domain experts tackle the ongoing global
pandemic. We hope that improved information
access capabilities to the scientific literature
can inform evidence-based decision making
and insight generation. This paper describes
our initial efforts and offers a few thoughts
about lessons we have learned along the way.

1 Introduction

As a response to the worldwide COVID-19 pan-
demic, on March 13, 2020, the Allen Institute for
AI released the COVID-19 Open Research Dataset
(CORD-19) in partnership with a coalition of re-
search groups.1 With weekly updates since the
initial release, the corpus currently contains over
47,000 scholarly articles, including over 36,000
with full text, about COVID-19 and coronavirus-
related research more broadly (for example, SARS
and MERS), drawn from a variety of sources in-
cluding PubMed, a curated list of articles from
the WHO, as well as preprints from bioRxiv and
medRxiv. The stated goal of the effort is “to mobi-
lize researchers to apply recent advances in natural
language processing to generate new insights in
support of the fight against this infectious disease”.
We responded to this call to arms.

In approximately two weeks, our team was able
to build, deploy, and share with the research com-
munity a number of components that support infor-
mation access to this corpus. We have also as-
sembled these components into two end-to-end

1https://pages.semanticscholar.org/
coronavirus-research

search applications that are available online at
covidex.ai: a keyword-based search engine that
supports faceted browsing and the Neural Covidex,
a search engine that exploits the latest advances in
deep learning and neural architectures for ranking.
This paper describes our initial efforts.

We have several goals for this paper: First, we
discuss our motivation and approach, articulating
how, hopefully, better information access capabil-
ities can contribute to the fight against this global
pandemic. Second, we provide a technical descrip-
tion of what we have built. Previously, this infor-
mation was scattered on different web pages, in
tweets, and ephemeral discussions with colleagues
over video conferences and email. Gathering all
this information in one place is important for other
researchers who wish to evaluate and build on our
work. Finally, we reflect on our journey so far—
discussing the evaluation of our system and offer-
ing some lessons learned that might inform future
efforts in building technologies to aid in rapidly
developing crises.

2 Motivation and Approach

Our team was assembled on March 21, 2020 over
Slack, comprising members of two research groups
from the University of Waterloo and New York Uni-
versity. This was a natural outgrowth of existing
collaborations, and thus we had rapport from the
very beginning. Prior to these discussions, we had
known about the CORD-19 dataset, but had not yet
undertaken any serious attempt to build a research
project around it.

Motivating our efforts, we believed that informa-
tion access capabilities (search, question answering,
etc.)—broadly, the types of technologies that our
team works on—could be applied to provide users
with high-quality information from the scientific lit-
erature, to inform evidence-based decision making

https://pages.semanticscholar.org/coronavirus-research
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covidex.ai


and to support insight generation. Examples might
include public health officials assessing the effi-
cacy of population-level interventions, clinicians
conducting meta-analyses to update care guidelines
based on emerging clinical studies, virologist prob-
ing the genetic structure of COVID-19 in search of
vaccines. We hope to contribute to these efforts by
building better information access capabilities and
packaging them into useful applications.

At the outset, we adopted a two-pronged strat-
egy to build both end-to-end applications as well
as modular, reusable components. The intended
users of our systems are domain experts (e.g., clini-
cians and virologists) who would naturally demand
responsive web applications with intuitive, easy-to-
use interfaces. However, we also wished to build
component technologies that could be shared with
the research community, so that others can build
on our efforts without “reinventing the wheel”. To
this end, we have released software artifacts (e.g.,
Java package in Maven Central, Python module
on PyPI) that encapsulate some of our capabilities,
complete with sample notebooks demonstrating
their use. These notebooks support one-click repli-
cability and provide a springboard for extensions.

3 Technical Description

Multi-stage search architectures represent the
most common design for modern search en-
gines, with work in academia dating back over a
decade (Matveeva et al., 2006; Wang et al., 2011;
Asadi and Lin, 2013). Known production deploy-
ments of this architecture include the Bing web
search engine (Pedersen, 2010) as well as Alibaba’s
e-commerce search engine (Liu et al., 2017).

