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Abstract001

In recent years, Large Language Models002
(LLMS) have exhibited remarkable proficiency003
in comprehending and generating language.004
Consequently, LLMs have become an inte-005
gral part of AI system building. However, it006
has been observed that in the case of domain-007
specific QA (DSQA), direct prompting tech-008
niques do not fully leverage the capabilities of009
LLMs, especially in the case of a zero-shot set-010
ting, due to the scarcity of annotated data and011
the nonavailability of tailored retrieval data. To012
address this gap, we propose a self-knowledge013
generative prompting technique for DSQA that014
generates the necessary knowledge for accu-015
rate responses using LLMs in the absence of016
external data. We evaluated our method using017
LLMs ranging from 3.8B to 70B parameters018
and observed consistent improvements, with019
accuracy gains ranging from 4% to 40% over020
the base models. When compared to the best-021
performing baselines, our approach achieved022
an average improvement of 6.3%. Addition-023
ally, we observed a cumulative accuracy gain024
of 177 points across 20 diverse model–dataset025
combinations, highlighting the method’s robust-026
ness. While improvements were generally con-027
sistent, performance showed sensitivity to spe-028
cific task–model interactions. With this work,029
we present a lightweight, domain-agnostic strat-030
egy that enables robust model adaptation with031
minimal effort and strong empirical gains.032

1 Introduction033

LLMs have made tremendous progress in common-034

sense and open-domain QA (Zhao et al., 2024; Li035

et al., 2024), but the QA task still presents chal-036

lenges in handling domain-specific scenarios. This037

is due to the complexity of questions, especially038

where the understanding and synthesis of informa-039

tion from multiple parts of the question is required.040

Intrinsic ambiguity in the question can be yet an-041

other challenge that may require extensive context042

to answer accurately (Bhat et al., 2023). Along043

with this, the scarcity of annotated data and the 044

inclusion of irrelevant, ambiguous, and insufficient 045

information present yet another challenge in mak- 046

ing an efficient DSQA model. For example, a Ge- 047

ographic QA needs to understand spatial data and 048

geographic entities that are not common in general 049

QA tasks (Mai et al., 2021). Similarly, QA in the 050

medical domain always presents many challenges, 051

such as specificity, scarcity of annotated data, and 052

inclusion of irrelevant, ambiguous, and insufficient 053

information (Jain et al., 2022). 054

Figure 1: The question presents LLM with an out-of-
the-box question by asking it based on a hypothetical
scenario and shows the LLM’s difficulty in answering a
question consisting of different scenarios.

Recent literature has attempted to address these 055

challenges within specific domains, such as fine- 056

tuning an LLM using domain-specific data, etc. 057

However, this approach often compromises the 058

LLM’s performance across diverse tasks and its 059

ability to comprehend a wide range of instruc- 060

tions (Ceballos-Arroyo et al., 2024). Additionally, 061

developing such models is complicated by the ne- 062

cessity for curated domain data, which may not 063

be accessible for every field. This issue is partic- 064

ularly pronounced in zero-shot scenarios, where 065

there is insufficient data to utilise or train spe- 066

cialised retrieval-reader models, resulting in ex- 067
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isting methodologies failing to fully exploit the068

capabilities of LLMs when they are invoked implic-069

itly (Li et al., 2024) and hence the general approach070

is to use zero-shot prompting or reasoning-based071

prompting.072

With these challenges, there are no techniques073

that are presently available in the literature that074

can utilise the potential of LLMs to solve domain-075

specific QA problems in the absence of extra data.076

To fill this gap, here we focus on self-knowledge077

augmented DSQA without any training or external078

data. In this paper, we propose a new promoting079

technique called KnowDomain that uses the capa-080

bilities of LLMs’ learned knowledge to enhance its081

adaptability to domain-specific QA, hence improv-082

ing its performance while keeping its generality083

intact. Our approach utilises multi-step prompting,084

which involves first constructing a knowledge base085

by presenting multiple thoughtfully created general086

sets of instructions to an LLM. Then this knowl-087

edge is combined to create a complete knowledge088

base, which is presented as in-context learning. The089

novelty of our framework is the selection of metic-090

ulously thought-out information such that it can091

be applied to any domain with minimal change in092

LLM’s instructions.093

Contributions.094

(i) We developed a KnowDomain Prompting to im-095

prove LLMs’ performance on DSQA.096

(ii) We present a new agriculture question answer-097

ing dataset focused on plant pathology to mitigate098

the possible data leakage with existing LLMs.099

(iii) We conduct an extensive analysis with mul-100

tiple baselines and models to show the effective-101

ness of KnowDomain Prompting on the Medical102

benchmarks dataset and our plant pathology data.103

While we demonstrate the superiority of our de-104

veloped prompting techniques on benchmark med-105

ical datasets and expert-created agricultural data106

focused on plant pathology, our framework is suit-107

able and can be applied to any domain.108

2 Related Work109

Zero-Shot Question Answering Zero-shot QA110

has become increasingly important for enabling111

large language models (LLMs) to generalize across112

tasks and domains without domain-specific fine-113

tuning. Early work like (Brown et al., 2020) demon-114

strated the power of large-scale language models115

to perform zero-shot QA through natural language116

prompting. While studies such as (Zhou et al.,117

2022) emphasize the benefits of multi-task train- 118

ing for improved zero-shot generalization, (Ma 119

et al., 2021) also shows that training on selected 120

key tasks can significantly boost zero-shot perfor- 121

mance across QA benchmarks. (Gramopadhye 122

et al., 2024) converts tasks to multiple-choice for- 123

mats and (Zhao et al., 2022) leverages novel ques- 124

tion generation strategies. These methods collec- 125

tively aim to reduce the dependency on annotated 126

data while maintaining strong QA capabilities. 127

Prompting Strategies. Prompting strategies are 128

central to the success of zero-shot QA. Traditional 129

approaches such as Chain-of-Thought (CoT) (Ko- 130

jima et al., 2022; Wei et al., 2022) and Plan-and- 131

Solve (PS+) (Wang et al., 2023) simulate step- 132

by-step reasoning but often rely on handcrafted 133

or static prompt templates. Question-Analysis 134

Prompting (QAP) (Yugeswardeenoo et al., 2024) 135

enhances model comprehension by encouraging 136

intermediate question interpretation before answer 137

generation. Techniques like DDPrompt (Mu et al., 138

2024) adapt prompts dynamically based on input 139

complexity, improving both understanding and an- 140

swer accuracy, while EchoPrompt (Mekala et al., 141

2024) does this by reiterating the question. More 142

recently, the ARR (Analyzing, Retrieving, and Rea- 143

soning) framework (Yin and Carenini, 2025) in- 144

troduces a structured zero-shot prompting method- 145

ology that decomposes the QA process into three 146

explicit steps: analyzing the intent of the ques- 147

tion, retrieving relevant background knowledge, 148

and reasoning through the final answer. It provides 149

stronger guidance to LLMs compared to conven- 150

tional zero-shot methods. 151

Knowledge-Driven Prompting Recent work on 152

knowledge-driven and self-adaptive strategies en- 153

ables more effective zero-shot generalization. Self- 154

prompting frameworks (Li et al., 2024) and Hin- 155

tQA (Mozafari et al., 2024) allow models to intro- 156

spect and generate contextually appropriate infor- 157

mation without external retrieval. These advances 158

help the model to know more context for the ques- 159

tions, but they are mainly focused on handling the 160

ODQA. Although these models cannot be directly 161

applied in many cases for DSQA, with modifica- 162

tions, a similar approach can be impactful in special 163

domains, where questions often require deep con- 164

textualization, specialized vocabulary, and multi- 165

hop reasoning across concepts. 166

In specialized domains like healthcare, the value 167

of zero-shot QA is magnified due to the scarcity 168

of annotated data and the complexity of domain 169
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knowledge. Several large-scale medical datasets170

