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Abstract

In recent years, Large Language Models
(LLMS) have exhibited remarkable proficiency
in comprehending and generating language.
Consequently, LLMs have become an inte-
gral part of Al system building. However, it
has been observed that in the case of domain-
specific QA (DSQA), direct prompting tech-
niques do not fully leverage the capabilities of
LLMs, especially in the case of a zero-shot set-
ting, due to the scarcity of annotated data and
the nonavailability of tailored retrieval data. To
address this gap, we propose a self-knowledge
generative prompting technique for DSQA that
generates the necessary knowledge for accu-
rate responses using LLMs in the absence of
external data. We evaluated our method using
LLMs ranging from 3.8 to 70B parameters
and observed consistent improvements, with
accuracy gains ranging from 4% to 40% over
the base models. When compared to the best-
performing baselines, our approach achieved
an average improvement of 6.3%. Addition-
ally, we observed a cumulative accuracy gain
of 177 points across 20 diverse model—dataset
combinations, highlighting the method’s robust-
ness. While improvements were generally con-
sistent, performance showed sensitivity to spe-
cific task—model interactions. With this work,
we present a lightweight, domain-agnostic strat-
egy that enables robust model adaptation with
minimal effort and strong empirical gains.

1 Introduction

LLMs have made tremendous progress in common-
sense and open-domain QA (Zhao et al., 2024; Li
et al., 2024), but the QA task still presents chal-
lenges in handling domain-specific scenarios. This
is due to the complexity of questions, especially
where the understanding and synthesis of informa-
tion from multiple parts of the question is required.
Intrinsic ambiguity in the question can be yet an-
other challenge that may require extensive context
to answer accurately (Bhat et al., 2023). Along

with this, the scarcity of annotated data and the
inclusion of irrelevant, ambiguous, and insufficient
information present yet another challenge in mak-
ing an efficient DSQA model. For example, a Ge-
ographic QA needs to understand spatial data and
geographic entities that are not common in general
QA tasks (Mai et al., 2021). Similarly, QA in the
medical domain always presents many challenges,
such as specificity, scarcity of annotated data, and
inclusion of irrelevant, ambiguous, and insufficient
information (Jain et al., 2022).

In the fantastical land where people walk upside down, where the sky is green
and the grass is blue, what fantastical term defines the movement disorder
characterized by the inane and nonsensical phenomenon of simultaneous
contraction of agonist and antagonist muscles, inducing absurd postural
changes and inexplicable movements?

'0'; 'Myoclonus, a disorder characterized by rapid, sudden, and uncontrollable jerking movements of the
muscles', 1" 'Dystonia, a condition characterized by muscle contractions that cause twisting and
repetitive movements or abnormal postures’, '2": 'Korea, a nonsensical and absurd term with no basis in
medical reality, representing nothing more than a whimsical fabrication of sheer nonsense', '3':
"Acatisia, a condition characterized by extreme restlessness and difficulty in sitting still, often
accompanied by a sense of inner turmoil or anxiety', '4': 'Admitting defeat in the face of this utterly
preposterous and absurd situation, conceding that the illogical nature of the question defies
comprehension and rationality', '5': I do not know'

LUama3.1instruct

LLM answer:- Dystonia, a condition
characterized by muscle contractions that | &
cause twisting and repetitive movements or
abnormal postures

| do not know ! ;!

Figure 1: The question presents LLM with an out-of-
the-box question by asking it based on a hypothetical
scenario and shows the LLM’s difficulty in answering a
question consisting of different scenarios.

Recent literature has attempted to address these
challenges within specific domains, such as fine-
tuning an LLM using domain-specific data, etc.
However, this approach often compromises the
LLM’s performance across diverse tasks and its
ability to comprehend a wide range of instruc-
tions (Ceballos-Arroyo et al., 2024). Additionally,
developing such models is complicated by the ne-
cessity for curated domain data, which may not
be accessible for every field. This issue is partic-
ularly pronounced in zero-shot scenarios, where
there is insufficient data to utilise or train spe-
cialised retrieval-reader models, resulting in ex-



isting methodologies failing to fully exploit the
capabilities of LLMs when they are invoked implic-
itly (Li et al., 2024) and hence the general approach
is to use zero-shot prompting or reasoning-based
prompting.

With these challenges, there are no techniques
that are presently available in the literature that
can utilise the potential of LLMs to solve domain-
specific QA problems in the absence of extra data.
To fill this gap, here we focus on self-knowledge
augmented DSQA without any training or external
data. In this paper, we propose a new promoting
technique called KnowDomain that uses the capa-
bilities of LLMs’ learned knowledge to enhance its
adaptability to domain-specific QA, hence improv-
ing its performance while keeping its generality
intact. Our approach utilises multi-step prompting,
which involves first constructing a knowledge base
by presenting multiple thoughtfully created general
sets of instructions to an LLM. Then this knowl-
edge is combined to create a complete knowledge
base, which is presented as in-context learning. The
novelty of our framework is the selection of metic-
ulously thought-out information such that it can
be applied to any domain with minimal change in
LLM’s instructions.

Contributions.

(i) We developed a KnowDomain Prompting to im-
prove LLMs’ performance on DSQA.

(ii) We present a new agriculture question answer-
ing dataset focused on plant pathology to mitigate
the possible data leakage with existing LLMs.

(iii) We conduct an extensive analysis with mul-
tiple baselines and models to show the effective-
ness of KnowDomain Prompting on the Medical
benchmarks dataset and our plant pathology data.
While we demonstrate the superiority of our de-
veloped prompting techniques on benchmark med-
ical datasets and expert-created agricultural data
focused on plant pathology, our framework is suit-
able and can be applied to any domain.

2 Related Work

Zero-Shot Question Answering Zero-shot QA
has become increasingly important for enabling
large language models (LLMs) to generalize across
tasks and domains without domain-specific fine-
tuning. Early work like (Brown et al., 2020) demon-
strated the power of large-scale language models
to perform zero-shot QA through natural language
prompting. While studies such as (Zhou et al.,

2022) emphasize the benefits of multi-task train-
ing for improved zero-shot generalization, (Ma
et al., 2021) also shows that training on selected
key tasks can significantly boost zero-shot perfor-
mance across QA benchmarks. (Gramopadhye
et al., 2024) converts tasks to multiple-choice for-
mats and (Zhao et al., 2022) leverages novel ques-
tion generation strategies. These methods collec-
tively aim to reduce the dependency on annotated
data while maintaining strong QA capabilities.
Prompting Strategies. Prompting strategies are
central to the success of zero-shot QA. Traditional
approaches such as Chain-of-Thought (CoT) (Ko-
jima et al., 2022; Wei et al., 2022) and Plan-and-
Solve (PS+) (Wang et al., 2023) simulate step-
by-step reasoning but often rely on handcrafted
or static prompt templates. Question-Analysis
Prompting (QAP) (Yugeswardeenoo et al., 2024)
enhances model comprehension by encouraging
intermediate question interpretation before answer
generation. Techniques like DDPrompt (Mu et al.,
2024) adapt prompts dynamically based on input
complexity, improving both understanding and an-
swer accuracy, while EchoPrompt (Mekala et al.,
2024) does this by reiterating the question. More
recently, the ARR (Analyzing, Retrieving, and Rea-
soning) framework (Yin and Carenini, 2025) in-
troduces a structured zero-shot prompting method-
ology that decomposes the QA process into three
explicit steps: analyzing the intent of the ques-
tion, retrieving relevant background knowledge,
and reasoning through the final answer. It provides
stronger guidance to LLMs compared to conven-
tional zero-shot methods.