The idea behind multi-stage ranking is straight-
forward: instead of a monolithic ranker, ranking
is decomposed into a series of stages. Typically,
the pipeline begins with an initial retrieval stage,
most often using “bag of words” queries against
an inverted index. One or more subsequent stages
reranks and refines the candidate set successively
until the final results are presented to the user.

This multi-stage ranking design provides a nice
organizing structure for our efforts—in particular,
it provides a clean interface between basic key-
word search and subsequent neural reranking com-
ponents. This allowed us to make progress inde-
pendently in a decoupled manner, but also presents
natural integration points.

3.1 Modular and Reusable Keyword Search

In our design, initial retrieval is performed by the
Anserini IR toolkit (Yang et al., 2017, 2018),2

which we have been developing for several years
and powers a number of our previous systems that
incorporates various neural architectures (Yang
et al., 2019; Yilmaz et al., 2019). Anserini rep-
resents an effort to better align real-world search
applications with academic information retrieval
research: under the covers, it builds on the popular
and widely-deployed open-source Lucene search
library, on top of which we provide a number of
missing features for conducting research on mod-
ern IR test collections.

Anserini provides an abstraction for document
collections, and comes with a variety of adaptors
for different corpora and formats: web pages in
WARC containers, XML documents in tarballs,
JSON objects in text files, etc. Providing simple
keyword search over CORD-19 required only writ-
ing an adaptor for the corpus that allows Anserini to
ingest the documents. We were able to implement
such an adaptor in a short amount of time.

However, one important issue that immediately
arose with CORD-19 concerned the granularity of
indexing, i.e., what should we consider a “docu-
ment”, as the “atomic unit” of indexing and re-
trieval? One complication stems from the fact
that the corpus contains a mix of articles that vary
widely in length, not only in terms of natural varia-
tions, but also because the full text is not available
for some documents. It is well known in the IR
literature, dating back several decades (e.g., Sing-
hal et al. 1996), that length normalization plays an
important role in retrieval effectiveness.

Here, however, the literature does provide some
guidance: previous work (Lin, 2009) showed that
paragraph-level indexing can be more effective
than the two other obvious alternatives of (a) in-
dexing only the title and abstract of articles and
(b) indexing each full-text article as a single, in-
dividual document. Based on this previous work,
in addition to the two above conditions (for com-
parison purposes), we built (c) a paragraph-level
index as follows: each full text article is segmented
into paragraphs (based on existing annotations),
and for each paragraph, we create a “document”
for indexing comprising the title, abstract, and that
paragraph. Thus, a full-text article comprising n
paragraphs yields n+1 separate “retrievable units”

2http://anserini.io/
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in the index. To be consistent with standard IR
parlance, we call each of these retrieval units a
document, in a generic sense, despite their com-
posite structure. An article for which we do not
have the full text is represented by an individual
document in this scheme. Note that while fielded
search (dividing the text into separate fields and
performing scoring separately for each field) can
yield better results, for expediency we did not im-
plement this. Following best practice, documents
are ranked using the BM25 scoring function.

Based on “eyeballing the results” using sample
information needs (manually formulated into key-
word queries) from the Kaggle challenge associ-
ated with CORD-19,3 results from the paragraph
index did appear to be better (see Section 4 for
more discussion). In particular, the full-text index,
i.e., condition (b) above, overly favored long ar-
ticles, which were often book chapters and other
material of a pedagogical nature, less likely to be
relevant in our context. The paragraph index often
retrieves multiple paragraphs from the same article,
but we consider this to be a useful feature, since
duplicates of the same underlying article can pro-
vide additional signals for evidence combination
by downstream components.