such as MedQA (Jin et al., 2020), MedMCQA (Pal171

et al., 2022), MMLU-Medicine (Hendrycks et al.,172

2021), and PubMedQA (Jin et al., 2019) have facil-173

itated benchmarking for medical LLMs. Recent ef-174

forts in building medical-specific LLMs, including175

PMC-LLaMA (Wu et al., 2023), MedAlpaca (Han176

et al., 2023), Meditron (Chen et al., 2023), MedL-177

LAMA (Med) and OpenBioLLM (Ankit Pal,178

2024)demonstrate that domain-aligned pretraining179

improves reasoning in clinical contexts. While180

many of these models benefit from fine-tuning or re-181

trieval mechanisms, such as the extractive approach182

in XAIQA (Stremmel et al., 2023) or the retriever-183

augmented method in MK-RAG (Shi et al., 2023),184

they depend on curated knowledge bases or records.185

Some studies also cite that fine-tuning LLMs on186

domain-specific data can improve in-domain per-187

formance, while several studies (Xu et al., 2021;188

Chen et al., 2023) caution that such specialization189

may restrict the model’s general reasoning ability190

and reduce adaptability to new instructions. This191

trade-off highlights the need for flexible prompt-192

ing strategies that preserve generalization while193

supporting domain relevance. Collectively, these194

strands of research reveal a growing emphasis on195

adaptive prompting and zero-shot learning to im-196

prove LLM generalisation.197

3 KnowDomain: A Zero-shot Prompting198

Our aim is to enable an LLM for robust domain-199

specific QA by familiarising it with intrinsic relat-200

able knowledge to better understand a given ques-201

tion. The procedure is listed in Algorithm 1.202

Algorithm 1 KnowDomain
QA_model (L,L′ : LLM,Q,Op,m)
1: for all (Qi, Opi) ∈ (Q,Op) do
2: Generate keywords Ki = {kw1, kw2, . . .} (L)
3: Entities: these are filtered non-important keywords

Ei = {ke1, ke2 . . .}
4: Generate knowledge for selected entities

Iei =L(kei)
5: Generate similar and abstracting questions(L)

SQi = {q1, q2, . . .}
6: Extract valid explanations

Exi = {e1, e2 . . .}
7: Create a similarity_matrix: sim(Iei,Iej)
8: Select m most dissimilar knowledge

I = {I1, I2, . . .}
9: Initialize gk_list = []

13: Create prompt pi
pi = prompt(Qi, Opi, gk_list[i], ei)

14: answer = L′(pi)

The initial step involves identifying challeng-203

ing domain-specific keywords that a general LLM 204

might misinterpret if their meanings are not empha- 205

sised. To achieve this, we provide LLMs with a set 206

of fundamental criteria given as the instructions to 207

the LLM (15) to extract only domain-specific key- 208

words, whereas we apply stopword filtering as a pri- 209

mary check. Subsequently, we query each keyword 210

to produce a succinct response regarding it. The 211

objective is to enhance the LLM’s comprehensibil- 212

ity by addressing each keyword individually. This 213

approach allows the LLM to concentrate on one 214

keyword at a time, yielding a brief response with 215

reduced hallucination (Zhou et al., 2024; Maynez 216

et al., 2020). Following this, we ask the model to 217

generate a concise note that may assist in address- 218

ing the questions, and we also ask the model to 219

formulate a set of ten new questions and answers 220

related to the original inquiry, ensuring the inclu- 221

sion of only well-established information using the 222

instruction sets (15). In the paper, we use only 223

LLaMA models for knowledge generation (exam- 224

ple provided in Table 17), guided by the availability 225

of LLaMA-based medical language models, which 226

serve as baseline models due to a high ratio of 227

medical data used in this analysis. After all the 228

generations, we integrate this knowledge, which is 229

provided to the model in the final step, where we 230

prompt the model to respond to the original ques- 231

tion (16,10). The rationale behind this methodol- 232

ogy is that the generated knowledge aids the LLM 233

by deconstructing the information presented as a 234

question and supplying it with pertinent knowl- 235

edge, thereby enhancing the model’s focus on the 236

necessary information for answering the question. 237

The complete framework is illustrated in Figure 2, 238

and the statistics of the generated knowledge are 239

detailed in Table 11. 240

4 Experimental Setup 241

4.1 Datasets 242

For the experiment, we utilised four diverse 243

datasets, of which three are medical data and 244

one is self-curated plant pathology data, to as- 245

sess the performance of our technique compre- 246

hensively. These are MedHALT (Pal et al., 2023), 247

MedMCQA (Pal et al., 2022), MedQA_USMLE (Jin 248

et al., 2020) and PlantPathologyQA. MedHALT 249

dataset includes three different types for QA: a) 250

False Confidence Test (MedHALT_FCT), b) None 251

of the Above Test (MedHALT_NOTA), and c) 252

Fake Question Test (MedHALT_FAKE). Also, 253
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Figure 2: KnowDomain: First, keywords and new questions are generated. Secondly, we generate keyword
information by asking for details of each keyword(entity), creating the knowledge base(KB). We have used
LLaMA3 Instruct 8B model and 70B model as LLM1 for knowledge generations and multiple LLMs as LLM2 for
final question answering.

