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ABSTRACT

Large language models (LLMs) have emerged as powerful tools for interpreting
multimodal data (e.g., images, audio, text), often surpassing specialized models.
In medicine, they hold particular promise for synthesizing large volumes of clin-
ical information into actionable insights and patient-facing digital health applica-
tions. Yet, a major limitation remains their inability to handle time series data.
To overcome this gap, we present OpenTSLM, a family of Time-Series Language
Models (TSLMs) created by integrating time series as a native modality to pre-
trained LLMs, enabling natural-language prompting and reasoning over multiple
time series of any length. We investigate two architectures that differ in how
they model time series. The first, OpenTSLM-SoftPrompt, models time series
implicitly by concatenating learnable time series tokens with text tokens via soft
prompting. Although parameter-efficient, we hypothesize that explicit time series
modeling scales better and outperforms implicit approaches. We thus introduce
OpenTSLM-Flamingo, which integrates time series with text via cross-attention.
We benchmark both variants with LL.aMa and Gemma backbones against base-
lines that treat time series as text tokens or plots, across a suite of text—time-
series reasoning tasks. We introduce three time-series Chain-of-Thought (CoT)
datasets: HAR-CoT (human activity recognition), Sleep-CoT (sleep staging),
and ECG-QA-CoT (ECG question answering). Across all, OpenTSLM mod-
els consistently outperform baselines, reaching 69.9% F1 in sleep staging and
65.4% in HAR, compared to 9.05% and 52.2% for finetuned text-only mod-
els. Notably, even 1B-parameter OpenTSLM models surpass GPT-40 (15.47%
and 2.95%). OpenTSLM-Flamingo matches OpenTSLM-SoftPrompt in perfor-
mance and outperforms on longer sequences, while maintaining stable memory
requirements. By contrast, SoftPrompt exhibits exponential memory growth with
sequence length, requiring 110 GB compared to 40 GB VRAM when train-
ing on ECG-QA with LLaMA-3B. Expert reviews by clinicians find strong rea-
soning capabilities and temporal understanding of raw sensor data exhibited by
OpenTSLMs on ECG-QA. To facilitate further research, we provide all code,
datasets, and models as open-source resources.

1 INTRODUCTION

Medicine is inherently temporal: assessment, diagnosis, and treatment depend on how signs, symp-
toms, and biomarkers evolve over time |Giannoula et al.| (2018); Henly et al.| (2011); Jgrgensen
et al.| (2024). Clinical decision-making relies on temporal patterns—tracking vital signs, medication
responses, laboratory values, and disease progression markers to guide diagnosis, prognosis, and
therapeutic interventions. As time-series data from electronic health records and continuous mon-
itoring proliferate |Abernethy et al.| (2022); Marra et al.| (2024); Yeung et al.| (2023)), human-legible
representations become essential for interpreting and managing this information |Olex & Mcinnes
(2021)); \Senathirajah et al.| (2020); [Zhou et al.| (2008). Clinical summaries must translate complex
temporal patterns—hemodynamic instability, biomarker trajectories, and treatment responses—into
interpretable assessments that support evidence-based decision-making and care coordination.
Recent advances in multimodal large language models (LLMs) allow users to interpret complex
data through natural language, synthesizing information across text, images, audio, and video |Wu
et al.| (2023)); |/AlSaad et al. (2024). However, reasoning over longitudinal time series data remains
a critical blind spot among currently supported modalities. Prior work has attempted to integrate



time-series as plain text tokens (Gruver et al.[(2023); Kim et al.| (2024); [Liu et al.[(2023)); however
results have been limited Merrill et al.| (2024). Other approaches reprogram LLMs to act as feature
extractors for classification heads, which then output a fixed set of classes or values, thereby losing
text-generation capabilities |L1 et al.| (2025)); Nie et al.| (2023); |Pillai et al.| (2025)); |Ye et al.| (2025).
More recently, soft prompting has been explored, concatenating learnable time-series tokens with
text tokens to preserve generation |Chow et al.|(2024). Yet, longer series may require more tokens,
increasing context length |Gotz et al.| (2025); Nie et al|(2023)) and compute due to the quadratic cost
of self-attention |[Nie et al. (2023)); |Vaswani et al.| (2017).

To overcome prior limitations, we propose Time-Series Language Models (TSLMs), which inte-
grate time series as a native modality in LLMs. TSLMs provide a natural interface to complex med-
ical data, enabling clinicians and patients to query, interpret, and reason about longitudinal health
information directly through natural language. We introduce OpenTSLM, a family of TSLMs built
by extending pretrained LLMs with time-series inputs. A central design question in building TSLMs
is how to represent time-series signals. Prior work has primarily used soft prompting, encoding time
series as learned token embeddings concatenated with text tokens. While lightweight, this captures
temporal dependencies only implicitly, as additional tokens in the context, and may scale poorly to
longer or multiple sequences. We hypothesize that explicit multimodal fusion via cross-attention
may be more effective for modeling temporal structure. To compare both approaches, we explore
two variants for OpenTSLM. The first, OpenTSLM-SoftPrompt, models time series implicitly
by encoding the time series into tokens and concatenating them with text tokens via soft prompt-
ing, so the model processes both as a single sequence without distinguishing between them. The
second, OpenTSLM-Flamingo, by contrast, models time series explicitly as a separate modality,
using a cross-attention mechanism inspired by Flamingo [Alayrac et al.| (2022) to fuse time-series
and text. We created OpenTSLM-SoftPrompt and OpenTSLM-Flamingo using Llama Touvron et al.
(2023) and Gemma|GemmaTeam et al.|(2024) backbones. We benchmark these models against each
other and against baselines including LLMs with tokenized time-series inputs |Gruver et al.| (2023),
fine-tuned tokenized time-series models, and vision-based approaches. Unlike prior classification-
based approaches, our models are trained in text-based reasoning tasks, generating chain of thought
(CoT) rationales before producing predictions. For training and evaluation, we introduce three new
datasets: HAR-CoT, Sleep-CoT, and ECG-QA-CoT. To foster reproducibility and further research
on TSLMs, we release OpenTSLM as an open-source framework, including models and datasetsﬂ

2 RELATED WORK

Creating Time-Series Language Models remains an open research challenge. The main barrier is
the modality gap between continuous signals and discrete text representations |Chow et al.| (2024);
Pillai et al.| (2025); Zhang et al.[(2025)). Prior work has proposed three main strategies to bridge this
gap, as summarized by Zhang et al| (2024): tokenizing time series as text (Section 2.1), applying
soft prompting (Section 2.2), and using cross-attention mechanisms (Section 2.3). [Table I| provides

an overview of relevant methods.

'"https://github.com/StanfordBDHG/OpenTSLM
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Table 1: Methods combining time-series data with LLMs.
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2.1 TOKENIZATION OF TIME SERIES AS TEXT INPUTS

has demonstrated that LLMs can perform time series forecasting by encoding values
as text tokens and predicting future values without domain-specific tuning |Gruver et al.| (2023) Liu|
tokenize data from wearables and smartphones to enable LLMs to infer clinical and
wellness information through few-shot prompting. Similarly, propose HealthLLM,
a framework for health prediction using physiological signals (e.g., heart rate, sleep) combined with
user context and medical knowledge embedded in prompts.

2.2  COMBINING TEXT AND TIME SERIES TOKEN EMBEDDINGS (SOFT PROMPTING)

An alternative to manual tokenization is to encode time series into embeddings that capture time
series information, using a time series encoder as presented by (2023). These embeddings
can be input into a transformer directly or concatenated with text embeddings (softprompting) Chow
(2024); [Nie et al.| (2023)); [Pillai et al.| (2025); [Ye et al| (2025)); Xie et al| (2025)); Wang et al.
(2025)); |Cheng et al.| (2025); |Chan et al.| . [Pillai et al.| (2025) use this approach and train
an encoder to produce soft prompts from time series, which are then processed by a frozen LLM
for classification via a projection head; however, this disables free-form text generation. [Ye et al.|
(2025)) and [Chan et al] (2024) similarly combine time series and text-token embeddings, using a
classification head and a task solver for prediction. [Wang et al |
(2025) introduced ITFormer, a novel framework that combines any time-series encoder with any
frozen LLM to support time series question answering, also by combining text- and derived time-
series tokens. |Cheng et al| (2025) introduce a framework that first aligns time-series and natural
language in a general stage, and later finetunes for a specific domain to perform classification.
(2025) integrate sensor and text embeddings in two stages: First, they generate a caption-like
summary of the time series for free-form output; Second, they classify the data via a projection head,
therefore restricting free from output. |Chow et al|(2024) and | Xie et al.|(2025) interleave time series
tokens with text tokens in the LLM input, enabling free-form text reasoning.

2.3 CROSS-ATTENTION FOR TIME-SERIES DATA

Few studies use cross-attention to integrate time series into LLMs. [Zhang et al.|(2025)) apply cross-
attention between a time series encoder and a text encoder, aligned with contrastive loss, to extract

statistical summaries (e.g., mean, max) from a single sensor. They train a new sensor encoder, text
encoder, and multimodal text decoder, rather than adapting a pretrained LLM |Zhang et al.|(2025).

3 METHODS

We present two architectures for TSLMs, OpenTSLM-Soft Prompting (SP) and
OpenTSLM-Flamingo (Section 3.3). To support multiple time-series inputs, we design a prompt
format that interleaves sensor data with accompanying textual descriptions (e.g., “Data from Sensor
X over Y days:” followed by the data representation). [Figure T]illustrates our approach.
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Figure 1: Overview of Text—Time-Series LLMs with support for multiple time-series inputs.

3.1 TIME-SERIES ENCODER

Both OpenTSLM architectures use a time series encoder inspired by [Nie et al.| (2023). It consists
of a Patchencoder, followed by either a TransformerEncoder for OpenTSLM-SP or a
PerceiverResampler for OpenTSLM-Flamingo (inspired by |Alayrac et al.| (2022); /Awadalla
et al.|(2023)). We divide an input time series 2 € R* into non-overlapping patches of size p, yielding
N = L/p patches. Each patch is then transformed into an embedding vector using a 1D convolution
and added with a positional encoding Nie et al.[(2023))

Patch Embedding: E; = Conv1D(2;.p.(i41)p) € R* + P; (1)

where the convolution has kernel size and stride equal to p, mapping each patch to a d.,.-dimensional
embedding. P, is the learnable positional encoding. The sequence of position-augmented embed-
dings is then processed by the specific Encoder (cf. Sections[3.2]and [3.3).

Preserving scale and temporal information The PatchEncoder expects inputs normalized
to x € [—1,1]. Since raw time series differ in scale and resolution across modalities depending
on the sensor. Consistent with prior work |Chow et al.| (2024); Xie et al| (2025) we preserve scale
and temporal context by adding the original mean, standard deviation, and time scale to the textual
description. For example:

This is heart-rate data over 24 hours sampled at 50 Hz with mean=61 and std=12.

3.2 SOFT-PROMPTING ARCHITECTURE (OPENTSLM-SP)

OpenTSLM-SP has three components: (1) a time series encoder that transforms raw data into patch
embeddings, (2) a projection layer mapping embeddings to the LLM hidden space, (3) a pretrained
LLM, fine-tuned using LoRA adapters Hu et al.| (2021)) [Figure 2]illustrates the architecture.
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Figure 2: Architecture of OpenTSLM-SoftPrompt



Projecting Time-Series Tokens to Text Tokens We apply the patch embeddings to a transformer
encoder and subsequently project the resulting tokens with an multi-layer perceptron (MLP) to align
them with the embedding space of dimension dj;,, corresponding to the hidden size of the language
model, following Nie et al.|(2023)) and |Chow et al.| (2024)).

Z = MLP(TransformerEncoder(E;.y)) € RYXdm (2)

where Z € RV >4 denotes the projected time-series tokens in the LLM embedding space.

Text-Time-Series integration via Soft Prompting We interleave any number of text and time-
series tokens through a soft prompting mechanism. A typical prompt consists of (1) an initial text
segment (“pre-prompt”), (2) a sequence of interleaved time-series tokens and textual descriptions,
and (3) a final text segment (“post-prompt”), often a question. Formally, the model input is:

Xinput = [Tprea Zlv Tdescla Z27 Tde5027 ey ZK; TdescK ) Tpost} (3)

where Tpre, Tgesc;» and Tpos are token embeddings of text segments, and each Z; is a projected
time-series embedding aligned with the LLM hidden space. We refer to each (Z;, Tqesc;) as a
text—time-series chunk. This approach implicitly integrates time series through learned tokens.

