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Abstract

Estimating the structure of Bayesian networks as directed acyclic graphs (DAGs) from
observational data is a fundamental challenge, particularly in causal discovery. Bayesian
approaches excel by quantifying uncertainty and addressing identifiability, but key obsta-
cles remain: (i) representing distributions over DAGs and (ii) estimating a posterior in the
underlying combinatorial space. We introduce PIVID, a method that jointly infers a distri-
bution over permutations and DAGs using variational inference and continuous relaxations
of discrete distributions. Through experiments on synthetic and real-world datasets, we
show that PIVID can outperform deterministic and Bayesian approaches, achieving supe-
rior accuracy-uncertainty trade-offs while scaling efficiently with the number of variables.

1 Introduction

Graphs represent data by describing variables as nodes and their relationships as edges, being useful for
understanding, prediction, and causal inference (Murphy, 2023, Ch. 30). This paper focuses on directed
acyclic graphs (DAGs), which are crucial in fields such as epidemiology (Tennant et al., 2021), economics
(Imbens, 2020), genetics (Han et al., 2016), and biology (Sachs et al., 2005).

However, estimating a DAG’s structure from observational data is challenging due to the super-exponential
growth of the DAG space in the problem dimensionality and inherent identifiability issues. Even with
infinite data, DAGs can only be identified up to a Markov equivalence class, making it both a computational
(Chickering et al., 2004) and statistical problem (see, e.g., Pearl, 1988; Lauritzen & Spiegelhalter, 1988).
While recent advances in continuous characterizations of the acyclicity constraint (Zheng et al., 2018; Bello
et al., 2022; Vowels et al., 2022) have enabled progress, these methods often neglect uncertainty, which is
crucial for handling noise, incorporating prior knowledge, and estimating causal quantities (Geffner et al.,
2022). Moreover, learning a single DAG can lead to overconfident yet incorrect predictions (see, e.g., Madigan
et al., 1994).

In this paper, we introduce a Bayesian approach to learning DAG structures, addressing two main chal-
lenges: (i) representational—modeling distributions that satisfy the DAG constraint, and (ii) computa-
tional—estimating a posterior over the combinatorial space. Our method constructs a joint distribution over
DAGs and permutations, modeling node orderings and conditional graphs that are consistent with the given
order. We leverage variational inference with reparameterizations and continuous relaxations, demonstrating
competitive performance against various benchmarks on synthetic and real datasets. We refer to our method
as Permutation-based Inference for Variational learnIng of DAGs (PIVID).

Main contribution: Although other Bayesian and permutation-based approaches have been proposed
in the literature, our contribution lies precisely on how we characterize distributions using these types of
representations. The advantages of our method (PIVID) compared to previous approaches are summarized
in Table 1. We see that PIVID is the only one that handles non-linear SEMs; has quadratic time complexity;
provides uncertainty quantification; models DAGs exactly by construction; and carries out joint probabilistic
inference over permutations and graphs, which results in a valid evidence-lower bound. Our experiments
in Section 7 comprehensively demonstrate these aspects on synthetic and real datasets, showing that in
some cases PIVID outperforms deterministic approaches and, more importantly, provides the best trade-off
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Table 1: Comparison of DAG estimation algorithms. NL: nonlinear SEMs supported; Time: time complexity
as a function of problem dimensionality; UQ: uncertainty quantification provided; Exact: exact DAGs are
obtained by model construction; Obj: final objective derived from sound probabilistic inference principles. D
is the number of variables (nodes); dc is the size of the largest conditioning set. DET refers to deterministic
approaches including NOTEARS, DAGMA, DAGGNN and GRANDAG. ❍ := not applicable.

Method NL Time UQ Exact Obj.
PC (Spirtes et al., 2000) ✗ O(Ddc) ✗ ✓ ❍

DET (e.g., Zheng et al., 2018) ✓ O(D3) ✗ ✗ ❍

BCDNET (Cundy et al., 2021) ✗ O(D3) ✓ ✓ ✓
DECI (Geffner et al., 2022) ✓ O(D3) ✓ ✗ ✓
DIBS (Lorch et al., 2021) ✓ O(D3) ✓ ✗ ✓
BAYESDAG (Annadani et al., 2023) ✓ O(D3) ✓ ✓ ✓
VI-DP-DAG (Charpentier et al., 2022) ✓ O(D2) ✓ ✓ ✗
DPM-DAG Rittel & Tschiatschek (2023) ✓ O(D2) ✓ ✓ ✗
PRODAG (Thompson et al., 2025) ✓ O(D3) ✓ ✗ ✓
PIVID (this work) ✓ O(D2) ✓ ✓ ✓

between accuracy and uncertainty quantification, while exhibiting superior computational complexity. We
give more details of related approaches below.

1.1 Related work

Causal discovery from observational data has driven numerous graph learning algorithms, from the pio-
neering work of Heckerman et al. (1995) and other early work assuming linear structural equation models
(SEMs) (Shimizu et al., 2006; 2011), to later extensions to nonlinear models (Hoyer et al., 2008; Zhang &
Hyvärinen, 2009). Notable methods include the PC algorithm (Spirtes et al., 2000) and we refer to Glymour
et al. (2019) for a comprehensive review, noting the recent work of Toth et al. (2024) who deal with the
problem of efficient causal inference when the number of parents of a node/variable is limited.

Continuous formulations: Given the NP-hardness of DAG learning (Chickering et al., 2004), various
continuous formulations have been proposed to optimize DAG structures via gradient-based methods (Lippe
et al., 2022; Wang et al., 2022; Lorch et al., 2021; Annadani et al., 2021; Lachapelle et al., 2019; Yu et al.,
2019; Zheng et al., 2018; Bello et al., 2022). Among these, NOTEARS (Zheng et al., 2018) and DAGMA
(Bello et al., 2022) are noteworthy for their exact acyclicity characterizations, though they incur cubic-time
complexity. ENCO (Lippe et al., 2022) scales to large node sets but lacks observational data compatibility
and acyclicity constraints, requiring full-variable interventions.

Bayesian approaches: Few of the above approaches are probabilistic, lacking uncertainty modeling, ex-
cept for Lorch et al. (2021). Bayesian causal discovery networks (BCDNET) (Cundy et al., 2021) use a
parameterization involving permutation and weight matrices but are limited to linear SEMs and involve
complex Boltzmann-based distributions as well as optimal-transport based inference. Methods like DIBS
(Lorch et al., 2021), DECI (Geffner et al., 2022), and JSP-GFN (Deleu et al., 2023) handle nonlinear SEMs.
While DIBS and DECI use NOTEARS-based priors, JSP-GFN applies generative flow networks but faces
challenges with slow DAG space exploration and computational constraints.

Other state-augmentation methods: Recent permutation-based DAG modeling approaches include VI-
DP-DAG (Charpentier et al., 2022), DPM-DAG (Rittel & Tschiatschek, 2023), and BAYESDAG (Annadani
et al., 2023). Our approach distinctively performs joint probabilistic inference over both adjacencies and
permutations, offering computational benefits and valid evidence lower bounds. We refer the reader to
Appendix N for a more detailed explanation of this.