Since Anserini is built on top of Lucene, which
is implemented in Java, our tools are designed
to run on the Java Virtual Machine (JVM). How-
ever, TensorFlow (Abadi et al., 2016) and Py-
Torch (Paszke et al., 2019), the two most popu-
lar neural network toolkits, use Python as their
main language. More broadly, Python—with its
diverse and mature ecosystem—has emerged as the
language of choice for most data scientists today.
Anticipating this gap, our team had been working
on Pyserini,4 Python bindings for Anserini, since
late 2019. Pyserini is released as a Python module
on PyPI and easily installable via pip.5

Putting all the pieces together, by March 23, a
scant two days after the formation of our team,
we were able release modular and reusable base-
line keyword search components for accessing the
CORD-19 collection.6 Specifically, we shared pre-
built Anserini indexes for CORD-19 and released

3https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

4http://pyserini.io/
5https://pypi.org/project/pyserini/
6https://twitter.com/lintool/status/

1241881933031841800

updated version of Anserini (the underlying IR
toolkit, as a Maven artifact in the Maven Central
Repository) as well as Pyserini (the Python inter-
face, as a Python module on PyPI) that provided
basic keyword search. Furthermore, these capa-
bilities were demonstrated in online notebooks, so
that other researchers can replicate our results and
continue to build on them.

Finally, we demonstrated, also via a notebook,
how basic keyword search can be seamlessly in-
tegrated with modern neural modeling techniques.
On top of initial candidate documents retrieved
from Pyserini, we implemented a simple unsuper-
vised sentence highlighting technique to draw a
reader’s attention to the most pertinent passages
in a document, using the pretrained BioBERT
model (Lee et al., 2020) from the HuggingFace
Transformer library (Wolf et al., 2019). We used
BioBERT to convert sentences from the retrieved
candidates and the query (which we treat as a se-
quence of keywords) into sets of hidden vectors.7

We compute the cosine similarity between every
combination of hidden states from the two sets,
corresponding to a sentence and the query. We
choose the top-K words in the context, and then
highlight the top sentences that contain those words.
Despite its unsupervised nature, this approach ap-
peared to accurately identify pertinent sentences
based on context. Originally meant as a simple
demonstration of how keyword search can be seam-
lessly integrated with neural network components,
this notebook provided the basic approach for sen-
tence highlighting that we would eventually deploy
in the Neural Covidex (details below).

3.2 Keyword Search with Faceted Browsing

Python modules and notebooks are useful for fel-
low researchers, but it would be unreasonable to
expect end users (for example, clinicians) to use
them directly. Thus, we considered it a priority
to deploy an end-to-end search application over
CORD-19 with an easy-to-use interface.

Fortunately, our team had also been working
on this, dating back to early 2019. In Clancy et al.
(2019), we described integrating Anserini with Solr,
so that we can use Anserini as a frontend to index
directly into the Solr search platform. As Solr is
also built on Lucene, such integration was not very
onerous. On top of Solr, we were able to deploy

7We used the hidden activations from the penultimate layer
immediately before the final softmax layer.
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Figure 1: Screenshot of our “basic” Covidex keyword search application, which builds on Anserini, Solr, and
Blacklight, providing basic BM25 ranking and faceting browsing.

the Blacklight search interface,8 which is an ap-
plication written in Ruby on Rails. In addition to
providing basic support for query entry and results
rendering, Blacklight also supports faceted brows-
ing out of the box. With this combination—which
had already been implemented for other corpora—
our team was able to rapidly create a fully-featured
search application on CORD-19, which we shared
with the public on March 23 over social media.9

A screenshot of this interface is shown in Fig-
ure 1. Beyond standard “type in a query and get
back a list of results” capabilities, it is worthwhile
to highlight the faceted browsing feature. From
CORD-19, we were able to easily expose facets
corresponding to year, authors, journal, and source.
Navigating by year, for example, would allow a
user to focus on older coronavirus research (e.g., on
SARS) or the latest research on COVID-19, and a
combination of the journal and source facets would
allow a user to differentiate between pre-prints and
the peer-reviewed literature, and between venues
with different reputations.