PlantQA consist of two types of questions: a)254

Question bases on facts (PFACT) and b) fake255

questions based on fiction (PFAKE) similar to256

MedHALT_FAKE. In this paper, we use MFCT,257

MNOTA, MFAKE and USMLE as abbreviations re-258

spectively for MedHALT_FCT, MedHALT_NOTA,259

MedHALT_FAKE and MedQA_USMLE. Detailed260

descriptions of all these datasets are provided in261

Appendix A.262

4.2 Language Models (LLMs)263

We selected multiple open-source LLMs with264

varying sizes and capabilities to ensure a ro-265

bust evaluation. These included LLaMA 3.1 In-266

struct 8B, Qwen (Yang et al., 2024), OpenBi-267

oLLM 8B (Ankit Pal, 2024), MedLLama 8B (Med),268

LLaMA 3.1 Instruct 70B (Dubey et al., 2024)269

and Phi-4-mini 3.82B (Abouelenin et al., 2025).270

For evaluation, we used the Instruct variants of271

all the mentioned LLMs to compare their perfor-272

mance under various prompting strategies. All273

the LLMs selected in this paper are open-source274

models, which will help interested researchers to275

continue with this analysis. Here, we will use276

some model abbreviations as Llama, Llama70B,277

BioLLM, MedLLama, and Phi4 for LLaMA 3.1 In-278

struct 8B, LLaMA 3.1 Instruct 70B, OpenBioLLM279

8B, MedLLama 8B, and Phi-4-mini 3.82B, respec-280

tively.281

4.3 Prompting Techniques 282

To validate our framework, we compare it 283

with multiple inference-time prompting base- 284

lines, these are Base, COT (Kojima et al., 285

2022), QAP (Yugeswardeenoo et al., 2024), 286

EchoPrompt (Mekala et al., 2024), ARR (Yin and 287

Carenini, 2025), and HintQA (Mozafari et al., 288

2024). These prompts are a combination of step- 289

wise, deliberation-based, and knowledge-based 290

prompting. Where COT encourages models to 291

generate intermediate reasoning steps before ar- 292

riving at a final answer. QAP involves prompting 293

models to generate questions and answers about 294

a context before solving the main task, promot- 295

ing deeper comprehension. EchoPrompt guides 296

models to rephrase questions in a model-preferred 297

style before answering, enhancing understanding 298

and robustness across tasks. ARR prompting de- 299

composes the task into three stages-posing clari- 300

fying questions, refining the generation, and then 301

responding to boost reasoning quality and output 302

accuracy. HintQA integrates explicit hints or auxil- 303

iary questions which are generated using an LLM, 304

into the prompt to steer the model toward relevant 305

reasoning paths, improving model consistency and 306

task-specific accuracy. The prompt structure of 307

each technique is mentioned in Table 10. Further 308

detailed description of the prompt used is men- 309

tioned in C. In the results, we have used "Echo" as 310

the abbreviation of EchoPrompt. 311
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4.4 Experimental Procedure312

In KnowDomain first, we generated the required313

knowledge as mentioned in Algorithm 1 using the314

Llama model. Then, for each LLM and dataset315

combination, we thoroughly compared the accu-316

racy of the baselines mentioned in Section 4.3 and317

the proposed method KnowDomain. We did label318

extraction in two phases. In step one, we extracted319

predictions using regular expressions, and then for320

the remaining not-matching datapoints, we used the321

Llama80B model for answer selection. Here we322

provide the options corresponding to the datapoint323

and model prediction, next we asked Llama70B324

to select the appropriate option given the predic-325

tion text. Our evaluation focuses on measuring326

the effectiveness of our technique in improving the327

reliability of LLMs with AI-generated domain in-328

formation. The results of these experiments are329

presented and analysed in the subsequent sections.330

The default values for temperature, top_p, and seed331

are 0.2, 0.9, and 42, respectively. The temperature332

value was selected based on the analysis with dif-333

ferent models, since neither of the very low or high334

values gave the best performance in all cases, we335

selected the appropriate average of the tested range,336

which is 0.01, 0.1, to 0.5. The seed and top are337

based on general convention in the literature. All338

the results mentioned are of a single run with the339

max token values as mentioned in the Table 1. All340

the experiments are done on four 48GB NVIDIA341

RTX A6000, except the Llama80B, for which we342

used six 40GB NVIDIA A100 GPUs. The total time343

for experimenting took 2841 hours, where knowl-344

edge generation and question answering took 750345

and 2071 hours, respectively. Where 750 covers346

creating entities, definitions, notes, similar ques-347

tions, and hints(for HintQA) across datasets using348

Llama8B and Llama70B for each question individ-349

ually, without any sharing of knowledge between350

the questions.351

5 Results352

This work evaluates the effectiveness of our method353

across various datasets, with a focus on accuracy354

improvements. KnowDomain and its variants con-355

sistently outperform other methods, showing no-356

table gains. For example, on the USMLE dataset,357

LLaMA achieved nearly 10% higher accuracy us-358

ing generated knowledge. In USMLE and MedM-359

CQA, our approach improves accuracy by over360

10% for all models. BioLLaMA gains over 20%361

from its base and 10% over prompt-based meth- 362

ods, while MedLLaMA sees a 15% average in- 363

crease—demonstrating the value of external knowl- 364

edge even for domain-specific LLMs. In MCQA, 365

KnowDomain shows modest gains, except for Bi- 366

oLLaMA, which improves by at least 7%. Be- 367

tween variants, KD-NQ often outperforms KD-K, 368

as question-specific notes and examples are more 369

helpful than generic keyword definitions. How- 370

ever, KD can underperform if conflicting defini- 371

tions cause ambiguity. Model-wise, LLaMA favors 372

KD, while Qwen performs similarly across vari- 373

ants, except on smaller datasets (MFCT, MNOTA) 374

where sample size introduces variability. Over- 375

all, cumulative accuracy gains reach 177.07 () and 376

82.63 (). Peak improvements include = 19.8, = 17 377

on MedMCQA, and = 12.1, = 13.28 on USMLE. 378

Gains are smaller yet consistent on MFCT and 379

PFACT. In MNOTA, results are more variable, with 380

ranging from –5.21 to 11.46, suggesting sensitivity 381

to configuration. Despite such variability, Know- 382

Domain reliably improves performance, though 383

gains vary by model and task. 384

5.1 Ablation Studies 385

To gain a deeper understanding of the factors 386

that contribute to the success of KnowDomain, 387

we perform a series of ablation studies. In this 388

section, we present a subset of these studies. 389

For a comprehensive set of ablation studies on 390

KnowDomain, please refer to Appendix C. 391

392

Results on Fictional data We analyse the 393

models on the counterfactual scenarios where 394

the fictional scenario was given in the question, 395

and based on that model, the correct answer has 396

to be selected as "I do not know". For this, we 397

use the MedHALT_FAKE(MFAKE) dataset for 398

counterfactual questions in the medical domain and 399

PathologyQA_Fake(PFAKE) for counterfactual 400

questions in plant pathology. Table 3 presents 401

the model accuracy for these datasets on various 402

prompting strategies. However, our method, 403

KnowDomain, has performed better than the Base 404

prompting. In general, methods with explicit 405

reasoning requirements perform better with 406

HintQA, achieving values as high as 67%. 407

Analysis with different model sizes In Figure 3, 408

we present an accuracy comparison between mod- 409

els of different sizes across various datasets. The 410

models selected are Phi4(3.8B), Llama(8B) and 411

Llama(70B). Our primary objective was to evalu- 412
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Keyword Keyword Definition Notes and Question generation Hints generation Base Other prompts

128 256 512 512 64 512

Table 1: Value of Max tokens hyperparameter of LLM for different settings

Data Model Base COT QAP Echo ARR HintQA KD-K KD-NQ KD ∆ ∆′

PFACT

Llama 71.14 72.86 70 72 71.43 64 64.29 74 75.71 4.57 2.85
Qwen 66.86 67.14 64.86 67.14 66.29 59.43 66 75.43 75.43 8.57 8.29
BioLlama 54.57 55.43 34.86 49.71 57.43 59.71 55.14 69.14 72.86 18.29 13.15
MedLlama 63.71 58 67.43 64.86 54.29 64.29 60 74 73.14 9.43 6.57