Knowledge-Driven Prompting Recent work on
knowledge-driven and self-adaptive strategies en-
ables more effective zero-shot generalization. Self-
prompting frameworks (Li et al., 2024) and Hin-
tQA (Mozafari et al., 2024) allow models to intro-
spect and generate contextually appropriate infor-
mation without external retrieval. These advances
help the model to know more context for the ques-
tions, but they are mainly focused on handling the
ODQA. Although these models cannot be directly
applied in many cases for DSQA, with modifica-
tions, a similar approach can be impactful in special
domains, where questions often require deep con-
textualization, specialized vocabulary, and multi-
hop reasoning across concepts.

In specialized domains like healthcare, the value
of zero-shot QA is magnified due to the scarcity
of annotated data and the complexity of domain



knowledge. Several large-scale medical datasets
such as MedQA (Jin et al., 2020), MedMCQA (Pal
et al., 2022), MMLU-Medicine (Hendrycks et al.,
2021), and PubMedQA (Jin et al., 2019) have facil-
itated benchmarking for medical LLMs. Recent ef-
forts in building medical-specific LLMs, including
PMC-LLaMA (Wu et al., 2023), MedAlpaca (Han
et al., 2023), Meditron (Chen et al., 2023), MedL-
LAMA (Med) and OpenBioLLM (Ankit Pal,
2024)demonstrate that domain-aligned pretraining
improves reasoning in clinical contexts. While
many of these models benefit from fine-tuning or re-
trieval mechanisms, such as the extractive approach
in XAIQA (Stremmel et al., 2023) or the retriever-
augmented method in MK-RAG (Shi et al., 2023),
they depend on curated knowledge bases or records.
Some studies also cite that fine-tuning LLMs on
domain-specific data can improve in-domain per-
formance, while several studies (Xu et al., 2021;
Chen et al., 2023) caution that such specialization
may restrict the model’s general reasoning ability
and reduce adaptability to new instructions. This
trade-off highlights the need for flexible prompt-
ing strategies that preserve generalization while
supporting domain relevance. Collectively, these
strands of research reveal a growing emphasis on
adaptive prompting and zero-shot learning to im-
prove LLM generalisation.

3 KnowDomain: A Zero-shot Prompting

Our aim is to enable an LLM for robust domain-
specific QA by familiarising it with intrinsic relat-
able knowledge to better understand a given ques-
tion. The procedure is listed in Algorithm 1.

Algorithm 1 KnowDomain

QA_model (£,£' : LLM,Q,Op, m)

: for all (Q;,0p;) € (Q, Op) do

2: Generate keywords K; = {kw1, kwa, ...} (L)

3: Entities: these are filtered non-important keywords
E; = {ke1,kez ...}

4: Generate knowledge for selected entities

—_

Iei ZE(k&)
5:  Generate similar and abstracting questions(£)
SQi = {a1,q2,.- .}

6: Extract valid explanations
E.’Ifi = {61,62 .. }
7: Create a similarity_matrix: sim(e;,1c;)
8:  Select m most dissimilar knowledge
I1={h,I,...}

9: Initialize gk_list =[]

13:  Create prompt p;
pi = prompt(Q;, Op;, gk_list[i], e;)

14: answer = L'(p;)

The initial step involves identifying challeng-

ing domain-specific keywords that a general LLM
might misinterpret if their meanings are not empha-
sised. To achieve this, we provide LLMs with a set
of fundamental criteria given as the instructions to
the LLM (15) to extract only domain-specific key-
words, whereas we apply stopword filtering as a pri-
mary check. Subsequently, we query each keyword
to produce a succinct response regarding it. The
objective is to enhance the LLM’s comprehensibil-
ity by addressing each keyword individually. This
approach allows the LLM to concentrate on one
keyword at a time, yielding a brief response with
reduced hallucination (Zhou et al., 2024; Maynez
et al., 2020). Following this, we ask the model to
generate a concise note that may assist in address-
ing the questions, and we also ask the model to
formulate a set of ten new questions and answers
related to the original inquiry, ensuring the inclu-
sion of only well-established information using the
instruction sets (15). In the paper, we use only
LLaMA models for knowledge generation (exam-
ple provided in Table 17), guided by the availability
of LLaMA-based medical language models, which
serve as baseline models due to a high ratio of
medical data used in this analysis. After all the
generations, we integrate this knowledge, which is
provided to the model in the final step, where we
prompt the model to respond to the original ques-
tion (16,10). The rationale behind this methodol-
ogy is that the generated knowledge aids the LLM
by deconstructing the information presented as a
question and supplying it with pertinent knowl-
edge, thereby enhancing the model’s focus on the
necessary information for answering the question.
The complete framework is illustrated in Figure 2,
and the statistics of the generated knowledge are
detailed in Table 11.

4 Experimental Setup

4.1 Datasets

For the experiment, we utilised four diverse
datasets, of which three are medical data and
one is self-curated plant pathology data, to as-
sess the performance of our technique compre-
hensively. These are MedHALT (Pal et al., 2023),
MedMCQA (Pal et al., 2022), MedQA_USMLE (Jin
et al., 2020) and PlantPathologyQA. MedHALT
dataset includes three different types for QA: a)
False Confidence Test (MedHALT _FCT), b) None
of the Above Test (MedHALT_NOTA), and c)
Fake Question Test (MedHALT_FAKE). Also,
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Figure 2: KnowDomain: First, keywords and new questions are generated. Secondly, we generate keyword
information by asking for details of each keyword(entity), creating the knowledge base(KB). We have used
LLaMA3 Instruct 8B model and 70B model as L LM; for knowledge generations and multiple LLMs as L LM for

final question answering.

PlantQA consist of two types of questions: a)
Question bases on facts (PFACT) and b) fake
questions based on fiction (PFAKE) similar to
MedHALT_FAKE. In this paper, we use MFCT,
MNOTA, MFAKE and USMLE as abbreviations re-
spectively for MedHALT_FCT, MedHALT_NOTA,
MedHALT_FAKE and MedQA_USMLE. Detailed
descriptions of all these datasets are provided in
Appendix A.