8https://projectblacklight.org/
9https://twitter.com/lintool/status/

1242085391123066880

3.3 The Neural Covidex

The Neural Covidex is a search engine that takes
advantage of the latest advances in neural ranking
architectures, representing a culmination of our cur-
rent efforts. Even before embarking on this project,
our team had been active in exploring neural ar-
chitectures for information access problems, par-
ticularly deep transformer models that have been
pretrained on language modeling objectives: We
were the first to apply BERT (Devlin et al., 2019)
to the passage ranking problem. BERTserini (Yang
et al., 2019) was among the first to apply deep
transformer models to the retrieval-based question
answering directly on large corpora. Birch (Yilmaz
et al., 2019) represents the state of the art in doc-
ument ranking (as of EMNLP 2019). All of these
systems were built on Anserini.

In this project, however, we decided to incor-
porate our latest work based on ranking with
sequence-to-sequence models (Nogueira et al.,
2020). Our reranker, which consumes the candi-
date documents retrieved from CORD-19 by Py-
serini using BM25 ranking, is based on the T5-base
model (Raffel et al., 2019) that has been modified

https://projectblacklight.org/
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to perform a ranking task. Given a query q and a
set of candidate documents d ∈ D, we construct
the following input sequence to feed into T5-base:

Query: q Document: d Relevant: (1)

The model is fine-tuned to produce either “true” or
“false” depending on whether the document is rele-
vant or not to the query. That is, “true” and “false”
are the ground truth predictions in the sequence-to-
sequence task, what we call the “target words”.

At inference time, to compute probabilities for
each query–document pair (in a reranking setting),
we apply a softmax only on the logits of the “true”
and “false” tokens. We rerank the candidate doc-
uments according to the probabilities assigned to
the “true” token. See Nogueira et al. (2020) for ad-
ditional details about this logit normalization trick
and the effects of different target words.

Since we do not have training data specific to
CORD-19, we fine-tuned our model on the MS
MARCO passage dataset (Nguyen et al., 2016),
which comprises 8.8M passages obtained from the
top 10 results retrieved by the Bing search engine
(based on around 1M queries). The training set
contains approximately 500k pairs of query and
relevant documents, where each query has one rel-
evant passage on average; non-relevant documents
for training are also provided as part of the train-
ing data. Nogueira et al. (2020) and Yilmaz et al.
(2019) had both previously demonstrated that mod-
els trained on MS MACRO can be directly applied
to other document ranking tasks. We hoped that
this is also the case for CORD-19.

We fine-tuned our T5-base model with a con-
stant learning rate of 10−3 for 10k iterations with
class-balanced batches of size 256. We used a max-
imum of 512 input tokens and one output token
(i.e., either “true” or ”false”, as described above).
In the MS MARCO passage dataset, none of the
inputs required truncation when using this length
limit. Training the model takes approximately 4
hours on a single Google TPU v3-8.

For the Neural Covidex, we used the paragraph
index built by Anserini over CORD-19 (see Sec-
tion 3.1). Since some of the documents are longer
than the length restrictions of the model, it is not
feasible to directly apply our method to the en-
tire text at once. To address this issue, we first
segment each document into spans by applying
a sliding window of 10 sentences with a stride
of 5. We then obtain a probability of relevance

for each span by performing inference on it inde-
pendently. We select the highest probability among
these spans as the relevance probability of the docu-
ment. Note that with the paragraph index, keyword
search might retrieve multiple paragraphs from the
same underlying article; our technique essentially
takes the highest-scoring span across all these re-
trieved results as the score for that article to pro-
duce a final ranking of articles. That is, in the final
interface, we deduplicate paragraphs so that each
article only appears once in the results.

