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ABSTRACT

AI agents are commonly trained with large datasets of demonstrations of human1

behavior. However, not all behaviors are equally safe or desirable. Desired char-2

acteristics for an AI agent can be expressed by assigning desirability scores, which3

we assume are assigned to collective trajectories, but not to individual behaviors.4

For example, in a dataset of vehicle interactions, these scores might relate to the5

number of incidents that occurred. We first assess the effect of each individual6

agent’s behavior on the collective desirability score, e.g., assessing how likely an7

agent is to cause incidents. This allows us to afterward only imitate agents with8

desired behavior, e.g., only imitating agents that are unlikely to cause incidents.9

To enable this, we propose the concept of an agent’s Exchange Value, which quan-10

tifies an individual agent’s contribution to the collective desirability score. This is11

expressed as the expected change in desirability score when substituting the agent12

for a randomly selected agent. We propose additional methods for estimating Ex-13

change Values from real-world datasets, enabling us to learn aligned imitation14

policies that outperform relevant baselines.15

1 INTRODUCTION16

Imitating human behaviors from large datasets is a promising technique for achieving human-AI and17

AI-AI interactions in complex environments (Carroll et al., 2019; , FAIR; He et al., 2023; Shih et al.,18

2022). However, such large datasets can contain undesirable human behaviors, making direct imita-19

tion problematic. Rather than imitating all behaviors, it may be preferable to ensure that AI agents20

imitate behaviors that align with predefined desirable characteristics. In this work, we assume that21

desirable characteristics are quantified as desirability scores given for each trajectory in the dataset.22

This is commonly the case when the evaluation of the desirability of individual actions is impracti-23

cal or too expensive (Stiennon et al., 2020). For complex datasets that involve multiple interacting24

agents, assigning desirability scores to collective trajectories – but not to individual behavior – may25

be the only viable option. For instance, in a football match, while the final score directly gauges26

team performance, determining individual player contributions is more difficult.27

We develop an imitation learning method for multi-agent datasets that ensures alignment with de-28

sirable characteristics – expressed through a Desired Value Function (DVF1) that assigns a score to29

each collective trajectory. This scenario is applicable to several areas that involve learning behavior30

from data of human groups. One example is a dataset of vehicle interactions and desirability scores31

which indicate the number of occurred incidents in a collective trajectory and the aim to imitate only32

behavior that is unlikely to result in incidents (e.g. aiming to imitate driving with foresight). Another33

example is a dataset of a multi-player online game and desirability scores reflecting players’ average34

enjoyment in each round and the goal to imitate only behavior that creates a positive experience.35

Assessing the desirability of an individual agent’s behavior involves gauging its impact on the col-36

lective desirability score. For instance, it requires evaluating whether an agent’s behavior increases37

the likelihood of accidents while driving or decreases the enjoyment of other players in a game. This38

is termed the credit assignment problem (Shapley, 1953), akin to fairly dividing the value produced39

1The DVF itself is not sufficient to describe desired behavior completely, as it possibly only covers a subset
of behavior, e.g., safety-relevant aspects. It is complementary to the more complex and nuanced behaviors that
are obtained by imitating human demonstrations, providing guardrails or additional guidance.
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Figure 1: We are given a dataset composed of multi-agent trajectories generated by many individual
agents, e.g., a dataset of cars driving in urban environments. In addition, the Desired Value Function
(DVF) indicates the desirability score of a collective trajectory, e.g., the number of incidents that
occurred. We first compute the Exchange Value (EV) of each agent, where a positive EV indicates
that an agent increases the desirability score (e.g. an agent driving safely). We reformulate imitation
learning to take into account the computed EVs, and achieve an imitation policy that is aligned with
the DVF (e.g. only imitating the behavior of safe drivers).

by a group of players among the players themselves. The credit assignment problem proves com-40

plex in real-world scenarios due to three main factors (see Figure 2 for details): First, many scenarios41

only permit specific group sizes. This makes Shapley Values (Shapley, 1953) – a concept commonly42

used in Economics for credit assignment – inapplicable, as it relies on the comparisons of groups of43

different sizes. Second, real-world datasets for large groups are in practice always incomplete, i.e.44

do not contain trajectories for all (combinatorially many) possible groups of agents. Third, datasets45

of human interactions may be fully anonymized by assigning one-time-use IDs. In this case, if an46

agent is present in two trajectories, it will appear in the dataset as if it is two different agents, making47

the credit assignment problem degenerate. This requires incorporating behavior information.48

To address these challenges we propose Exchange Values (EVs), akin to Shapley Values, which49

quantify an agent’s contribution as the expected change in desirability when substituting the agent50

randomly. EVs are applicable to scenarios with fixed group sizes, making them more versatile. We51

introduce EV-Clustering that estimates EVs from incomplete datasets by maximizing inter-cluster52

variance. We show a theoretical connection to clustering by unobserved individual contributions53

and adapt this method to fully-anonymized datasets, by considering low-level behavioral cues.54

By incorporating agents’ estimated EVs, we introduce Exchange Value based Behavior Cloning55

(EV2BC), which imitates large datasets by only imitating the behavior of agents with EVs higher56

than a tuneable threshold (see Figure 1). This approach allows learning from interactions with agents57

with all behaviors, without necessarily imitating them, which is not possible when simply excluding58

all trajectories with a low collective desirability score. Our work makes the following contributions:59

• We introduce Exchange Values (Def. 4.1) to compute an agent’s individual contribution to a col-60

lective value function and show their relation to Shapley Values.61

• We propose EV-Clustering (Def. 4.4) to estimate contributions from incomplete datasets and show62

a theoretical connection to clustering agents by their unobserved individual contributions.63

• We empirically demonstrate how EVs can be estimated from fully-anonymized data and employ64

EV2BC (Def. 4.5) to learn policies aligned with the DVF, outperforming relevant baselines.65

2 RELATED WORK66

Most previous work on aligning AI agents’ policies with desired value functions either relies on67

simple hand-crafted rules (Xu et al., 2020; , FAIR), which do not scale to complex environments, or68

performs postprocessing of imitation policies with fine-tuning (Stiennon et al., 2020; Ouyang et al.,69

2022; Glaese et al., 2022; Bai et al., 2022), which requires access to the environment or a simulator.70

In language modeling, Korbak et al. (2023) showed that accounting for the alignment of behavior71

with the DVF already during imitation learning yields results superior to fine-tuning after-the-fact,72

however, their approach considers an agent-specific value function. In contrast, we consider learn-73

ing a policy aligned with a collective value function, and from offline data alone. Credit assignment74

in multi-agent systems was initially studied in Economics (Shapley, 1953). Subsequently, Shapley75

Values (Shapley, 1953) and related concepts have been applied in multi-agent reinforcement learn-76
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Figure 2: Overview of different characteristics of real-world datasets, and whether Shapley Values
and Exchange Values (EVs) are applicable to compute contributions of individual agents to the DVF.

ing, to distribute rewards among individual agents during the learning process (Chang et al., 2003;77

Foerster et al., 2018; Nguyen et al., 2018; Wang et al., 2020; Li et al., 2021; Wang et al., 2022).78

Outside of policy learning, Heuillet et al. (2022) used Shapley Values to analyze agent contribu-79

tions in multi-agent environments, however this requires privileged access to a simulator, in order80

to replace agents with randomly-acting agents. In contrast to Shapley Values, the applicability of81

EVs to all group sizes allows us to omit the need to simulate infeasible coalitions by summing82

over multiple outcomes or with random-action policies. In contrast to this work, existing work in83

multi-agent imitation learning typically assumes observations to be generated by optimal agents, as84

well as simulator access (Le et al., 2017; Song et al., 2018; Yu et al., 2019). Similar to our frame-85

work, offline multi-agent reinforcement learning (Jiang & Lu, 2021; Tseng et al., 2022; Tian et al.,86