Recent developments: Beyond these, a few recent approaches continue to expand the landscape of vari-
ational and Bayesian DAG learning. Contemporaneous to our work, Thompson et al. (2025) propose
PRODAG: a variational inference formulation on the joint space of distributions over DAG-constrained
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adjacencies and unconstrained adjacencies, where samples from the constrained space are obtained via a
projection algorithm. However, their algorithm scales cubically as a function of the number of variables.
Hoang et al. (2024) propose a scalable variational causal discovery method that dispenses with explicit
acyclicity constraints by mapping unconstrained latent topological orders into valid DAGs. Zhang et al.
(2025) introduce analytic DAG constraints that yield smoother gradients and improved optimization stabil-
ity for differentiable DAG learning. In a temporal context, Kungurtsev et al. (2024) employ a generalized
variational inference framework under an empirical Bayes setting for dynamic Bayesian networks, demon-
strating the growing flexibility of VI methods for structural learning across settings. These works further
illustrate a shift toward formulations that retain probabilistic rigor while improving scalability and optimiza-
tion behavior.

2 Problem set-up

We are given a matrix of observations X ∈ RN×D, representing N instances with D-dimensional features.
Formally, we define a directed graph as a set of vertices and edges GA = (V, E) with D nodes vi ∈ V and
edges (vi, vj) ∈ E , where an edge has a directionality and a weight associated with it. We use the adjacency
matrix representation of a graph A ∈ RD×D, with an entry Aij = 0 indicating that there is no edge from
vertex vi to vertex vj and Aij ̸= 0 otherwise. In the latter case, we say that node vi is a parent of vj .
Generally, for directed acyclic graphs (DAGs), A is not symmetric and subject to the acyclicity constraint.
This means that if one was to start at a node vi and follow any directed path, it would not be possible to
get back to vi.

Thus, we associate each variable xi with a vertex vi in the graph and denote the parents of xi under the given
graph GA with pa(i; GA). Our goal is then to estimate GA from the given data, assuming that each variable is
a function of its parents in the graph, as given by the structural equation model (SEM) xi = fi(xpa(i;GA))+zi,
where zi is a noise (exogenous) variable and each functional relationship fi(·) is unknown. Importantly, since
GA is a DAG, it is then subject to the acyclicity constraint. Due to the combinatorial structure of the the
DAG space, this constraint is what makes the estimation problem hard.

Under some strict conditions, the underlying “true” DAG is identifiable but not always; for example, even
with infinite data, it is not identifiable in the simple linear-Gaussian case. Furthermore, learning a single
DAG structure may be undesirable, as this may lead to confident but incorrect predictions (Deleu et al.,
2023; Madigan et al., 1994). Finally, averaging over all possible explanations of the data may yield better
performance in downstream tasks such as the estimation of causal effects (Geffner et al., 2022). Therefore,
here we address the more general (and harder) problem of estimating a distribution over DAGs.

3 Distributions over DAGs

Recent advances such as NOTEARS (Zheng et al., 2018) and DAGMA (Bello et al., 2022) formulate the
structure DAG learning problem as a continuous optimization problem via smooth characterizations of
acyclicity. This allows for the estimation of a single DAG within cleverly designed optimization procedures.
In principle, one can use such characterizations within optimization-based probabilistic inference frameworks,
such as variational inference, by encouraging the prior towards the DAG constraint. This is, in fact, the
approach adopted by Geffner et al. (2022). However, getting these types of methods to work in practice
is cumbersome and, more importantly, the resulting posteriors are not inherently distributions over DAGs.
Here we present a simple approach to represent distributions over DAGs by augmenting our space of graphs
with permutations.

3.1 Ordered-based representations of DAGs

A well-known property of a DAG is that its nodes can be sorted such that parents appear before children.
This is usually referred to as a topological ordering (see, e.g., Murphy, 2023, §4.2). This means that if
one knew the true underlying ordering of nodes, it would be possible to draw arbitrary links from left to
right while always satisfying acyclicity. Such a basic property can then be used to estimate DAGs from
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observational data. The main issue is that, in reality, one knows very little about the underlying true
ordering of the variables, although in some applications this may be the case (Ni et al., 2019). Nevertheless,
this hints at a representation of DAGs in an augmented space of graphs and orderings/permutations.

4 DAG space augmentation

The main idea to define a distribution over an augmented space of graphs and permutations. First we define
a distribution over permutations and then we define a conditional distribution over graphs given that permu-
tation. As mentioned above, this gives rise to a a very general way of generating DAGs and, consequently,
distributions over them. In the next section we will describe very simple distributions over permutations. As
we shall see in Section 6, our proposed method is based on variational inference and, therefore, we will focus
on two main operations: (1) being able to compute the log probability of a sample under our model and (2)
being able to draw samples from that model. Henceforth, we will denote a permutation over D objects with
π = (π1, . . . , πD).

4.1 Distributions over permutations

We can define distributions over permutations by using Gamma-ranking models (Stern, 1990). The main
intuition is that we have a competition with D players, each having to score r points. We denote V1, . . . , VD
the times until D independent players score r points. Assuming player j scores points according to a Poisson
process with rate γj , then Vj has a Gamma distribution with shape parameter r and scale parameter γj . We
are interested in the probability of the permutation π = (π1, . . . , πD) in which object πj has rank j.

Thus, p(π | r,γ) is equivalent to the probability that Vπ1 , < . . . , < VπD . with this, ∀Vj > 0, r > 0, γj > 0,
we have that : p(Vj) = Gamma(Vj ; r, γj) , p(π | r,γ) = Pr(Vπ1 , < . . . , < VπD ), where Gamma(v; r, γ) =

1
Γ(r)γr vr−1 exp

(
− v
γ

)
is the shape-scale parameterization of the Gamma distribution and Γ(·) is the Gamma

function. The probability above is given by a high-dimensional integral that depends on the ratios between
scales and, therefore, is invariant when multiplying all the scales by a positive constant. Consequently, it is
customary to make

∑N
j=1 γj = 1.

Shape r=1: In the simple case of r = 1, Vj , . . . , VD are drawn from D independent exponential distributions
each with rate 1/γj : p(vj | r = 1, γj) = 1

γj
exp(− vj

γj
). To understand the order distribution, we look at the

distribution of the minimum. Lets define the random variable: I = arg mini∈{1,...,D}{V1, . . . , VK}. We are
interested in computing Pr(I = k), which can be shown to be Pr(I = k) = βk

β1+...+βD , where βk := 1/γk is
the rate parameter of the exponential distribution. See Appendix A for details.

Probability of a permutation: Thus, under the model above with independent exponential variables
p(vj | r = 1, βj) = βj exp(−βjvj), the log probability of a permutation (ordering) can be easily computed by
calculating the probability of the first element being the minimum among the whole set, then the probability
of the second element being the minimum among the rest (i.e., the reduced set without the first element)
and so on:

p(π | r = 1,β) = βπ1

(
βπ2

1 − βπ1

)(
βπ3

1 − βπ1 − βπ2

)
× . . .

(
βπD

1 −
∑D−1
j=1 βπj

)
, (1)

and, therefore, we have that the log probability of a permutation under our model can be computed straight-
forwardly from above.