A screenshot of the Neural Covidex is shown in
Figure 2. By default, the abstract of each article
is displayed, but the user can click to reveal the
relevant paragraph from that article (for those with
full text). The most salient sentence is highlighted,
using exactly the technique described in Section 3.1
that we initially prototyped in a notebook.

Architecturally, the Neural Covidex is currently
built as a monolith (with future plans to refac-
tor into more modular microservices), where all
incoming API requests are handled by a service
that performs searching, reranking, and text high-
lighting. Search is performed with Pyserini (as
discussed in Section 3.1), reranking with T5 (dis-
cussed above), and text highlighting with BioBERT
(also discussed in Section 3.1). The system is built
using the FastAPI Python web framework, which
was chosen for speed and ease of use.10 The fron-
tend UI is built with React to support the use of
modular, declarative JavaScript components,11 tak-
ing advantage of its vast ecosystem.

The system is currently deployed across a small
cluster of servers, each with two NVIDIA V100
GPUs, as our pipeline requires neural network in-
ference at query time (T5 for reranking, BioBERT
for highlighting). Each server runs the complete
software stack in a simple replicated setup (no par-
titioning). On top of this, we leverage Cloudflare
as a simple load balancer, which uses a round robin
scheme to dispatch requests across the different
servers.12 The end-to-end latency for a typical
query is around two seconds.

On April 2, 2020, a little more than a week after
publicly releasing the basic keyword search inter-
face and associated components, we launched the
Neural Covidex on social media.13

10https://fastapi.tiangolo.com/
11https://reactjs.org/
12https://www.cloudflare.com/
13https://twitter.com/lintool/status/

1245749445930688514
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Figure 2: Screenshot of our Neural Covidex application, which builds on BM25 rankings from Pyserini, neural
reranking using T5, and unsupervised sentence highlighting using BioBERT.

4 Evaluation or the Lack Thereof

It is, of course, expected that papers today have
an evaluation section that attempts to empirically
quantify the effectiveness of their proposed tech-
niques and to support the claims to innovation made
by the authors. Is our system any good? Quite hon-
estly, we don’t know.

At this point, all we can do is to point to previ-
ous work, in which nearly all the components that
comprise our Neural Covidex have been evaluated
separately, in their respective contexts (which of
course is very different from the present applica-
tion). While previous papers support our assertion
that we are deploying state-of-the-art neural mod-
els, we currently have no conclusive evidence that
they are effective for the CORD-19 corpus, previ-
ous results on cross-domain transfer notwithstand-
ing (Yilmaz et al., 2019; Nogueira et al., 2020).

The evaluation problem, however, is far more
complex than this. Since Neural Covidex is, at
its core, a search engine, the impulse would be to
evaluate it as such: using well-established method-
ologies based on test collections—comprising top-
ics (information needs) and relevance judgments

(human annotations). It is not clear if existing
test collections—such as resources from the TREC
Precision Medicine Track (Roberts et al., 2019)
and other TREC evaluations dating even further
back, or the BioASQ challenge (Tsatsaronis et al.,
2015)—are useful for information needs against
CORD-19. If no appropriate test collections ex-
ist, the logical chain of reasoning would compel
the creation of one, and indeed, there are efforts
underway to do exactly this.14

Such an approach—which will undoubtedly
provide the community with valuable resources—
presupposes that better ranking is needed. While
improved ranking would always be welcomed, it
is not clear that better ranking is the most urgent
“missing ingredient” that will address the informa-
tion access problem faced by stakeholders today.
For example, in anecdotal feedback we’ve received,
users remarked that they liked the highlighting that
our interface provides to draw attention to the most
salient passages. An evaluation of ranking, would
not cover this presentational aspect of an end-to-
end system.

14https://dmice.ohsu.edu/hersh/
COVIDSearch.html
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One important lesson from the information re-
trieval literature, dating back two decades,15 is
that batch retrieval evaluations (e.g., measuring
mAP, nNDCG, etc.) often yield very different con-
clusions than end-to-end, human-in-the-loop eval-
uations (Hersh et al., 2000; Turpin and Hersh,
2001). As an example, a search engine that pro-
vides demonstrably inferior ranking might actually
be quite useful from a task completion perspective
because it provides other features and support user
behaviors to compensate for any deficiencies (Lin
and Smucker, 2008).