3.3 CROSS-ATTENTION ARCHITECTURE (OPENTSLM-FLAMINGO)

OpenTSLM-Flamingo is inspired by the Flamingo model for vision—language tasks |Alayrac et al.
(2022); |Awadalla et al.| (2023). Following OpenFlamingo |[Awadalla et al.| (2023), we extend pre-
trained LLMs with cross-attention layers to support time-series reasoning.

Architecture Overview We replace the vision encoder of Flamingo with a time series encoder
and adapt the cross-attention mechanism for temporal data. The model consists of: (1) a time series
patch encoder, (2) a Perceiver Resampler, (3) gated cross-attention layers integrated into the LLM,
and (4) the frozen language model backbone. visualizes the architecture.
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Figure 3: Architecture of OpenTSLM-Flamingo

PerceiverResampler We use a PerceiverResampler inspired by Flamingo |Awadalla et al.| (2023))
as Encoder for the time series patches, yielding a fixed-size latent representation:

Ziaene = PerceiverResampler(E . ) € RNien X dine 4)

Here, dne is the dimensionality of the time-series features by the perceiver, in our case (N, 1),
encoding one time series with one channel at a time.

Text-Time-Series Gated Cross-Attention To integrate Zjyp into the LLM, we add gated cross-
attention layers every N (hyperparameter) transformer blocks which compute:

Qlext = XWQa Kts = ZlatentWKa Vts = ZlatentWV (5)
) B Qeex K
GatedCrossAttention(x, Ziyen) = = + 7 - softmax | —— | V. (6)
Vg,

where 7,y is a learnable parameter controlling the influence of the time-series, x € RT X dmoael | the
LLM input, Wg, Wi, Wy, € Rmeaet Xdk Jearned projection matrices, and dj, the key dimension.



Conditioning Text-tokens on Time-Series via Special Tokens The LLM processes tokens au-
toregressively, attending to previous inputs. Following OpenFlamingo |Awadalla et al.| (2023), we
introduce special tokens (TS) and (endofchunk) to indicate when time series modalities should be
incorporated. Upon encountering (TS), the model conditions on the corresponding latent represen-
tation Ziaen via gated cross-attention. A typical input prompt is

Xinput = [pre_prompt, (TS), ts_descy, (endofchunk), (TS), ts_descz, (endofchunk), post_prompt]
(7
where (TS) triggers multimodal conditioning and (endofchunk) signals the end of text describing a
time series. This setup enables interleaving multiple text and time series segments |Awadalla et al.
(2023). The embeddings of the special tokens are learned during training.

4 EXPERIMENTS

In the following, we outline our training methodology and report results on multiple-choice Time
Series Question Answering (TSQA) and time-series reasoning datasets. We compare OpenTSLM-
SoftPrompt and OpenTSLM-Flamingo against each other and baselines in terms of performance,
and report video random access memory (VRAM) requirements for training OpenTSLM. We present
sample model outputs across datasets and an evaluation for ECG rationales by medical doctors.

4.1 MULTI-STAGE CURRICULUM LEARNING — TEACHING LLMS TIME SERIES

Following |Chow et al.| (2024), we adopt a two-stage curriculum to train TSLMs. In stage one
(encoder warmup), we use two synthetic time-series datasets to pretrain the encoder:
* TSQA |Wang et al.| (2024) Multiple-choice time-series question answering on synthetic data for
learning simple temporal patterns (e.g., ascending/descending trends).

* Time-Series Captioning (M4-Captions) We generate pseudo-labeled captions using ChatGPT,
prompted with plots of time series of the M4 datasetMakridakis et al.| (2020) (see[Section A.5.T).
In stage two, we introduce three new CoT time-series datasets covering human activity recognition
(HAR), sleep staging, and electrocardiogram (ECG) Question Answering (QA). We generated these
using GPT-40 by providing a plot and ground-truth answer for each sample, then asking the model
to produce rationales leading to the correct response. Further details are provided in
e HAR-CoT three-axis accelerometer data combined from DalLiAc [Leutheuser et al.| (2013)),
DOMINO |Arrotta et al.| (2023), HHAR |Stisen et al.| (2015), PAMAP2 Reiss & Stricker (2012),
RealWorld |Sztyler & Stuckenschmidt (2016), and datasets from|Shoaib et al.|(2013;2014;2016)).
Sampled at 50 Hz, split into 2.56s windows, 8§ activities: sitting, standing, lying, walking, run-
ning, biking, walking upstairs, walking downstairs. See for detailed description.
¢ Sleep-CoT Based on SleepEDF |[Kemp et al.| (2000); |Goldberger et al.| (2000), using 30s elec-
troencephalogram (EEG) segments for sleep staging. Following prior work |Chow et al.| (2024));
Pouliou et al.| (2025), Non-rapid eye movement (REM) stages 3 and 4 are merged, yielding five

classes: Wake, REM, Non-REM1, Non-REM2, Non-REM3. See [Section A.2.2]for details.

* ECG-QA-CoT Based on ECG-QA |Oh et al.|(2023), which provides 12-lead 10s ECGs and
clinical context, we excluded comparison questions, retaining 42/70 templates. This yielded
3,138 unique questions across 240k samples (see[Section A.2.3).

All datasets are split into 80/10/10 train/validation/test sets. [Table 3|in [Section A.T| summarizes
number of samples in the datasets, number of time series and lengths.

Training objective In all stages, we frame the task as an autoregressive language modeling prob-
lem. During training and evaluation, the model is prompted to generate outputs in a structured
format, consisting of a free-form rationale followed by the final prediction: ‘‘<reasoning>
Answer: <final answer>’’. Formally, the loss is defined by [Equation 8] where Z are the

T
Liv = =Y 108 P(ye | y<i, X1, Zis; ©) ®)
t=1
time-series features, and © the learnable weights, i.e., the TimeSeriesEncoder, MLP, and LoRA in
OpenTSLM-SoftPrompt, and TimeSeriesEncoder and cross-attention in OpenTSLM-Flamingo.

4.2 BASELINES

We compare OpenTSLM against three baselines using the same open-weight LLMs, i.e., Llama-
3.2(1B, 3B) and Gemma3 (270M, 1B-PT), and additionally GPT-40 (gpt-40-2024-08-06).



1. Tokenized time-series: Using the open-source code provided by |Gruver et al.| (2023)), we tok-
enize time series into text inputs and report zero-shot performance on the test set.

2. Tokenized finetuned: Same as 1. (excluding GPT-40), but finetuned with LoRA Hu et al.| (2021
on the training set. We choose best model by validation loss, and report performance on test set.

3. Image (Plot): We convert time series into plots and provide them as input to GPT-40 and
Gemma-4b-pt (since the smaller Gemma 3 variants do not support image input).

4. Random baseline: For comparison, we report the expected performance of a predictor that
selects labels uniformly at random, adjusted to each dataset’s label distribution.

4.3 QUANTITATIVE RESULTS ON TIME-SERIES CLASSIFICATION

We present performance on the test splits of TSQA, HAR-CoT, Sleep-CoT, and ECG-QA-CoT and
report macro-F1 score and accuracy in[Table 2] OpenTSLM models achieve the highest performance

Table 2: Performance comparison on time series question answering (TSQA) and time series rea-
soning (HAR-CoT, Sleep-CoT, ECG-QA-CoT) tasks between OpenTSLM models and baselines.

Method  Model TSQA HAR-CoT Sleep-CoT ECG-QA-CoT
F1 Acc F1 Acc F1 Acc F1 Acc
Random Baseline 33.33 33.33 11.49 12.50 17.48 20.00 16.47 20.18
- 3 Llama3.2-1B 16.01 31.04 0.00"! 0.00 2.14 0.65 0.00 0.00
L5 Llama3.2-3B 16.24 32.06 0.00 0.00 5.66 12.15 0.00 0.00
5 {ﬁ Gemma3-270M 10.52 9.58 0.00 0.00 0.00 0.00 0.00 0.00
;é £ Gemma3-1B-pt 11.76 12.92 0.00 0.00 0.00 0.00 0.00 0.00
= GPT-40 45.32 45.29 2.95 11.74 15.47 16.02 18.19 28.76
23 Llama3.2-1B 83.74 81.40 51.28 62.71 9.05 24.19 ooM™ OOM
E 5 Llama3.2-3B 84.54 82.06 60.44 66.87 5.86 14.30 OOM OOM
% g Gemma3-270M  68.05 65.40 40.66 54.56 0.00 0.00 OOM OOM
= Gemma3-1B-pt 82.85 83.42 52.15 63.90 0.00 0.00 OOM OOM
5.) g Gemma3-4B-pt  48.77 50.60 1.72 0.89 6.75 14.95 1.90 1.03
E & GPT-40 59.24 62.10 10.83 13.90 4.82 10.75 24.95 33.30
= B Llama3.2-1B 97.50 97.54 65.44 71.48 69.88 81.08 32.84 35.49
7 % Llama3.2-3B 97.37 97.33 64.87 67.89 54.40 72.04 33.67 36.25
E 5 Gemma3-270M  40.32 26.79 1.43 0.55 7.96 591 1.29 1.11
OQ ;5) Gemma3-1B-pt 87.29 89.18 40.52 45.17 30.99 36.56 27.86 34.76
= o Llama3.2-1B 94.08 94.00 62.93 69.27 49.33 67.31 34.62 38.14
A %D Llama3.2-3B 90.14 90.10 62.77 69.03 45.45 69.14 40.25 46.25
% g Gemma3-270M  77.86 78.12 57.75 63.43 51.38 68.49 32.71 35.50
8 = Gemma3-1B-pt 92.56 92.46 65.44 71.48 43.69 60.67 35.31 37.79

Note: Gemma models have smaller context than Llama (32k vs. 128k); softprompt uses up context, performing
worse. '0.00 model failed to produce “Answer: {answer}” template, often repeating input prompt (see

i 200M - Out of memory: 12 ECG leads of 10s tokenize to 80k tokens, requiring >100GB VRAM.

across benchmarks, while most tokenized text-only baselines fail to produce valid outputs, not an-
swering in the expected template but merely repeating inputs or starting to count (see [Section A.4),
resulting in 0.00 F1 on HAR for all models except for GPT-40 (2.95). GPT-40 yields only 2.95 F1
with text but improves substantially with plots (e.g., 10.83 on HAR, 59.24 on TSQA). Gemma3-
4b similarly achieves better results TSQA and Sleep-CoT (48.77 and 6.75). Llama models achieve
2.14 and 5.65F1 on Sleep, respectively, while Gemma models again achieve 0.00, likely due to their
smaller context window (32k vs. 128k). By contrast, OpenTSLM-SoftPrompt with Llama3.2-1B at-
tains 97.50 F1 score (97.54 accuracy) on TSQA, with Llama3.2-3B at 97.37 (97.33); Flamingo vari-
ants are close (e.g., Llama3.2-1B 94.08 (94.00)), while the strongest tokenized-finetuned baseline
reaches 84.54 (82.06) and GPT-40 with image inputs at 59.24 (62.10). On HAR-CoT, the strongest
results are 65.44F1 (71.48 accuracy) for OpenTSLM-SoftPrompt (Llama3.2-1B) and 65.44 (71.48)
for OpenTSLM-Flamingo (Gemma3-1B-pt); the best tokenized-finetuned baseline records 60.44
(66.87). On Sleep-CoT, OpenTSLM-SoftPrompt (Llama3.2-1B) achieves 69.88 (81.08), followed
by OpenTSLM-SoftPrompt (Llama3.2-3B) at 54.40 (72.04) and Flamingo (Gemma3-270M) at
51.38 (68.49); tokenized-finetuned baselines remain lower (best 9.05 (24.19)). On ECG-QA-CoT,
OpenTSLM-Flamingo (Llama3.2-3B) leads with 40.25 (46.25).



4.4 EVALUATION OF MEMORY USE DURING TRAINING

We evaluate peak VRAM usage during training for both OpenTSLM variants. [Figure 4| summarizes
peak VRAM on TSQA, HAR-CoT, SleepEDF-CoT, and ECG-QA-CoT. OpenTSLM-Flamingo

Gemma-3-270M Gemma-3-1B-pt Llama-3.2-1B Llama-3.2-3B
8 100 I SoftPrompt L@ E% % ;
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Figure 4: VRAM memory usage in training across datasets.

shows near-constant memory across datasets: Llama-3.2-1B requires around 20-22 GB and Llama-
3.2-3B around 61-72 GB; Gemma-3-270M is 5.7-7.3 GB and Gemma-3-1B-pt 15.6-18.4 GB. In
contrast, OpenTSLM-SoftPrompt vary substantially with the dataset: Llama-3.2-1B requires from
4.4 GB (TSQA) up to 64.9 GB (ECG-QA—CoT), and for Llama-3.2-3B from 8.1 GB to 87.1 GB;
Gemma-3-270M spans 2.4-24.1 GB and Gemma-3-1B-pt 5.1-32.7 GB.