Sampling hard permutations: We can sample hard permutations from the above generative model
by simply (1) generating draws from an exponential distribution vj ∼ p(vj | r = 1, βj), j = 1, . . . , D:
zj ∼ Uniform(0, 1) vj = −β−1

j log(1 − zj); and then (2) obtaining the indices from the sorted elements
π = argsort(v, descending=False), where the argsort(v, descending=False) operation above returns
the indices of the sorted elements of v in ascending order. Alternative, we can also exploit Equation (1) and
sample from this model using categorical distributions, see Appendix B.

4



Under review as submission to TMLR

We have purposely used the term hard permutations above to emphasize that we draw actual discrete permu-
tations. In practice, we represent these permutations via binary matrices Π, as described in Appendix D.4.
However, in order to back-propagate gradients we need to relax the argsort operator.

Soft permutations: We have seen that sampling from our distributions over permutations requires the
argsort operator which is not differentiable. Therefore, in order to back-propagate gradients and estimate
the parameters of our models, we relax this operator following the approach of Prillo & Eisenschlos (2020),
see details in Appendix F. Furthermore, the probabilistic model in Equation (1) can be seen as an instance of
the Plackett-Luce model. Interestingly, Yellott (1977) has shown that the Plackett-Luce model can only be
obtained via a Gumbel-Max mechanism, implying that both approaches should be equivalent. Details of this
mechanism are given in Appendix C but, essentially, both constructions (the Gamma/Exponential-based
sampling process and the Gumbel-Max mechanism) give rise to the same distribution.

4.2 Conditioning DAGs on permutations

In principle, this distribution should be defined as conditioned on a permutation π and, therefore, have differ-
ent parameters for every permutation. In other words, we should have p(GA |θπ), where θπ are permutation-
dependent parameters. This is obviously undesirable as we would have D! parameter sets. In reality, we
know we can parameterize general directed graphs using “only" O(D2) parameters, each corresponding to
the probability of a link between two different nodes i, j ∀i, j ∈ {1, . . . , D}, i ̸= j. Considering only DAGs
just introduces additional constraints on the types of graphs we can have. Thus, WLOG, we will have a
global vector θ of D(D − 1) parameters, and θπ are obtained by simply extracting the corresponding subset
that is consistent with the given permutation. See details of the implementation in Appendix D.5.

Conditional distribution: Given a permutation π = (π1, . . . , πD), the probability (density) of a graph
GA represented by its adjacency matrix A can be defined as:

p(GA |π, Θ) =
D∏
k′=1

D∏
k=k′+1

pπ(Aπkπk′ | Θπkπk′ ), (2)

where pπ(Aπkπk′ | Θπkπk′ ) is a base link distribution with parameter Θπkπk′ , GA ∈ Gπ, and Gπ is the set of
graphs consistent with permutation π (Appendix D.5). Conceptually, we constrain all the possible graphs
that could have been generated with this permutation. In other words, the distribution is over the graphs
the given permutation constrain the model to consider. More importantly, we will see that in our variational
scheme in Section 6, we will never sample a graph inconsistent with the permutation (as we will always do
this conditioned on the given permutation). Therefore, the computation above is always well defined.

There are a multitude of options for the base link distribution depending on whether we want to model
binary or continuous adjacency matrices; how they interact with the structural equation model (SEM); and
for example, how we want to model sparsity. In Appendix E we give full details of the Relaxed Bernoulli
distribution but our implementation supports other densities such as Gaussian and Laplace.

Conditional sampling: Given a permutation π = (π1, . . . , πD) we sample a DAG and adjacency A with
underlying parameter matrix Θ as: for k′ = 1, . . . , D and k = k′ + 1, . . . , D Aπkπ′

k
∼ pπ(Θπkπ′

k
). Clearly,

as the conditional distribution of a DAG given a permutation factorizes over the individual links, the above
procedure can be readily parallelized and our implementation exploits this.

5 Full joint distribution

We define our joint model distribution over observations X, latent graph structures GA and permutations π
as

p(X, GA,π |ψ) = p(π | r0,β0)p(GA |π, Θ0)
N∏
n=1

p(x(n) | GA,ϕ), (3)

where the joint prior p(π | r0,β0) and p(GA |π, Θ0) are given by Equation (1) and Equation (2), respectively;
ψ = {r0,β0, Θ0, } are model hyper-parameters; and p(x(n) | GA,ϕ) is the likelihood of a structural equation
model, with parameters ϕ, satisfying the parent constraints given by the graph GA as described below.
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Figure 1: Results on synthetic linear (top) and nonlinear (bottom) data. The structural Hamming distance
(SHD, the lower the better); the F1 score (the higher the better); and the number of non-zeros (NNZ, the
closer to Ē = 16 the better) with D = 16 on all graphs across 10 replications. GRANDAG, NOTEARS,
BCDNET and BAYESDAG are referred to as GRDAG, NTRS, BCD and BDAG respectively. BCD, DIBS,
BDAG and PIVID are Bayesian methods and all the others are deterministic. Our method is referred to as
PIVID.

Likelihood of structural equation model: we investigate additive noise models giving rise to a condi-
tional likelihood of the form p(x | GA,ϕ) =

∏D
j=1 pzj (xj − fj(xpa(j;GA))), where pa(i; GA) denotes the parents

of variable xi and pzi(zi) = Normal(zi; 0, σ2). While the linear case is straightforward, the nonlinear case
cannot use a generic neural network, as the architecture must satisfy the parent constraints by the graph
GA. In our experiments, we use the graph conditioner network proposed by Wehenkel & Louppe (2021).

6 Posterior estimation

Our main latent variables of interest are the permutation π constraining the feasible parental relationships
and the graph GA fully determined by the adjacency matrix A. In the general case, exact posterior estimation
is clearly intractable due to the nonlinearities inherent to the model and the marginalization over a potentially
very large number of variables. Here we resort to variational inference that also allows us to represent
posterior over graphs compactly.

6.1 Variational distribution

Similar to our joint prior over permutations and DAGs, our approximate posterior is given by:

qλ(π, GA) = qπ(π | r,β)qG(GA |π, Θ), (4)

which have the same functional forms as those in Equation (1) and Equation (2). Henceforth, we will denote
the variational parameters with λ := {β, Θ}.
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6.2 Evidence lower bound

The evidence lower bound (ELBO) is given by:

Lelbo(λ) = −kl [qλ(π, GA) ∥ p(π, GA |β0, Θ0)] + Eqλ(π,GA)

N∑
n=1

log p(x(n) | GA,ϕ), (5)

where kl [q ∥ p] denotes the KL divergence between distributions q and p and Eq denotes the expectation over
distribution q. we note we can further decompose the KL term as, kl [qλ(π, G) ∥ p(π, GA |β0, Θ0)] =: LKL,

LKL = Eqπ(π | r,β)

[
log qπ(π | r,β) − log p(π | r0,β0) + EqGA(GA | π,Θ) [log qGA(GA |π, Θ) − log p(GA |π, Θ0)]

]
.

We estimate the expectations using Monte Carlo, where samples are generated as described in Sections 4.1
and 4.2 and the log probabilities are evaluated using Equations (1) and (2). Here we see we need to back-
propagate gradients wrt samples over distributions on permutations, as described in Section 4.1. For this
purpose, we use the relaxations described in Section 4.1.

In practice, one simple way to do this is to project the samples onto the discrete permutation space in the for-
ward pass and use the relaxation in the backward pass, similarly to how Pytorch deals with Relaxed Bernoulli
(also known as Concrete) distributions. Sometimes this is referred to as a straight-through estimator1.