Even more broadly, it could very well be the case
that search is completely the wrong capability to
pursue. For example, it might be the case that users
really want a filtering and notification service in
which they “register” a standing query, and desire
that a system “push” them relevant information as it
becomes available (for example, in an email digest).
Something along the lines of the recent TREC Mi-
croblog Tracks (Lin et al., 2015) might be a better
model of the information needs. Such filtering and
notification capabilities may even be more critical
than user-initiated search in the present context due
to the rapidly growing literature.

Our point is: we don’t actually know how our
systems (or any of its individual components) can
concretely contribute to efforts to tackle the ongo-
ing pandemic until we receive guidance from real
users who are engage in those efforts. Of course,
they’re all on the frontlines and have no time to
provide feedback. Therein lies the challenge: how
to build improved fire-fighting capabilities for to-
morrow without bothering those who are trying to
fight the fires that already raging in front of us.

Now that we have a basic system in place, our
efforts have shifted to broader engagement with
potential stakeholders to solicit additional guid-
ance, while trying to balance exactly the tradeoff
discussed above. For our project, and for the com-
munity as a whole, we argue that informal “hallway
usability testing” (virtually, of course) is still highly
informative and insightful. Until we have a better
sense of what users really need, discussions of per-
formance in terms of nDCG, BLEU, and F1 (pick
your favorite metric) are premature. We believe
the system we have deployed will assist us in un-
derstanding the true needs of those who are on the
frontlines.

15Which means that students have likely not heard of this
work and researchers might have likely forgotten it.

5 Lessons Learned

First and foremost, the rapid development and de-
ployment of the Neural Covidex and all the as-
sociated software components is a testament to
the power of open source, open science, and the
maturity of the modern software ecosystem. For
example, our project depends on Apache Lucene,
Apache Solr, Project Blacklight, React, FastAPI,
PyTorch, TensorFlow, the HuggingFace Transform-
ers library, and more. These existing projects repre-
sent countless hours of effort by numerous individ-
uals with very different skill sets, at all levels of the
software stack. We are indebted to the contributors
of all these software projects, without which our
own systems could not have gotten off the ground
so quickly.

In addition to software components, our efforts
would not have been possible without the com-
munity culture of open data sharing—starting, of
course, from CORD-19 itself. The Allen Insti-
tute for AI deserves tremendous credit for their
tireless efforts in curating the articles, incremen-
tally expanding the corpus, and continuously im-
prove the data quality (data cleaning, as we all
know, is 80% of data science). The rapid recent
advances in neural architectures for NLP largely
come from transformers that have been pretrained
with language modeling objectives. Pretraining, of
course, requires enormous amounts of hardware re-
sources, and the fact that our community has devel-
oped an open culture where these models are freely
shared has broadened and accelerated advances
tremendously. We are beneficiaries of this sharing.
Pretrained models then need to be fine-tuned for
the actual downstream task, and for search-related
tasks, the single biggest driver of recent progress
has been Microsoft’s release of the MS MARCO
datatset (Nguyen et al., 2016). Without exaggera-
tion, much of our recent work would not exist with
this treasure trove.

Second, we learned from this experience that
preparation matters, in the sense that an emphasis
on good software engineering practices in our re-
search groups (that long predate the present crisis)
have paid off in enabling our team to rapidly re-
target existing components to CORD-19. This is
especially true of the “foundational” components
at the bottom of our stack: Anserini has been in
development for several years, with an emphasis
on providing easily replicable and reusable key-
word search capabilities. The Pyserini interface



to Anserini had also been in development since
late 2019, providing a clean Python interface to
Anserini. While the ability to rapidly explore new
research ideas is important, investments in software
engineering best practices are worthwhile and pay
large dividends in the long run.