MFCT

Llama 50 57.29 62.5 59.38 56.25 55.21 54.17 56.25 57.29 7.29 -5.21
Qwen 55.21 54.17 59.38 60.42 53.12 46.88 51.04 64.58 58.33 2.79 4.16
BioLlama 44.79 37.5 27.08 44.79 44.79 47.92 50 59.38 55.21 10.42 11.46
MedLlama 53.12 54.17 62.5 52.08 56.25 55.21 52.08 60.42 58.33 5.21 -2.08

MNOTA

Llama 21.2 29.2 19.4 28.6 26 25.8 46.2 39.8 41.2 19.8 17
Qwen 26.8 27.8 18.2 43.8 31 20.6 29 33 29.6 2.8 -10.8
BioLlama 16.4 24.2 6 15.4 24.2 18.6 16.4 23.6 20.4 4 -0.6
MedLlama 24.8 35.8 20.6 29.8 34.2 31 16.8 31.6 26.4 1.6 -4.2

USMLE

Llama 61.9 68.03 66.3 67.09 61.43 61.12 56.17 70.54 70.62 8.72 3.53
Qwen 56.56 56.95 58.13 57.11 56.64 57.19 54.28 70.23 69.84 13.28 12.1
BioLlama 40.77 56.4 14.93 54.6 52.32 53.34 48.23 67.32 64.26 23.49 10.92
MedLlama 55.77 55.93 59.23 57.66 59.94 61.43 51.22 69.52 68.81 13.04 8.09

MCQA

Llama 57.6 60.32 58.91 60.19 58.63 52.88 52.73 60.33 59.59 1.99 0.01
Qwen 54.37 52.49 54.26 59.16 54.12 48.76 49.15 59.23 59.77 5.4 0.61
BioLlama 44.64 49.5 23.79 43.29 50.53 51.07 49.15 57.14 57.81 13.17 6.74
MedLlama 56.18 50.36 59.62 54.33 54.26 55.29 52.84 59.66 59.45 3.21 0.04

SUM 976.68 1025.53 907.99 1031.15 1019.64 987.89 975.03 1175.17 1154.14 177.07 82.63

Table 2: Accuracy results across multiple models and datasets using different prompting. The table reports the
accuracy(%) achieved by each model-dataset pair under various prompting strategies. "KD-K" "KD-NQ" and
"KD" refer to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with only keyword
knowledge and "KD-NQ" denotes QA with only notes and sample questions. Bolded values (if applicable) indicate
the highest accuracy for each dataset and model. colored cell denotes the best accuracy achieved for the data, and
underline denotes if our method obtained the second highest accuracy for the data and model. Blue columns and
green columns represent methods with partial knowledge and full knowledge, respectively. Here, ∆ denotes the
absolute difference between KD and Base. ∆′ denotes the performance difference between the highest baseline and
highest of the KnowDomain method. This comparison highlights the effectiveness of the proposed framework with
performance variation due to both prompt design, model capabilities and nature of different datasets.

Data Model Base COT QAP Echo ARR HintQA KD-K KD-NQ KD KD-simple

PFAKE

Llama70B 72.67 35.33 54.67 42 40 83.33 34 87.33 80.67 82
Llama 18.67 22.67 14 31.33 33.33 72.67 32 50 43.33 85.33
Qwen 54.67 58 41.33 85.33 57.33 64.67 34 56.67 46 71.33
BioLlama 4.67 4.67 0 12 8.67 36 2.67 21.33 15.33 19.33
MedLlama 1.33 46.67 0.67 24 50.67 37.33 15.33 46 30 47.33
Phi4 58.67 38 53.33 42.67 40.67 41.33 62.67 58 54 53.33

MFAKE

Llama70B 16.2 8.72 21.2 22 8.5 36.17 10.06 18.26 26.065 18.14
Llama 5.92 7.48 4.36 19.27 11.46 40.9 13.35 6.46 12.11 76.37
Qwen 23.04 23.2 12.11 40.85 22.17 29.17 18.08 15.61 14.37 31.13
BioLlama 13.94 17.65 9.53 23.3 17.22 67.06 24.06 29.66 39.29 62.59
MedLlama 9.04 29.6 10.33 16.9 29.12 66.09 11.25 11.09 20.78 58.4
Phi4 14.59 13.72 14.1 13.89 10.66 15.12 15.45 13.46 12.49 14.1

PFAKE Combined 210.68 205.34 164 237.33 230.67 335.33 180.67 319.33 269.33 358.65
MFAKE 82.73 100.37 71.63 136.21 99.13 254.51 92.25 94.54 125.105 260.73

Table 3: Accuracy results across multiple models on fictional datasets using different prompting. The table reports
the accuracy(%) achieved by each model-dataset pair under various prompting strategies. "KD-K" "KD-NQ" and
"KD" refers to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with only keyword
knowledge, "KD-NQ" denotes QA with only notes and sample questions, KD-simple uses all the knowledge with a
simple instruction, similar to HintQA. All the notations are the same as mentioned in Table 2. This comparison
highlights the effectiveness of generated knowledge with a simple instruction where the correct answer is "I do not
know".
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ate the performance of smaller language models413

(LLMs) up to 8 billion parameters. These mod-414

els are used to verify the usability of our method415

across models of different sizes. For better compar-416

ison, we generated the knowledge for Llama70B.417

However, for Phi4, the knowledge used is of the418

llama model. The method showed consistent per-419

formance across the models compared to different420

prompting strategies. We also note that the com-421

bined performance of only Notes and Questions422

performed better compared to complete knowl-423

edge, mostly due to its performance for the MCQA424

dataset. The complete results are given in Table14425

. Coalescing knowledge Considering the hypothe-426

sis that a larger model will generate better quality427

data, which is consistent with its performance on428

the QA task, we examine the effect of knowledge429

quality with our method. Here, we use the gener-430

ated knowledge of Llama70B model as a knowl-431

edge base for Llama8B. Although it is believed432

that better knowledge will improve the model’s per-433

formance, the results obtained do not apply in all434

cases. From the Table 4 we can see that out of435

seven datasets, we see a large difference in the case436

of two datasets where the model performed worse437

than when the knowledge generated was from the438

same model. It should be noted that for the same439

datasets, Llama70B performed better using its gen-440

eration.441

Effect of Sampling Temperature We tested the442

Llama and Qwen models with six different tem-443

perature settings, ranging from 0.01, 0.1, 0.2, 0.3,444

0.4 and 0.5. Llama showed variance in the perfor-445

mance without consistency between the different446

datasets. However, Qwen showed very little vari-447

ation across the different temperatures. Due to no448

performance consistency within the datasets, we449

selected the default value of 0.2 as the temperature450

parameter.451

Effect of knowledge size To assess the impact of452

the number of contextual questions provided be-453

fore answering, we conduct an ablation study by454

varying this number between 3, 5, and 10. The455

questions serve as auxiliary knowledge intended456

to guide the model’s reasoning. To ensure the457

diversity of generated questions, we apply a co-458

sine similarity-based filtering step that removes459

semantically redundant content. Specifically, we460

compute sentence embeddings using the Sentence-461

Transformer model (Reimers and Gurevych, 2020),462

and filter out any candidate that exceeds a prede-463

fined similarity threshold with previously selected464

content. This encourages the final set of questions 465

to cover a broader range of distinct information. As 466

shown in Table 5, including 10 questions typically 467

yields the highest accuracy across models, suggest- 468

ing that this number provides a good balance be- 469

tween informativeness and focus. While decreasing 470

from 10 questions, it lacks complete information, 471

slightly reducing performance. Conversely, using 472

only 3 questions also limits the diversity of knowl- 473

edge available to the model. In Table 12, we have 474

given detailed information, including performance 475

on each dataset and model. 476

Figure 3: Accuracy over Model of different sizes, where
the y-axis represents the cumulative accuracy for differ-
ent datasets. The method scheme applies uniformly to
all the models.