Theoretical complexity and practical considerations: The overall computational cost of training
our algorithm scales as O

(
T S B D2) , in the dense case or as O(T S B D s) under sparsity s, where T is

the number of optimization steps, S the number of samples and B the minibatch size. See Appendix H
for details. Furthermore, we note that our models for the conditional distributions over graphs given a
permutation do not induce strong sparsity and, therefore, they will tend towards denser DAGs. We obtain
some kind of parsimonious representations via quantization and early stopping during training. However, to
maintain the soundness of the objective, as pointed out by Maddison et al. (2017) in the context of Concrete
distributions, the KL term is computed in the unquantized space.

Finally, in the non-linear SEM case, we also need to estimate the parameters of the corresponding neural
network architecture. We simply learn these jointly along with the variational parameters by optimizing the
ELBO in Equation (5). For simplicity in the notation, we have omitted the dependency of the objective on
these parameters.

7 Experiments & results

We evaluate our approach on several synthetic, pseudo-real and real datasets used in the previous literature,
comparing with competitive baseline algorithms under different metrics. In particular, we compare our
method with BCDNET (Cundy et al., 2021), DAGMA (Bello et al., 2022), DAGGNN (Yu et al., 2019),
GRANDAG (Lachapelle et al., 2019), NOTEARS (Zheng et al., 2018), DECI (Geffner et al., 2022), JSP-
GFN (Deleu et al., 2023), DIBS (Lorch et al., 2021), VI-DP-DAG (Charpentier et al., 2022) and BAYESDAG
(Annadani et al., 2023). The results for DECI, JSP-GFN and VI-DP-DAG are not shown in the figures, as
they were found to underperform all the competing algorithms significantly (making the figures difficult to
read), underlying the challenging nature of the problems we are addressing, especially in the nonlinear SEM
case. This is discussed in the text in Section 7.1.

Metrics: As evaluation metrics we use the structural Hamming distance (SHD), which measures the number
of changes (edge insertions/deletions/directionality change) needed in the predicted graph to match the
underlying true graph. We also report the F1 score, measured when formulating the problem as that of
classifying links including directionality, and the number of non-zeros (NNZ) in the predicted adjacencies.
We emphasize here that there is no perfect metric for our DAG estimation task and one usually should

1However, we still use the relaxation in the forward pass, which is different from the original estimator proposed in Bengio
et al. (2013). We also note that the Pytorch implementation of their gradients is a mixture of the Concrete distributions
approach and the straight-through estimator.
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Figure 2: Results on real datasets: DREAM4 (Left), SACHS (middle) and SYNTREN (right). The F1 score
(the higher the better) computed on the classification problem of predicting links including directionality.
See Figure 7 in the appendix for SHD values. Method names as in Figure 1. DIBS, BDAG and PIVID are
Bayesian methods and all the others are deterministic. Our method is referred to as PIVID. The variability
in the plots is due to different versions of the datasets.

consider several metrics jointly. For example, we have found that some methods have the tendency to
predict very sparse graphs and will obtain very low SHDs when the number of links in the underlying true
graph is also very sparse. This will be reflected in other metrics such as NNZ.

It is important to note that all our metrics evaluate the full posterior of the Bayesian methods. We do so by
computing the metrics over all samples from the posterior. In general, this is not equivalent to evaluating
the metric on the mean or the mode of the posterior. Furthermore, we evaluate uncertainty quantification
across the Bayesian methods using the expected calibration error (ECE). This gives us a measure of how
well calibrated the posterior is. See Appendix L for full details of algorithms’ settings.

7.1 Synthetic data

Linear datasets: We follow a similar setting to that of Geffner et al. (2022) and generate Erdős-Rényi (ER)
graphs and scale-free (SF) graphs (Lachapelle et al., 2019, §A.5) where the SF graphs follow the preferential
attachment model of Barabási (2009). We use D = 16 nodes, Ē ∈ {16, 64} expected edges and N = 1000.
We used a linear Gaussian SEM with weights set to 1, biases to 0, mean zero and variance 0.01. Experiments
were replicated 10 times. Similar conclusions are obtained when the data are are generated from random
weights and variance 1.0 (Appendix J).

The results across all graphs (ER and SF) are shown in Figure 1 (top). We see that our method PIVID
performs the best among all competing approaches both in terms on the SHD and the F1 score. PIVID’s
posterior exhibits a small variance, showing its confidence on its closeness to the underlying true graph.
BCDNET performs very well too, given that it was specifically design for linear SEMs. Surprisingly, DAGMA
performs poorly perhaps indicating the hyper-parameters used were not adequate for this dataset. Additional
results with a larger number of edges and separate for ER and SF graphs can be found in Appendix I.

Nonlinear datasets: Here we adopted a similar setting as in the synthetic linear dataset but using a
nonlinear SEM given by a MLP with a noise model with mean zero and variance 1. Results are shown in
Figure 1, where we note that we have not included BCDNET, as this method was not designed to work on
nonlinear SEMs. We see that PIVID is marginally better than DAGGNN, GRANDAG and performs similary
to NOTEARS, while DAGMA achieves the best results on average. However, as mentioned throughout this
paper, PIVID is much more informative as it provides a full posterior distribution over DAGs. We believe the
fact that PIVID is competitive here is impressive as it is learning both a posterior over the DAG structure
as well as the parameters of the nonlinear SEM (using the architecture proposed by Wehenkel & Louppe,
2021).

We also emphasize that we evaluated other Bayesian nonlinear approaches such as DECI, JSP-GFN and
VI-DP-DAG but their results were surprisingly poor in terms of SHD and F1. This only highlights the
challenges of learning a nonlinear SEM along with the DAG structure. However, it is possible that under
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Figure 3: Left: The true underlying Alzheimer’s graph. Middle: the expected calibration error on synthetic
data (the lower the better). Right: The SHD (the lower the better) on larger scale experiments with D = 100,
Ē = 100.

a lot more tweaking of their hyper-parameters (for which we have very little guidance) and much larger
computational constraints, one can get them to achieve comparable performance. More detailed results of
this nonlinear setting are given in Appendix I.

7.2 Pseudo-real & real datasets

SYNTREN: This pseudo-real dataset was used by Lachapelle et al. (2019) and generated using the Syn-
TReN generator of Van den Bulcke et al. (2006). The data represent genes and their level of expression in
transcriptional regulatory networks. The generated gene expression data approximates experimental data.
It has 10 sets of N = 500 observations, D = 20 variables and Ē = 33.3 edges.

DREAM4: This real dataset is from the Dream4 in-silico network challenge on gene regulation as used
previously by Annadani et al. (2021). We use the multi-factorial dataset with D = 10 nodes and N = 10
observations of which we have 5 different sets of observations and ground truth graphs, with Ē = 14.2 edges.

SACHS: This real dataset is concerned with the discovery of protein signaling networks from flow cytometry
data as described in Sachs et al. (2005) with D = 11 variables, N = 4, 200 observations with 10 different
sets of observations and ground truth graphs, with Ē = 17.0 edges.