To further investigate memory scaling, we train models on a simulated dataset (see
with random inputs of shape (N x L), where N is the number of time series processed
concurrently and L the sequence length. We report max VRAM usage in [Figure 3] (exact values are

available in[Table 10).

o Gemma-3-270M Gemma-3-1B-pt Llama-3.2-1B Llama-3.2-3B

O 200 oggT ly\/‘

E w——_ SoftPrompt // /

§ 100 e===_Flamingo / II

I~ X out of memory / /

& 0 20000 40000 0 20000 40000 0 20000 40000 0 20000 40000

Total Sequence Length (N x L)

Figure 5: VRAM usage vs. total time-series size N X L (number of series x length)

VRAM for OpenTSLM-Flamingo effectively stays constant as /N increases from 1 to 5 and
L from 10 to 10,000 (e.g., Llama-1B ~20.4-21.0 GB; Llama-3B =~60.7-61.1 GB; Gemma-270M
~5.7-6.4 GB; Gemma-1B ~15.4-15.6 GB). By contrast, SoftPrompt scales with both NV and L (see
[Figure 5|in[Section A.7.2): for Llama-1B, VRAM rises from ~2.6 GB at L=10, N=1 to ~29.5 GB
at L=10,000, N=1 and exceeds memory at L=10,000, N>3; Llama-3B shows a similar pattern
(6.3GB — 42.7GB at N=1, OOM by N >3). Gemma-270M and Gemma-1B reach up to ~118 GB
and ~165 GB, respectively, at L=10,000, N=5.

4.5 QUALITATIVE RESULTS AND EXPERT EVALUATION OF ECG RATIONALES

Both OpenTSLM variants remain text models, trained to generate rationales for classification rather

than outputting only a class label. [Figure 6a shows example rationales for human activity recogni-
tion,[Figure 6b|for ECG-QA, andr sleep staging. [Figure 6d|shows time series captioning
on M4 data.

To evaluate the quality of model rationales, we conducted an expert review with five cardiolo-
gists from Stanford Hospital on rationales generated by OpenTSLM-Flamingo-Llama3.2-3B (best
model) for ECG-QA. We randomly sampled two examples per template (84 total), each reviewed by
at least two cardiologists. Evaluation followed a rubric derived from the American College of Cardi-
ology/American Heart Association Clinical Competence Statement on ECGs[Pangaro| (1999)); [Com-
|mittee Members et al|(2001) and based on the RIME (“Reporter—Interpreter—Manager—Educator”)
framework |Pangaro (see @) assessing whether the model: (1) correctly identified rele-
vant ECG features; (2) appropriately connected them to the final answer; (3) incorporated patient
context (age, artifacts, ...). Overall, the model gave a correct or partially correct ECG interpreta-
tion in 92.9% of cases, spanning ECG recognition, reasoning, and contextualization. OpenTSLM
showed strongest performance in clinical context integration (85.1% positive) compared to ECG pat-
tern recognition (65.5% positive) and clinical reasoning (62.5% positive) (Figure 7a). Assessment




® Prompt

Giventhe following accelerometer data, classify the activity. Possible activities:
biking, lying, running, sitting, standing, walking, walking_up, walking_down
This is the x-axis €TS>. This is the y-axis <TS>. This is the z-axis<TS>.

Reason step by step, taking into account all three axis. Finish with ‘Answer:

Normalized Acceleration

Time Step.

<~ Rationale

The accelerometer data shows significant fluctuations across all three axes,
indicating substantial movement. The X-axis exhibits sharp peaks and troughs,
suggesting rapid changes in direction, which are characteristic of dynamic
activities. Similarly, the Y-axis displays pronounced oscillations, further
supporting the presence of vigorous movement. The Z-axis also demonstrates
consistent variability, indicating vertical motion. The frequency and amplitude of
these variations are consistent with an activity involving continuous and repetitive

motion. The magnitude of changes across all axes suggests a level of intensity
andmovement that aligns with more dynamic activities.[Answer: running)

(a) Human Activity Recognition CoT

B Prompt

Giventhe following EEG data, classify the sleep stage. The possible stages are:
Wake, REM, Non-REM Stage 1, Non-REM Stage 2, Non-REM Stage 3, Movement.
Thisis the EEG recording <TS>. Reason step by step. Finishwith ‘Answer: "

@ Prompt
What range does the p duration of this 12-lead ECG TS5, ... €TS3 fallin? Answers:
1.above the normalrange 2.below the normalrange 3. withinthe normalrange
Clinical Context: 74-year-old
o female patient. 12-lead ECG.
e i - clinical recording. recorded with
[ bbbl AT_60 3, Signal uality: baseline
drift noted, static noise pre-sent,
| burst noise present, electrode
= i e artifacts present. extra beats
’ detected. pacemaker present.

e

<~ Rationale

To determine the P wave duration, we must first consider the standard normal
range, which is typically 0.08 to 0.11 seconds. In this ECG, despite the
presence of baseline drift, static noise, burst noise, and electrode artifacts,
the P waves can still be evaluated. The presence of a pacemaker may
influence the rhythm, but it does not directly affect the intrinsic P wave
duration. The P waves appear consistent across the leads, and even with the
noted artifacts, they do not seem prolonged. Given the patient's age and the
presence of a pacemaker, it is crucial to assess whether any conduction
abnormalities could affect the P wave duration. However, the morphology and
duration of the P waves do not suggest any significant prolongation.
Therefore, considering the observed patterns and clinical context, the P wave

duration falls within the normal range [Answer: within the normal range)

(b) ECG Interpretation CoT

® Prompt
Generate a detailed caption for this time-series data <TS>.

I
é § o0
E 100
2 ) “© 3
: 200 200 w00 800 100 200 100 LD Step)
Time St
e <4~ Caption
. The time-series graph displays data points over a period, showcasing
Rationale

The observed EEG signal displays a pattern characterized by relatively high
frequency and variability, with rapid fluctuations and a lack of consistent,
rhythmic oscillations. This suggests a state of heightened neural activity,
typically associated with a more alert and conscious condition. The
presence of such dynamic and irregular patterns, along with the absence of
the slower, more synchronized waveforms often found in deeper sleep

stages, points towards a classification of wakefulness (Answer: Wake)
(c) Sleep Stage Detection CoT

Figure 6: Example CoT rationales for HAR, Sleep Staging, ECG-QA and M4 captioning, generated

fluctuations between values of approximately 1300 and 1900. The series begins
with moderate variability, experiencing a sharp increase around the 10th data
point, reaching a peak near 1900. Following this peak, the data exhibits a
downward trend with intermittent spikes and drops. Notably, there are
significant drops around the 50th and 80th data points, where the values dip
close to 1300. The latter part the series shows continued volatility with smaller
peaks and troughs, indicating persistent fluctuations. The overall pattern
suggests ahigh degree of variability, with no clear long-term trend

(d) M4 Time Series Captioning

with OpenTSLM-Flamingo/Llama3.2-1B. More examples are provided in [Section A.5]
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Figure 7: Qualitative evaluation of CoT rationales and inter-reviewer agreement patterns.

patterns varied notably across reviewers, with some reviewers consistently more favorable across
all evaluation areas (Figure 7b). Reviewer disagreement was most common for clinical reasoning,
where moderate disagreements were observed between adjacent assessment categories. Complete
disagreements between positive and negative assessments were relatively rare across all areas

in Appendix [A.6).

5 DISCUSSION

All OpenTSLM models consistently outperform baselines. Text-only models often fail to follow the
answer template and thus perform at or below chance (Section 4.1)). Finetuned baselines improve
substantially on HAR-CoT (60.44% F1 vs. 0% for Llama-3.2-1B) but only slightly on Sleep-CoT
(9.05 vs. 2.14). ECG-QA finetuning was infeasible due to high VRAM demands (80k tokens require



>100GB per sample). OpenTSLM-SoftPrompt performs best on shorter sequences (Sleep-CoT,
TSQA) but becomes impractical as VRAM requirements grow with sequence length (>180GB in
simulations with 10,000-length series). With softprompting, smaller models like Gemma-3 270M
and 1B quickly exhaust their context and underperform. In contrast, OpenTSLM-Flamingo sus-
tains stable memory across sequence lengths and series (up to 60GB for Llama-3.2-3B with five
10,000-length series). This allows even tiny models, such as Gemma-270M, to deliver strong re-
sults, highlighting the efficiency of cross-attention for treating time series as a native modality.
Practical implications. Our results show that even frontier LLMs like GPT-40 are poorly suited for
time-series reasoning and that time series must be treated as a distinct modality. With OpenTSLM,
even small models like Gemma3 270M outperform GPT-40 (~200B parameters |Abacha et al.
(2025))) at a fraction of the compute and cost, enabling efficient on-device or mobile deployment.
We recommend using OpenTSLM-SoftPrompt for short time series, where it delivers strong per-
formance while requiring only a small number of additional parameters during finetuning. How-
ever, because SoftPrompt’s memory usage grows exponentially with sequence length, it becomes
impractical for longer horizons or multi-series inputs. In contrast, we recommend OpenTSLM-
Flamingo for longer time-series and multivariate sensor data (e.g, 12-lead ECG, 3-axis IMU) and
as a general-purpose solution, as it maintains nearly constant memory consumption across extended
or multi-series contexts, and offers better performance on complex datasets (like ECG-QA). Per-
haps the greatest advantage of TSLMs is the interface they provide for contextualizing results. In
ECG-QA, OpenTSLM correctly identified the relevant ECG features in most cases, with missing
context only 7.1% of the time. The model demonstrated particularly strong clinical context integra-
tion (85.1% positive assessments), thereby offering clinicians and researchers a transparent window
into the model’s reasoning. As trust is important in medicine, this transparency underscores the
value of applying LLMs to time series.

Comparison with prior work. Our approach differs from prior work in several ways. First, we
introduce time series as a new modality for LLMs, unlike [Sivarajkumar & Wang (2023)) and |Kim
et al.| (2024)), which tokenize time series. Second, we frame tasks as joint text—time-series reasoning,
training models to generate rationales that integrate temporal information. This contrasts with Med-
ualTime|Ye et al.[|(2025) and Time2Lang Pillai et al.[(2025), which reprogrammed LLMs with fixed
classification or forecasting heads, removing language generation capabilities. Notably, OpenTSLM
achieves 40.25 F1 on ECG-QA-CoT, producing rationales across 3,138 questions and 42 templates
with diverse answer options. By comparison, |Ye et al.| report 76 F1 on PTB-XL (underlying dataset
of ECG-QA) with only four classes and a fixed classification head |Ye et al.| (2025)). Third, unlike
SensorLM [Zhang et al.| (2025), which is trained from scratch, our models build on pretrained open-
weight LLMs, retaining pretrained knowledge. Fourth, while prior work used soft prompting Chow
et al.| (2024); Wang et al.| (2025) to model time series implicitly by concatenating text-tokens with
derived time-series tokens, we find that this approach scales poorly in memory use. In contrast, our
OpenTSLM-Flamingo approach models time series explicitly via a separate encoding integrated via
cross-attention, scaling better to long sequences.

Limitations. We acknowledge several limitations. First, our method of encoding time series may
not be optimal, as we rely on including mean and standard deviation in accompanying texts to
preserve temporal scale. Second, we generated CoT datasets using GPT-40 on plots, which we
have shown to perform poorly on these plots alone. Curated datasets likely lead to better ratio-
nales. Third, framing tasks as natural language generation does not ensure that the model prioritizes
the correct label, underscoring the need for loss functions that explicitly enforce correct answers.
Fourth, we did not conduct ablation studies; for example, although OpenTSLM-Flamingo intro-
duces gated cross-attention layers between every two transformer blocks, comparable performance
might be achievable with fewer. Finally, while we report strong results on individual datasets, we
have not yet demonstrated generalization to unseen data, an essential step toward general TSLMs.