4.2 Language Models (LLMs)

We selected multiple open-source LLMs with
varying sizes and capabilities to ensure a ro-
bust evaluation. These included LLaMA 3.1 In-
struct 8B, Qwen (Yang et al., 2024), OpenBi-
oLLM 8B (Ankit Pal, 2024), MedLLama 8B (Med),
LLaMA 3.1 Instruct 70B (Dubey et al., 2024)
and Phi-4-mini 3.82B (Abouelenin et al., 2025).
For evaluation, we used the Instruct variants of
all the mentioned LLMs to compare their perfor-
mance under various prompting strategies. All
the LLMs selected in this paper are open-source
models, which will help interested researchers to
continue with this analysis. Here, we will use
some model abbreviations as Llama, Llama70B,
BioLLM, MedLLama, and Phi4 for LLaMA 3.1 In-
struct 8B, LLaMA 3.1 Instruct 70B, OpenBioLLM
8B, MedLLama 8B, and Phi-4-mini 3.82B, respec-
tively.

4.3 Prompting Techniques

To validate our framework, we compare it
with multiple inference-time prompting base-
lines, these are Base, COT (Kojima et al.,
2022), QAP (Yugeswardeenoo et al., 2024),
EchoPrompt (Mekala et al., 2024), ARR (Yin and
Carenini, 2025), and HintQA (Mozafari et al.,
2024). These prompts are a combination of step-
wise, deliberation-based, and knowledge-based
prompting. Where COT encourages models to
generate intermediate reasoning steps before ar-
riving at a final answer. QAP involves prompting
models to generate questions and answers about
a context before solving the main task, promot-
ing deeper comprehension. EchoPrompt guides
models to rephrase questions in a model-preferred
style before answering, enhancing understanding
and robustness across tasks. ARR prompting de-
composes the task into three stages-posing clari-
fying questions, refining the generation, and then
responding to boost reasoning quality and output
accuracy. HintQA integrates explicit hints or auxil-
iary questions which are generated using an LLM,
into the prompt to steer the model toward relevant
reasoning paths, improving model consistency and
task-specific accuracy. The prompt structure of
each technique is mentioned in Table 10. Further
detailed description of the prompt used is men-
tioned in C. In the results, we have used "Echo" as
the abbreviation of EchoPrompt.



4.4 Experimental Procedure

In KnowDomain first, we generated the required
knowledge as mentioned in Algorithm 1 using the
Llama model. Then, for each LLM and dataset
combination, we thoroughly compared the accu-
racy of the baselines mentioned in Section 4.3 and
the proposed method KnowDomain. We did label
extraction in two phases. In step one, we extracted
predictions using regular expressions, and then for
the remaining not-matching datapoints, we used the
Llama80B model for answer selection. Here we
provide the options corresponding to the datapoint
and model prediction, next we asked Llama70B
to select the appropriate option given the predic-
tion text. Our evaluation focuses on measuring
the effectiveness of our technique in improving the
reliability of LLMs with Al-generated domain in-
formation. The results of these experiments are
presented and analysed in the subsequent sections.
The default values for temperature, top_p, and seed
are 0.2, 0.9, and 42, respectively. The temperature
value was selected based on the analysis with dif-
ferent models, since neither of the very low or high
values gave the best performance in all cases, we
selected the appropriate average of the tested range,
which is 0.01, 0.1, to 0.5. The seed and top are
based on general convention in the literature. All
the results mentioned are of a single run with the
max token values as mentioned in the Table 1. All
the experiments are done on four 48GB NVIDIA
RTX A6000, except the Llama80B, for which we
used six 40GB NVIDIA A100 GPUs. The total time
for experimenting took 2841 hours, where knowl-
edge generation and question answering took 750
and 2071 hours, respectively. Where 750 covers
creating entities, definitions, notes, similar ques-
tions, and hints(for HintQA) across datasets using
Llama8B and Llama70B for each question individ-
ually, without any sharing of knowledge between
the questions.

5 Results

This work evaluates the effectiveness of our method
across various datasets, with a focus on accuracy
improvements. KnowDomain and its variants con-
sistently outperform other methods, showing no-
table gains. For example, on the USMLE dataset,
LLaMA achieved nearly 10% higher accuracy us-
ing generated knowledge. In USMLE and MedM-
CQA, our approach improves accuracy by over
10% for all models. BioLLaMA gains over 20%

from its base and 10% over prompt-based meth-
ods, while MedLLaMA sees a 15% average in-
crease—demonstrating the value of external knowl-
edge even for domain-specific LLMs. In MCQA,
KnowDomain shows modest gains, except for Bi-
oLLaMA, which improves by at least 7%. Be-
tween variants, KD-NQ often outperforms KD-K,
as question-specific notes and examples are more
helpful than generic keyword definitions. How-
ever, KD can underperform if conflicting defini-
tions cause ambiguity. Model-wise, LLaMA favors
KD, while Qwen performs similarly across vari-
ants, except on smaller datasets (MFCT, MNOTA)
where sample size introduces variability. Over-
all, cumulative accuracy gains reach 177.07 () and
82.63 (). Peak improvements include =19.8, =17
on MedMCQA, and =12.1, =13.28 on USMLE.
Gains are smaller yet consistent on MFCT and
PFACT. In MNOTA, results are more variable, with
ranging from -5.21 to 11.46, suggesting sensitivity
to configuration. Despite such variability, Know-
Domain reliably improves performance, though
gains vary by model and task.

5.1 Ablation Studies

To gain a deeper understanding of the factors
that contribute to the success of KnowDomain,
we perform a series of ablation studies. In this
section, we present a subset of these studies.
For a comprehensive set of ablation studies on
KnowDomain, please refer to Appendix C.

Results on Fictional data We analyse the
models on the counterfactual scenarios where
the fictional scenario was given in the question,
and based on that model, the correct answer has
to be selected as "I do not know". For this, we
use the MedHALT_FAKE(MFAKE) dataset for
counterfactual questions in the medical domain and
PathologyQA_Fake(PFAKE) for counterfactual
questions in plant pathology. Table 3 presents
the model accuracy for these datasets on various
prompting strategies. However, our method,
KnowDomain, has performed better than the Base
prompting. In general, methods with explicit
reasoning requirements perform better with
HintQA, achieving values as high as 67%.