2022) involves policy learning from multi-agent demonstrations using offline data alone, however,87

it assumes a dense reward signal to be given, while the DVF assigns a single score per collective tra-88

jectory. In single-agent settings, a large body of work investigates estimating demonstrator expertise89

to enhance imitation learning (Chen et al., 2021; Zhang et al., 2021; Cao & Sadigh, 2021; Sasaki &90

Yamashina, 2021; Beliaev et al., 2022; Yang et al., 2021). However, these methods do not translate91

to the multi-agent setting due to the challenge of credit assignment. To the best of our knowledge,92

no prior work has considered the problem of imitating multi-agent datasets containing unaligned93

agents, while ensuring alignment with a collective value function.94

3 BACKGROUND AND NOTATION95

Markov Game. We consider Markov Games (Littman, 1994), which generalize Markov Decision96

Processes (MDPs) to multi-agent scenarios. In a Markov Game, agents interact in a common envi-97

ronment. At time step t, each agent (the ith of a total of m agents) takes the action ati and the environ-98

ment transitions from state st to st+1. A reduced Markov game (without rewards) is then defined by99

a state space S (st ∈ S), a distribution of initial states η, the action space Ai (ati ∈ Ai) of each agent100

i, an environment state transition probability P (st+1|st, a1, . . . , am) and the episode length T . We101

denote this Markov Game as M = (S,A, P, T ), with collective trajectories τ = (s0,a0, . . . , sT ).102

Set of multi-agent demonstrations generated by many agents. We consider a Markov game M103

of m agents and a set of demonstrator agents N = {1, ..., n} where n ≥ m. The Markov Game104

further is assumed to be symmetric (we can change the ordering of players without changing the105

game). The demonstration set D captures interactions among various groups of agents in M. Every106

entry Di = (si, τsi) contains a trajectory τsi for a group of agents si ⊆ N . Notably, τsi contains107

the collective trajectory of all agents in the group si.108

Shapley Values. We now define the concept of the Shapley Value of an agent Shapley (1953),109

which is commonly used to evaluate contributions of individual agents to a collective value function110
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in a characteristic function game. Definition 3.2 below is somewhat unconventional, but can be111

easily seen to be equivalent to the standard definition.112

Definition 3.1 (Characteristic function game). A characteristic function game G is given by a pair113

(N, v), where N = {1, . . . , n} is a finite, non-empty set of agents and v : 2N → R is a characteristic114

function, which maps each group (sometimes also referred to as coalition) C ⊆ N to a real number115

v(C); it is assumed that v(∅) = 0. The number v(C) is referred to as the value of the group C.116

Given a characteristic function game G = (N, v), let ΠN\{i} denote the set of all permutations117

of N\{i}, i.e., one-to-one mappings from N\{i} to itself. For each permutation π ∈ ΠN\{i}, we118

denote by Sπ(m) the slice of π up until and including position m; we think of Sπ(m) as the set of119

all agents that appear in the first m positions in π (note that Sπ(0) = ∅). The marginal contribution120

of an agent i with respect to a permutation π and a slice m in a game G = (N, v) is given by121

∆G
m,π(i) = v(Sπ(m) ∪ {i})− v(Sπ(m)).122

This quantity measures the increase in the value of the group when agent i joins them. We can now123

define the Shapley Value of an agent i: it is simply the agent’s average marginal contribution, where124

the average is taken over all permutations of N\{i} and all slices.125

Definition 3.2 (Shapley Value). Given a characteristic function game G = (N, v) with |N | = n,126

the Shapley Value of an agent i ∈ N is denoted by SVi(G) and is given by127

SVi(G) = 1/n! ·∑n−1
m=0

∑
π∈ΠN\{i}

∆G
m,π(i). (1)

Def. 3.2 is important in the context of credit assignment, as a possible solution for distributing128

collective value to individual agents. It also has several consistency properties (Shapley, 1953).129

4 METHODS130

Problem setting. Given a dataset D of trajectories generated by groups of interacting agents and131

a Desired Value Function (DVF), the goal of our paper is to learn an imitation policy for a single132

agent that is aligned with the DVF. We assume that a fraction of the demonstrator agents’ behavior133

is undesirable, specifically, their presence in a group results in a significant reduction of the DVF.134

Further, we assume that the number of demonstrator agents is much larger than the group size of the135

target scenario.136

Overview of Methods section. To evaluate agents’ contributions in games that only permit spe-137

cific group sizes, we first define the concept of EVs (Def.4.1) for regular characteristic function138

games (Def. 3.1). We then show that our definition extends naturally to characteristic function139

games with constraints on permitted group sizes. We finally derive methods to estimate EVs from140

real-world datasets with limited observations (see Figure 2 for an overview).141

4.1 EXCHANGE VALUES TO EVALUATE AGENTS’ INDIVIDUAL CONTRIBUTIONS142

Note that each term of the Shapley Value, denoted ∆G
m,π(i), requires computing the difference in143

values between 2 groups of different sizes, with and without an agent i (see Def. 3.2). If we wish144

to only compare groups with the same size, then a natural alternative is to compute the difference in145

values when the agent at position m is replaced with agent i:146

ΓG
m,π(i) = v(Sπ(m− 1) ∪ {i})− v(Sπ(m)). (2)

We call this quantity the exchange contribution of i, given a permutation of agents π sliced at posi-147

tion m. It represents the added value of agent i in a group. Importantly it does not require values of148

groups of different sizes.149

We now define the EV analogously to the Shapley Value as the average exchange contribution over150

all permutations of N\{i} and all non-empty slices.151

Definition 4.1 (Exchange Value). Given a characteristic function game G = (N, v) with |N | = n,152

the Exchange Value of an agent i ∈ N is denoted by EVi(G) and is given by153

EVi(G) = ((n− 1)! · (n− 1))−1 ·∑n−1
m=1

∑
π∈ΠN\{i}

ΓG
m,π(i). (3)
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In words, the EV of an agent can hence be understood as the expected change in value, when154

substituting the agent with another randomly selected agent, or as comparing the value of all groups155

that include the agent to that of all groups which do not include the agent (see Step 2 in Figure 1).156

Relationship between Shapley Value and Exchange Value. It can be shown that the Exchange157

Values of all agents can be derived from their Shapley Values by a simple linear transformation:158

we subtract a fraction of the value of the grand coalition N (group of all agents) and scale the159

result by n/n−1: EVi(G) = n
n−1 (SVi(G) − 1/n · v(N)). The proof proceeds by computing the160

coefficient of each term v(C), C ⊆ N , in summations (1) and (3) (see Appendix A). Hence, the161

Shapley Value and the Exchange Value order the agents in the same way. Now, recall that the162

Shapley Value is characterized by four axioms, namely, dummy, efficiency, symmetry and linearity163

(Shapley, 1953). The latter two are also satisfied by the Exchange Value: if v(C∪{i}) = v(C∪{j})164

for all C ⊆ N \ {i, j}, we have EVi(G) = EVj(G) (symmetry), and if we have two games G1165

and G2 with characteristic functions v1 and v2 over the same set of agents N , then for the combined166

game G = (N, v) with the characteristic function v given by v(C) = v1(C) + v2(C) we have167

EVi(G) = EVi(G1) + EVi(G2) (linearity). The efficiency property of the Shapley Value, i.e.,168 ∑
i∈N SVi(G) = v(N) implies that

∑
i∈N EVi(G) = 0. In words, the sum of all agents’ EV is169

zero. The dummy axiom, too, needs to be modified: if an agent i is a dummy, i.e., v(C∪{i}) = v(C)170

for every C ⊆ N \ {i} then for the Shapley value we have SVi(G) = 0 and hence EVi(G) =171

−1/n−1 · v(N), In each case, the proof follows from the relationship between the Shapley Value and172

the Exchange Value and the fact that the Shapley Value satisfies these axioms (see Appendix A).173

4.1.1 COMPUTING EXCHANGE VALUES IF ONLY CERTAIN GROUP SIZES ARE PERMITTED174

For a characteristic function game G = (N, v) the value function v can be evaluated for each possible175

group C ⊆ N . We now consider the case where the value function v is only defined for groups of176

certain sizes m ∈ M , i.e. v is only defined for a subset of groups of certain sizes.177