6 CONCLUSION

Our results show that both OpenTSLM variants enable small-scale LLMs to outperform much larger
text-only models on time-series tasks, demonstrating that lightweight, domain-adapted architectures
can achieve strong performance without massive model scales. With OpenTSLM, we extend open-
weight pretrained LLMs to process time series retaining knowledge while adapting them to temporal
domains. This work may lay the foundation for general-purpose TSLMs capable of handling diverse
time-series datasets. Although our focus is healthcare, the ability to reason over longitudinal data has
broad relevance in domains such as finance, supply chain management, and industrial monitoring.
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REPRODUCIBILITY STATEMENT

All source code associated with this work is publicly available. All external datasets used are open
source, and any datasets generated by us have also been released as open source. We additionally
release all trained model weights. We also provide the notebooks annotated by clinical doctors for
rationale generation on the ECG-QA dataset. These resources ensure full reproducibility of our
results.

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were partially used for text editing, in limited instances, to improve
the grammar and clarity of the original text. LLMs were additionally used for reviewing parts of the
source code to identify critical errors or bugs. No LLMs were used for data analysis, experimental
design, or drawing scientific conclusions.
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A CHATAPPENDIX
A.1 TRAINING DETAILS
Table[Table 3[provides an overview of the datasets used during training. All data was split into ratios

Dataset #Samples (Train/Val/Test) Num series Length Frequency
- TSQA™ 38,400/ 4,800 / 4,800 1 Hours to Years ~ Not specified
e0  M4-Captions 80,000 /10,000 / 10,000 1 64-512 points Not specified
)
% HAR-CoT 68,542 /8,718/8,222 3 2.56s 50Hz
e Sleep-CoT 7,434 /930/930 1 30s 100Hz
»  ECG-QA-CoT  159,313/31,137 /41,093 12 10s 100Hz

Table 3: “'TSQA [Wang et al. (2024) Overview of datasets used in Stage 1 (pretraining tasks) and
Stage 2 (task-specific CoT reasoning). Datasets are split in 80/10/10 ration.

of 80/10/10 for train/val/test sets.

A.1.1 TRAINING CONFIGURATION
The models were trained with the following configuration:
¢ Optimizer: AdamW
* Learning Rates:
— OpenTSLM-SP:
* Time series encoder: 2 x 10~*
* LoRA: 2 x 107%
* Projector: 1 x 10~*
— OpenTSLM-Flamingo:
* Encoder: 2 x 10~
# Cross-attention layers: 2 x 10~4

Scheduler: Linear learning rate schedule with warmup

Warmup: 10% of total training steps

Gradient Clipping: />-norm capped at 1.0
Weight Decay: 0.01

e Training Length: Up to 200 epochs with early stopping (patience = 5 epochs)
Learning rate choices were informed by (Chow et al.| (2024).

A.2 GENERATION OF MULTIVARIATE TIME SERIES COT DATASETS

This section provides detailed descriptions of the CoT datasets generated for our study: Human Ac-
tivity Recognition (HAR-CoT), Sleep Stage Classification (SleepEDF-CoT), and Electrocardiogram
Question Answering (ECG-QA-CoT).

Our objective was to enable TSLMs not only to classify time series but also to generate explicit
reasoning chains. Since few datasets include CoT text, we generated our own multivariate time series
CoT datasets using widely adopted benchmarks in HAR, sleep staging, and ECG-QA, following a
similiar approach as proposed by (Chow et al.[(2024).

For each dataset, we generated rationales with GPT-40 by providing a plot of the data along with
the correct label, and prompting the model to produce a rationale leading to that label. The exact
prompts are described in Sections [A.2.1] [A.2.2] and [A.2.3] We carefully engineered the prompts
and manually reviewed a subset of samples to ensure the generated rationales were consistent and
sensible. When plotting, original data was used without normalization. If multiple time series were
present in a sample (e.g., three in HAR or twelve in ECG), all were plotted as separate subplots but
combined into a single figure.

* GPT-40 snapshot: gpt-40-2024-08-06
¢ Temperature: 0.3
* Seed: 42

The following subsections describe dataset-specific methodologies, data processing, prompts,
answer selection, and final class distributions.
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A.2.1 HUMAN ACTIVITY RECOGNITON (HAR) COT

We merged multiple HAR datasets spanning DaLiAc [Leutheuser et al.| (2013)), DOMINO |Arrotta
et al.| (2023), HHAR [Stisen et al.| (2015), PAMAP2 Reiss & Stricker] (2012), RealWorld [Sztyler &
Stuckenschmidt| (2016), and datastes from |Shoaib et al.| (2013; 2014} 2016). We retain only those
activity classes present in all datasets. The final dataset includes eight activity classes: sitting,
walking, standing, running, walking up stairs, walking down stairs, lying, and biking. The data is
split into 2.56 second windows.

Data Processing The dataset was processed to create 2.56-second windows of triaxial accelerom-
eter data (X, Y, Z axes). Each sample was visualized as a multi-panel plot showing the acceleration
signals across all three axes over the time window.

Prompt for CoT generation We generated CoT rationales by prompting the model with a correct
and dissimilar label. The following prompt template was used for HAR-CoT generation:

You are shown a time-series plot of accelerometer over a 2.56 second
window.

This data corresponds to one of two possible activities:
[CORRECT_ACTIVITY]

[DISSIMILAR_ACTIVITY]

Your task is to classify the activity based on analysis of the data.

Instructions:

- Begin by analyzing the time series without assuming a specific label.

— Think step-by-step about what the observed patterns suggest regarding

movement intensity and behavior.

- Write your rationale as a single, natural paragraph, do not use bullet
points, numbered steps, or section headings.

- Do not refer back to the plot or to the act of visual analysis in your

rationale; the plot is only for reference but you should reason about the
time-series data.

- Do x*not** assume any answer at the beginning, analyze as if you do not
yet know which class is correct.

— Do xxnot** mention either class label until the final sentence.

- Make sure that your last word is the answer. You MUST end your response
with "Answer: [CORRECT_ACTIVITY]":

Answer Selection Strategy For each sample, we implemented a dissimilarity-based answer selec-
tion strategy. Given a correct activity label, we selected the most dissimilar activity from a predefined

mapping:

* Sitting: walking, running, biking, walking up, walking down

» Walking: sitting, lying, standing, biking, running

 Standing: walking, running, biking, walking up, walking down

* Running: sitting, lying, standing, biking, walking

* Walking up: sitting, lying, standing, biking, running

* Walking down: sitting, lying, standing, biking, running

* Lying: walking, running, biking, walking up, walking down

* Biking: sitting, lying, standing, walking, running

This strategy ensured that the binary classification tasks were challenging and required genuine

analysis of movement patterns rather than simple pattern recognition.
Label distribution

A.2.2 SLEEP STAGE CLASSIFICATION CHAIN-OF-THOUGHT (SLEEPEDF-COT)

The SleepEDF-CoT dataset was generated from the Sleep-EDF database, which contains
polysomnography recordings with expert-annotated sleep stage labels. The dataset includes five
sleep stages: Wake (W), Non-REM stage 1 (N1), Non-REM stage 2 (N2), Non-REM stage 3 (N3),
and REM sleep (REM).
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Figure 8: Sample HAR signal input to GPT-40 for rationale generation

Table 4: Per-class sample distribution for HAR-CoT train, validation, and test sets

Class Train (n=68542) Val (n=8718) Test (n=8222)
Biking 4037 (5.9%) 435 (5.0%) 473 (5.8%)
Lying 4305 (6.3%) 682 (7.8%) 444 (5.4%)
Running 8101 (11.8%) 948 (10.9%) 1057 (12.9%)
Sitting 18997 (27.7%) 2315 (26.6%) 2342 (28.5%)
Standing 11001 (16.1%) 1449 (16.6%) 1264 (15.4%)
Walking 12675 (18.5%) 1611 (18.5%) 1508 (18.3%)
Walking Down 4514 (6.6%) 710 (8.1%) 542 (6.6%)
Walking Up 4912 (7.2%) 568 (6.5%) 592 (7.2%)

Data Processing The dataset was processed to create 30-second windows of EEG data from the
Fpz-Cz channel. Each sample was visualized as a single-channel EEG plot showing brain activity
patterns characteristic of different sleep stages.

Prompt for CoT generation We generated CoT rationales by prompting the model with a correct
and dissimilar label. The following prompt template was used for SleepEDF-CoT generation:

You are presented with a time-series plot showing EEG data collected over

S

a 30-second interval.

leep stages:

[SLEEP_STAGE_1]
[SLEEP_STAGE_2]

This signal corresponds to one of two possible

Your task is to determine the correct sleep stage based solely on the
observed patterns in the time series.

I

nstructions:

- Analyze the data objectively without presuming a particular label.
— Reason carefully and methodically about what the signal patterns

S

uggest

regarding sleep stage.
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- Write your reasoning as a single, coherent paragraph. Do not use bullet
points, lists, or section headers.

- Do not reference the plot, visuals, or the process of viewing the data
in your explanation; focus only on the characteristics of the time series

— Do not mention or speculate about either class during the rationale,
only reveal the correct class at the very end.

- Never state that you are uncertain or unable to classify the data. You
must always provide a rationale and a final answer.

- Your final sentence must conclude with: "Answer: [CORRECT_SLEEP_STAGE]"

le-5 EEG

T T T T T T T T
0 200 400 600 800 1000 1200 1400

Figure 9: Sample EEG signal input to GPT-4o for sleep stage rationale generation

Answer Selection Strategy For sleep stage classification, we implemented a dissimilarity-based
strategy that pairs physiologically distinct sleep stages:

* Wake (W): N3, N4, REM
* N1: W, N3, N4

N2: W, REM

N3: W, REM

* N4: W, REM

* REM: N2, N3, N4

This approach ensured that the binary classification tasks required understanding of fundamental
differences in brain activity patterns between sleep stages.

Label distribution SleepEDF dataset

Table 5: Per-class sample distribution for train, validation, and test sets (Sleep stages)

Label Train (n=7434) Val (n=930) Test (n=930)
Non-REM 1 410 (5.5%) 52 (5.6%) 51 (5.5%)
Non-REM 2 2057 (27.7%) 257 (27.6%) 257 (27.6%)
Non-REM 3 357 (4.8%) 45 (4.8%) 45 (4.8%)
Non-REM 4 299 (4.0%) 37 (4.0%) 38 (4.1%)
REM 944 (12.7%) 118 (12.7%) 118 (12.7%)
Wake 3367 (45.3%) 421 (45.3%) 421 (45.3%)
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A.2.3 ELECTROCARDIOGRAM QUESTION ANSWERING CHAIN-OF-THOUGHT
(ECG-QA-CoT)

The ECG-QA-CoT dataset was generated from the PTB-XL Wagner et al.| (2020) database com-

bined with the ECG-QA |Oh et al.| (2023)) question templates. This dataset contains 12-lead ECG

recordings with clinical questions covering various aspects of cardiac analysis, including rhythm

analysis, morphology assessment, and diagnostic classification.

Data Processing The dataset was processed to create complete 12-lead ECG recordings (I, II, III,
aVR, aVL, aVF, V1, V2, V3, V4, V5, V6) sampled at 100 Hz. Each ECG was visualized as a
multi-panel plot showing all 12 leads simultaneously, enabling comprehensive cardiac analysis.

Prompt for CoT generation The following prompt template was used for ECG-QA-CoT genera-
tion:

You are presented with a complete 12-lead ECG recording showing all
standard leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, Vo).

Clinical Context: [CLINICAL_CONTEXT]
Question: [QUESTION]

This question has one of two possible answers:
- [ANSWER_OPTION_1]
— [ANSWER_OPTION_2]

Your task is to analyze the ECG and determine the correct answer based on
the observed cardiac patterns. You may include the clinical context in
your analysis if it helps you determine the correct answer.

Instructions:

— Analyze the ECG systematically without presuming a particular answer.

- Consider rhythm, rate, morphology, intervals, and any abnormalities you
observe across all 12 leads.

— Think step-by-step about what the ECG patterns indicate regarding the
clinical question above.

- Write your reasoning as a single, coherent paragraph. Do not use bullet
points, lists, or section headers.

— Do not reference the visual aspects of viewing the ECG plot; focus on

the cardiac characteristics and clinical significance.

- Do not mention or assume either answer option during your rationale,

only reveal the correct answer at the very end.

- NEVER state uncertainty or inability to determine the answer. You MUST

always provide clinical reasoning and a definitive answer.