Figure 4: Comparison of Models over temperature

Combining knowledge with various prompt- 477

ing techniques. Here, we analyse the Know- 478

Domain with prompts and instructions of ARR, 479

EchoPrompt, and HintQA, and they are repre- 480

sented respectively as KnowDomain-ARR(KD- 481

ARR), KnowDomain-EchoPrompt(KD-echo), and 482

KnowDomain-simple(KD-simple). It should be 483

noted that for KnowDomain-simple, we did not use 484

any generated hints but the templates mentioned in 485

the HintQA, and instead of hints, we used knowl- 486

edge generated as per our method. Results for 487

KnowDomain-simple were generated for a fictional 488

and smaller dataset. This analysis shows that even 489
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Model PFACT PFAKE FCT FAKE NOTA USMLE MCQA Total

M-8BKB 75.71 43.33 57.29 12.11 41.2 70.62 59.59 358.16
M-70BKB 68 68.67 75 11.03 41.2 67.87 71.38 402.47

Table 4: Analysis with Knowledge Coalescence, where in ’M-8BKB’ Llama8B model is used with generated
knowledge and ’M-70BKB’ denotes the use of Llama80B knowledge with Llama8B model. highlighting the overall
effectiveness of the better knowledge coalescence with a smaller model.

Data KD-NQ3 KD-NQ5 KD
PFACT 228.86 233.43 297.14
PFAKE 151.33 162 134.66
MFCT 239.58 242.72 229.16
MNOTA 110.8 120.2 117.8
MFAKE 52.91 59.95 86.55
USMLE 274.39 276.98 273.45
MCQA 236.11 235.37 236.59
Total 1293.98 1330.65 1375.35

Table 5: Ablation study on the effect of including 3(KD-
NQ3), 5(KD-NQ5), or 10(KD) context questions on
model accuracy. The values mentioned for each data
are summed over all four base models. These questions
are used as additional input to guide the model’s reason-
ing. Accuracy is reported across multiple models and
datasets. Including 10 questions yields the best average
performance.

though KnowDomain did not perform better than490

hintQA for the fictional task, knowledge with sim-491

plified instruction showed significant improvement492

for fictional medical data with the Llama model493

and achieved the best score for the dataset of 76%494

with KnowDomain-simple. Even in other cases,495

KnowDomain-simple consistently performed bet-496

ter or on par with HintQa, suggesting that simpli-497

fied instructions or prompts can further help the498

model to understand the provided knowledge in499

a better way without distracting it from following500

complex instructions. All the results for this are501

mentioned in the Table 6. We also tested PFAKE502

with Llama for KnowDomain and KnowDomain-503

simple, and obtained accuracy of 46 and 85.33, re-504

spectively. Signifying the simplicity of the prompt,505

especially in the case of fictional data.

Data Model KD KD-ARR KD-echo KD-simple

MFCT
Llama 57.29 56.25 54.17 59.38
Qwen 58.33 59.38 60.42 58.33

MFAKE
Llama 12.11 10.93 12 76.37
Qwen 14.37 14.21 18.35 31.13

MNOTA
Llama 41.2 38.8 40.6 33.6
Qwen 29.8 29 29.8 29.4

Total 213.1 208.57 215.34 288.21
Avgerage 38.63 37.833 38.503 49.653

Table 6: Model Performance for KnowDomain with
different prompts

506
Compute Time Analysis In this, we analyse the507

time required for each step and the prompt meth- 508

ods. The total generation time(7̃50hours) covers 509

creating entities, definitions, notes, similar ques- 510

tions, and hints (for HintQA) across datasets us- 511

ing Llama8B and Llama70B. Adding this to QA 512

time shows KD-K, KD-NQ, and KD are slower 513

than Base and HintQA but still faster than larger 514

prompts like ARR, COT, and Echo (7. Among 515

models, Qwen took less time than Llama, Medl- 516

lama, and Phi4 took higher time due to the high 517

generation token, which shows the difficulty in 518

understanding the instruction and properly stop- 519

ping generation if the correct answer is obtained. 520

On GPU space requirement depending on differ- 521

ent prompting, Llama70B needed an average of 522

160GB to 200GB per run. Among the smaller mod- 523

els, Qwen needs a higher GPU space of 27GB to 524

45GB, and as the smallest model in this work, Phi4 525

used 8GB to 12GB of GPU memory. 526

6 Conclusion 527

In this paper, we propose a knowledge-generating 528

prompting technique that uses zero-shot learn- 529

ing to solve Domain-Specific QA problems. We 530

have demonstrated our methods on several medi- 531

cal datasets and plant pathology data. Our method 532

consistently outperforms several baseline models, 533

establishing new benchmarks for medical large lan- 534

guage models (LLMs). Moreover, the consistent 535

performance gains across diverse datasets under- 536

score the broad applicability of our technique, par- 537

ticularly when applied to general-purpose LLMs. 538

We believe that our prompt engineering tech- 539

niques, which are presented in this paper, can help 540

to improve a general model for a specific domain 541

by just using its knowledge generation and without 542

compromising on the instructions understanding 543

capability of the model. 544

7 Limitations 545

In our prompting technique, we use the generated 546

text from an LLM to create a knowledge base, 547

which is later used to direct the development of 548

responses. Also, our technique needs more time 549

8



Model KG* HintG Base COT ARR Echo QAP HintQA KD-K KD-NQ KD
LLaMA 8B 1.67 0.14 2.53 18.65 21.05 23.51 15.42 6.42 4.72 6.50 8.67
LLaMA 70B 3.57 0.14 3.49 53.51 53.51 NA NA NA 4.79 1.86 2.13

Table 7: Average per-datapoint times (in seconds) for generation and QA across models. *Knowledge Generation
includes generation of keywords, k-defination, sub/sim questions and notes.