Results are shown in Figure 2. On these datasets we have assumed that one has very little knowledge of the
underlying SEM and, therefore, as with the synthetic nonlinear data, we have excluded BCDNET. We see
that PIVID performs competitively in terms of F1 across datasets and can outperform other state-of-the-art
Bayesian methods such as BAYESDAG, while providing competitive SHD values throughout, even clearly
outperforming DAGMA and DAGGNN on DREAM4 (top left of Figure 7 in the appendix) and DAGGNN
on SYNTREN (top right of Figure 7 in the appendix).

7.3 Additional analysis

Alzheimer’s disease: Alzheimer’s disease (AD) is a degenerative brain disease and the most common
form of dementia. It is estimated that around 55 million people are living with AD worldwide2. The public
health, social and economic impact of AD is, therefore, an important problem. We used PIVID to understand
the progression and diagnosis of the disease. Overall, PIVID’s predictions uncovered what is known to be
the “gold standard" for relationships between AD biomarkers and cognition while, using samples from the
posterior, hinting at interesting alternative explanations of the disease. See Figure 3 (left) and Appendix K
for details.

Uncertainty quantification: One of the advantages of Bayesian methods over single-point estimation
approaches is that they allow for uncertainty quantification. For the problem of DAG estimation we are
interested in evaluating how well calibrated are the predicted marginal link probabilities of the underlying

2https://www.alz.org/alzheimer_s_dementia.
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graph. To this end, we compute the expected calibration error (ECE) as: ECE =
∑M
m=1

|Bm|
N |acc(Bm) −

conf(Bm)|, where acc(Bm) and conf(Bm) are the average accuracy and confidence (i.e., predicted probability)
on bin m and the average is taken across M bins each of size |Bm|.

Figure 3 (middle) illustrates how the different methods compare on this metric, where we see clearly that
PIVID outperforms recently proposed competitive Bayesian methods such as BAYESDAG. However, due
to the highly sparse nature of the problem, we note that this metric must not be taken in isolation but in
conjunction with the previously reported metrics. Indeed, although DIBS appears to be performing well on
this metric, the results on Figure 1 indicate that it performs poorly overall.

7.4 Larger experiments and time complexity

Finally, we evaluate our method (PIVID) on larger scale experiments with D = 100 variables and Ē =
100 expected number of edges, with the results shown in Figure 3 (right), where we note this task is
particularly difficult for Bayesian techniques. In fact, the methods not shown in the figure did not run
under our computational constraints, with, e.g., DIBS running out of memory and BAYESDAG attaining
significantly worse performance. In contrast, PIVID shows competitive performance at this scale, achieving
SHD comparable to deterministic approaches such as DAGGNN and NOTEARS and outperforming PC
significantly.

Figure 4: Left: PIVID’s computational scalability as a function of the number of variables (nodes). Right:
Ablation on the number of samples of permutations and DAGs.

Scalability: As we have seen in Table 1, our method provides a computational advantage over other
Bayesian approaches that are based on Gibbs-type distributions using energy functions underpinned by
continuous characterizations of dagness such as those in NOTEARS and DAGMA. These characterizations
scale cubically on the number of nodes/variables, which we avoid by using our permutation-augmented
distributions. Moreover, other Bayesian approaches such as BCDNET require solving optimal transport
problems, which we also avoid by using our simple yet effective permutation distributions based on the
Gamma-ranking model. Figure 4 (left) shows PIVID’s execution time as a function of the number of variables
(nodes) where we support the theoretical claim of sub-quadratic complexity.

Ablation on the number of samples: Compared to deterministic approaches, we do pay a price for being
Bayesian and representing full distributions over DAGs. Nevertheless, the ablation shown in Figure 4 (right)
illustrates that good performance can be attained with a much smaller number of samples, although with a
higher variance.

7.5 Summary of experimental findings

We have shown that our method performs best across all metrics on the synthetic linear experiments when
compared to deterministic and Bayesian approaches, including those ones specifically designed for the linear
case (Figure 1, top). On the nonlinear synthetic datasets, our method can outperform other Bayesian
approaches including state-of-the-art methods such as BAYESDAG (Figure 1 bottom, Figure 2 and Figure 3).
Crucially, our approach provides the best trade-off of uncertainty quantification and accuracy across all
probabilistic approaches (Figure 1 and Figure 3).
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8 Conclusion, limitations & future work

We have presented a Bayesian DAG structure estimation method that inherently encodes the acyclicity con-
straint by construction. It does so by considering joint distributions on an augmented space of permutations
and graphs. We have developed a variational inference method for estimating the posterior distribution over
DAGs and have shown that it can outperform competitive benchmarks across a variety of synthetic, pseudo-
real and real problems. As currently implemented, PIVID does come with its own limitations (Appendix M).
In particular, we believe that incorporating better prior knowledge through strongly sparse and/or hierar-
chical distributions may make our method much more effective. We will explore this direction in future
work.

Broader impact statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none which we feel must be specifically highlighted here.
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A Distribution of the Minimum in the Gamma/Exponential Model

We are interested in computing Pr(I = k) so we have

Pr(I = k) =
∫ ∞

0
p(Vk = v)Pr(∀i ̸=kVi > v)dv, (6)

=
∫ ∞

0
p(Vk = v)

∏
i ̸=k

(1 − Fi(v))dv, (7)

where p(Vk = v) is the exponential distribution defined in Section 4.1 and Fi(v) is the cumulative distribution
function of Vi. When each of the variables follows an exponential distribution as given by Section 4.1, we
have that:

Pr(I = k) = 1
γk

∫ ∞

0
exp(− v

γk
)
∏
i ̸=k

exp(− v

γi
)dx (8)

= 1
γk

∫ ∞

0
exp

(
−

N∑
i=1

1
γi

v

)
dv (9)

= βk
β1 + . . . + βN

, (10)

B Alternative Sampling of Permutations from the Gamma Model

As explained in the main paper, we can also sample from this model by using categorical distributions based
on Equation (1). In this case we simply sample from categorical distributions one at a time on a reduced
set (which will give us the argmin on the reduced set):

1. Set B = {β1, . . . , βD} with βj ∈ B

2. For i = 0, . . . , D − 1

(a) Sample element πi from a categorical distribution with parameters {θk}|B|
k=1, θk = βk∑

j
βj

with

βj ∈ B3

(b) Set B = B − {πi}

C Gumbel-Max Constructions of Distributions over Permutations

Here we describe the Gumbel-Max construction of distributions over permutations, as given, e.g., in Grover
et al. (2019). this construction is parameterized by a vector of log scores s, which are corrupted with noise
drawn from a Gumbel distribution. The resulting corrupted scores are then sorted in descending order as
follows:

1. Let s be a vector of scores

2. Sample gi from a Gumbel distribution with location µ = 0 and scale σ > 0

(a) zi ∼ Uniform(0, 1)
(b) gi = µ − σ log(− log(zi))

3. Let s̃ be the vector of perturbed scores with Gumbel noise such that:
s̃i = σ log si + gi

3Here we note the need to re-normalize at every iteration to have a proper distribution even under the assumption
∑D

j=1 βj =
1, which is only valid in the first iteration. We also note that, as we iteratively reduce the set B, we need to keep track of the
remaining elements to sample from.

15



Under review as submission to TMLR

4. π = argsort(s̃, descending=True),

where we emphasize the corrupted scores are sorted in descending order. As we will see below, the distribution
over permutations generated with the above procedure is given by the RHS of Equation (1) with β = s. In
our experiments, we use σ = 1.