- Your final sentence must conclude with: "Answer: [CORRECT_ANSWER]"
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Figure 10: Sample ECG signal input to GPT-40 for rationale generation
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Table 6: Per-template sample distribution for ECG-QA CoT train, validation, and test sets

Template ID Train (n=159,306) Val (n=31,137) Test (n=41,093)
Template 1 17,089 (10.7%) 2,924 (9.4%) 3,467 (8.4%)
Template 2 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 3 240 (0.2%) 48 (0.2%) 48 (0.1%)
Template 4 20,861 (13.1%) 3,782 (12.1%) 4,096 (10.0%)
Template 5 20,104 (12.6%) 3,599 (11.6%) 3,905 (9.5%)
Template 6 5,356 (3.4%) 1,022 (3.3%) 1,085 (2.6%)
Template 7 1,137 (0.7%) 221 (0.7%) 224 (0.5%)
Template 8 4,371 (2.7%) 747 (2.4%) 1,466 (3.6%)
Template 9 3,563 (2.2%) 610 (2.0%) 1,200 (2.9%)
Template 10 894 (0.6%) 311 (1.0%) 377 (0.9%)
Template 11 2,861 (1.8%) 533 (1.7%) 964 (2.3%)
Template 12 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 13 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 14 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 15 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 16 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 17 19,952 (12.5%) 3,013 (9.7%) 4,416 (10.7%)
Template 18 9,580 (6.0%) 2,178 (7.0%) 3,806 (9.3%)

Template 19 4,122 (2.6%) 698 (2.2%) 1,395 (3.4%)
Template 20 1,200 (0.8%) 228 (0.7%) 237 (0.6%)
Template 21 180 (0.1%) 36 (0.1%) 36 (0.1%)
Template 22 400 (0.3%) 131 (0.4%) 167 (0.4%)
Template 23 744 (0.5%) 126 (0.4%) 168 (0.4%)
Template 24 90 (0.1%) 18 (0.1%) 18 (0.0%)
Template 25 399 (0.3%) 160 (0.5%) 178 (0.4%)
Template 26 10,585 (6.6%) 1,894 (6.1%) 2,193 (5.3%)
Template 27 1,038 (0.7%) 180 (0.6%) 210 (0.5%)
Template 28 3,600 (2.3%) 720 (2.3%) 720 (1.8%)
Template 29 300 (0.2%) 60 (0.2%) 60 (0.1%)
Template 30 224 (0.1%) 36 (0.1%) 43 (0.1%)
Template 31 1,235 (0.8%) 198 (0.6%) 274 (0.7%)
Template 32 697 (0.4%) 246 (0.8%) 313 (0.8%)
Template 33 6,102 (3.8%) 2,189 (7.0%) 2,775 (6.8%)
Template 34 2,411 (1.5%) 494 (1.6%) 872 (2.1%)
Template 35 246 (0.2%) 18 (0.1%) 50 (0.1%)
Template 36 900 (0.6%) 176 (0.6%) 180 (0.4%)
Template 37 108 (0.1%) 21 (0.1%) 22 (0.1%)
Template 38 523 (0.3%) 192 (0.6%) 241 (0.6%)
Template 39 5,100 (3.2%) 1,019 (3.3%) 1,020 (2.5%)
Template 40 480 (0.3%) 104 (0.3%) 104 (0.3%)
Template 41 1,700 (1.1%) 819 (2.6%) 849 (2.1%)
Template 42 9,114 (5.7%) 2,026 (6.5%) 3,554 (8.6%)
Label distribution
Per-Template Label Distribution Summary
Template ID Train Labels Val Labels Test Labels
Template 1 no: 11360, yes: 4751, no: 1995, yes: 796, not no: 2215, yes: 991, not
not sure: 978 sure: 133 sure: 261
Template 2 no: 200, yes: 100 no: 40, yes: 20 no: 40, yes: 20
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Template 3

Template 4

Template 5

Template 6

Template 7

Template 8

Template 9

st/t change: 60, myocar-
dial infarction: 60, none:
60, hypertrophy: 60,
conduction disturbance:
60

none: 6300, myocardial
infarction in anteroseptal
leads: 618, left anterior
fascicular block: 593,
myocardial infarction in
inferior leads: 586, first
degree av block: 585

none: 6300, myocardial
infarction in anteroseptal
leads: 578, left anterior
fascicular block: 565,
first degree av block:
558, non-specific intra-
ventricular conduction
disturbance (block): 522

none: 1530, non-
diagnostic t abnormal-

ities: 306, ventricular
premature complex:
300, non-specific st
changes: 295, non-
specific st depression:
294

none: 360, bigeminal

pattern (unknown origin,
supraventricular, or ven-
tricular): 105, atrial flut-
ter: 99, sinus rhythm:
98, atrial fibrillation: 98

myocardial infarction in
anteroseptal leads: 1050,
myocardial infarction in
inferior leads: 830, left
ventricular hypertrophy:
791, left anterior fasci-
cular block: 705, non-
specific ischemic: 512

myocardial infarction in
anteroseptal leads: 635,
left anterior fascicular
block: 592, non-specific

ischemic: 459, left
ventricular hypertrophy:
432, first degree av
block: 399

st/t change: 12, myocar-
dial infarction: 12, none:
12, hypertrophy: 12,
conduction disturbance:
12

none: 1258, left ventric-
ular hypertrophy: 110,
myocardial infarction in
anteroseptal leads: 109,
left anterior fascicular
block: 107, first degree
av block: 107

none: 1248, left anterior
fascicular block: 105,
first degree av block:
103, myocardial in-
farction in anteroseptal
leads: 99, left ventricular
hypertrophy: 95

none: 306, non-specific
st depression: 57, non-
diagnostic t abnormali-
ties: 56, ventricular pre-
mature complex: 55,
voltage criteria (qrs) for
left ventricular hypertro-
phy: 52

none: 72, sinus rhythm:
19,  bigeminal pat-
tern (unknown origin,
supraventricular, or
ventricular): 19, atrial
flutter: 18, atrial fibrilla-
tion: 17

myocardial  infarction
in inferior leads: 130,
left ventricular hyper-
trophy: 129, myocardial
infarction in anteroseptal

leads: 127, left anterior
fascicular block: 114,
none: 100

left anterior fascicular
block: 111, none: 100,
non-diagnostic t abnor-
malities: 79, myocardial
infarction in anterosep-
tal leads: 74, incom-
plete right bundle branch
block: 70
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st/t change: 12, myocar-
dial infarction: 12, none:
12, hypertrophy: 12,
conduction disturbance:
12

none: 1260, myocardial
infarction in anterosep-
tal leads: 122, myocar-
dial infarction in infe-
rior leads: 118, left
ventricular hypertrophy:
117, left anterior fascic-
ular block: 117

none: 1260, myocardial
infarction in anteroseptal
leads: 117, left anterior

fascicular block: 116,
non-specific  intraven-
tricular conduction
disturbance (block):
112, first degree av
block: 109

none: 306, ventricular

premature complex: 64,
non-specific st depres-
sion: 63, non-diagnostic
t abnormalities: 60,
atrial premature com-
plex: 60

none: 72, bigeminal
pattern (unknown ori-
gin, supraventricular, or
ventricular): 21, sinus
rhythm: 19, atrial fibril-
lation: 18, sinus tachy-
cardia: 18

myocardial infarction in
anteroseptal leads: 304,
left ventricular hypertro-
phy: 282, myocardial in-
farction in inferior leads:
259, left anterior fasci-
cular block: 236, non-
specific ischemic: 177
left anterior fascicular
block: 206, myocardial
infarction in anterosep-
tal leads: 194, non-
specific ischemic: 155,
left ventricular hypertro-
phy: 149, non-specific
intraventricular conduc-
tion disturbance (block):
127



Template 10

Template 11

Template 12
Template 13
Template 14
Template 15
Template 16
Template 17
Template 18

Template 19

Template 20
Template 21

Template 22

Template 23
Template 24

Template 25

none: 200, sinus rhythm:
135, atrial fibrillation:
118, sinus tachycardia:
108, sinus bradycardia:
107

non-specific st de-
pression: 692, non-
diagnostic t abnormal-
ities: 570, ventricular
premature complex:
414, low amplitude
t-wave: 334, voltage
criteria (qrs) for left
ventricular hypertrophy:
329

no: 200, yes:
no: 200, yes:
no: 200, yes: 100

no: 200, yes: 100

no: 200, yes: 100

no: 14455, yes: 5497
none: 2400, non-specific
st depression: 1848,
voltage criteria (qrs)
for left ventricular
hypertrophy: 1510,
non-diagnostic t ab-
normalities: 1385, low
amplitude t-wave: 1138
none: 1695, lead I: 1509,
lead V6: 1453, lead V5:
1322, lead aVL: 1242
no: 800, yes: 400

100
100

none: 60, left axis de-
viation: 30, right axis
deviation: 30, extreme

axis deviation: 30, nor-
mal heart axis: 30

left axis deviation: 100,
right axis deviation: 100,
extreme axis deviation:
100, normal heart axis:
100

no: 545, yes: 199

none: 30, early stage
of myocardial infarction:
20, middle stage of my-
ocardial infarction: 20,
old stage of myocardial
infarction: 20

none of myocardial in-
farction: 100, unknown
stage of myocardial in-
farction: 100, middle
stage of myocardial in-
farction: 100, early stage
of myocardial infarction:
70, old stage of myocar-
dial infarction: 29

sinus rhythm: 56, none:
56, atrial fibrillation: 51,
sinus tachycardia: 51, si-
nus arrhythmia: 42

none: 100, non-
diagnostic t abnormali-
ties: 99, non-specific st
depression: 81, ventric-
ular premature complex:
64, abnormal grs: 64

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 2270, yes: 743
none: 1150, non-specific
st depression: 378, volt-
age criteria (qrs) for left
ventricular hypertrophy:
216, q waves present:
114, non-diagnostic t ab-
normalities: 107

none: 415, lead I: 165,
lead V6: 154, lead V5:
153, lead aVL: 138

no: 160, yes: 68

none: 12, left axis devia-
tion: 6, right axis devia-
tion: 6, extreme axis de-
viation: 6, normal heart
axis: 6

left axis deviation: 50,
normal heart axis: 50,
right axis deviation: 23,
extreme axis deviation: 8

no: 95, yes: 31

none: 6, early stage of
myocardial infarction: 4,
middle stage of myocar-
dial infarction: 4, old
stage of myocardial in-
farction: 4

none of myocardial in-
farction: 50, unknown
stage of myocardial in-
farction: 50, middle
stage of myocardial in-
farction: 49, early stage
of myocardial infarction:
6, old stage of myocar-
dial infarction: 5
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none: 100, sinus rhythm:
56, sinus tachycardia:
52, atrial fibrillation: 52,
sinus bradycardia: 51

non-specific st de-
pression: 194, non-
diagnostic t abnormal-

ities: 182, ventricular
premature complex:
142, voltage criteria
(qrs) for left ventricular
hypertrophy: 123, q
waves present: 105

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 40, yes: 20

no: 3150, yes: 1266
none: 1200, voltage
criteria (qrs) for left
ventricular hypertrophy:
675, non-specific st
depression: 645, non-
diagnostic t abnormal-
ities: 473, non-specific
t-wave changes: 308
none: 655, lead I: 438,
lead V6: 431, lead V5:
399, lead aVL: 392

no: 160, yes: 77

none: 12, left axis devia-
tion: 6, right axis devia-
tion: 6, extreme axis de-
viation: 6, normal heart
axis: 6

left axis deviation: 50,
right axis deviation: 50,
normal heart axis: 50,
extreme axis deviation:
17

no: 120, yes: 48

none: 6, early stage of
myocardial infarction: 4,
middle stage of myocar-
dial infarction: 4, old
stage of myocardial in-
farction: 4

none of myocardial in-
farction: 50, unknown
stage of myocardial in-
farction: 50, middle
stage of myocardial in-
farction: 50, early stage
of myocardial infarction:
19, old stage of myocar-
dial infarction: 9