for the generation of the required knowledge than550

only inference methods. Along with this, the gen-551

erated text may not be free from the issue of LLM552

hallucination and may contain incorrect informa-553

tion. Since the generation of relevant text depends554

on the reasoning abilities of LLMs, and the man-555

ual prompts asked by users may impact it, incor-556

rect phrases may be produced during the ponder-557

ing phase of knowledge generation. The technical558

method of creating these prompts requires more559

work. We have not extensively analysed the effect560

of instruction. Our goal is for future research to561

build on our approach, which is more error-resilient562

by augmenting the current implementation with563

real-world correct data and more resilient to vari-564

ances of automatic prompt engineering. Hence,565

it can assist the existing framework in generating566

high-quality knowledge used in the later stages.567
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A795

Dataset details796

MedHALT (Pal et al., 2023) dataset includes three797

distinct tests to evaluate different aspects of model798

performance. The False Confidence Test (FCT)799

presents multiple-choice medical questions with800

the correct answer and also a randomly suggested801

correct answer. The model evaluates the validity802

of the proposed answer and provides detailed ex-803

planations. It contains 95 questions. The None of804

the Above Test (NOTA) involves multiple-choice805

questions where the correct answer is replaced by806

’None of the above.’ The model must identify this807

and justify its selection. This test includes 18,865808

questions. The Fake Question Test (FAKE) presents809

fake or nonsensical medical questions to determine810

if the model can correctly identify and handle such811

queries. This test contains 1,857 questions. In this812

paper, we use a random sample of 500 test data 813

points of MedHALT_FAKE due to high computa- 814

tional resource requirements. 815

MedMCQA (Pal et al., 2022) dataset consists of 816

over 194k high-quality AIIMS and NEET PG en- 817

trance exam multiple-choice questions covering 818

2.4k healthcare topics and 21 medical subjects. We 819

have used only single-answer questions for the eval- 820

uation, counting to 2816, for consistency with other 821

datasets. 822

MedQA_USMLE (Jin et al., 2020) dataset in- 823

cludes 12,723 4-way multiple-choice questions 824

from practice tests for the United States Medical 825

License Exams (USMLE), requiring biomedical 826

and clinical knowledge with 1273 test questions. 827

PlantPathologyQA is self-expert curated data 828

based on plant pathology, based on multiple rel- 829

evant books. It contains a total of 500 test data 830

points, where 350 are factual questions and 150 831

are fictional questions. The factual question is cate- 832

gorised in 24 categories, details are given in Table 9. 833

The creation of a fictional question is similar to the 834

processes used for MedHALT_FAKE data gener- 835

ation. For this, we selected the random 75 factual 836

questions from PlantQA and then used these as the 837

background questions, and we also selected two 838

sample questions from MedHALT_FAKE. Finally, 839

we input these questions to GPT-4-turbo (OpenAI, 840

2023) and ask it to generate ten similar fictional 841

questions. Later, these questions were verified to 842

remove any factual questions that may have been 843

generated. However, we did not find any generation 844

aligning with the facts. 845

Data Domain Data Name Data Abb. Count
Plant
Pathology

PlantPathologyQA
PFACT 350
PFAKE 150

Medical
MedHALT

FCT 96
NOTA 500
FAKE 1858

MedQA_USMLE USMLE 1273
MedMCQA MedMCQA 2816

Table 8: Statistics of the data used in this paper

B 846

Background on Prompting Methods 847

Prompting is the process of creating natural lan- 848

guage instructions, called prompts, to generate rele- 849

vant text from a language model (Vatsal and Dubey, 850

2024). Text generation can be done for many tasks, 851

ranging from classification and question answer- 852

ing to knowledge extraction. The prompts are de- 853
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Fungi Virus Bacteria Control
137 58 45 21

Epidemiology Nematode Plant parasite Terminology
21 15 9 8

Technique General Phytoplasma Parasite
7 4 5 3

Journal Prokaryote Abiotic factor Cross protection
2 2 2 1

Fungicide Host Institute Book
1 1 1 1

Method Mycorrhiza Transmission Viroid
1 1 1 1

Table 9: Category-wise Count of Plant Pathology Topics

signed to guide the LLMs in providing accurate re-854

sponses to specific tasks without extensive retrain-855

ing or fine-tuning and to generate the text in a struc-856

tured manner. Prompting strategies include meth-857

ods like basic/vanilla prompting, chain-of-thought,858

self-consistency, and many others, each tailored859

to enhance the performance of LLMs on different860

natural language processing tasks. Some of the861

most commonly used prompting methods are the862

following.863

1. In Basic Prompting, we directly query the864

LLMs without any prompt engineering, which865

can further improve the model performance.866

Basic prompting is also known as vanilla867

prompting.868

2. In Chain-Of-Thought (COT) prompting869

method, a complex task is broken into a se-870

quence of simpler sub-tasks to get the final871

answer. By guiding Large Language Mod-872

els (LLMs) through a sequence of intermedi-873

ate reasoning steps, COT aims to enhance the874

LLMs’ ability to perform complex reasoning875

tasks effectively. This method has shown sig-876

nificant improvements over basic prompting877

approaches, with notable performance gains878

observed in tasks like Mathematical Problem879

Solving and Commonsense Reasoning (Wei880

et al., 2022; Kojima et al., 2022).881

3. EchoPrompt (Mekala et al., 2024):882

EchoPrompt guides models to rephrase883

questions in a model-preferred style before884

answering, enhancing understanding and885

robustness across tasks.886

4. QAP Prompting: Question-Answer-887

Prompting (QAP) involves prompting models888

to generate questions and answers about a889

context before solving the main task, promot-890

ing deeper comprehension. We have used the891

QAP25 for the non-logical(Mathematical), 892

less complex questions; it performed better, 893

and in our case, we have a non-mathematical 894

question. 895

5. ARR Prompting (Yin and Carenini, 2025): 896

Ask-Refine-Respond (ARR) prompting de- 897

composes the task into three stages: a) posing 898

clarifying questions, b) refining the genera- 899

tion, and then c) responding to boost reason- 900

ing quality and output accuracy. 901

6. HintQA Prompting (Mozafari et al., 2024): 902

HintQA integrates explicit hints or auxiliary 903

questions into the prompt to steer the model 904

toward relevant reasoning paths, improving 905

factual consistency and task-specific accuracy. 906

We have used the base approach for HintQA, 907

where hints are given without any sorting. It 908

is due to the inability to apply the mentioned 909

scoring method due to the nature of the ques- 910

tions and the option set. In the original paper, 911

the answers were direct and non-optional in 912

nature. However, in our case, he options are 913

part of the prompt passed to the models, and 914

in many cases, answers are not just an entity 915

but a complete sentence involving a scenario. 916

These are a few of the extensively used prompting 917

techniques. Many prompting techniques have been 918

applied based on different task requirements. This 919

paper uses basic prompting and instruction-based 920

COT methods as baselines. 921

C Detailed Results 922

The objective is to assess the performance of each 923

approach and provide insights into their effective- 924

ness in different scenarios. The focus of this anal- 925

ysis is on the accuracy enhancements achieved 926

through our method. The evaluation across dif- 927

ferent datasets reveals notable improvements in 928

accuracy, particularly with our approach. KnowDo- 929

main and its variants achieved the best performance 930

for each dataset over different models. The perfor- 931

mance of various LLMs utilising the proposed tech- 932

niques is summarised in Table 2. For instance, in 933

the USMLE dataset, the accuracy of Llama showed 934

a substantial increase of almost 10% from base 935

and HintQA, where generated knowledge is used. 936

This highlights the effectiveness of our method. In 937

both of the large dataset USMLE and MCQA, our 938

approach shows a gain of more than 10% in case 939

of USML for all the models. For BioLlama, the 940
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Method Type Prompt Format(user prompt)

Base - “[question] [options] Answer: ”

COT TP “[question] [options] Answer: Let’s think step by step”

EchoPrompt TP “[question] [options] Answer: Let’s repeat the question and also think step by step.”