Definition 4.2 (Constrained characteristic function game). A constrained characteristic function178

game Ḡ is given by a tuple (N, v,M), where N = {1, . . . , n} is a finite, non-empty set of agents,179

M ⊆ {0, . . . , n − 1} is a set of feasible group sizes and v : {C ∈ 2N : |C| ∈ M} → R is a180

characteristic function, which maps each group C ⊆ N of size |C| ∈ M to a real number v(C).181

Note that both the Shapley Value and the EV are generally undefined for constrained characteristic182

function games, as the value function is not defined for groups C of size |C| /∈ M . The definition183

of the Shapley Value cannot easily be adapted to constrained characteristic function games, as its184

computation requires evaluating values of groups of different sizes. In contrast, the definition of the185

EV can be straightforwardly adapted to constrained characteristic function games by limiting the186

summation to slices of size m ∈ M+, where M+ = {m ∈ M : m > 0}. Hence, we define the187

Constrained EV as the average exchange contribution over all permutations of N\{i} and over all188

slices of size m ∈ M+.189

Definition 4.3 (Constrained Exchange Value). Given a constrained characteristic function game190

Ḡ = (N, v,M) with |N | = n, the Constrained Exchange Value of an agent i ∈ N is denoted by191

EVi(Ḡ) and is given by EVi(Ḡ) = ((n− 1)! · |M+|)−1 ·∑m∈M+

∑
π∈ΠN\{i}

ΓḠ
m,π(i).192

We refer to the Constrained EV and EV interchangeably, as they are applicable to different settings.193

As outlined in Step 2 in Figure 1, the EV of an agent is a comparison of the value of a group that194

includes the agent and a group that does not include the agent, considering all permitted group sizes.195

4.2 ESTIMATING EXCHANGE VALUES FROM LIMITED DATA196

The EV assesses the contribution of an individual agent and is applicable under group size limi-197

tations in real-world scenarios (see Group-Limited in Figure 2). However, exactly calculating198

EVs is almost always impossible as real-world datasets likely do not contain observations for all199

(combinatorially many) possible groups (Low-Data in Figure 2). We first show a sampling-based200

estimate (Section 4.2) of EVs, which may have a high variance for EVs of agents that are part of a201

only few trajectories (outcomes). Next we introduce a novel method, EV-Clustering (Section 4.2.1),202

which clusters agents that behave similarly and can be used to reduce the variance. When datasets203

are anonymized with one-time-use IDs each demonstrator is only observed as part of one group (see204
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Degenerate in Figure 2), rendering credit assignment degenerate, as explained in Section 4.2.1;205

we propose to address this by incorporating low-level behavior data from the trajectories τ . If206

some groups are not observed, we can achieve an unbiased estimate of the EV by sampling groups207

uniformly at random. The expected EV is EVi(Ḡ) = Em∼U(M+),π∼U(ΠN\{i})

[
ΓḠ
m,π(i)

]
. This ex-208

pectation converges to the true EV in the limit of infinite samples.209

4.2.1 EV-CLUSTERING IDENTIFIES SIMILAR AGENTS210

In the case of very few agent observations, the above-introduced sampling estimate has a high vari-211

ance. One way to reduce the variance is by clustering: if we knew that some agents tend to contribute212

similarly to the DVF, then by clustering them and estimating one EV per cluster (instead of one EV213

per agent), each EV estimate will use more samples. Note that, as our focus is on accurately estimat-214

ing EVs, we do not consider clustering agents by behavior here, as two agents may exhibit distinct215

behaviors while still contributing similarly to the DVF.216

We propose EV-Clustering, which clusters agents such that the variance in assigned EVs is max-217

imized across all agents. In Appendix A we show that EV-Clustering is equivalent to clustering218

agents by their unobserved individual contribution, under the approximation that the total value of219

a group is the sum of the participating agents’ individual contributions, an assumption frequently220

made for theoretical analysis (Lundberg & Lee, 2017; Covert & Lee, 2021), as it represents the sim-221

plest non-trivial class of cooperative games. Intuitively, if we choose clusters that maximize the EV222

variance across agents, all clusters’ EVs will be maximally distinct. An example of poor clustering223

is a random partition, which will have low variance and thus very similar EVs across clusters.224

Specifically, we assign n agents to k ≤ n clusters K = {1, . . . , k − 1}, with individual cluster225

assignments u = {u0, ..., un−1}, where ui ∈ K. We first combine the observations of all agents226

within the same cluster by defining a clustered value function ṽ(C) that assigns a value to a group227

of cluster-centroid agents C ⊆ K by averaging over the combined observations, as ṽ(C) = 1/η ·228 ∑n−1
m=0

∑
π∈ΠN

v(Sπ(m)) · 1({uj | j ∈ Sπ(m)} = C), where η is a normalization constant. The229

EV of an agent i is then given as EVi(G̃), with G̃ = (K, ṽ), thereby assigning equal EVs to all230

agents within one cluster.231

Definition 4.4 (EV-Clustering). We define the optimal cluster assignments u∗ such that the variance232

of EVs is maximised:233

u∗ ∈ argmaxuVar([EV0(G̃), . . . , EVn−1(G̃)]). (4)

We show in Appendix B.1 that this objective is equivalent to clustering agents by their unobserved234

individual contributions, under the approximation of an additive value function.235

4.2.2 DEGENERACY OF THE CREDIT ASSIGNMENT PROBLEM FOR FULLY-ANONYMIZED DATA236

If two agents are observed only once in the dataset and as part of the same group, equal credit must237

be assigned to both due to the inability to separate their contributions. Analogously, when all agents238

are only observed once, credit can only be assigned to groups, resulting in the degenerate scenario239

that all agents in a group are assigned the same credit (e.g. are assigned equal EV). We solve this by240

combining low-level behavior information from trajectories τ with EV-Clustering (see Sec. 5.1).241

4.3 EXCHANGE VALUE BASED BEHAVIOR CLONING (EV2BC)242

Having defined the EV of an individual agent and different methods to estimate it, we now define a243

variation of Behavior Cloning (Pomerleau, 1991) which takes into account each agent’s contribution244

to the desirability value function (DVF). We refer to this method as EV2BC. Essentially, EV2BC245

imitates only actions of agents that have an EV larger than a tunable threshold parameter.246

Definition 4.5 (EV based Behavior Cloning (EV2BC)). For a set of demonstrator agents N , a247

dataset D, and a DVF, we define the imitation learning loss for EV2BC as248

LEV 2BC(θ) = −∑
n∈N

∑
(si,an

i )∈D log(πθ(ani |si)) · 1(EV DV F
n > c) (5)

where EV DV F
n denotes the EV of agent n for a DVF and where c is a tunable threshold parameter,249

that trades off between including data of agents with higher contributions to the DVF and reducing250

the total amount of training data used.251
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Table 1: Resulting performance with re-
spect to the DVF for different imitation
learning methods in different Starcraft sce-
narios.

Method 2s3z 3s vs 5z 6h vs 8z

BC (Pomerleau, 1991) 13.24 ± 1.26 12.73 ± 3.25 9.56 ± 0.67
Group-BC 17.25 ± 2.05 12.32 ± 1.92 10.08 ± 1.07
EV2BC (Ours) 19.46 ± 2.98 17.15 ± 2.13 12.25 ± 1.55
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Figure 3: Mean error in estimating EVs with decreas-
ing number of observations. ”Deg.” refers to the fully
anonymized degenerate case. Error decreases signif-
icantly if agents are clustered (green-shaded area).