Template 26
Template 27
Template 28
Template 29
Template 30

Template 31

Template 32

Template 33

Template 34

Template 35

Template 36
Template 37

Template 38

Template 39
Template 40

Template 41

Template 42

no: 7335, yes: 3250

no: 715, yes: 323

no: 2400, yes: 1200

no: 200, yes: 100

none: 60, baseline drift:
58, static noise: 56,
burst noise: 50, elec-
trodes problems: 44
static noise: 448, none:
430, baseline drift: 333,
burst noise: 309, elec-
trodes problems: 17
baseline drift: 252, static
noise: 241, none: 200,
burst noise: 174, elec-
trodes problems: 23
none: 2400, static noise:
1824, baseline drift:
1729, burst noise: 823,
electrodes problems: 27
lead III: 972, lead II:
904, lead I: 864, lead
aVR: 844, lead aVL: 779
no: 200, yes: 46

no: 600, yes: 300
supraventricular ex-
trasystoles: 38, ventric-
ular extrasystoles: 30,
none: 30, extrasystoles:
28

none: 200, supraventric-
ular extrasystoles: 125,
ventricular extrasystoles:
115, extrasystoles: 108
no: 3400, yes: 1700
none: 160, within the
normal range: 110,
above the normal range:
110, below the normal
range: 100

within the normal range:
600, above the normal
range: 600, below the
normal range: 500

qt interval: 4393, rr in-
terval: 4336, qt cor-
rected: 4262, p duration:
4093, grs duration: 4010

no: 1335, yes: 559

no: 120, yes: 60

no: 480, yes: 240

no: 40, yes: 20

none: 12, baseline drift:
10, static noise: 10, burst
noise: 10

static noise: 95, none:
72, burst noise: 47, base-
line drift: 45

none: 100, static noise:
83, baseline drift: 78,
burst noise: 22

none: 1200, static noise:
675, baseline drift: 358,
burst noise: 79

none: 215, lead III: 182,
lead II: 175, lead I: 169,
lead aVR: 165

no: 15, yes: 3

no: 120, yes: 56
supraventricular ex-
trasystoles: 7, ex-

trasystoles: 6, none: 6,
ventricular extrasystoles:
5

none: 100, extrasystoles:
55, supraventricular ex-
trasystoles: 27, ventricu-
lar extrasystoles: 16

no: 680, yes: 339

none: 36, within the nor-
mal range: 24, above the
normal range: 24, below
the normal range: 20

within the normal range:
300, above the normal
range: 300, below the
normal range: 219

rr interval: 902, qt in-
terval: 880, qt corrected:
879, p duration: 872, qrs
duration: 779

no: 1470, yes: 723

no: 145, yes: 65

no: 480, yes: 240

no: 40, yes: 20

none: 12, static noise:
11, baseline drift: 10,
burst noise: 10, elec-
trodes problems: 7

static noise: 99, none:
88, burst noise: 80, base-
line drift: 71, electrodes

problems: 1

baseline drift: 112, static
noise: 109, none: 100,
burst noise: 58, elec-

trodes problems: 5

none: 1200, static noise:
744, baseline drift: 712,
burst noise: 283, elec-
trodes problems: 6

lead III: 339, lead II:
327, lead I: 320, lead
aVR: 305, lead aVL: 270
no: 40, yes: 10

no: 120, yes: 60
supraventricular ex-
trasystoles: 8, extrasys-
toles: 6, ventricular
extrasystoles: 6, none: 6

none: 100, supraventric-
ular extrasystoles: 57,
extrasystoles: 54, ven-
tricular extrasystoles: 38
no: 680, yes: 340

none: 36, within the nor-
mal range: 24, above the
normal range: 24, below
the normal range: 20

within the normal range:
300, above the normal
range: 300, below the
normal range: 249

rr interval: 1730, qt in-
terval: 1672, p duration:
1614, gt corrected: 1592,
qrs duration: 1486

A.3 M4 CAPTION DATASET GENERATION

We constructed the M4-Caption dataset by pairing time series from the M4 forecasting competition
dataset Makridakis et al.| (2020) with model-generated natural language captions.

Data processing We removed trailing padding from each tensor by truncating after the last non-

zero element.

Prompt for caption generation We combine a high-resolution plot, whose aspect ratio scales
with sequence length to preserve visual fidelity and contextual detail, with the task to generate a

detailed caption.
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Generate a detailed caption for the following time-series data:

4000

3500

3000

2500

2000

1500

1000

500

[ 250 500 750 1000 1250 1500 1750

Figure 11: Sample M4 signal input to GPT-40 for caption generation

A.4 EXAMPLE OF BASELINES FAILING TO PRODUCE MEANINGFUL OUTPUT

As shown in [Table 2] in [Appendix 4.3} some text-only models achieve 0% F1 score on the CoT
datasets. This is because they fail to answer in the " (rationale) Answer : {answer)” template (see

[Appendix 4.T). We present some examples of such outputs in the following.
A.4.1 LLAMA3.2-3B BASELINE OUTPUT ON HAR-COT
INPUT PROMPT (TRUNCATED)

You are given accelerometer data in all three dimensions. Your task is
to classify the activity based on analysis of the data.

Instructions:

- Begin by analyzing the time series without assuming a specific label.

— Think step-by-step about what the observed patterns suggest regarding

movement intensity and behavior.

- Write your rationale as a single, natural paragraph, do not use bullet
points, numbered steps, or section headings.

— Do xxnot** mention any class label until the final sentence.

The following is the accelerometer data on the x-axis, it has mean

-3.2434 and std 0.0474:\nl1 8 6 6 ,4 49,1057 ,855, -762 ,6532
,450,652, 1773, -1571, -1369,248, -560,652,
-156 ,2068 ,1866 ,12056,248, -762, -398,1259, -5
60, -763,855,1865,248,46,2068, -116¢6, -964,4
10, 560,855

The following is the accelerometer data on the y-axis, it has mean 2.3132
and std 0.0550:\n -3 75, -124, -1375,1482,232, -481,

-482, 303, -124, 481, 660,232,553, -1732, -83
9, 303,946, 303, -1017,767,339,589, -303, -1
196, -1732,589, 303, 481, -1732, -119%6,53829,

-517, 481, 124, -1911, 1553, -660, -1214,

The following is the accelerometer data on the z-axis, it has mean 9.2017
and std 0.0639:\n2 98 ,78, -77, -3%90,1175, -77, -10138

’
,79,1333, -704,47,1176, -234,392, -1331,549,3
92,79, 861,549, -77, -1174, -547, -104, -547,1
332,236,862 ,1332, -117,

Possible activity labels are:
biking, lying, running, sitting, standing, walking, walking_down,
walking_up.

- Please now write your rationale. Make sure that your last word is the
answer. You MUST end your response with "Answer:"
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GENERATED ANSWER

The accelerometer data on the x—axis has a mean of -3.2434 and a standard

deviation of 0.0474. This indicates that the data is relatively stable,
with a small amount of variation. The data also has a negative skew,
which means that there are more negative values than positive wvalues.
This could indicate that the data is not evenly distributed, and that
there may be a bias towards negative values. The accelerometer data on
the y-axis has a mean of 2.3132 and a standard deviation of 0.0550. This
indicates that the data is relatively stable, with a small amount of
variation. The data also has a negative skew, which means that there are
more negative values than positive values. This could indicate that the
data is not evenly distributed, and that there may be a bias towards
negative values. Based on the analysis of the accelerometer data, it is
likely that the subject is performing a repetitive motion, such as
walking or running. The data is relatively stable, with a small amount of
variation, and there is a negative skew, which could indicate that the
data is not evenly distributed. This could suggest that the subject is
performing a repetitive motion, such as walking or running, which would
result in a consistent pattern of movement. In conclusion, based on the
analysis of the accelerometer data, it is likely that the subject is
performing a repetitive motion, such as walking or running. The data is
relatively stable, with a small amount of variation, and there is a
negative skew, which could indicate that the data is not [... repeated
multiple times]

A.4.2 GEMMA3-1B-PT BASELINE OUTPUT ON SLEEP-COT
INPUT PROMPT (TRUNCATED)

You are given a 30-second EEG time series segment. Your task is to
classify the sleep stage based on analysis of the data.

Instructions:
— Analyze the data objectively without presuming a particular label.
— Reason carefully and methodically about what the signal patterns
suggest
regarding sleep stage.
- Write your reasoning as a single, coherent paragraph.
— Only reveal the correct class at the very end.
- Never state that you are uncertain or unable to classify the data.
You must always provide a rationale and a final answer.

The following is the EEG time series, it has mean 0.0000 and std 0.0000:\

n-320, -180,55, -211, -65, 466, 269, -441, -75
9, 829, -1065,-829, -1077, -829, -893, -7217, -1
o226, -772,-905, 1045, -644, -740, -530, -861,
-753, 1466, 1026, -918, -918, -759, -332, -29
4 , 224, -498, -199, 205, -301, -600, -536, -600
, 453, -422, -231,-71, -281, -409, -141,17, -71
, 262,55, 288, 231, -498,55, -1, -14,533,100
, =211, 218, 269,164 ,29,195,12125, -59, -358, -1
6 7

Possible sleep stages are:
Wake, Non-REM stage 1, Non-REM stage 2, Non-REM stage 3, REM sleep,

Movement

— Please now write your rationale. Make sure that your last word is the
answer. You MUST end your response with "Answer:"

GENERATED ANSWER (TRUNCATED)

- Please do not use bullet points, lists, or section headers.
— Please do not use the word "sleep" in your response.
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— Please do not use the word "sleep" in your response.
— Please do not use the word "sleep" in your response.
(repeated until out of new tokens)

A.4.3 GEMMA3-270M BASELINE OUTPUT ON HAR-COT
INPUT PROMPT (TRUNCATED)

You are given accelerometer data in all three dimensions. Your task is to
classify the activity based on analysis of the data.

Instructions:

— Begin by analyzing the time series without assuming a specific label.

- Think step-by-step about what the observed patterns suggest regarding
movement intensity and behavior.

- Write your rationale as a single, natural paragraph, do not use bullet
points, numbered steps, or section headings.

— Do *xnot** mention any class label until the final sentence.

The following is the accelerometer data on the x-axis, it has mean

-1.9818 and std 1.8034:\n1 2 77 ,985,1213,1251,1351,1
2,112,698 ,443,629,438,613,932,927,1032,9

21,937,677,544,656,539,927,895,964,1075,10
49,852,932,1596,1952,1883,1410,374,

The following is the accelerometer data on the y-axis, it has mean 5.8203
and std 4.7959:\n7 1 3 ,441,476, -130, -755, -1287, -10
7¢, -788, 822, -701, 359, 501, 421, -665, -6

68, 915, -9%96, -726, 906, -1128, -1160, -1240

, 1005, -990, 900, -815, -734, -611,...

The following is the accelerometer data on the z-axis, it has mean 6.3687
and std 3.9830:\n -2 90, -104,219,890,987,1129,1225
,22%90,2034,986,933,833,672,755,923,10114,1

629,1024,2177,1155,978,639,662,994,97¢6,81

4 ,886,17119,12230,12087,669,529,880,98%6,

Possible activity labels are:

biking, lying, running, sitting, standing, walking, walking_down,
walking_up.

- Please now write your rationale. Make sure that your last word is the
answer. You MUST end your response with "Answer:"

GENERATED ANSWER (TEXT-ONLY BASELINE)

The following is the accelerometer data on the x-axis, it has mean 1.0000
and std 1.0000: 1 2 3456 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 [... continues to count]
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A.5 FURTHER EXAMPLES FOR RATIONALES GENERATED BY OPENTSLM MODELS

A.5.1 M4 TIME-SERIES CAPTIONING

B Prompt
Generate a detailed captionfor this time-series <TS>.

10000

9000

Amplitude
g

7000
6000

Time Step

<~ Caption

The time-series graph illustrates a progressive upward trend
over a period of 75 time intervals. Starting at approximately
6000, the data exhibits a steady increase with minor
fluctuations, reaching around 8000 by the 30thinterval. Amore
pronounced upward movement is observed between the 30th
and 50th intervals, peaking slightly above 9000. Following this,
the series experiences a brief decline, stabilizing around 8500.
The final segment from the 50th to the 75th interval shows a
sharp rise, culminating at just under 11000. The overall pattern
suggests consistent growth with periodic fluctuations,
indicating potentialinfluences of cyclical or seasonal factors.

(a) M4 Caption (Gemma3-1B)

B Prompt
Generate a detailed caption for this time-series <TS>.

8000
7000

6000

4000

Amplitude

3000
2000

1000

Time Step

<~ Caption

The time-series graph illustrates a clear upward trend over the
observed period, with data points ranging from O to 130 on the
x-axis and values from O to 9000 on the y-axis. Initially, the
series shows a gradual increase, with minor fluctuations around
the 1000 mark. Around the midpoint, the data exhibits more
pronounced volatility, with several peaks and troughs. Despite
these fluctuations, the overall trajectory remains positive. As the
series progresses, the upward trend becomes more
pronounced, with values exceeding 8000 towards the end. The
graph suggests a strong growth pattern, possibly indicating
and underlying factor driving the increase in values over time.

(c) M4 Caption (Llama3.2-1B)

B Prompt
Generate a detailed captionfor this time-series <TS>.