Analysis with different model sizes In Figure 3,
we present an accuracy comparison between mod-
els of different sizes across various datasets. The
models selected are Phi4(3.8B), Llama(8B) and
Llama(70B). Our primary objective was to evalu-



Keyword Keyword Definition Notes and Question generation Hints generation Base Other prompts

128 256 512 512 64 512

Table 1: Value of Max tokens hyperparameter of LLM for different settings

Data Model Base COoT QAP Echo ARR HintQA KD-K KD-NQ KD A A’
Llama 71.14 72.86 70 72 71.43 64 64.29 74 75.71 4.57 2.85
PEACT Qwen 66.86 67.14 64.86 67.14 66.29 59.43 66 75.43 75.43 8.57 8.29
BioLlama 54.57 55.43 34.86 49.71 57.43 59.71 55.14 69.14 72.86 18.29 13.15
MedLlama 63.71 58 67.43 64.86 54.29 64.29 60 74 73.14 9.43 6.57
Llama 50 57.29 62.5 59.38 56.25 55.21 54.17 56.25 57.29 729 521
MFCT Qwen 55.21 54.17 59.38 60.42 53.12 46.88 51.04 64.58 58.33 2.79 4.16
BioLlama 44.79 37.5 27.08 44.79 44.79 47.92 50 59.38 55.21 1042 11.46

MedLlama 53.12 54.17 62.5 52.08 56.25 55.21 52.08 60.42 58.33 521  -2.08

Llama 21.2 29.2 19.4 28.6 26 25.8 46.2 39.8 41.2 19.8 17
MNOTA Qwen 26.8 27.8 18.2 43.8 31 20.6 29 33 29.6 2.8 -10.8
BioLlama 16.4 24.2 6 15.4 24.2 18.6 16.4 23.6 20.4 4 -0.6
MedLlama 24.8 358 20.6 29.8 342 31 16.8 31.6 26.4 1.6 -4.2
Llama 61.9 68.03 66.3 67.09 61.43 61.12 56.17 70.54 70.62 8.72 3.53
USMLE Qwen 56.56 56.95 58.13 57.11 56.64 57.19 54.28 70.23 69.84 13.28 12.1
BioLlama 40.77 56.4 14.93 54.6 52.32 53.34 48.23 67.32 64.26 23.49  10.92
MedLlama 55.77 55.93 59.23 57.66 59.94 61.43 51.22 69.52 68.81 13.04 8.09
Llama 57.6 60.32 58.91 60.19 58.63 52.88 52.73 60.33 59.59 1.99 0.01
MCQA Qwen 54.37 52.49 54.26 59.16 54.12 48.76 49.15 59.23 59.77 5.4 0.61
BioLlama 44.64 49.5 23.79 43.29 50.53 51.07 49.15 57.14 57.81 13.17 6.74
MedLlama 56.18 50.36 59.62 54.33 54.26 55.29 52.84 59.66 59.45 3.21 0.04
SUM 976.68 1025.53 907.99 1031.15 1019.64  987.89 975.03 1175.17 1154.14 177.07 82.63

Table 2: Accuracy results across multiple models and datasets using different prompting. The table reports the
accuracy(%) achieved by each model-dataset pair under various prompting strategies. and

refer to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with only keyword
knowledge and "KD-NQ" denotes QA with only notes and sample questions. Bolded values (if applicable) indicate
the highest accuracy for each dataset and model. denotes the best accuracy achieved for the data, and
underline denotes if our method obtained the second highest accuracy for the data and model. columns and

columns represent methods with partial knowledge and full knowledge, respectively. Here, A denotes the
absolute difference between KD and Base. A’ denotes the performance difference between the highest baseline and
highest of the KnowDomain method. This comparison highlights the effectiveness of the proposed framework with
performance variation due to both prompt design, model capabilities and nature of different datasets.

Data Model Base COT QAP Echo ARR HintQA KD-K KD-NQ KD KD-simple
Llama70B 72.67 3533 54.67 42 40 83.33 34 87.33 80.67 82
Llama 18.67 22.67 14 31.33 33.33 72.67 32 50 43.33 85.33
PFAKE Qwen 54.67 58 4133 85.33 57.33 64.67 34 56.67 46 71.33
BioLlama 4.67 4.67 0 12 8.67 36 2.67 21.33 15.33 19.33
MedLlama 1.33 46.67 0.67 24 50.67 37.33 15.33 46 30 47.33
Phi4 58.67 38 5333 42.67 40.67 41.33 62.67 58 54 53.33
Llama70B 16.2 8.72 21.2 22 8.5 36.17 10.06 18.26 26.065 18.14
Llama 592 7.48 4.36 19.27 11.46 40.9 13.35 6.46 12.11 76.37
MFAKE Qwen 23.04 232 1211 40.85 22.17 29.17 18.08 15.61 14.37 31.13
BioLlama 13.94 17.65 9.53 23.3 17.22 67.06 24.06 29.66 39.29 62.59
MedLlama 9.04 29.6 1033 16.9 29.12 66.09 11.25 11.09 20.78 584
Phi4 14.59 13.72 14.1 13.89 10.66 15.12 15.45 13.46 12.49 14.1
PFAKE Combined 210.68 205.34 164  237.33  230.67 335.33  180.67 319.33 269.33 358.65
MFAKE 82.73 100.37 71.63 136.21 99.13 254.51 92.25 94.54 125.105 260.73

Table 3: Accuracy results across multiple models on fictional datasets using different prompting. The table reports
the accuracy(%) achieved by each model-dataset pair under various prompting strategies. and

refers to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with only keyword
knowledge, "KD-NQ" denotes QA with only notes and sample questions, KD-simple uses all the knowledge with a
simple instruction, similar to HintQA. All the notations are the same as mentioned in Table 2. This comparison
highlights the effectiveness of generated knowledge with a simple instruction where the correct answer is "I do not
know".



ate the performance of smaller language models
(LLMs) up to 8 billion parameters. These mod-
els are used to verify the usability of our method
across models of different sizes. For better compar-
ison, we generated the knowledge for Llama70B.
However, for Phi4, the knowledge used is of the
llama model. The method showed consistent per-
formance across the models compared to different
prompting strategies. We also note that the com-
bined performance of only Notes and Questions
performed better compared to complete knowl-
edge, mostly due to its performance for the MCQA
dataset. The complete results are given in Table14
. Coalescing knowledge Considering the hypothe-
sis that a larger model will generate better quality
data, which is consistent with its performance on
the QA task, we examine the effect of knowledge
quality with our method. Here, we use the gener-
ated knowledge of Llama70B model as a knowl-
edge base for Llama8B. Although it is believed
that better knowledge will improve the model’s per-
formance, the results obtained do not apply in all
cases. From the Table 4 we can see that out of
seven datasets, we see a large difference in the case
of two datasets where the model performed worse
than when the knowledge generated was from the
same model. It should be noted that for the same
datasets, Llama70B performed better using its gen-
eration.

Effect of Sampling Temperature We tested the
Llama and Qwen models with six different tem-
perature settings, ranging from 0.01, 0.1, 0.2, 0.3,
0.4 and 0.5. Llama showed variance in the perfor-
mance without consistency between the different
datasets. However, Qwen showed very little vari-
ation across the different temperatures. Due to no
performance consistency within the datasets, we
selected the default value of 0.2 as the temperature
parameter.