ARR TP “[question] [options] Answer: Let’s analyze the intent of the question, find relevant information,and
answer the question with step-by-step reasoning”

QAP TP “[question] [options] Generate relevant QA pairs to understand the context better.”

HintQA KP “According to following context, answer the question: Context: [hints] Question: [question] [options]
Answer:”

KnowDomain KP “[Knowledge] use this information for answering the question: [question] [options] Answer: ”

KnowDomain-simple KP "According to following context, answer the question: Context: **[ “[Knowledge] **] Question:
[question] [options] Answer: ”

Table 10: Overview of various prompting formats where KnowDomain is the prompt of the proposed approach.
Here, knowledge represents knowledge generated by our method, and hints represents the hint generated based on
HintQA. The blue text represents the knowledge generated by an LLM. TP and KP denote the "Trigger Prompt"
and "Knowledge Prompt" respectively. In trigger prompts a sentences/set of words are used as a trigger for answer
generation while in knowledge prompt, some knowledge is given to the model in input prompt. In Base prompting
no trigger sentence was used.

Model Data Avg K Total K Avg Q Total Q

Llama
PFACT

4.05 1449 9.92 3550
Llama70B 3.95 1413 9.66 3460
Llama

PFAKE
5.67 851 9.79 1468

Llama70B 5.93 889 9.59 1438

Llama
MFCT

6.05 581 9.38 900
Llama70B 5.96 572 9.6 922
Llama

MNOTA
4.74 2372 9.66 4831

Llama70B 5.04 2522 9.43 4713
Llama

MFAKE
11.75 21835 9.36 17395

Llama70B 8.46 15717 9.64 17909
Llama

USMLE
9.65 12283 9.29 11826

Llama70B 10.79 13734 9.96 12676
Llama

MedMCQA
4.7 13247 9.58 26981

Llama70B 4.6 12966 9.65 27178

Llama All-
Data

6.66 52618 9.57 66951
Llama80B 6.39 47813 9.65 68296

Avg/Total All Data 6.53 100431 9.61 135247

Table 11: Statistics of generated knowledge for Llama8B and
Llama80B model. ’Avg’ denotes average, ’K’ denotes key-
word and ’Q’ denotes generated question. The bold number
denotes the minimum value w.r.t model

KnowDomain showed a gain of more than 20%941

from its base case and more than 10% from all942

of the prompting methods. Similarly MedLlama943

showed gain of 15% on average. Both the BioL-944

lama and MedLlama are medical LLM even then945

providing appropriated knowledge helped the mod-946

els. In case of MCQA, KnowDomain showed slight947

improvement compared to other promptings, ex-948

cept for BioLlama, where it gained by a minimum949

of 7%.950

In many KD-NQ often outperforms KD-K this951

is because the notes and similar questions (NQ),952

being tailored to the original question, generally 953

prove more useful than keyword definitions, which 954

are short, general, and sometimes misaligned with 955

the question context. While KD combines both 956

keyword definitions and NQ, conflicting definitions 957

can introduce ambiguity, occasionally harming per- 958

formance. For the LLaMA model, KD tends to out- 959

perform KD-NQ, whereas for the Qwen model, the 960

two perform similarly except on the small MFCT 961

and MNOTA datasets, where fluctuations are more 962

likely due to limited sample sizes (96 and 500 dat- 963

apoints, respectively). Medical-specialized LLMs 964

like BioLLaMA and MedLLaMA, which were used 965

only as baselines, appear less reliant on external 966

keyword definitions due to their domain-specific 967

pretraining. Moreover, the longer input length in 968

KD (2572 tokens) compared to KD-NQ (394 to- 969

kens) may introduce noise, possibly offsetting any 970

benefits from keyword definitions. However, dis- 971

missing the value of keyword definitions entirely 972

may be premature, as more refined versions could 973

still contribute positively across models. 974

Across all model and dataset combinations, we 975

observe a total cumulative accuracy improvement 976

of 177.07 points in the default setup (∆) and 82.63 977

points in the ∆′ configuration. For instance, in 978

MedMCQA, ∆ reaches a maximum of 19.8, with 979

∆′ at 17, while USMLE records the highest ∆′ 980

of 12.1 and a strong ∆ of 13.28. In MFCT, im- 981

provements are moderate but consistent, with val- 982

ues ranging from 4.57 to 18.29 for ∆ and 2.85 to 983

13.15 for ∆′. In PFACT, although the gains are 984
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relatively smaller (e.g., ∆ = 13.17, ∆′ = 6.74), they985

still indicate consistent improvements. Notably,986

MNOTA shows some variability: ∆ spans 2.79 to987

10.42, but ∆′ includes both large positive (11.46)988

and negative (–5.21) values, suggesting sensitivity989

to configuration in this dataset. These variations990

highlight that while the KnowDomain consistently991

outperforms the baseline, the degree of gain is task-992

and model-dependent, with the best-case variants993

occasionally yielding both significant gains and994

regressions depending on the context.995

This section contains the tables for Figure 3 and996

Figure 4. Figure 3 refers to table 14.997

Data Model KD KD-NQ3 KD-NQ5

MCQA

BioLlama 57.78 56.39 56.64
Llama 59.59 60.62 60.16
MedLlama 59.45 59.16 59.02
Qwen 59.77 59.94 59.55

MFAKE

BioLlama 39.29 25.08 28.79
Llama 12.11 4.36 5.17
MedLlama 20.78 8.83 11.14
Qwen 14.37 14.64 14.85

MFCT

BioLlama 55.21 58.33 59.38
Llama 57.29 57.29 59.38
MedLlama 58.33 60.42 64.58
Qwen 58.33 63.54 59.38

MNOTA

BioLlama 20.4 20.6 21
Llama 41.2 37.4 40.6
MedLlama 26.4 24.6 27.2
Qwen 29.8 28.2 31.4

PFACT

BioLlama 72.86 52.29 54.29
Llama 75.71 58.29 59.43
MedLlama 73.14 58.57 58.57
Qwen 75.43 59.71 61.14

PFAKE

BioLlama 15.33 16 18
Llama 43.33 39.33 42
MedLlama 30 40 44
Qwen 46 56 58

USMLE

BioLlama 64.18 65.12 66.77
Llama 70.62 71.25 71.01
MedLlama 68.81 68.5 69.6
Qwen 69.84 69.52 69.6

USMLE

Sum over all
models

273.45 274.39 276.98
MCQA 236.59 236.11 235.37
MFCT 229.16 239.58 242.72
PFACT 297.14 228.86 233.43
MNOTA 117.8 110.8 120.2
PFAKE 134.66 151.33 162
MFAKE 86.55 52.91 59.95

Table 12: Ablation study on the effect of including 3, 5,
or 10 context questions on model accuracy. These ques-
tions are used as additional input to guide the model’s
reasoning. Accuracy is reported across multiple models
and datasets. Including 10 questions yields the best av-
erage performance.