These practices go hand-in-hand with open-
source release of software artifacts that allow oth-
ers to replicate results reported in research papers.
While open-sourcing research code has already
emerged as a norm in our community, to us this is
more than a “code dump”. Refactoring research
code into software artifacts that have at least some
semblance of interface abstractions for reusability,
writing good documentation to aid replication ef-
forts, and other thankless tasks consume enormous
amounts of effort—and without a faculty advisor’s
strong insistence, often never happens. Ultimately,
we feel this is a matter of the “culture” of a research
group—and cannot be instilled overnight—but our
team’s rapid progress illustrates that building such
cultural norms is worthwhile.

Finally, these recent experiences have refreshed
a lesson that we’ve already known, but needed re-
minding: there’s a large gap between code for pro-
ducing results in research papers and a real, live,
deployed system. We illustrate with two examples:

Our reranking necessitates computationally-
expensive neural network inference on GPUs at
query time. If we were simply running experi-
ments for a research paper, this would not be a
concern, since evaluations could be conducted in
batch, and we would not be concerned with how
long inference took to generate the results. How-
ever, in a live system, both latency (where we test
the patience of an individual user) and through-
put (which dictates how many concurrent users
we could serve) are critical. Even after the initial
implementation of the Neural Covidex had been
completed—and we had informally shared the sys-
tem with colleagues—it required several more days
of effort until we were reasonably confident that
we could handle a public release, with potentially
concurrent usage. During this time, we focused
on issues such as hardware provisioning, load bal-
ancing, load testing, deploy processes, and other
important operational concerns. Researchers sim-
ply wishing to write papers need not worry about
any of these issues.

Furthermore, in a live system, presentational de-
tails become disproportionately important. In our

initial deployment, rendered text contained arti-
facts of the underlying tokenization by the neu-
ral models; for example, “COVID-19” appeared
as “COVID - 19” with added spaces. Also, we
had minor issues with the highlighting service, in
that sometimes the highlights did not align per-
fectly with the underlying sentences. These were
no doubt relatively trivial matters of software en-
gineering, but in initial informal evaluations, users
kept mentioning these imperfections over and over
again—to the extent, we suspect, that it was dis-
tracting them from considering the underlying qual-
ity of the ranking. Once again, these were issues
that would have never cropped up if our end goal
was to simply write research papers, not deploy a
live system to serve users.

6 Conclusions

This paper describes our initial efforts in build-
ing the Neural Covidex, which incorporates the
latest neural architectures to provide information
access capabilities to AI2’s CORD-19. We hope
that our systems and components can prove useful
in the fight against this global pandemic, and that
the capabilities we’ve developed can be applied to
analyzing the scientific literature more broadly.
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Zürich, Switzerland.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the BIOASQ
large-scale biomedical semantic indexing and ques-
tion answering competition. BMC bioinformatics,
16(1):138.

Andrew Turpin and William R. Hersh. 2001. Why
batch and user evaluations do not give the same re-
sults. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2001),
pages 225–231, New Orleans, Louisiana.

Lidan Wang, Jimmy Lin, and Donald Metzler. 2011.
A cascade ranking model for efficient ranked re-
trieval. In Proceedings of the 34th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2011),
pages 105–114, Beijing, China.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Transformers: State-of-the-art natu-
ral language processing. arXiv:1910.03771.



Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
enabling the use of Lucene for information retrieval
research. In Proceedings of the 40th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2017),
pages 1253–1256, Tokyo, Japan.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
reproducible ranking baselines using Lucene. Jour-
nal of Data and Information Quality, 10(4):Article
16.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 72–77, Minneapolis, Minnesota.

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian
Zhang, and Jimmy Lin. 2019. Cross-domain mod-
eling of sentence-level evidence for document re-
trieval. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3481–3487, Hong Kong, China.