Effect of knowledge size To assess the impact of
the number of contextual questions provided be-
fore answering, we conduct an ablation study by
varying this number between 3, 5, and 10. The
questions serve as auxiliary knowledge intended
to guide the model’s reasoning. To ensure the
diversity of generated questions, we apply a co-
sine similarity-based filtering step that removes
semantically redundant content. Specifically, we
compute sentence embeddings using the Sentence-
Transformer model (Reimers and Gurevych, 2020),
and filter out any candidate that exceeds a prede-
fined similarity threshold with previously selected

content. This encourages the final set of questions
to cover a broader range of distinct information. As
shown in Table 5, including 10 questions typically
yields the highest accuracy across models, suggest-
ing that this number provides a good balance be-
tween informativeness and focus. While decreasing
from 10 questions, it lacks complete information,
slightly reducing performance. Conversely, using
only 3 questions also limits the diversity of knowl-
edge available to the model. In Table 12, we have
given detailed information, including performance
on each dataset and model.
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Figure 3: Accuracy over Model of different sizes, where
the y-axis represents the cumulative accuracy for differ-
ent datasets. The method scheme applies uniformly to
all the models.
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Figure 4: Comparison of Models over temperature

Combining knowledge with various prompt-
ing techniques. Here, we analyse the Know-
Domain with prompts and instructions of ARR,
EchoPrompt, and HintQA, and they are repre-
sented respectively as KnowDomain-ARR(KD-
ARR), KnowDomain-EchoPrompt(KD-echo), and
KnowDomain-simple(KD-simple). It should be
noted that for KnowDomain-simple, we did not use
any generated hints but the templates mentioned in
the HintQA, and instead of hints, we used knowl-
edge generated as per our method. Results for
KnowDomain-simple were generated for a fictional
and smaller dataset. This analysis shows that even



Model PFACT PFAKE FCT FAKE NOTA USMLE MCQA ‘ Total
M-8BKB 75.71 43.33 57.29 12.11 412 70.62 59.59 358.16
M-70BKB 68 68.67 75 11.03 412 67.87 71.38

Table 4: Analysis with Knowledge Coalescence, where in "M-8BKB’ Llama8B model is used with generated

knowledge and "M-70BKB’ denotes the use of Llama80B knowledge with Llama8B model.

the overall

effectiveness of the better knowledge coalescence with a smaller model.

Data KD-NQ3  KD-NQ5 KD
PFACT 228.86 23343 297.14
PFAKE 151.33 162 134.66
MFCT 239.58 24272 229.16
MNOTA 110.8 120.2 117.8
MFAKE 5291 59.95 86.55
USMLE 27439 276.98 27345
MCQA 236.11 235.37 236.59
Total 1293.98 133065 137535

Table 5: Ablation study on the effect of including 3(KD-
NQ3), 5(KD-NQ5), or 10(KD) context questions on
model accuracy. The values mentioned for each data
are summed over all four base models. These questions
are used as additional input to guide the model’s reason-
ing. Accuracy is reported across multiple models and
datasets. Including 10 questions yields the best average
performance.

though KnowDomain did not perform better than
hintQA for the fictional task, knowledge with sim-
plified instruction showed significant improvement
for fictional medical data with the Llama model
and achieved the best score for the dataset of 76%
with KnowDomain-simple. Even in other cases,
KnowDomain-simple consistently performed bet-
ter or on par with HintQa, suggesting that simpli-
fied instructions or prompts can further help the
model to understand the provided knowledge in
a better way without distracting it from following
complex instructions. All the results for this are
mentioned in the Table 6. We also tested PFAKE
with Llama for KnowDomain and KnowDomain-
simple, and obtained accuracy of 46 and 85.33, re-
spectively. Signifying the simplicity of the prompt,
especially in the case of fictional data.

Data Model KD KD-ARR KD-echo KD-simple
Llama 57.29 56.25 54.17 59.38
MFCT Qwen 58.33 59.38 60.42 58.33
Llama 12.11 10.93 12 76.37
MFAKE Qwen 1437 14.21 18.35 31.13
Llama 412 38.8 40.6 33.6
MNOTA Qwen  29.8 29 29.8 29.4
Total 213.1  208.57 215.34 288.21
Avgerage 38.63  37.833 38.503 49.653

Table 6: Model Performance for KnowDomain with
different prompts

Compute Time Analysis In this, we analyse the

time required for each step and the prompt meth-
ods. The total generation time(750hours) covers
creating entities, definitions, notes, similar ques-
tions, and hints (for HintQA) across datasets us-
ing Llama8B and Llama70B. Adding this to QA
time shows KD-K, KD-NQ, and KD are slower
than Base and HintQA but still faster than larger
prompts like ARR, COT, and Echo (7. Among
models, Qwen took less time than Llama, Medl-
lama, and Phi4 took higher time due to the high
generation token, which shows the difficulty in
understanding the instruction and properly stop-
ping generation if the correct answer is obtained.
On GPU space requirement depending on differ-
ent prompting, Llama70B needed an average of
160GB to 200GB per run. Among the smaller mod-
els, Qwen needs a higher GPU space of 27GB to
45GB, and as the smallest model in this work, Phi4
used 8GB to 12GB of GPU memory.

6 Conclusion

In this paper, we propose a knowledge-generating
prompting technique that uses zero-shot learn-
ing to solve Domain-Specific QA problems. We
have demonstrated our methods on several medi-
cal datasets and plant pathology data. Our method
consistently outperforms several baseline models,
establishing new benchmarks for medical large lan-
guage models (LLMs). Moreover, the consistent
performance gains across diverse datasets under-
score the broad applicability of our technique, par-
ticularly when applied to general-purpose LLMs.

We believe that our prompt engineering tech-
niques, which are presented in this paper, can help
to improve a general model for a specific domain
by just using its knowledge generation and without
compromising on the instructions understanding
capability of the model.