5 EXPERIMENTS252

The environments that we consider only permit certain group sizes, hence we use constrained EVs253

(see Def. 4.3). As the environments are stochastic, we use sampling (see Sec. 4.2) to estimate true254

EVs. We run all experiments for five random seeds and report mean and standard deviation where255

applicable. For more implementation details please refer to the Appendix.256

In the following experiments, we first evaluate EVs as a measure of an agent’s contribution to a257

given DVF. We then assess the average estimation error for EVs as the number of observations in258

the dataset D decreases, and how applying clustering decreases this error. We lastly evaluate the per-259

formance of Exchange Value based Behaviour Cloning (EV2BC, see Definition 4.5) for simulated260

and human datasets and compare to relevant baselines, such as standard Behavior Cloning (Pomer-261

leau, 1991) and Offline Reinforcement Learning (Pan et al., 2022).262

Environments. The Tragedy of the Commons (Hardin, 1968) (ToC) refers to a situation where263

multiple individuals deplete a shared resource, and is a social dilemma scenario often studied to264

model the overexploitation of common resources (Dietz et al., 2003; Ostrom, 2009). We model265

ToC as a multi-agent environment and consider three DVFs to represent different interpretations of266

social welfare in the game: the final pool size (vfinal), the total resources consumed (vtotal), and the267

minimum consumption among agents (vmin). Overcooked (Carroll et al., 2019; Hu et al., 2020;268

Shih et al., 2022) is a two-player game simulating a cooperative cooking task requiring teamwork269

and coordination and a common testbed in multi-agent research for studying collaboration. Within270

Overcooked, we consider the configurations Cramped Room and Coordination Ring (displayed in271

Figure 4). For each environment configuration, we generate two datasets by simulating agent behav-272

iors using a near-optimal planning algorithm, where we use a parameter λ to determine an agent’s273

behavior. For λ = 1 agents act (near)-optimal, for λ = −1 agents act adversarially. We refer to274

λ as the agent’s trait, as it acts as a proxy for the agent’s individual contribution to the collective275

value function. Each demonstration dataset D is generated by n = 100 agents, and trajectories τ are276

of length 400. The adversarial dataset Dadv is comprised of 25% adversarial agents with λ = −1277

and 75% (near)-optimal agents with λ = 1, while for the dataset Dλ agents were uniformly sam-278

pled between λ = −1 and λ = 1. The Dhuman dataset was collected from humans playing the279

game (see Carroll et al. (2019)); it is fully anonymized with one-time-use agent identifiers, hence is280

a degenerate dataset (see Figure 2 bottom row). We consider the standard value function given for281

Overcooked as the DVF, i.e. the number of soups prepared by both agents over the course of a trajec-282

tory. The StarCraft Multi-Agent Challenge (Samvelyan et al., 2019) is a cooperative multi-agent283

environment that is partially observable, involves long-term planning, requires strong coordination,284

and is heterogeneous, in which we consider the settings 2s3z, 3s_vs_5z and 6h_vs_8z, which285

involve teams of 3-6 agents. For each, we generate a pool of 200 agents with varying capabilities286

by extracting policies at different epochs, and from training with different seeds. We generate a287

dataset that contains simulated trajectories of 100 randomly sampled groups (out of 109 possible288

groups) and use the environment’s ground truth reward function to assign DVF scores according to289

the collective performance of agents.290

Exchange Values assess an agent’s individual contribution to a collective value function. To291

analyze EVs as a measure for an agent’s individual contribution to a DVF, we consider full datasets292

that contain demonstrations of all possible groups, which allows us to accurately estimate EVs.293

7



Under review as a conference paper at ICLR 2024

Table 2: Resulting performance with respect to the DVF for different imitation learning methods in
the Overcooked environments Cramped Room (top) and Coordination Ring (bottom). In Tragedy of
Commons: 12 agents experiment at the top, 120 agents experiment at the bottom.

Overcooked Overcooked+Fire Tragedy of Commons

Imitation method Dλ Dadv Dhuman Dλ Dadv vfinal vtotal vmin

BC (Pomerleau, 1991) 10.8 ± 2.14 40.8 ± 12.7 153.34 ± 11.5 -13.35 ± 24.5 -20.12 ± 18.5 2693.6 ± 139.1 50.6 ± 2.4 ± 0.45
Group-BC 54.2 ± 5.45 64.8 ± 7.62 163.34 ± 6.08 24.89 ± 16.25 0.9 ± 13.98 5324.2 ± 210.8 100.01 ± 20.08 4.60 ± 1.01
OMAR (Pan et al., 2022) 6.4 ± 3.2 25.6 ± 8.9 12.5 ± 4.5 5.0 ± 12.5 -3.4 ± 12.8 - - -
EV2BC (ours) 91.6 ± 12.07 104.2 ± 10.28 170.89 ± 6.8 86.2 ± 13.02 98.3 ± 12.48 10576.8 ± 307.4 342.8 ± 49.36 44.2 ± 6.4

BC (Pomerleau, 1991) 15.43 ± 4.48 10.4 ± 6.8 104.89 ± 12.44 -16.45 ± 15.6 -40 ± 14.6 2028.8 ± 60.9 38.9 ± 10.4 1.8 ± 0.4
Group-BC 24 ± 4.69 14.6 ± 2.48 102.2 ± 6.19 -8 ± 8.59 -51.8 ± 11.4 3400.5 ± 100.9 77.1 ± 14.1 3.51 ± 1.6
OMAR (Pan et al., 2022) 12.43 ± 3.35 9.5 ± 3.5 12.4 ± 6.0 -0.8 ± 5.4 -1.2 ± 5.6 - - -
EV2BC (ours) 30.2 ± 6.91 12.4 ± 2.65 114.89 ± 5.08 32.64 ± 7.14 12.5 ± 4.32 8123.4 ± 600.8 270.0 ± 50.0 33.1 ± 7.1

In ToC, we find that the ordering of agents broadly reflects our intuition, taking more resources294

negatively impacts the EVs, and agents consuming the average of others have less extreme EVs. The295

color-coded ordering of agents under different DVFs in shown in Figure 7 in App. C. In Overcooked,296

we consider the two simulated datasets (Dadv and Dλ) but not the human dataset, as the individual297

contribution is unknown for human participants. We find that EVs of individual agents are strongly298

correlated with their trait parameter λ, which is a proxy for the agent’s individual contribution, and299

provide a plot that shows the relationship between λ and EV in Figue 5 in App. B).300

5.1 ESTIMATING EVS FROM INCOMPLETE DATA301

Estimation error for different dataset sizes. We now turn to realistic settings with missing data,302

where EVs must be estimated (Sec. 4.2). For both ToC and Overcooked, we compute the mean303

estimation error in EVs if only a fraction of the possible groups is contained in the dataset. As304

expected, we observe in Fig. 3 that the mean estimation error increases as the fraction of observed305

groups decreases, with the largest estimation error for fully anonymized datasets (see Fig. 3 – Deg.).306

Estimating EVs from degenerate datasets. We first use low-level behavior information from the307

given trajectories τ in D to initialize cluster assignments and then apply EV-Clustering. Specifi-308

cally, we first create behavior-based cluster assignments by applying k-means clustering to vectors309

of concatenated action frequencies in frequently-observed states (see Appendix B for details). We310

then perform EV-Clustering, using the behavior-based cluster assignments to initialize a non-linear311

constrained optimization solver (SLSQP, Kraft (1988)) and adding a small L2 loss term that penal-312

izes solutions deviating from the behavior-based clusters. We observe in Figure 3 that this results in313

a significant decrease in the estimation error of EVs (see – Deg. clustered). Generally, EV-clustering314

is preferable to behavior clustering, as two agents may have equal contributions to the DVF while315

showing different behaviors; only in cases where only few outcomes per agent are observed is it316

necessary to also use behavior clustering. In the ablation study in Appendix B.1 we investigate317

both methods, finding that both behavior-clustering and EV-Clustering are significant, while be-318

havior clustering is more robust in low-data scenarios (as it incorporates all low-level information319

contained within a trajectory, while EV-Clustering only considers final outcomes).320