10000
9000

8000

Amplitude

7000
6000

Time Step

<~ Caption

The time-series graph illustrates a progressive upward trend
over a period, with the data points ranging from approximately
6,000 to 10,000. Initially, there is a gradual increase, followed
by a more pronounced rise around the 20th data point. The
trend continues with minor fluctuations until around the 50th
data point, where a significant spike occurs, reaching a peak
near10,000. Thisis followed by a slight decline and stabilization.
The overall pattern suggests a strong upward momentum with
intermittent volatility, indicating potential periods of rapid
growth and brief corrections.

(b) M4 Caption (Llama3.2-1B)

B Prompt
Generate a detailed caption for this time-series <TS>.

1900
1800
1700

1600

Amplitude

1500
1400

1300

Time Step

<~ Caption

The time-series graph displays data points over a period,
showcasing fluctuations between values of approximately
1300 and 1900. The series begins with moderate variability,
experiencing a sharp increase around the 10th data point,
reaching apeak near1900. Following this peak, the data exhibits
a downward trend with intermittent spikes and drops. Notably,
there are significant drops around the 50th and 80th data
points, where the values dip close to 1300. The latter part the
series shows continued volatility with smaller peaks and troughs,
indicating persistent fluctuations. The overall pattern suggests a
high degree of variability, with no clearlong-term trend.

(d) M4 Caption (Llama3.2-1B)

Figure 12: Examples of time series captioning on our generated M4 caption dataset.
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A.5.2 HUMAN ACTIVITY RECOGNITION RATIONALES COT

© Prompt

® Prompt

@ Prompt

biing ying, runing,itting stancing,walking, walking.p, waling. down
Thisisthex-axis IS5, This s they-axs QIS3.This i thez-axis<IS:
P, Finish' wlth ‘Answer:

X

Timaston

< Rationale

The accelerometer data over the 2.56 second window shows relatively low
variabilty and consistent patterns across the X, Y, and Z axes. The X-axis data
fiuctuates slightly around a narrow range, suggesting limited lateral movement.
The Y-axis shows minor deviations, indicating minimal forward or backward
motion. The Z-axis also exhibits small variations, which implies that there is not
much vertical movement or impact. Overall, the low intensity and lack of
significant changes in acceleration across al axes suggest minimal physical
activity and movement. This steady pattem is characteristic of a stationary

(a) Standing (Correct Prediction)

 Prompt

biing.ling,unning siting standing, walking, walking up,wa
Thisis the x-axis €TS3. Thisis the y-axis &TS5. Ths s th

Finishwith ‘Answer: "

Nometzed Accaaton

Temostep

4 Rationale
The accelerometer data over the 2.56 second window shows relatively low
variabilty and consistent pattems across the X, Y, and Z axes. The X-axis data
exhibits small fiuctuations around a certain value, suggesting limited lateral
ment. The Y-axis shows more variabiity, but the changes are still within a
nartow range, indicating minimal vertical displacement. The Z-axis also
demonstrates a stable patten with slight variations, which could imply subtle
shifts in position rather than significant motion. Overall, the lack of pronounced

biing ying, runing,itting stancing,walking, walking.up, waling. down
Thisis thex-asis €183, This s they-axis €1S. Tisis the 2 axis<TS
P, ll th Finish' wlth "Answer:

Timaston

<4 Rationale

The accelerometer data over the 256 second window shows relatively low.
variability and consistent pattems across the X, Y, and Z axes. The X-axis data
Similarly,

the

The fiuctuation:
The overall consistency and lack of significant peaks or troughs across all axes
suggest a low-intensity activity with minimal movement, as one might expect

activity ormovement. Answer: sitting.

(b) Sitting (Correct Prediction)

® Prompt

(c) Standing (Correct Prediction)

 Prompt

biking, lying, running sitting, standing, walking, walking _up, walking_down
Thisis the x-axis €18, This s the y-axis €185. This is the z-axis<TS.
Reason step by step, taking into account al three axis. Finishwith ‘Answer.

Nomaizsd Acceleaton

Tmesten

<4 Rationale

S o 0 Gy G P80 ) e S5 significant

Sictioions actoss ol these axes, nccatng substantil movement. The X.ads
roughs, whie

,standing, walking, walking._up, walking_down
thez-

biking, lying, rur
Yh»slslhex-axls@ Ths\slhey -axis €T83. This is

Finishwith ‘Answer:"

Temesten

<+ Rationale

The accelerometer data over the 256 second window shows significant

fictustions across ol thres sums, icicating substardisl movement. The X.axs
roughs, in direction, which

s T d\splays pronounced variations, (hough with less amplitude
compared to the X-axis. The Z-axis, t00, shows considerable changes, which
further supports the presence of dynamic activity. The combination of these
pattems suggests a high level of physical exertion and frequent changes in
position, characteristic of a vigorous and hythmic activity. Given these
obsenvations, the data is more indicative of a high-intensity movement pattern.
Answer: running.

(d) Running (Correct Prediction)

oscilations, further supporting the presence of vigorous movement. The Z-axis
a0 demonstates roguar and notable variations, polting 10 vetcal mation
typically associated with more intense physical a consistent and
repetitive pattem of these fluctuations across e lmphes a thythmic and

biking, lying, running sitting, standing, walking, walking _up, walking_down
Trisis thexces GI8S, Ti s the y-as GTSS. Th s the £-axs TS5,
Reason step by step, taking into account al three axis. Finish with ‘Answer.

Nomaizsd Acceleaton

Time sep

< Rationale
The accelerometer data over the 2.56 second window shows distinct pattems
across the X, Y, and Z axes. The X-axis exhibits a regular, repeating oscilation
pattem, indicating consistent movement back and forth, which suggests
riodic motion typical of a dynamic_activity. The Y-axis aiso displays
fluctuations, though less pronounced, with occasional spikes that could be
indicative of shifts in balance o slight changes in direction. The Z-axis shows
notable peaks and troughs, further supporting the presence of rhythmic
movement with varying, nensity. These characteritis suggest an activty
sin

data,

(e) Running (Correct Prediction)

(f) Walking (Correct Prediction)

Figure 13: Example chain of thought rationales for human activity recognition, generated with
OpenTSLMFlamingo/Llama3.2-1B.
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A.5.3 SLEEP STAGE CLASSIFICATION RATIONALES COT

B Prompt

B Prompt

B Prompt

data, classify
Wake, REM,Non-REMStage', Non-REM Stage 2, Non-REM Stage3, Movement
p. Finishwith‘Answer.

NomalzedAcceleraion

data, classify
Wake, REM,Non-REMStage', Non-REM Stage 2, Non-REM Stage3, Movement
p. Finishwith‘Answer.

Sl

NomalzedAcceleraion

data, classify
Wake, REM,Non-REM Stage', Non-REM Stage 2, Non-REM Stage3, Movement
p. Finishwith‘Answer.

NomalzedAcceleraion

L T e T < mesess ™ ST T e T
< Rationale < Rationale < Rationale
The time series data presented shows a pattem characterized by relatvely low The observed time series presents a patter characterized by relatively high- The time-series data presented exhibits characteristics that are indicative of a
amplitude variabilty in frequency oscilations and a moderate amplitude, typical of a certai sieep particular:
i stage. noticeable in amplitude, suggesting a level of neural activity that is
of amore active brain state. This pattern suggests a level of o activity that more consistent with an alert or active state. The presence of such dynamic and

of| i t

The overall pattem lacks the rapid and iegular oscillations that would be
ad,

is consistent with a state where the brain is more engaged and active, as
opposed to a deeper, more reslfu\ state. The presence of these features

irregular
associated with deeper sleep stages, aligns with the characteristics of being
awake. The signal's variability and lack of prolonged periods of low amplitude or

deep, Wake

Inst aligns with th drapid eye
and consistent rhythm, which ahgns with the characteristics of a lighter sleep movements are common, and (he brain exhibits more alpha
stage. Answer: Non-REM St waves. Answer: RE}

@ GroundTruth Non-REMStage2 @ Prediction  Non-REMStagel & Ground Truth REM & Prediction REM

(a) Stage Non-REM Stage 2

(b) Stage REM Sleep

& Ground Truth Wake

(c) Stage Wake

& Prediction Wake

B Prompt B Prompt B Prompt
data, classify data, classify data, your
Wake, REM, Non-REM Stage 1, Non-REM Stage 2, Non-REM Stage 3, Movement Wake, REM, Non-REM Stage 1, Non-REM Stage 2, Non-REM Stage 3, Movement The possible stages are:
Thisis the EEG recording <TS> Reason step by step. Finish with ‘Answer: " Thisis the EEG recording <TS> Reason step by step. Finish with ‘Answer: " M, N ge 1, N Non-REM 3, Movement
Thisis ling <TS: p. Finishwith 'Answer: '
g g i
4 ES i.
i i 4
TV T L R S A LY |
Tmestep
<+ Rationale <+ Rationale
The EEG time series data presented shows a pattern characterized by relatively The EEG istics that are < Rationale

low amplitude and higher frequency oscillations. Such pattems are typically
indicative of lighter sieep stages, where bran activity s more varied and less
compared to deeper not exhibit the

high amplitude, siow-wave patterns that are characterstic of deeper sleep
stages,
ad,

is transitioning from wakefulness to deeper sleep, and the frequency and

thi g

@ GroundTruth  Non-REM Stage 1

(d) Stage Non-REM Stage 1

@ Prediction  Non-REMStage 1

B Prompt

data, your
The possible stages are:
Wake, REM,Non-REMStage', Non-REM Stage 2. Non-REM Stage3, Movement
p. Finishwith ‘Answer.

Nomaized ccelersion

Timestep

< Rationale

The observed EEG signal displays a pattern characterized by relatively high
frequency and variability, with rapid fiuctuations and a lack of consistent,
thythmic oscillations. This suggests a state of heightened neural activity,
typically associated with a more alert and conscious condition. The
presence of such dynamic and irregular patters, along with the absence of
the siower, more synchrorized waveforms often found In deeper sieep
Answer: Wake

& Ground Truth Wake

(g) Stage Wake

& Prediction Wake

indicative of a specific sieep stage. The signal displays a relatively consistent
amplitude and frequency pattem, with some variability and a noticeable peak in

can be indicative of specific sleep stages. The signal displays a relatively

theinterval.
which are brief bursts of oscilatory brain activy tha are characteristc of a

ut it lacks
erratic changes typically associated with more active brain states. This pattem

particular sleep stage. The overall pattern lacks the rapid, hi
fluctuations typically associated with wakefuiness. Instead, the s\gna\ shows a
more stable and rhythmic pattem, aligning with the characteristics of a sleep

the signal
preconeisant witha stage of sleep where the brains transiioning into deeper
I 2
tag

@ GroundTruth  Non-REM Stage 2

(e) Stage Non-REM Stage 2

@ Prediction  Non-REMStage 2

B Prompt

@ Ground Truth REM | @ Prediction

(f) Stage REM Sleep

Non-REMStage 2

B Prompt

data, classify
Wake, REM,Non-REM Stage', Non-REM Stage 2, Non-REM Stage3, Movement
p. Finishwith‘Answer.

NomalzedAcceleraion

Timestep

data, classify
Wake, REM,Non-REM Stage', Non-REM Stage 2. Non-REM Stage3, Movement
p. Finishwith‘Answer.

NomalzedAcceleraion

Timestep

<+ Rationale < Rationale
The time-series data presented exhibits characteristics that are indicative of a The time-series data preserted exhbits characterstics that are incicative of a
particular sleep stage. The signal shows frequent fluctuations with noticeable highlevel of b frequent fiuctuations
alert long, lert condition.
sustained low- zmphmde waves are key features that a\lgn with a state of high-amp i
typical o p , where the brain i

illations. Therefore, based on
the observed signal patterns, the correct classification of the sleep stage is
determined. Answer:

& Ground Truth Wake

(h) Stage Wake

& Prediction Wake

of,
Instead, the observed signal pattem aligns with the characteristics of a state
where the brain is actively processing. information, refiecting a level of
consciousness andresponsiveness. Answer: Wal

& Ground Truth Wake & Prediction Wake

(i) Stage Wake

Figure 14: Example rationales for sleep stage classification, generated with OpenTSLM-

Flamingo/Llama3.2-1B.
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A.5.4 ECG QA CoT

B Prompt

What kind of extra systole does this ECG <TS3, ... <TS> show? Answer Options:
1.extrasystoles 2. none 3. supraventricular extrasystoles 4. ventricular
extrasystoles

§
i
1

Clinical Context: 37-year-old male patient. 12-lead ECG. clinical recording. recorded with
AT-6 6. Signal quality: baseline drift noted, static noise present, burst noise present,
electrode artifacts present. extra beats detected during recording. pacemaker present.