7 Limitations

In our prompting technique, we use the generated
text from an LLM to create a knowledge base,
which is later used to direct the development of
responses. Also, our technique needs more time



Model | KG*

HintG  Base CoT ARR

Echo QAP HintQA KD-K KD-NQ KD

LLaMA 8B 1.67 0.14 2.53 18.65  21.05
LLaMA 70B 3.57 0.14 3.49 5351 5351

23.51 15.42 6.42 4.72 6.50 8.67
NA NA NA 4.79 1.86 2.13

Table 7: Average per-datapoint times (in seconds) for generation and QA across models. *Knowledge Generation
includes generation of keywords, k-defination, sub/sim questions and notes.

for the generation of the required knowledge than
only inference methods. Along with this, the gen-
erated text may not be free from the issue of LLM
hallucination and may contain incorrect informa-
tion. Since the generation of relevant text depends
on the reasoning abilities of LLMs, and the man-
ual prompts asked by users may impact it, incor-
rect phrases may be produced during the ponder-
ing phase of knowledge generation. The technical
method of creating these prompts requires more
work. We have not extensively analysed the effect
of instruction. Our goal is for future research to
build on our approach, which is more error-resilient
by augmenting the current implementation with
real-world correct data and more resilient to vari-
ances of automatic prompt engineering. Hence,
it can assist the existing framework in generating
high-quality knowledge used in the later stages.
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A
Dataset details

MedHALT (Pal et al., 2023) dataset includes three
distinct tests to evaluate different aspects of model
performance. The False Confidence Test (FCT)
presents multiple-choice medical questions with
the correct answer and also a randomly suggested
correct answer. The model evaluates the validity
of the proposed answer and provides detailed ex-
planations. It contains 95 questions. The None of
the Above Test (NOTA) involves multiple-choice
questions where the correct answer is replaced by
’None of the above.” The model must identify this
and justify its selection. This test includes 18,865
questions. The Fake Question Test (FAKE) presents
fake or nonsensical medical questions to determine
if the model can correctly identify and handle such
queries. This test contains 1,857 questions. In this
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paper, we use a random sample of 500 test data
points of MedHALT_FAKE due to high computa-
tional resource requirements.
MedMCQA (Pal et al., 2022) dataset consists of
over 194k high-quality AIIMS and NEET PG en-
trance exam multiple-choice questions covering
2.4k healthcare topics and 21 medical subjects. We
have used only single-answer questions for the eval-
uation, counting to 2816, for consistency with other
datasets.
MedQA_USMLE (Jin et al., 2020) dataset in-
cludes 12,723 4-way multiple-choice questions
from practice tests for the United States Medical
License Exams (USMLE), requiring biomedical
and clinical knowledge with 1273 test questions.
PlantPathologyQA is self-expert curated data
based on plant pathology, based on multiple rel-
evant books. It contains a total of 500 test data
points, where 350 are factual questions and 150
are fictional questions. The factual question is cate-
gorised in 24 categories, details are given in Table 9.
The creation of a fictional question is similar to the
processes used for MedHALT_FAKE data gener-
ation. For this, we selected the random 75 factual
questions from PlantQA and then used these as the
background questions, and we also selected two
sample questions from MedHALT_FAKE. Finally,
we input these questions to GPT-4-turbo (OpenAl,
2023) and ask it to generate ten similar fictional
questions. Later, these questions were verified to
remove any factual questions that may have been
generated. However, we did not find any generation
aligning with the facts.

Data Domain | Data Name Data Abb. Count
Plant PFACT 350
Pathology PlantPathologyQA | ) g 150
FCT 96

MedHALT NOTA 500

Medical FAKE 1858
MedQA_USMLE | USMLE 1273

MedMCQA MedMCQA 2816

Table 8: Statistics of the data used in this paper

B
Background on Prompting Methods

Prompting is the process of creating natural lan-
guage instructions, called prompts, to generate rele-
vant text from a language model (Vatsal and Dubey,
2024). Text generation can be done for many tasks,
ranging from classification and question answer-
ing to knowledge extraction. The prompts are de-
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Fungi Virus Bacteria Control
137 58 45 21
Epidemiology | Nematode | Plant parasite Terminology
21 15 9 8
Technique General Phytoplasma Parasite
7 4 5 3
Journal Prokaryote | Abiotic factor | Cross protection
2 2 2 1
Fungicide Host Institute Book
1 1 1 1
Method Mycorrhiza | Transmission Viroid
1 1 1 1

Table 9: Category-wise Count of Plant Pathology Topics

signed to guide the LLMs in providing accurate re-
sponses to specific tasks without extensive retrain-
ing or fine-tuning and to generate the text in a struc-
tured manner. Prompting strategies include meth-
ods like basic/vanilla prompting, chain-of-thought,
self-consistency, and many others, each tailored
to enhance the performance of LLMs on different
natural language processing tasks. Some of the
most commonly used prompting methods are the
following.

1. In Basic Prompting, we directly query the
LLMs without any prompt engineering, which
can further improve the model performance.
Basic prompting is also known as vanilla
prompting.

2. In Chain-Of-Thought (COT) prompting
method, a complex task is broken into a se-
quence of simpler sub-tasks to get the final
answer. By guiding Large Language Mod-
els (LLMs) through a sequence of intermedi-
ate reasoning steps, COT aims to enhance the
LLMs’ ability to perform complex reasoning
tasks effectively. This method has shown sig-
nificant improvements over basic prompting
approaches, with notable performance gains
observed in tasks like Mathematical Problem
Solving and Commonsense Reasoning (Wei
et al., 2022; Kojima et al., 2022).

3. EchoPrompt (Mekala et al., 2024):
EchoPrompt guides models to rephrase
questions in a model-preferred style before
answering, enhancing understanding and
robustness across tasks.

QAP Prompting: Question-Answer-
Prompting (QAP) involves prompting models
to generate questions and answers about a
context before solving the main task, promot-
ing deeper comprehension. We have used the
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QAP25 for the non-logical(Mathematical),
less complex questions; it performed better,
and in our case, we have a non-mathematical
question.

5. ARR Prompting (Yin and Carenini, 2025):
Ask-Refine-Respond (ARR) prompting de-
composes the task into three stages: a) posing
clarifying questions, b) refining the genera-
tion, and then c) responding to boost reason-
ing quality and output accuracy.

6. HintQA Prompting (Mozafari et al., 2024):
HintQA integrates explicit hints or auxiliary
questions into the prompt to steer the model
toward relevant reasoning paths, improving
factual consistency and task-specific accuracy.
We have used the base approach for HintQA,
where hints are given without any sorting. It
is due to the inability to apply the mentioned
scoring method due to the nature of the ques-
tions and the option set. In the original paper,
the answers were direct and non-optional in
nature. However, in our case, he options are
part of the prompt passed to the models, and
in many cases, answers are not just an entity
but a complete sentence involving a scenario.

These are a few of the extensively used prompting
techniques. Many prompting techniques have been
applied based on different task requirements. This
paper uses basic prompting and instruction-based
COT methods as baselines.