Estimating EVs from degenerate human datasets in Overcooked. In contrast to the simulated321

datasets, no estimation error in EVs can be computed for the human-generated datasets as the ground322

truth EVs are unknown. Also, no latent trait λ that indicates how well a human participant is aligned323

with the DVF is known. However, to evaluate the quality of the estimated EVs for the human324

dataset, we use the keystrokes per second of an agent as a proxy for its individual contribution,325

which we refer to as λhuman. We here follow Carroll et al. (2019), which found that this proxy326

is highly correlated with overall performance. We estimate EVs for human participants as before,327

relying both on behavior information and DVF scores. We evaluate the quality of computed EVs as328

the inverse of the within-cluster variance in λhuman. Relative to the average within-cluster variance329

under random cluster assignments, we find that behavior-based clustering results in a reduction of330

16% and 25% in Cramped Room and Coordination ring, respectively, while EV-Clustering reduces331

the within-cluster variance by another 34% and 48% percent, respectively. These findings validate332

that maximizing variance in EVs allows clustering agents by their individual contributions.333

5.2 IMITATING DESIRED BEHAVIOR BY UTILIZING EVS334

We now evaluate EV2BC in both domains, where we set the threshold parameter such that in ToC335

only agents with EVs above the 90th percentile are imitated, and in Overcooked above the 50th336
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percentile. We chose these values because training data in Overcooked is more scarce. We replicate337

the stochastic EV2BC policy for each agent in the environment and evaluate the achieved collective338

DVF score. As baselines, we consider (1) BC, where Behavior Cloning (Pomerleau, 1991) is done339

with the full dataset without correcting for EVs, (2) offline multi-agent reinforcement OMAR (Pan340

et al., 2022) with the reward at the last timestep set to the DVF’s score for a given trajectory (no341

per-step reward is given by the DVF) and (3) Group BC, for which only collective trajectories with342

a DVF score larger than the relevant percentile are included. While EV2BC is based on individual343

agents’ contributions, this last baseline imitates data based on group outcomes. For instance, if a344

collective trajectory includes two aligned agents and one unaligned agent, the latter baseline is likely345

to imitate all three agents. In contrast, our approach would only imitate the two aligned agents.346

ToC results. We imitate datasets of 12 agents and 120 agents, with group sizes of 3 and 10 respec-347

tively, evaluating performance for each of the three DVFs defined for the ToC environment. We do348

not consider the OMAR baseline as policies are not learned but rule-based. Table 2 demonstrates that349

EV2BC outperforms the baselines by a large margin, indicating that considering individual agents’350

EVs to a given DVF leads to significantly improved performance.351

Overcooked results. We now consider all datasets Dadv, Dλ and Dhuman in both Overcooked en-352

vironments. Note that in the standard Overcooked environment, an adversarial agent is limited to353

blocking the other agent, while in many real-world environments, adversaries are likely to be capa-354

ble of more diverse (and possibly severe) actions. We evaluate the performance achieved by agents355

with respect to the DVF (in this case the environments value function of maximizing the number356

of soups) when trained with different imitation learning approaches on the different datasets. We357

evaluate performance for the fully-anonymized datasets, but also consider datasets with more data358

in Table 4 in the Appendix, for which we find an even larger performance gap. EVs are computed359

as detailed in Section 5.1. Table 2 shows that EV2BC clearly outperforms the baseline approaches360

in both environment configurations, with the margin being more significant in the Overcooked+Fire361

environments where adversarial agents can take more powerful actions. We further note that EV2BC362

significantly outperforms baseline approaches on the datasets of human-generated behavior, for363

which EVs were estimated from a fully-anonymized real-world dataset. This demonstrates that364

BC on datasets containing unaligned behavior carries risk of learning wrong behavior, but it can be365

alleviated by weighting the samples using estimated EVs.366

Starcraft Results. We observe in Table 1 that EV2BC outperforms the baselines by a substantial367

margin, underlining the applicability of our method to larger and more complex settings. Note that368

the OMAR baseline, which is implemented as offline MARL with the DVF as the final-timestep369

reward, did substantially worse than BC.370

6 CONCLUSION371

Our work presents a method for training AI agents from diverse datasets of human interactions372

while ensuring that the resulting policy is aligned with a given desirability value function. However,373

it must be noted that quantifying this value function is an active research area.374

Shapley Values and Exchange Values estimate the alignment of an individual with a group value375

function (which must be prescribed separately), and as such can be misused if they are included in a376

larger system that is used to judge those individuals in any way. Discrimination of individuals based377

on protected attributes is generally unlawful, and care must be taken to avoid any discrimination378

by automated means. We demonstrated a novel positive use of these methods by using them to379

train aligned (beneficial) agents, that do not imitate negative behaviors in a dataset. We expect that380

the benefits of addressing the problem of unsafe behavior by AI agents outweigh the downsides of381

misuse of Shapley Values and Exchange Values, which are covered by existing laws.382

Future work may address the assumption that individual agents behave similarly across multiple tra-383

jectories and develop methods for a more fine-grained assessment of desired behavior. Additionally,384

exploring how our framework can more effectively utilize data on undesired behavior is an inter-385

esting avenue for further investigation, e.g., developing policies that are constrained to not taking386

undesirable actions. Lastly, future work may investigate applications to real-world domains, such as387

multi-agent autonomy scenarios.388
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Reproducibility. To ensure the reproducibility of our work, we will publish the source code with389

the camera-ready version of this work. We provide detailed overviews for all steps of the experi-390

mental evaluation in the Appendix, where we also link to the publicly available code repositories391

that our work used. We further provide information about computational complexity at the end of392

the Appendix.393

REFERENCES394

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav395

Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement396

learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.397

Mark Beliaev, Andy Shih, Stefano Ermon, Dorsa Sadigh, and Ramtin Pedarsani. Imitation learning by estimat-398

ing expertise of demonstrators. In International Conference on Machine Learning, pp. 1732–1748. PMLR,399

2022.400

Zhangjie Cao and Dorsa Sadigh. Learning from imperfect demonstrations from agents with varying dynamics.401

IEEE Robotics and Automation Letters, 6(3):5231–5238, 2021.402

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dragan. On403

the utility of learning about humans for human-ai coordination. Advances in neural information processing404

systems, 32, 2019.405

Yu-Han Chang, Tracey Ho, and Leslie Kaelbling. All learning is local: Multi-agent learning in global reward406

games. Advances in neural information processing systems, 16, 2003.407

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via self-408

supervised reward regression. In Conference on robot learning, pp. 1262–1277. PMLR, 2021.409

Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation using linear regression. In410

International Conference on Artificial Intelligence and Statistics, pp. 3457–3465. PMLR, 2021.411

Thomas Dietz, Elinor Ostrom, and Paul C Stern. The struggle to govern the commons. science, 302(5652):412

1907–1912, 2003.413

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily Dinan,414

Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. Human-415

level play in the game of diplomacy by combining language models with strategic reasoning. Science, 378416

(6624):1067–1074, 2022.417

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Counter-418

factual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelligence, vol-419

ume 32, 2018.420

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,421

Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue agents via422

targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.423

Garrett Hardin. The tragedy of the commons: the population problem has no technical solution; it requires a424

fundamental extension in morality. science, 162(3859):1243–1248, 1968.425

Jerry Zhi-Yang He, Zackory Erickson, Daniel S Brown, Aditi Raghunathan, and Anca Dragan. Learning426

representations that enable generalization in assistive tasks. In Conference on Robot Learning, pp. 2105–427

2114. PMLR, 2023.428

Alexandre Heuillet, Fabien Couthouis, and Natalia Dı́az-Rodrı́guez. Collective explainable ai: Explaining co-429

operative strategies and agent contribution in multiagent reinforcement learning with Shapley values. IEEE430

Computational Intelligence Magazine, 17(1):59–71, 2022.431

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot coordination.432

In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.433

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. arXiv preprint434

arXiv:2108.01832, 2021.435

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Jason Phang, Samuel R436

Bowman, and Ethan Perez. Pretraining language models with human preferences. arXiv preprint437

arXiv:2302.08582, 2023.438

10



Under review as a conference paper at ICLR 2024

Dieter Kraft. A software package for sequential quadratic programming. Forschungsbericht- Deutsche439

Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.440

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-agent imitation learning. In441