C.1 Relation to Gamma Construction

Here we compare our Gumbel-Max construction with the Gamma/exponential construction described in
Section 4.1 (based on the model proposed in Stern (1990)). This is interesting because Yellott (1977) has
shown that the Plackett-Luce model can only be obtained via the Gumbel-Max mechanism, implying that
both approaches should be equivalent.

It is shown in Yellott (1977) that the distribution over permutations generated by the above procedure
with identical Gumbel scales σ is given by Equation (1) with β = s. This means that, essentially, our
Exponential-based sampling process in Section 4.1 is equivalent to the one above. To show this, let us retake
our Exponential samples (before the argsort operation):

xi = −β−1
i log(1 − zi) (11)

= −β−1
i log(zi), (12)

as 1 − zi ∼ Uniform(0, 1). Now we (i) make si := βi; (ii) take a log transform of the above variable,
which is a monotonic transformation and preserves ordering; and (iii) multiply by −σ so that we reverse the
permutation to descending order:

−σ log(xi) = −σ log(β−1
i (− log zi)), (13)

= σ log si − σ log(− log zi), (14)
= s̃i, (15)

giving us exactly the noisy scores of the Gumbel-Max construction above. Presumably, this parameterization
is more numerically stable as we are taking the log twice.

More generally, we can show that we can transform a Gumbel-distributed variable g ∼ Gumbel(µ, σ) into
an exponential distribution. Let z ∼ Uniform(0, 1) then, as described above:

g = µ − σ log(− log z) (16)

follows a Gumbel distribution with location µ and scale σ > 0. Now, consider the following monotonic
transformation:

x = exp
(

−g + σ log β − µ

σ

)
(17)

= −β−1 log(z). (18)

Thus, x ∼ Exponential(β).

D Conventions & Implementation

Here we define some conventions and assumptions in our implementation.

D.1 Directed Graph Representation via Adjacency Matrices

As mentioned in the main text, we represent a directed graph with an adjacency matrix A, where Aij = 1
iff there is an arrow from node i to node j, i.e., i → j and Aij = 0 otherwise. In the case of DAGs, this
means that the matrix has zeros in its diagonal and Aij = 1 implies Aji = 0. Moreover, given a permutation
in topological order (or reverse topological order) the adjacency matrix would have an upper triangular (or
lower triangular) structure if one were to order the rows and columns according to that permutation.
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D.2 Topological Order

A standard topological order given by a permutation vector π = [π1, . . . , πD] defines constraints in a DAG
such that arrows can only be drawn from left to right. For example, for the ordering π = [2, 0, 1] the DAG
2 → 0 → 1 is valid under such ordering but any DAG where, for example, arrows are drawn from 1 is invalid.
Similarly, any DAG containing the link 0 → 2 is also invalid.

This places constraints on the set of admissible adjacency matrices under the given permutation. In partic-
ular, we are interested in representing this set via a distribution parameterized by a parameter matrix Θ,
where Θij > 0 indicates that there is a non-zero probability of drawing a link i → j. In this case, it is easy
to see that the probability matrix Θ consistent with the permutation π satisfies Θπiπj = 0 ∀i > j.

D.3 Reverse Topological Order

Analogously, in a reverse topological order given by permutation vector π, arrows can only be drawn from
right to left. Thus, we see that the probability matrix consistent with the permutation π satisfies Θr

πiπj = 0
∀i < j.

D.4 Permutation Matrices

In order to express all our operations using linear algebra, which in turn allows us to apply relaxations and
back-propagate gradients, we represent a permutation π = [π1, . . . , πD] via a D-dimensional permutation
matrix Π such as that Πij = 1 iff j = π(i) and Πij = 0 otherwise. This means that we can recover the
permutation π by computing the max over the columns of Π, i.e., in Pythonic notation π = max(Π, dim = 1).

D.5 Distributions over DAGs

Let L be a D-dimensional strictly lower diagonal matrix, i.e., Lij = 0, ∀i < j and Lij = 1 otherwise.
Similarly, let U be a D-dimensional strictly upper diagonal matrix. Given a permutation matrix Π the
corresponding DAG distributions are:

Θ = Π⊤UΠ, (19)
Θr = Π⊤LΠ. (20)

We will show this for the standard case of topological order. Consider Equation (19):

Θij =
∑
m

∑
k

(Π⊤)ikUkmΠmj (21)

=
∑
m

∑
k

ΠkiUkmΠmj . (22)

this, for a given permutation π, we can express:

Θπkπm = ΠkπkUkmΠmπm , (23)

which, as U is an upper triangular matrix, implies Θπkπm = 0, ∀k > m.

For clarity and consistency with previous literature, we emphasize our convention Θij indicates the proba-
bility of a link i → j. If we were to use the transpose definition of the space of adjacency matrices Φ = Θ⊤

indicating the probability of a link Φij : j → i, as for example in Dallakyan & Pourahmadi (2021), then we
would have (in the case of a topological ordering) Φ = Π⊤LΠ.

E The Relaxed Bernoulli Distribution

Here we follow the description in Maddison et al. (2017). A random variable A ∈ (0, 1) follows a relaxed
Bernoulli distribution, also known as a binary Concrete distribution, denoted as A ∼ RelaxedBernoulli(τ, α)
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with location parameter α ∈ (0, ∞) and temperature τ ∈ (0, ∞) if its density is given by:

RelaxedBernoulli(a; τ, α) := p(a | τ, α) = ταa−τ−1(1 − a)−τ−1

(αa−τ + (1 − a)−τ )2 . (24)

For our purposes, we are interested in sampling from this distribution and computing the log probability
of variables under this model. Below we describe how to do these operations based on a parameterization
using Logistic distributions.

E.1 Sampling

Let us define the logistic sigmoid function and its inverse (the logit function) as

σ(x) := 1
1 + exp(−x) , (25)

σ−1(x) := log x

1 − x
. (26)

In order to sample a ∼ RelaxedBernoulli(τ, α) we do the following:

1. Sample L ∼ Logistic(0, 1)

(a) U ∼ Uniform(0, 1)
(b) L = log(U) − log(1 − U)

2. b = log α + L

τ

3. a = σ(b).

E.2 Log Density Computation

Given a realization b (before applying σ(b)), we also require the computation of its log density under the
relaxed Bernoulli model. With the parameterization above using the Logistic distribution, it is easy to get
this density by using the change-of-variable (transformation) formula to obtain:

log p(b; τ, α) = log τ + log α − τb − 2 log (1 + exp(log α − τb)) . (27)

In order to obtain the log density of 0 < a < 1 under the relaxed Bernoulli model, we need to apply the
change of variable formula again, as a = σ(b)),

log p(a; τ, α) = log τ + log α − τσ−1(a) − 2 log
(
1 + exp(log α − τσ−1(a))

)
− log a − log(1 − a). (28)

E.3 Probability Re-parameterization

The relaxed Bernoulli distribution has several interesting properties described in Maddison et al. (2017).
In particular, the rounding property (Maddison et al., 2017, ,Proposition 2), establishes that if X ∼
RelaxedBernoulli(τ, α):

P(X > 0.5) = α

1 + α
. (29)

Therefore, our implementation adopts Pytorch parameterization using a “probability" parameter θ ∈ (0, 1)
so that

θ := α

1 + α
. (30)
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F Relaxed Distributions over Permutations

We have seen that sampling from our distributions over permutations requires the argsort operator which
is not differentiable. Therefore, in order to back-propagate gradients and estimate the parameters of our
posterior over permutations, we relax this operator following the approach of Prillo & Eisenschlos (2020),

SoftSort(s̃) := softmax
(

Ld (sort(s̃)1T , 1s̃T )
τπ

)
, (31)

where Ld(·, ·) is a semi-metric function applied point-wise that is differentiable almost everywhere; τπ is
a temperature parameter; and softmax(·) is the row-wise softmax function. Here we have assumed that
sort(s̃) := sort(s̃, descending=True), which applies directly to the Gumbel-Max construction. In the case
of the Gamma construction, which assumes ascending orders, we simply pass in the negative of the corre-
sponding scores. We note that Equation (31) uses sort(·), which unlike the argsort(·), is a differentiable
operation.