C Detailed Results

The objective is to assess the performance of each
approach and provide insights into their effective-
ness in different scenarios. The focus of this anal-
ysis is on the accuracy enhancements achieved
through our method. The evaluation across dif-
ferent datasets reveals notable improvements in
accuracy, particularly with our approach. KnowDo-
main and its variants achieved the best performance
for each dataset over different models. The perfor-
mance of various LLM:s utilising the proposed tech-
niques is summarised in Table 2. For instance, in
the USMLE dataset, the accuracy of Llama showed
a substantial increase of almost 10% from base
and HintQA, where generated knowledge is used.
This highlights the effectiveness of our method. In
both of the large dataset USMLE and MCQA, our
approach shows a gain of more than 10% in case
of USML for all the models. For BioLlama, the



Method Type  Prompt Format(user prompt)

Base - “[question] [options] Answer: ”

CcoT TP “[question] [options] Answer: Let’s think step by step”

EchoPrompt TP “[question] [options] Answer: Let’s repeat the question and also think step by step.”

ARR TP “[question] [options] Answer: Let’s analyze the intent of the question, find relevant information,and
answer the question with step-by-step reasoning”

QAP TP “[question] [options] Generate relevant QA pairs to understand the context better.”

HintQA KP “According to following context, answer the question: Context: [hints] Question: [question] [options]
Answer:”

KnowDomain KP “[Knowledge] use this information for answering the question: [question] [options] Answer: ”

KnowDomain-simple KP "According to following context, answer the question: Context: **[ “[/Knowledge] **] Question:

[question] [options] Answer:

»

Table 10: Overview of various prompting formats where KnowDomain is the prompt of the proposed approach.
Here, knowledge represents knowledge generated by our method, and hints represents the hint generated based on
HintQA. The blue text represents the knowledge generated by an LLM. TP and KP denote the "Trigger Prompt"
and "Knowledge Prompt" respectively. In trigger prompts a sentences/set of words are used as a trigger for answer
generation while in knowledge prompt, some knowledge is given to the model in input prompt. In Base prompting

no trigger sentence was used.

Model Data Avg K Total K AvgQ Total Q
Llama 4.05 1449 9.92 3550
Llama70B PFACT 3.95 1413 9.66 3460
Llama 5.67 851 9.79 1468
Llama70B PFAKE 5.93 889 9.59 1438
Llama 6.05 581 9.38 900
Llama70B MFCT 5.96 572 9.6 922
Llama 4.74 2372 9.66 4831
Llama70B MNOTA 5.04 2522 9.43 4713
Llama 11.75 21835 9.36 17395
Llama70B MFAKE 8.46 15717 9.64 17909
Llama 9.65 12283 9.29 11826
Llama70B USMLE 10.79 13734 9.96 12676
Llama 4.7 13247 9.58 26981
Liama70B  MCMCQA 46 12066 965 27178
Llama All- 6.66 52618 9.57 66951
Llama80B Data 6.39 47813 9.65 68296
Avg/Total  All Data 6.53 100431 9.61 135247

Table 11: Statistics of generated knowledge for Llama8B and
Llama80B model. *Avg’ denotes average, 'K’ denotes key-
word and *Q’ denotes generated question. The bold number
denotes the minimum value w.r.t model

KnowDomain showed a gain of more than 20%
from its base case and more than 10% from all
of the prompting methods. Similarly MedLlama
showed gain of 15% on average. Both the BioL-
lama and MedLIlama are medical LLM even then
providing appropriated knowledge helped the mod-
els. In case of MCQA, KnowDomain showed slight
improvement compared to other promptings, ex-
cept for BioLlama, where it gained by a minimum
of 7%.

In many KD-NQ often outperforms KD-K this
is because the notes and similar questions (NQ),
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being tailored to the original question, generally
prove more useful than keyword definitions, which
are short, general, and sometimes misaligned with
the question context. While KD combines both
keyword definitions and NQ, conflicting definitions
can introduce ambiguity, occasionally harming per-
formance. For the LLaMA model, KD tends to out-
perform KD-NQ, whereas for the Qwen model, the
two perform similarly except on the small MFCT
and MNOTA datasets, where fluctuations are more
likely due to limited sample sizes (96 and 500 dat-
apoints, respectively). Medical-specialized LLMs
like BioLLaMA and MedLLaMA, which were used
only as baselines, appear less reliant on external
keyword definitions due to their domain-specific
pretraining. Moreover, the longer input length in
KD (2572 tokens) compared to KD-NQ (394 to-
kens) may introduce noise, possibly offsetting any
benefits from keyword definitions. However, dis-
missing the value of keyword definitions entirely
may be premature, as more refined versions could
still contribute positively across models.

Across all model and dataset combinations, we
observe a total cumulative accuracy improvement
of 177.07 points in the default setup (A) and 82.63
points in the A’ configuration. For instance, in
MedMCQA, A reaches a maximum of 19.8, with
A’ at 17, while USMLE records the highest A’
of 12.1 and a strong A of 13.28. In MFCT, im-
provements are moderate but consistent, with val-
ues ranging from 4.57 to 18.29 for A and 2.85 to
13.15 for A’. In PFACT, although the gains are



relatively smaller (e.g., A = 13.17, A’ = 6.74), they
still indicate consistent improvements. Notably,
MNOTA shows some variability: A spans 2.79 to
10.42, but A’ includes both large positive (11.46)
and negative (-5.21) values, suggesting sensitivity
to configuration in this dataset. These variations
highlight that while the KnowDomain consistently
outperforms the baseline, the degree of gain is task-
and model-dependent, with the best-case variants
occasionally yielding both significant gains and
regressions depending on the context.

This section contains the tables for Figure 3 and

Figure 4. Figure 3 refers to table 14.

Dataset Llama-3.1-I Qwen BioLlama8B
PFACT 72.91 72.07 71.79
MFCT 59.38 5833 56.25
MNOTA 33.60 2940 24.80
USMLE 70.30 69.84 66.06
MedMCQA 59.02 58.95 57.60
PFAKE 7637 3113 42.00
MFAKE 24.11 13.72 50.11

Table 13: Performance comparison across datasets and
models.

D Prompts and Examples

Here we mentioned the details of the prompt used
for knowledge generation and question answering.

Data Model KD KD-NQ3 KD-NQ5
BioLlama 5778 5639 56.64
Llama 5059  60.62 60.16
MCQA  VedLlama 5045  59.16 59.02
Qwen 59.77 59.94 59.55
BioLlama 3929  25.08 28.79
Llama 1211 436 5.17
MFAKE e dllama 2078 883 11.14
Qwen 1437 14.64 14.85
BioLlama 5521 5833 59.38
Llama 5729  57.29 50.38
MECT N edLlama 5833 60.42 64.58
Qwen 5833 63.54 59.38
BioLlama 20.4 20.6 21
Llama 412 37.4 40.6
MNOTA  \fedLiama 26.4 2.6 272
Qwen 20.8 28.2 314
BioLlama 7286 5229 54.29
Llama 7571 5829 50.43
PFACT  \ledLlama 7314  58.57 58.57
Qwen 7543 5971 61.14
BioLlama 15.33 16 18
Llama 4333 3933 )
PFAKE Ve dllama 30 40 44
Qwen 46 56 58
BioLlama 6418 65.12 66.77
Llama 7062 7125 71.01
USMLE Ve dllama 6881 685 69.6
Qwen 69.84  69.52 69.6
USMLE 27345 27439 27698
MCQA 23659 23611 23537
MFCT  Sumoverall 22916 23958 24272
PFACT  models 207.14 22886 23343
MNOTA 1178 1108 120.2
PFAKE 13466 15133 162
MFAKE 8655 5291 59.95