Dataset Llama-3.1-I Qwen BioLlama8B
PFACT 72.91 72.07 71.79
MFCT 59.38 5833 56.25
MNOTA 33.60 2940 24.80
USMLE 70.30 69.84 66.06
MedMCQA 59.02 58.95 57.60
PFAKE 7637 3113 42.00
MFAKE 24.11 13.72 50.11

Table 13: Performance comparison across datasets and
models.

D Prompts and Examples 998

Here we mentioned the details of the prompt used 999

for knowledge generation and question answering. 1000
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Model Data Base COT ARR KD-K KD-NQ KD

Phi4

FAKE 14.59 13.72 10.66 15.45 13.46 12.49
FCT 48.96 50 53.12 45.83 56.25 58.33
MCQA 50.18 48.4 51.53 42.33 55.29 54.47
NOTA 16 32 32.6 35.8 28.2 31
USMLE 51.37 54.99 54.2 45.64 65.28 62.06

Llama

FAKE 5.92 7.48 11.46 13.35 6.46 11.57
FCT 50 57.29 56.25 54.17 56.25 66.145
MCQA 57.6 60.37 58.63 52.73 60.37 65.485
NOTA 21.2 29.2 26 46.2 39.8 41.2
PFakeQA 18.67 22.67 33.33 32 50 56
PathQA 70.39 72.07 71.23 63.41 72.35 69.5533
USMLE 61.9 68.03 61.43 56.17 70.54 69.245

Llama70B

FAKE 16.2 8.72 8.5 10.06 18.26 26.065
FCT 80.21 75 77.08 71.88 80.21 82.29
MCQA 71.56 69.28 68.71 68.89 75.22 70.19
NOTA 12.8 35.4 34 20.4 38 36.8
PFakeQA 72.67 35.33 40 34 87.33 80.67
PathQA 84.36 69.27 72.07 76.82 84.08 84.64
USMLE 77.85 81.07 81.46 74 83.19 79.855

Table 14: Accuracy over Model of different sizes
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Type Instruction(system prompts)
Entity Generation You are an ordinary person with no specialized medical or techni-

cal knowledge. Given a question, your task is to identify words or
phrases that may be difficult for a common person to understand.
Steps:
1. Read the question carefully.
2. Identify any words or phrases that might be difficult to under-
stand based on medical, technical, or uncommon terminology.
3. Your response should strictly follow this format: [ Difficult
words: <word1>, <word2>, <word3>, ... ]
(Separate words with commas and do not include any explana-
tions.)
4. Do not answer the question itself.
5. Always return words in the same context, e.g., if the word is
‘heart attack‘, return ‘heart attack‘ as a whole.

Entity Definition "You are domain expert In medicine. And you task is to figure
out the correct and important information from your knowledge to
answer the question.
Steps:
1. Tell the answer briefly.
2. Do not provide information unless it is well-established in
medical literature or guidelines.
3. For statistical information (e.g., risk percentage, accuracy),
4. If uncertain to answer please do not generate the answer."

Notes and Question Generation You are domain expert on the given question. Your task is to figure
out the correct and important information from your knowledge to
answer the question. You can also generate a set of maximum ten
questions.

Steps:
1. Read the question carefully.
2. Identify the key medically and statistically relevant infor-
mation.
3. Provide factual information that is evidence-based, with nu-
merical accuracy verified through established medical sources.
4. Generate up to ten relevant questions with answers that
strictly adhere to medical guidelines.
5. Your response should strictly follow this format:
[ Notes: <key medically accurate information >]
[ Questions answers: QAset1: { <question1 >: <answer1 >},
QAset2: { <question2 >: <answer2 >}, ... ]
(Separate entries with commas and do not provide explanations.)
6. Do not provide information unless it is well-established in
medical literature or guidelines. If uncertain, specify the need
for expert confirmation.
7. For statistical information (e.g., risk percentage, accuracy),
ensure consistency across answers.
8. Do not attempt to answer the question.
9. You should remember the output format mentioned and strictly
return output in the specified format.

Table 15: Prompt instructions for knowledge generation
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Type Instruction(system prompts)
Base You are in medical field and you must choose the option

for the question asked even if it’s from a different domain. Also,
when you
output the answer, use output format: [ {Answer: OPTION
<correct option>} ] to indicate the correct option.

KnowDomain You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
1. Keyword set: Keywords and their definitions.
2. Question set: A set of useful questions.
3. Notes: Short notes relevant to the question.
All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

KnowDomain-K You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
Keyword set: Keywords and their definitions.
All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

KnowDomain-NQ You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
1. Question set: A set of useful questions.
2. Notes: Short notes relevant to the question.
All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

Table 16: Performance of KD-simple across data
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Question Which of the following structural elements is characteristic of the
ortopramide group drugs? 1. They are anilides with propyl group
in ortho.
2. They are benzamides with methoxy group in ortho.
3. They are benzenesulfonamides with a methyl group in ortho.
4. They are ortho-halogenated derivatives of phenothiazine.

Correct Answer They are benzamides with a propyl group in ortho position.
Keyword/Entities [anilides, benzamides, benzenesulfonamides, ortopramide, ortho-

halogenated, phenothiazine]
Definition [ [anilides]: Anilides are a class of organic compounds that contain

the functional group -CONH- (carbamoyl group) attached to an
aromatic ring, typically a phenyl group. In medicine, anilides are
a group of nonsteroidal anti-inflammatory drugs (NSAIDs) that
are used to treat pain, inflammation, and fever ...
[ benzamides]: Benzamides are a class of medications that are
primarily used to treat gastrointestinal disorders, particularly gas-
troesophageal reflux disease (GERD) and peptic ulcers. They
work by reducing the amount of acid produced in the stomach.of
benzamides include:1. Metoclopramide (Reglan): This medication
is used to treat nausea, vomiting, and conditions such as GERD
and gastroparesis.2. Cisapride (Propulsid): This medication was
used to treat GERD and gastroparesis, but it has been withdrawn
from the market in many countries due to concerns about its safety
...

Generated QA pairs [ ’question’: ’What is the characteristic structural element of or-
topramide group drugs?’, ’answer’: ’They are benzamides with a
propyl group in ortho position’,
’question’: ’What type of compounds are ortopramide group
drugs?’, ’answer’: ’Benzamides’,
’question’: ’What is the specific group attached to the benzene
ring of ortopramide group drugs?’, ’answer’: ’Propyl group in
ortho position’, ... ]

Notes Ortopramide group drugs are characterized by a specific structural
element, which is a benzamide with a propyl group in ortho posi-
tion, specifically an ortho-propyl group on the benzene ring of the
benzamide.

Table 17: Example of generated data in the generation phase.
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