F.1 Sampling

Sampling from our relaxed distributions over permutations is done by simply replacing the argsort(·) oper-
ation used in the vanilla (hard) permutation distribution with the SoftSort(·) function above. This function
returns, in fact, a permutation matrix Π which is used as a conditioning value in the DAG distribution, as
explained in Appendix D.5, and as input to the log probability computation in the KL term over permuta-
tions.

F.2 Log Probability Computation

The log probability of a permutation matrix Π given a distribution with parameters β (in the case of the
Gamma construction) can be computed using Equation (1), where βπ are the permuted parameters given
by:

βπ = Πβ. (32)

In the case of the Gumbel-Max construction, βπ is obtained by reversing the order of sπ = Πs.

G Full Objective Function Using Monte Carlo Expectations

We retake our objective function:

L = Eqπ(π | r,β) [log qπ(π | r,β) − log p(π | r0,β0)] +
Eqπ(π | r,β)qG(G | π,Θ) (log qG(G |π, Θ) − log p(G |π, Θ0)) +

Eqπ(π | r,β)qG(G | π,Θ)

N∑
n=1

log p(x(n) | G,ϕ). (33)

H Details of Computational Complexity

We now analyze the computational complexity of our method. Let D denote the number of variables (nodes)
and N the number of data points. Our approach optimizes the evidence lower bound (ELBO) in Equation (5)
via Monte Carlo estimation, which involves sampling both permutations and DAG structures, followed by
the evaluation of the likelihood under a structural equation model (SEM).

Permutation sampling. Sampling discrete permutations using the Gumbel-Max or Gamma-ranking con-
structions requires a sorting operation with cost O(D log D). However, in order to allow back-propagation
through the permutation space, we employ continuous relaxations such as SoftSort (Prillo & Eisenschlos,
2020). These relaxations represent permutations as dense matrices and involve pairwise comparisons among
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all D elements, which increases the computational cost to O(D2) 4. In practice, this cost is minor relative
to the data-dependent likelihood term, especially for moderate values of D.

DAG sampling. Given a sampled (or relaxed) permutation, the conditional distribution over DAGs fac-
torizes over directed edges, allowing all edge variables to be sampled in parallel. Sampling or evaluating the
log-probability of a graph thus scales as O(D2), corresponding to all possible ordered pairs (i, j), i ̸= j.

Likelihood evaluation and minibatching. The dominant cost arises from evaluating the likelihood
p(X | GA,ϕ) in the SEM. For linear SEMs, this corresponds to matrix multiplications of the form XA⊤,
yielding a complexity of O(BD2) per minibatch of size B. For nonlinear SEMs parameterized by neural
networks, the cost depends on the hidden dimensionality h and the sparsity of the learned graphs. Assuming
an average in-degree s ≪ D, the expected complexity becomes O(BDs) per minibatch, which reduces
to O(BD2) in the dense case. Because the likelihood decomposes over datapoints, minibatch stochastic
optimization allows us to replace N with B in the per-step cost, while retaining unbiased gradient estimates.

Overall complexity. Let Sπ and SG denote the number of Monte Carlo samples of permutations and
graphs per iteration, respectively, and T the number of optimization steps. The overall computational cost
of training scales as

O
(
T Sπ SG B D2) , (34)

or as O(T Sπ SG B D s) under sparsity, which scales quadratically with D. The memory footprint is domi-
nated by storing the data matrix and adjacency parameters, requiring O(ND + D2) space.

Comparison. In contrast, continuous DAG-learning methods such as NOTEARS (Zheng et al., 2018)
and DAGMA (Bello et al., 2022) have O(D3) complexity per optimization step due to matrix exponen-
tial or log-determinant operations required by their acyclicity constraints. PIVID avoids these cubic costs
entirely by construction: the acyclicity constraint is satisfied through the permutation-based formulation,
leading to overall quadratic scaling in D and linear scaling in both N and the batch size B. This makes
PIVID competitive for moderate-scale problems while maintaining a full Bayesian treatment of structural
uncertainty.

I Additional Results

J Experiments with random weights in the linear case

Here we show similar results to those in Figure 1 (top) but now when the data have been generated using
random weights from U([−2, 0.5] ∪ [0.5, 2]) an noise variance of 1.0. The results are given in Figure 8 where
we see that, as before, PIVID attains state-of-the-art performance across all metrics .

K Additional Results on Alzheimer’s Data

We applied PIVID for discovering the causal relationships between Alzheimer disease biomarkers and cog-
nition. The source data were made publicly available by the Alzheimer’s Disease Neuroimaing Initiative
(ADNI). These data have been used previously to evaluate causal discovery algorithms (Shen et al., 2020)
because a “gold standard" graph for these data is known.

For our experiments we focused on 7 variables which include demographic information age (AGE) and years of
education (PTEDUCAT) along with biological variables which include fludeoxyglucose PET (FDG), amyloid
beta (ABETA) phosphorylated tau (PTAU), and the aplipoprotoen E (APOE4) ϵ 4 allele. The last variable
of interest represents the participant’s clinically assessed level of cognition (DX) indicating one of three levels:
normal, mild cognitive impairment (MCI) and early Alzheimer’s Disease (AD). Ultimately, we want to infer
the causal influences on DX.

4If one were to exploit structure or sparsity in the SoftSort matrix (or approximate it), one might reduce the cost, but the
original authors do not guarantee a sub-quadratic worst-case bound.
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Figure 5: Results on the synthetic linear data with D = 16 variables (nodes) on ER (left), SF (middle), and
all (right) graphs. The top row is with Ē = 16 edges and the bottom row with Ē = 64 edges, respectively.
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Figure 6: Results on the synthetic nonlinear data with D = 16 and E = 16 on ER (left), SF (middle), and
all (right) graphs.

The data is collected from participants as part of the first two phases of ADNI that commenced in 2003. In
total, we have data for 1336 individuals after removing those with missing values.

The results are shown in Figures 9 and 10. We see that PIVID uncovered the main underlying graph
structure, while hinting at different explanations of the data which may require further investigation.