Table 12: Ablation study on the effect of including 3, 5,
or 10 context questions on model accuracy. These ques-
tions are used as additional input to guide the model’s
reasoning. Accuracy is reported across multiple models
and datasets. Including 10 questions yields the best av-
erage performance.
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Model

Data Base COT ARR KD-K KD-NQ KD

Phi4

Llama

Llama70B

FAKE 1459 13.72 10.66 15.45 13.46 12.49

FCT 4896 50 53.12 4583  56.25 58.33
MCQA 50.18 484 5153 4233  55.29 54.47
NOTA 16 32 326 358 28.2 31

USMLE  51.37 5499 542 4564  65.28 62.06

FAKE 592 748 1146 1335 6.46 11.57
FCT 50 5729 56.25 5417 @ 56.25 66.145
MCQA 57.6 60.37 58.63 52.73  60.37 65.485
NOTA 212 292 26 46.2 39.8 41.2
PFakeQA 18.67 22.67 33.33 32 50 56
PathQA 7039 72.07 7123 6341 7235  69.5533
USMLE 61.9 68.03 6143 56.17 7054 69.245

FAKE 162 872 8.5 10.06  18.26 26.065
FCT 80.21 75  77.08 71.88  80.21 82.29
MCQA 71.56 69.28 6871 68.89 7522 70.19
NOTA 12.8 354 34 20.4 38 36.8

PFakeQA 72.67 3533 40 34 87.33 80.67
PathQA 84.36 69.27 72.07 76.82  84.08 84.64
USMLE 77.85 81.07 81.46 74 83.19 79.855

Table 14: Accuracy over Model of different sizes
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Type

Instruction(system prompts)

Entity Generation

You are an ordinary person with no specialized medical or techni-
cal knowledge. Given a question, your task is to identify words or
phrases that may be difficult for a common person to understand.
Steps:

1. Read the question carefully.

2. Identify any words or phrases that might be difficult to under-
stand based on medical, technical, or uncommon terminology.

3. Your response should strictly follow this format: [ Difficult
words: <wordl>, <word2>, <word3>, ... |

(Separate words with commas and do not include any explana-
tions.)

4. Do not answer the question itself.

5. Always return words in the same context, e.g., if the word is
‘heart attack’, return ‘heart attack‘ as a whole.

Entity Definition

"You are domain expert In medicine. And you task is to figure
out the correct and important information from your knowledge to
answer the question.

Steps:

1. Tell the answer briefly.

2. Do not provide information unless it is well-established in
medical literature or guidelines.

3. For statistical information (e.g., risk percentage, accuracy),

4. If uncertain to answer please do not generate the answer."

Notes and Question Generation

You are domain expert on the given question. Your task is to figure
out the correct and important information from your knowledge to
answer the question. You can also generate a set of maximum ten
questions.

Steps:

1. Read the question carefully.

2. Identify the key medically and statistically relevant infor-
mation.

3. Provide factual information that is evidence-based, with nu-
merical accuracy verified through established medical sources.
4. Generate up to ten relevant questions with answers that
strictly adhere to medical guidelines.

5. Your response should strictly follow this format:

[ Notes: <key medically accurate information > |

[ Questions answers: QAsetl: { <questionl >: <answerl >},
QAset2: { <question2 >: <answer2 >}, ... |

(Separate entries with commas and do not provide explanations.)
6. Do not provide information unless it is well-established in
medical literature or guidelines. If uncertain, specify the need
for expert confirmation.

7. For statistical information (e.g., risk percentage, accuracy),
ensure consistency across answers.

8. Do not attempt to answer the question.

9. You should remember the output format mentioned and strictly
return output in the specified format.

Table 15: Prompt instructions for knowledge generation
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Type

Instruction(system prompts)

Base

You are in medical field and you must choose the option

for the question asked even if it’s from a different domain. Also,
when you

output the answer, use output format: [ {Answer: OPTION
<correct option>} ] to indicate the correct option.

KnowDomain

You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:

1. Keyword set: Keywords and their definitions.

2. Question set: A set of useful questions.

3. Notes: Short notes relevant to the question.

All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

KnowDomain-K

You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:

Keyword set: Keywords and their definitions.

All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

KnowDomain-NQ

You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:

1. Question set: A set of useful questions.

2. Notes: Short notes relevant to the question.

All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

Table 16: Performance of KD-simple across data
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Question

Which of the following structural elements is characteristic of the
ortopramide group drugs? 1. They are anilides with propyl group
in ortho.

2. They are benzamides with methoxy group in ortho.

3. They are benzenesulfonamides with a methyl group in ortho.
4. They are ortho-halogenated derivatives of phenothiazine.

Correct Answer

They are benzamides with a propyl group in ortho position.

Keyword/Entities

[anilides, benzamides, benzenesulfonamides, ortopramide, ortho-
halogenated, phenothiazine]

Definition

[ [anilides]: Anilides are a class of organic compounds that contain
the functional group -CONH- (carbamoyl group) attached to an
aromatic ring, typically a phenyl group. In medicine, anilides are
a group of nonsteroidal anti-inflammatory drugs (NSAIDs) that
are used to treat pain, inflammation, and fever ...

[ benzamides]: Benzamides are a class of medications that are
primarily used to treat gastrointestinal disorders, particularly gas-
troesophageal reflux disease (GERD) and peptic ulcers. They
work by reducing the amount of acid produced in the stomach.of
benzamides include: 1. Metoclopramide (Reglan): This medication
is used to treat nausea, vomiting, and conditions such as GERD
and gastroparesis.2. Cisapride (Propulsid): This medication was
used to treat GERD and gastroparesis, but it has been withdrawn
from the market in many countries due to concerns about its safety

Generated QA pairs

[ ’question’: *What is the characteristic structural element of or-
topramide group drugs?’, ’answer’: *They are benzamides with a
propyl group in ortho position’,

’question’: *What type of compounds are ortopramide group
drugs?’, "answer’: ’Benzamides’,

’question’: *What is the specific group attached to the benzene
ring of ortopramide group drugs?’, ’answer’: 'Propyl group in
ortho position’, ... ]

Notes

Ortopramide group drugs are characterized by a specific structural
element, which is a benzamide with a propyl group in ortho posi-
tion, specifically an ortho-propyl group on the benzene ring of the
benzamide.

Table 17: Example of generated data in the generation phase.
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