International Conference on Machine Learning, pp. 1995–2003. PMLR, 2017.442

Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun Xiao. Shapley counterfactual443

credits for multi-agent reinforcement learning. In Proceedings of the 27th ACM SIGKDD Conference on444

Knowledge Discovery & Data Mining, pp. 934–942, 2021.445

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine446

Learning Proceedings 1994. 1994. doi: 10.1016/b978-1-55860-335-6.50027-1.447

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural448

information processing systems, 30, 2017.449

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assignment for collective multiagent rl with450

global rewards. Advances in neural information processing systems, 31, 2018.451

Elinor Ostrom. A general framework for analyzing sustainability of social-ecological systems. Science, 325452

(5939):419–422, 2009.453

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,454

Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with455

human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.456

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline multi-agent re-457

inforcement learning with actor rectification. In International Conference on Machine Learning, pp. 17221–458

17237. PMLR, 2022.459

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,460

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-461

nay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,462

2011.463

Dean A. Pomerleau. Efficient Training of Artificial Neural Networks for Autonomous Navigation. Neural464

Computation, 3(1), 1991. ISSN 0899-7667. doi: 10.1162/neco.1991.3.1.88.465

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ466

Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent467

challenge. arXiv preprint arXiv:1902.04043, 2019.468

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In International Con-469

ference on Learning Representations, 2021.470

Lloyd Shapley. A value for n-person games. Contributions to the Theory of Games, pp. 307–317, 1953.471

Andy Shih, Stefano Ermon, and Dorsa Sadigh. Conditional imitation learning for multi-agent games. In 2022472

17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 166–175. IEEE, 2022.473

Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative adversarial imitation474

learning. Advances in neural information processing systems, 31, 2018.475

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario476

Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural Infor-477

mation Processing Systems, 33:3008–3021, 2020.478

Robert Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.479

Qi Tian, Kun Kuang, Furui Liu, and Baoxiang Wang. Learning from good trajectories in offline multi-agent480

reinforcement learning. arXiv preprint arXiv:2211.15612, 2022.481

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent rein-482

forcement learning with knowledge distillation. Advances in Neural Information Processing Systems, 35:483

226–237, 2022.484

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. Shapley q-value: A local reward approach to485

solve global reward games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,486

pp. 7285–7292, 2020.487

11



Under review as a conference paper at ICLR 2024

Jianhong Wang, Yuan Zhang, Yunjie Gu, and Tae-Kyun Kim. Shaq: Incorporating shapley value theory into488

multi-agent q-learning. Advances in Neural Information Processing Systems, 35:5941–5954, 2022.489

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for safety in open-490

domain chatbots. arXiv preprint arXiv:2010.07079, 2020.491

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with suboptimal data.492

arXiv preprint arXiv:2110.14770, 2021.493

Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse reinforcement learning. In494

International Conference on Machine Learning, pp. 7194–7201. PMLR, 2019.495

Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning from496

demonstrations with varying optimality. Advances in Neural Information Processing Systems, 34:12340–497

12350, 2021.498

12



Under review as a conference paper at ICLR 2024

A APPENDIX TO METHODS499

A.1 AXIOMATIC PROPERTIES OF THE EXCHANGE VALUE AND ITS RELATIONSHIP WITH THE500

SHAPLEY VALUE501

Fix a characteristic function game G with a set of players N . It is well-known that the Shapley Value satisfies502

the following axioms (Shapley, 1953):503

(1) Dummy: if an agent i satisfies v(C ∪ {i}) = v(C) for all C ⊆ N \ {i} then SVi(G) = 0;504

(2) Efficiency: the sum of all agents’ Shapley Values equals to the value of the grand coalition, i.e.,505 ∑
i∈N SVi(G) = v(N);506

(3) Symmetry: for every pair of distinct agents i, j ∈ N with v(C ∪ {i}) = v(C ∪ {j}) for all C ⊆ N \ {i, j}507

we have SVi(G) = SVj(G);508

(4) Linearity: for any pair of games G1 = (N, v1) and G2 = (N, v2) with the same set of agents N , the game509

G = (N, v) whose characteristic funciton v is given by v(C) = v1(C) + v2(C) for all C ⊆ N satisfies510

SVi(G) = SVi(G1) + SVi(G2) for all i ∈ N .511

Indeed, the Shapley Value is the only value for characteristic function games that satisfies these axioms (Shap-512

ley, 1953). It is then natural to ask which of these axioms (or their variants) are satisfied by the Exchange513

Value.514

To answer this question, we first establish a relationship between the Shapley Value and the Exchange Value.515

Proposition A.1. For any characteristic function game G = (N, v) and every agent i ∈ N we have516

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
. (6)

Proof. Fix an agent i and consider an arbitrary non-empty coalition C ⊊ N \ {i}.517

In the expression for the Shapley Value of i the coefficient of v(C) is

− 1

n!
(|C|)!(n− 1− |C|)! :

we subtract the fraction of permutations of N where the agents in C appear in the first |C| positions, followed
by i. By the same argument, the coefficient of v(C ∪ {i}) is

1

n!
(|C|)!(n− 1− |C|)!.

Similarly, in the expression for the Exchange Value of i the coefficient of v(C) is

− 1

(n− 1)!(n− 1)
(|C|)!(n− 1− |C|)! :

each permutation of N \ {i} where agents in C appear in the first |C| positions contributes with coefficient
− 1

(n−1)!(n−1)
. By the same argument, the coefficient of v(C ∪ {i}) is

1

(n− 1)!(n− 1)
(|C|)!(n− 1− |C|)!

Now, if C = N \ {i}, in the expression for SVi(G) the coefficient of v(C) is − 1
n

and the coefficient of518

v(C ∪ {i}) = v(N) is 1
n

. In contrast, in the expression for EVi(G) the coefficient of v(C) is − 1
n−1

: for each519

of the (n − 1)! permutations of N \ {i} we subtract v(C) with coefficient 1
(n−1)!(n−1)

when we replace the520

last agent in that permutation by i. On the other hand, v(N) never appears.521

It follows that, for every coalition C ⊊ N , if the value v(C) appears in the expression for SHi(G) with weight
ω then it appears in the expression for EVi(G) with weight n

n−1
· ω. Hence

EVi(G) =
n

n− 1

(
SHi(G)− 1

n
· v(N)

)
522

Example A.2. Consider a characteristic function game G = (N, v), where N = {1, 2} and v is given by
v({1}) = 2, v({2}) = 4, v({1, 2}) = 10. We have

SH1(G) = (2 + (10− 4))/2 = 4, SH2(G) = (4 + (10− 2))/2 = 6

and
EV1(G) = 2− 4 = −2, EV2(G) = 4− 2 = 2.

Note that EV1(G) = 2(SH1(G)− 1
2
v(N)), EV2(G) = 2(SH2(G)− 1

2
v(N)).523
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We can use Proposition A.1 to show that the Exchange Value satisfies two of the axioms satisfied by the Shapley524

Value, namely, linearity and symmetry.525

Proposition A.3. The Exchange Value satisfies symmetry and linearity axioms.526

Proof. For the symmetry axiom, fix a characteristic function game G = (N, v) and consider two agents
i, j ∈ N with v(C ∪ {i}) = v(C ∪ {j}) for all C ⊆ N \ {i, j}. We have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
=

n

n− 1

(
SVj(G)− 1

n
· v(N)

)
= EVj(G),

where the first and the third equality follow by Proposition A.1, and the second equality follows because the527

Shapley Value satisfies symmetry.528

For the linearity axiom, consider a pair of games G1 = (N, v1) and G2 = (N, v2) with the same set of agents529

N and the game G = (N, v) whose characteristic funciton v is given by v(C) = v1(C) + v2(C) for all530

C ⊆ N . Fix an agent i ∈ N . We have531

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· (v1(N) + v2(N))

)
=

n

n− 1

(
SVi(G1)−

1

n
· v1(N)

)
+

n

n− 1

(
SVi(G2)−

1

n
· v2(N)

)
= EVi(G1) + EVi(G2).