L Algorithm Settings and Reproducibility

For BCDNET, DECI, JSP-GFN, DIBS, BAYESDAG and VI-DP-DAG we used the implementation provided
by the authors. For all the other baseline algorithms we used GCASTLE Zhang et al. (2021). Hyper-
parameter setting was followed from the reference implementation and the recommendation by the authors
(if any) in the original paper. However, for JSP-GFN we did try several configurations for their prior and
model, none of which gave us significant performance improvements subject to our computational constraints
(hours for each experiment instead of days).

For our algorithm (PIVID) we set the prior and posteriors to be Gaussians, used a link threshold for
quantization of 0.5. For experiments other than the synthetic linear, we used a non-linear SEM as described
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Figure 7: Results on real datasets: DREAM4 (Left), SACHS (middle) and SYNTREN (right). The top row
shows the structural Hamming distance (SHD, the lower the better), while the bottom row shows the F1
score (the higher the better). The latter computed on the classification problem of predicting links including
directionality.
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Figure 8: Results on synthetic linear data generated with random weights and noise variance of 1.0. The
structural Hamming distance (SHD, the lower the better); the F1 score (the higher the better); and the
number of non-zeros (NNZ, the closer to Ē = 16 the better) with D = 16 and on all graphs.

in Section 5, i.e., based on a Gaussian exogenous noise model and the proposed architecture in Wehenkel &
Louppe (2021) and learned its parameters via gradient-based optimization of the ELBO.

In all our experiments we train our model by optimizing the ELBO using the Adam optimizer with learning
rate 0.001. We set the temperature parameter of our relaxed permutation distributions to 0.5. The scores of
the permutation distributions were set to give rise to uniform distributions and the posterior was initialized
the the same values. We use Gaussians for the DAG distributions with zero mean prior and prior and initial
posterior scales set to 0.1.

For the linear dataset we used 100 permutation samples and 100 DAG samples per permutation and optimize
for 75000 iterations. For the synthetic non-linear data we set the number number of permutation samples =
2, number of DAG samples = 2 and training epochs = 30000 while we initialized the non-linear SEM noise
scale = 1.0.
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Figure 9: The true graph on the Alzheimer dataset (left) and the mean posterior graph predicted by PIVID.

For the real data using the non-linear SEM we used a fixed noise scale = {0.01, 0.25, 0.3}, number of
permutation samples = {10, 10, 5}, number of DAG samples = {15, 15, 5} and training epochs = {5000,
5000, 15000} for DREAM4, SACHS, and SYNTREN respectively.

In all cases when using a non-linear SEM, our model had a single hidden layer with 10 neurons and sigmoid
activation.

For reproducibility purposes, we will make our code publicly available upon acceptance.

M Discussion and limitations

Limitations of the Gamma ranking model: Much as a mean-field approximations in variational in-
ference, we see the Gamma-ranking model for our approximate posterior over permutations as a practical
approach that provides us with computational advantages with respect to previous works. In particular, it
allows us to estimate posteriors easily and avoids solving optimal transport problems typical of other works
on permutations such as BCDNET. However, despite the apparent simplicity of the Gamma-ranking model,
our learned posteriors can place significant mass on different configurations that are underpinned by different
node orderings. We refer the reader to Fig 8 for an example of this.

Gumbel-softmax trick in practice: It is not usually easy to get these types of relaxations working,
especially in probabilistic inference frameworks. However, our implementation of this trick is a kind of
straight-through estimator where hard permutations are drawn for the evaluation of the SEM, while allowing
for gradient back-propagation through these samples and the continuous KL terms. We have found such
implementation to be effective in our experiments.

Early stopping: Our motivation comes from known results in stochastic gradient descent that indicate that
stopping the optimization of the empirical risk prematurely often results in better expected risk (Bottou et al.,
2018). We believe this is critical in our problem when considering limited computational resources.

Handling Markov equivalent DAGs: In general, our model does not place explicit constraints in our
distributions’ parameterizations that allow us to encode knowledge of Markov equivalent classes. However,
we have found in practice that despite the apparent simplicity of our parameterizations, our learned posteriors
can place significant mass on different configurations that are underpinned by different node orderings. We
refer the reviewer to Fig 8 for an example of this. Nevertheless, incorporating this type of knowledge is an
interesting aspect to investigate in future work.
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Figure 10: PIVID’s Posterior samples on the Alzheimer dataset.
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N Additional Details of Related Work

Table 1 shows the main difference of our method and VI-DP-DAG Charpentier et al. (2022) and DPM-
DAG Rittel & Tschiatschek (2023) as being the final objective function. More specifically that, unlike our
method, the objective in these two methods is not derived from (sound) probabilistic inference principles.
Here we elaborate on this. The main difference with VI-DP-DAG is that VI-DP-DAG does not propose a
joint probabilistic model and inference method over distributions on adjacencies and permutations. This is
in stark contrast wit our method, PIVID, that develops an inference approach that considers both the graph
structure and the corresponding ordering/permutation as variables to reason about within our Bayesian
framework. This is important from a theoretical and a practical perspective. More explicitly, the definition
of the log conditional probability of a DAG is only valid when conditioned on a given permutation but
much harder to define marginally, i.e., when the permutation distribution has been integrated out. We note
that the computation of these probabilities is necessary in variational inference. Thus, PIVID not only
proposes a generative model of DAGs (as does VI-DP-DAG) but also develops a sound inference framework
for estimating the corresponding posterior distributions.

To elaborate on this, we will bring here VI-DP-DAG’s main objective and the corresponding original com-
mentary about how this is computed:

maxθ,ϕ,ψL = EA∼Pϕ,ψ(A)[logP(X | A)]︸ ︷︷ ︸
(i)

−λ KL(Pϕ,ψ(A) ∥ Pprior(A))︸ ︷︷ ︸
(ii)

and the authors of VI-DP-DAG state:

“We compute the term (ii) by setting a small prior Pprior(Uij) on the edge probability
(i.e., (ii) =

∑
ij KL(Pϕ(Uij) ∥ P(Uij))”,

where Pϕ(U) and Pprior(U) denote unconstrained (non-DAG) distributions over edges. Propagating this
distribution to compute actual log probabilities over DAGs is highly non-trivial. If we compare the above
with our model and objective function in Equations (3) to (5) in the main paper, we see that our method infers
a joint posterior over graphs and permutations. As pointed out by the authors of VI-DP-DAG, computation
of permutation probabilities is generally intractable. However, we do exactly that in our framework. As we
have shown in our experiments, these solid theoretical foundations of our objective (which is derived from
first principles) translate into significant performance benefits.

An additional point of difference which is still worth mentioning, is that, VI-DP-DAG

“approximate[s] the term (i) by sampling a single DAG matrix A at each iteration and
assume a Gaussian distribution with unit variance around X̂(i.e..(i) = ∥X − X̂∥).”

We make no such an assumption of mean squared loss in our framework and consider log conditional likeli-
hoods where the parameters are estimated using the variational objective (ELBO).

Finally, we briefly re-emphasize the differences with the work of Rittel & Tschiatschek (2023), which we refer
to as DPM-DAG in our paper. DPM-DAG focuses on formulating and evaluating valid/sensible priors using
the 2 mainstream methods: (1) Gibss-like priors through continuous characterizations such as NOTEARS
and (2) a permutation-based formulation. Moreover, they use categorical distributions over the permutation
matrices, which does not yield a valid evidence lower bound (ELBO) for Gumbel-softmax samples and
continuous relaxations of the permutation matrix.
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