< Rationale

The ECG recording shows a regular rhythm with consistent P waves preceding
each QRS complex, indicating a sinus rhythm. The QRS complexes are narrow,
suggesting normal conduction through the ventricles. There are no premature,
wide, or aberrantly conducted beats that would suggest ventricular origin. The
presence of a pacemaker is noted, but it does not appear to be causing any
irregularities in the rhythm. Despite the presence of baseline drift, static noise,
burst noise, and electrode artifacts, the overall pattern remains consistent
with normal sinus rhythm without any evidence of ventricular extrasystoles.
Answer: none

(a) none (Correct Prediction)

Prompt

What numeric features of this ECG TS5, ..., €TS5 fall within the normal range?
Answer Options: 1.none 2. p duration 3. printerval 4. grs duration 5. gt corrected
6.qtinterval 7. rrinterval

Clinical Context: 66-year-old male patient. 12-lead ECG. clinical recording. recorded with
AT-6 6. Signal quality: baseline drift noted, static noise present, burst noise present,
electrode artifacts present. extra beats detected during recording. pacemaker present.

<~ Rationale

The ECG recording of this 66-year-old male patient shows the presence of a
pacemaker, which influences the interpretation of intrinsic cardiac activity.
Despite the baseline drift, static noise, burst noise, and electrode artifacts, the
fundamental intervals can still be assessed. The PR interval, which represents
the time from the onset of atrial depolarization to the onset of ventricular
depolarization, is typically measured from the beginning of the P wave to the
beginning of the QRS complex. In this ECG, the PR interval appears consistent
and falls within the normal range of 120 to 200 milliseconds. The QT interval,
which is corrected for heart rate (QTc), is more challenging to assess
accurately due to the presence of noise and artifacts, and it is often prolonged
in the presence of a pacemaker. Given these considerations, the PR interval is
the numeric feature that falls within the normalrange. Answer: printerval

(c) pr interval (Correct Prediction)

B Prompt

Whichrange does the p duration of this ECG <TS>, ..., <TS= fallin, above the
normal range or within the normalrange? Answer Options: 1. above the normal
range 2. below the normalrange 3. none 4. within the normal range
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Clinical Context: 40-year-old female patient. 12-lead ECG. clinical recording. recorded
with CS-12 E. Signal quality: baseline drift noted, static noise present, burst noise present,
electrode artifacts present. extra beats detected during recording. pacemaker present.

<~ Rationale

To determine the P wave duration, we must first consider the standard normal
range, which is typically up to 120 milliseconds. In this ECG, despite the
presence of baseline drift, static noise, burst noise, and electrode artifacts, the
P wave morphology can still be assessed. The P wave should be evaluated
across multiple leads, particularly leads Il and V1, where it is most prominent. The
presence of a pacemaker may influence the rhythm, but it should not directly
affect the intrinsic P wave duration unless atrial pacing is involved. Given the
clinical context and the presence of extra beats, it is crucial to distinguish these
from normal atrial activity. However, the P wave duration itself remains a key
indicator of atrial conduction. After careful analysis, the P wave duration in this
ECG falls within the normal range. Answer: none

(b) none (Correct Prediction)

Prompt

What leads are showing static noise inthis ECG TS5, ... €TS51? Answer Options:
1.lead12.leadll3.lead |l 4.lead V15.lead V2 6.lead V37.lead V4 8. lead V5
9.leadV610.leadaVF1l.leadaVL12.leadaVR13.none

i
|
|

i
i
i
i
i

Clinical Context: 38-year-old male patient. 12-lead ECG. clinical recording. recorded with
CS-12  E. Signal quality: baseline drift noted, static noise present, burst noise present,
electrode artifacts present. extra beats detected during recording. pacemaker present.

<~ Rationale

The ECGrecording presents a 38-year-old male patient with a pacemaker, and the
signal quality is compromised by baseline drift, static noise, burst noise, and
electrode artifacts. In analyzing the ECG systematically, the rhythm and rate should
be considered alongside the morphology and intervals. The presence of a
pacemaker canintroduce pacing spikes, which should be differentiated from noise
artifacts. Static noise typically appears as consistent, low-amplitude interference
across the ECG trace, which can obscure the baseline and make it challenging to
interpret the underlying cardiac activity accurately. In this context, the static noise is
more pronounced in lead |, where the baseline appears more irregular and less
stable compared to other leads. This interference can affect the interpretation of
the P wave, QRS complex, and T wave, potentially leading to misinterpretation of
cardiac events. Therefore, considering the observed patterns and the impact of
staticnoise, the lead showing static noisein thisECGis lead |. Answer: lead |

(d) Lead 1 (Correct Prediction)

Figure 15: Example rationales for ECG QA, generated with OpenTSLM-Flamingo/Llama3.2-1B.
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A.6 ECG EVALUATION RUBRIC

These are the questions asked to clinicians during evaluation of ECG-QA rationales generated by

OpenTSLMFlamingo/Llama3.2-3B. See for details.

Assessment Criteria

Description

Options

1. ECG Pattern
Recognition Accuracy

Did the model correctly identify
the relevant ECG features needed
to answer the question?

Yes; Some but not all; None
identified

2. Clinical Reasoning
Quality

Did the model appropriately con-
nect the identified ECG features
to the final answer?

Yes; Some incorrect logic;
Completely incorrect logic

3. Clinical Context

Did the model appropriately in-

Yes; Used some key

Integration corporate patient clinical back- | background; No did not use
ground (age, recording condi- | any relevant background
tions, artifacts) in its interpreta-
tion?

Table 8: Assessment Criteria for ECG Interpretation Reasoning
A.6.1 ECG REVIEW FORM

ECG REVIEW FORM - T31_S2

1. CLINICAL INFORMATION

Template 0: I

Ecsin T 5| .
:

T2162d £GG. clrical ecord

512 €. Signal aualy:

during recording. pacemaker present.

Question

Answer Options

Model Output

2. ECG TRACING

— 1.ECG Pattern Recognition Accuracy
a

3. REVIEWER ASSESSMENT

2. Clinical Reasoning Quality.

rifacts)inits

REVIEWER INFORMATION

[ o

Figure 16: ECG Review Form. This form was presented to clinicians to conduct the expert review
of ECG-QA-CoT rationales generated by OpenTSLM-Flamingo/Llama3.2-3B (best model during

evaluation, see .
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A.6.2 REVIEWER DISAGREEMENT PATTERNS
Figure 17]shows disagreement of reviewers on generated ECG-rationales (see[Appendix 4.3)).

Q2: Reasoning | 26
Partial Logic ¢ Yes

Q1: Pattern | 25
Partial Recognition © Yes

Q3: Context | 13
Some Background e Yes

Q1: Pattern | 9
None Identified « Partial Recognition

Q2: Reasoning | 9
Incorrect Logic « Partial Logic

Q1: Pattern 3
None Identified « Yes

Q2: Reasoning 3
Incorrect Logic ¢ Yes
Q3: Context 2 BEm Complete (Yes & No)
No Background & Yes Moderate (Adjacent)
0 10 20 30
Frequency

Figure 17: Disagreement Patterns

A.7 EVALUATION OF MEMORY CONSUMPTION

We complement the main results with detailed tables and plots. [Figure 18§]illustrates scaling trends,
while the following subsections report detailed VRAM usage for both CoT datasets and synthetic
simulation data.

L=10 L =100 L =1000 L = 10000
25 25 25 200 O O
—e— Gemma-3-270M /
20 Gemma-3-1B-pt 20 20
‘5-1 —4— Llama-3.2-1B 150
= 15| |=#— Llama-3.2-3B 15 15
o
E =¥- Out of Memory (OOM) 100
adé 10 10 10
. - JEREEYY . o—0
a\ — =—
g 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
[}
S G| 0|+ 0 +—* — Ottt T
4
[
v O
A 8040 40 40 40
g
S
=~ 20 20 20 20
T2 3 1 5 Y1 2 0 3 4 5 Y1 2 3 1 s

3 4 5 1 2
Number of Time Series (N)

Figure 18: Simulation of memory scaling with total sequence length (/N x L).

A.7.1 MEMORY USAGE ON COT DATASETS

reports VRAM for TSQA, HAR-CoT, Sleep-CoT, ECG-QA-CoT datasets. OpenTSLM-
Flamingo shows stable memory use mostly bound by the LLM backbone, whereas SoftPrompt varies
substantially with datasets.
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Table 9: VRAM Usage (GB) for Regular Datasets

Method Model TSQA HAR-CoT SleepEDF-  ECG-QA-
CoT CoT
S = Llama-3.2-1B 4.4 9.6 15.9 64.9
7 & Llama-3.2-3B 8.1 14.3 20.3 87.1
S & Gemma-3-270M 2.4 8.6 20.1 24.1
2% Gemma-3-1B-pt 5.1 6.1 14.7 32.7
o wm
S o Llama-3.2-1B 20.5 22.0 21.6 20.9
7 2 Llama-3.2-3B 61.1 63.5 63.4 71.6
£ g Gemma-3-270M 5.7 6.4 6.3 73
g = Gemma-3-1B-pt  15.6 16.3 15.7 18.4

A.7.2 MEMORY USAGE FOR SIMULATION DATA

Table 10| shows results for simulated datasets, using permutations of N = [1,2,3,4,5] and
L = [10,100, 1000, 10000]. OpenTSLM-Flamingo requires almost constant memory with vary-
ing sequence length L and number of concurrent series N, while OpenTSLM-SoftPrompt grows

with both until going out of memory (OOM) for larger time series.

Simulation dataset generation.

pseudocode:

num_series = n

series_length = 1

simulation_dataset = []

for element_id in 1..200:
time_series_texts = []
time_series_simulations = []
for i in 1..num_series:

series_i = random_normal (series_length)
series_mean = mean (series_i)
series_std = std(series_1i)
normalized_i = normalize (series_1i)
time_series_simualtions.append/(
normalized_i
)
time_series_texts.append(
"This is a time series with mean {series_mean} "
"and std {series_std}."

)

simulation_dataset.append ([

{

"Series": time_series_simualtions,
"Texts": time_series_texts,
"PrePrompt": "You are given different time series.

"All have the same length"
"of {length} data points.",
"PostPrompt": "Predict the pattern "
"of the time series. Answer:",
"Answer": "This is a random pattern."
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To generate the simulation dataset, we generate random data with
combinations of N = [1,2,3,4,5] and L = [10, 100, 1000, 10000] according to the following



Table 10: VRAM Usage (GB) for Simulation Datasets

OpenTSLM-SoftPrompt OpenTSLM-Flamingo

LLaMA Gemma LLaMA Gemma

L N 1B 3B 270M 1B 1B 3B 270M 1B
10 1 26 6.3 2.3 5.0 20.4 61.0 5.7 15.4
10 2 26 6.4 23 5.0 20.4 60.9 5.7 15.5
10 3 27 6.4 2.3 4.9 20.4 60.7 5.8 15.5
10 4 27 6.5 23 5.0 20.5 60.7 5.8 15.5
10 5 28 6.7 2.3 5.0 20.5 60.8 5.8 15.6
100 1 27 6.4 23 49 20.4 61.0 5.7 15.4
100 2 28 6.6 2.3 5.0 20.4 60.9 5.7 15.5
100 3 29 6.8 23 5.0 20.5 60.7 5.8 15.5
100 4 3.0 7.0 2.4 5.0 20.5 60.7 5.8 15.5
100 5 32 73 2.4 5.0 20.5 60.8 5.7 15.5
1000 1 3.6 8.0 2.4 5.0 20.4 61.0 5.7 154
1000 2 5.0 9.8 34 4.9 20.4 61.0 5.7 154
1000 3 69 12.3 4.8 7.4 20.4 60.7 5.8 15.5
1000 4 9.2 15.4 55 8.7 20.5 60.7 5.8 15.6
1000 5 12.0 19.1 7.0 10.2 20.6 60.7 5.7 15.6
10000 1 295 42.7 13.7 19.2 20.4 61.0 5.7 154
10000 2 933 191.4 32.1 43.6 20.4 61.0 5.7 154
10000 3 OOM" OOM 56.1 76.0 20.6 60.7 5.8 15.5
10000 4 OOM OOM 85.6 116.4 20.8 60.8 6.4 15.5
10000 5 OOM OOM 118.4 164.5 21.0 61.1 6.4 15.5

Table 11: ' OOM: Out of memory; OpenTSLM-SoftPrompt requires more tokens for longer time series, and
separate tokens for separate time series. Introducing more or longer time series leads to more tokens, quickly
scaling in memory use.
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