Again, the first and the third equality follow by Proposition A.1, and the second equality follows because the532

Shapley Value satisfies linearity.533

While the Exchange Value does not satisfy the dummy axiom or the efficiency axiom, it satisfies appropriately534

modified versions of these axioms.535

Proposition A.4. For every characteristic function game G it holds that
∑

i∈N EVi(G) = 0. Moreover, if i is536

a dummy agent, i.e., v(C ∪ {i}) = V (C) for all C ⊆ N \ {i} then EVi(G) = − v(N)
n−1

.537

Proof. We have538 ∑
i∈N

EVi(G) =
∑
i∈N

n

n− 1

(
SVi(G)− 1

n
· v(N)

)
=

∑
i∈N

n

n− 1
SVi(G)− n

n− 1
· v(N)

=
n

n− 1
· v(N)− n

n− 1
· v(N) = 0,

where we use Proposition A.1 and the fact that the Shapley Value satisfies the efficiency axiom.539

Now, fix a dummy agent i. We have

EVi(G) =
n

n− 1

(
SVi(G)− 1

n
· v(N)

)
= − 1

n− 1
· v(N);

again, we use Proposition A.1 and the fact that the Shapley Value satisfies the dummy axiom.540

A.2 DERIVATION OF CLUSTERING OBJECTIVE STATED IN EQ. 4541

Inessential games and EVs. The assumption of an inessential game is commonly made to compute Shap-542

ley Values more efficiently2. In an inessential game, the value of a group is given by the sum of the individual543

contributions of its members, denoted as v(C) =
∑

i∈C vi, where vi is an individual agent’s unobserved544

contribution vi. The EV (see Definition 4.1) of an individual agent i in an inessential game is given as545

EV i(G) = vi − 1/|N|−1 ·
∑

j∈N\{i}

vj = (1 + 1/|N|−1) · vi − 1/|N|−1 ·
∑
j∈N

vj ,

This expression represents the difference between the individual contribution of agent i, vi, and the average546

individual contribution of all other agents. The second term is independent of i and remains constant across all547

agents.548

2see, e.g., Covert, I. and Lee, S.I., 2020. Improving kernelshap: Practical shapley value estimation via linear
regression. arXiv preprint arXiv:2012.01536.
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Figure 4: In the Overcooked environments Cramped Room (left) and Coordination Ring (right),
agents must cooperate to cook and deliver as many soups as possible within a given time.

Derivation of equivalent clustering objective. We now consider the optimization problem defined by
Equation 4, which defines optimal cluster assignments u∗ such that the variance in EVs is maximised

u∗ ∈ argmaxuVar([ẼV 0(G̃), . . . , ẼV n−1(G̃)]).

Further, the clustered value function is defined as

ṽ(C) = 1/η ·
∑n−1

m=0

∑
π∈ΠN

v(Sπ(m)) · 1({uj | j ∈ Sπ(m)} = C),

where the normalisation constant is defined as η =
∑n−1

m=0

∑
π∈ΠN

1({uj | j ∈ Sπ(m)} = C). We denote by549

ki the individual contribution of the agent that represents the agents in cluster i. The value ki is defined as the550

average individual contribution of all agents assigned to the cluster, i.e. ki = 1/ϵ ·
∑

j∈Nvj · 1(u(i) = u(j)).551

Here, the normalization constant is given as ϵ =
∑

j∈N 1(u(i) = u(j)).552

Using the concept of the clustered value function ṽ, we can express the EV for all agents assigned cluster i as

EV i(G̃) = (1 + 1/|K|−1) · ki − 1/|K|−1 ·
∑
j∈K

kj .

The second term, which is cluster-independent, can be omitted when computing the variance553

Var([EV 0(G̃), . . . , EV n−1(G̃)]), as the variance is agnostic to a shift in the data distribution. We will omit554

the scaling factor (1 + 1/|K|−1) from here onwards.555

Let nj denote the number of agents assigned to cluster j ∈ K, with
∑K−1

i=0 ni = N . By simplifying Equa-
tion 4, we obtain:

Var([EV 0(G̃), . . . , EV n−1(G̃)]) =

K−1∑
i=0

ni ·
(
ki −

∑K−1
j=0 nj ·kj/N

)2

.

This allows us to express the objective stated in Equation 4 as

u∗ ∈ argmaxuVar([k0, . . . , kn−1]).

The objective stated in Equation 4 is therefore equivalent to assigning agents to clusters such that the variance556

in cluster centroids (centroids computed as the mean of the unobserved individual contributions vi of all agents557

assigned to a given cluster) is maximized.558

Table 3: Dataset statistics in Overcooked.

Imitation method Cramped Room Dλ Coordination Ring Dλ Cramped Room Dadv Coordination Ring Dadv

Minimum 0 0 0 0
Mean 20.6± 33.58 12± 19.39 16.91± 40.64 3± 11.15
Maximum 150 80 160 80

B OVERCOOKED EXPERIMENTS559

We generate the simulated datasets using the planning algorithm given in (Carroll et al., 2019)3. To be able to560

simulate agents with different behaviors (from adversarial to optimal), we first introduce a latent trait parameter,561

3https://github.com/HumanCompatibleAI/overcooked_ai
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λ, which determines the level of adversarial or optimal actions for a given agent. A value of λ = 1 represents562

a policy that always chose the best action with certainty. As λ decreases, agents are more likely to select non-563

optimal actions. For λ < 0, we invert the cost function to create agents with adversarial behavior. Notably,564

we assign a high cost (or low cost when inverted) to occupying the cell next to the counter in the Overcooked565

environment. Occupying the cell next to the counter enables adversarial agents to block other agents in the566

execution of their tasks.567

For human gameplay datasets, we utilized the raw versions of the Overcooked datasets.4 These datasets were568

used as-is, without manual pre-filtering.569

We introduce an additional modified version of the Overcooked environment in which agents can take an570

additional action that lights the kitchen on fire with a predefined probability, resulting in an episode reward of571

−200; we refer to this environment as Overcooked+Fire and evaluate on equivalently created datasets Dadv and572

Dλ.573

EVs. To estimate agents’ EVs according to Section 4.2, we used either the full set of all possible groups or a574

fraction of it (see Figure 3 for the relationship between dataset size and EV estimation error). For each observed575

grouption, we conducted 10 rollouts in the environment and calculated the average score across these rollouts576

to account for stochasticity in the environment.577

Imitation learning. For EV2BC, BC, and group-BC, we used the implementation of Behavior Cloning in578

Overcooked as given by the authors of (Carroll et al., 2019)5. We implement the offline multi-agent reinforce-579

ment learning method OMAR (Pan et al., 2022) using the author’s implementation.6 For the OMAR baseline,580

we set the reward at the last timestep to the DVF’s score for a given trajectory, as our work assumes that no per-581

step reward signal is given, in contrast to the standard offline-RL framework. We conducted a hyperparameter582

sweep for the following parameters: learning rate with options {0.01, 0.001, 0.0001}, Omar-coe with options583

{0.1, 1, 10}, Omar-iters with options {1, 3, 10}, and Omar-sigma with options {1, 2, 3}. The best-performing584

parameters were selected based on the evaluation results.585

Implementation of Overcooked+Fire. We introduce an additional adversarial action, “light kitchen on586

fire,” to the environment. To account for this action in the planning algorithm, we assign it the highest possible587

cost. Taking this action had a 50% chance of resulting in an episode return of −200, regardless of the other588

agent’s performance.589

B.1 CLUSTERING OF AGENTS IN OVERCOOKED590

Behavior clustering. The behavior clustering process in the Overcooked environment involves the follow-591

ing steps. Initially, we identify the 200 states that are most frequently visited by all agents in the given set592

of observations. As the action space in Overcooked is relatively small (≤ 7 actions), we calculate the empir-593

ical action distribution for each state for every agent. These 200 action distributions are then concatenated to594

form a behavior embedding for each agent. To reduce the dimensionality of the embedding, we apply Principal595

Component Analysis (PCA), transforming the initial embedding space into three dimensions. Subsequently, we596

employ the k-means clustering algorithm to assign agents to behavior clusters. The number of clusters (7 for597

Overcooked) is determined using the ELBOW method (Thorndike, 1953), while linear kernels are utilized for598

both PCA and k-means. It is noteworthy that the results are found to be relatively insensitive to the parameters599

used in the dimensionality reduction and clustering steps, thus standard implementations are employed for both600

methods (Pedregosa et al., 2011). Importantly, this clustering procedure focuses exclusively on the observed601

behavior of agents, specifically the actions taken in specific states, and is independent of the scores assigned to602

trajectories by the DVF.603

EV-Clustering. In contrast to behavior clustering, EV-Clustering (see Section 4.2.1) focuses solely on the604

scores assigned to trajectories by the DVF and disregards agent behavior. The objective of variance clustering605

is to maximize the variance in assigned EVs, as stated in Equation 4. To optimize this objective, we utilize the606

SLSQP non-linear constrained optimization intrroduced by Kraft (1988).607

We use soft cluster assignments and enforce constraints to ensure that the total probability is equal to one for608

each agent. The solver is initialized with a uniform distribution and runs until convergence or for a maximum of609

100 steps. Given that the optimization problem may have local minima, we perform 500 random initializations610

and optimizations, selecting the solution with the lowest loss (i.e. the highest variance in assigned EVs).611

4https://github.com/HumanCompatibleAI/human_aware_rl/tree/master/human_
aware_rl/data/human/anonymized

5https://github.com/HumanCompatibleAI/overcooked_ai/tree/master/src/
human_aware_rl/imitation

6https://github.com/ling-pan/OMAR
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Figure 6: Within-cluster variance in relation to fraction
of observations for simulated data in Cramped Room
and Coordination Ring (Overcooked). Two cluster-
ing methods shown (Behavior clustering and Variance
Clustering). In the case of random cluster assignments,
the within-cluster variance is 5.11± 0.11, while under
optimal cluster assignments, the variance is 0.156. See
section B.1 for discussion.

Combining Behavior Clustering and EV Clustering. As described in Sections 4.2.2 and 5.1, behavior612

clustering (which utilizes behavior information but disregards DVF scores) and variance clustering (which613

utilizes DVF scores but disregards behavior information) are combined to estimate EVs for degenerate datasets.614

We initialize the SLSQP solver with the cluster assignments obtained from behavior clustering and introduce a615

small loss term in the objective function of Equation 4. This additional loss term, weighted by 0.1 (selected in616

a small sensitivity analysis), penalizes deviations from the behavior clusters. Similar to before, we perform 500617

iterations while introducing a small amount of noise to the initial cluster assignments at each step. The solution618

with the highest variance in assigned EVs is then selected.619

Ablation study. We present an ablation study to examine the impact of different components in the cluster-620

ing approach discussed in Section 5.1. We proposed two sequential clustering methods: behavior clustering and621

variance clustering. This ablation study investigates the performance of both clustering steps when performed622

independently, also under the consideration of the fraction of the data that is observed. We assess performance623

as the within-cluster variance in the unobserved agent-specific latent trait variable λ, where lower within-cluster624

variance indicates higher performance. It is important to note that λ is solely used for evaluating the clustering625

steps and not utilized during the clustering process. The results of the ablation study are depicted in Figure 6.626

We first discuss EV-Clustering. EV-Clustering as introduced in Seciton 4 generally leads to a significant de-627

crease in within-cluster variance in the unobserved variable λ. More specifically, the proposed variance clus-628

tering approach (when 50% of data is observed), results in a ∼ 89% reduction of the within-cluster variance629

in λ, which validates the approach of clustering agents by their unobserved individual contributions by maxi-630

mizing the variance in estimated EVs. However, we observe in Figure 6 that, as the fraction of observed data631

decreases, the within-cluster variance increases, indicating a decrease in the quality of clustering. The highest632

within-cluster variance is observed when using only a single observation (’single-obs’), which corresponds to633

a fully-anonymized dataset. This finding is consistent with the fact that a fully-anonymized dataset presents a634

degenerate credit assignment problem, as discussed in Section 4.2.2.635

We now discuss behavior clustering. Figure 6 shows that behavior clustering generally results in a very low636

within-cluster variance. However, it is important to note that these results may not directly translate to real-637

world data, as the ablation study uses simulated trajectories. Note that such an ablation study cannot be con-638

ducted for the given real-world human datasets, as these are fully anonymized. In Section 5.1, we demonstrate639

that behavior clustering alone may not be sufficient for fully-anonymized real-world human datasets. Instead,640

a combination of both behavior clustering and variance clustering yields superior results.641

Additional results for non-fully anonymized datasets. While the results presented in Section 5.2642

were obtained for fully-anonymised datasets, we ran the same evaluations also for the simulated datasets where643

30% possible groups are observed. As it can be seen in Table 4, EV2BC outperforms baseline approaches by644

an even larger margin.645
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Table 4: Results for 30% of coalitions observed in Overcooked

Imitation method Cramped Room Dλ Coordination Ring Dλ Cramped Room Dadv Coordination Ring Dadv

BC 12.6± 3.34 18.13± 6.21 31.7± 8.96 14.21± 3.78
Group-BC 64.33± 6.1 29.4± 7.01 75.7± 13.98 16.8± 5.66
EV-BC (ours) 101.33 ± 14.37 38.3 ± 6.81 138.8 ± 18.6 22.0 ± 6.1
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Figure 7: Colour-coded ordering of EVs for agents with varying behaviors in Tragedy of the Com-
mons. The brighter, the higher an agent’s contribution to a given value function.

C TRAGEDY OF THE COMMONS EXPERIMENTS646

We model ToC as a multi-agent environment where agents consume from a common pool of resources xt,647

which grows at a fixed rate g = 25% at each time step t: xt+1 = max
(
(1 + g) · xt −

∑
icti, 0

)
, with648

cti as the consumption of the ith agent at time t and x0 = 200 as the starting pool. Hence, if all resources649

are consumed, none can regrow and no agents can consume more resources. The Tragedy of the Commons650

(ToC) environment features 4 different behavior patterns: Take-X consumes X units at every timestep, Take-X-651

x-dpl consumes X units if this does not deplete the pool of resources, Take X% consumes X% of the available652

resources, and TakeAvg consumes the average of the resources consumed by the other agents at the previous653

timestep (0 in the first timestep). For the small-scale experiment of 12 agents, we consider three agents for654

each pattern, with X values selected from the set 1, 3, 10. For the large-scale experiment of 120 agents, we655

simply replicate each agent configuration 10 times. We simulate both experiments for groups of size 3 and 10656

respectively. We generate a simulated dataset using agents with four different behavior patterns. We first collect657

a dataset of observations for a small-scale experiment of 12 agents and simulate ToC for groups of three agents658

for 50 time steps (we later consider a group of 120 agents).659

Due to the continuous nature of the state and action spaces in ToC, we first discretize both and then apply the660

same clustering methods used in the Overcooked scenario. We proceed by computing EVs for all agents as661

done in Overcooked (see Figure 3 for results). We implement imitation policies by replicating the averaged662

action distributions in the discretized states.663

D COMPUTATIONAL DEMAND AND REPRODUCIBILITY664

We used an Intel(R) Xeon(R) Silver 4116 CPU and an NVIDIA GeForce GTX 1080 Ti (only for training665

BC, EV2BC, group-BC, and OMAR policies). In Overcooked, generating a dataset took a maximum of three666

hours, and estimating EVs from a given dataset takes a few seconds. Behavior clustering consumes a couple667

of minutes, while Variance clustering took up to two hours per configuration (note that it is run 500 times).668

Training of the BC, group-BC, and EV2BC policies took no more than 30 minutes (using a GPU), while the669

OMAR baseline was trained for up to 2 hours. In Tragedy of Commons, each rollout only consumes a couple of670

seconds. Clustering times were comparable to those in Overcooked. Computing imitation policies is similarly671

only a matter of a few minutes.672

As this submission is public, we will release the code for all experiments with the camera-ready version.673
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