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Abstract

Dataset distillation or condensation aims to generate a smaller but representative subset
from a large dataset, which allows a model to be trained more efficiently, meanwhile eval-
uating on the original testing data distribution to achieve decent performance. Previous
decoupled methods like SRe2L simply use a unified gradient update scheme for synthesizing
data from Gaussian noise, while, we notice that the initial several update iterations will
determine the final outline of synthesis, thus an improper gradient update strategy may
dramatically affect the final generation quality. To address this, we introduce a simple yet
effective global-to-local gradient refinement approach enabled by curriculum data augmen-
tation (CDA) during data synthesis. The proposed framework achieves the current published
highest accuracy on both large-scale ImageNet-1K and 21K with 63.2% under IPC (Images
Per Class) 50 and 36.1% under IPC 20, using a regular input resolution of 224×224 with
faster convergence speed and less synthetic time. The proposed model outperforms the
current state-of-the-art methods like SRe2L, TESLA, and MTT by more than 4% Top-1
accuracy on ImageNet-1K/21K and for the first time, reduces the gap to its full-data train-
ing counterparts to less than absolute 15%. Moreover, this work represents the inaugural
success in dataset distillation on the larger-scale ImageNet-21K dataset under the standard
224×224 resolution. Our code and distilled ImageNet-21K dataset of 20 IPC, 2K recovery
budget are available at https://github.com/VILA-Lab/SRe2L/tree/main/CDA.

1 Introduction
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Figure 1: ImageNet-1K comparison with SRe2L.

Dataset distillation or condensation (Wang et al.,
2018) has attracted considerable attention across
various fields of computer vision (Cazenavette et al.,
2022b; Cui et al., 2023; Yin et al., 2023) and natural
language processing (Sucholutsky & Schonlau, 2021;
Maekawa et al., 2023). This task aims to optimize
the process of condensing a massive dataset into a
smaller, yet representative subset, preserving the es-
sential features and characteristics that would allow
a model to learn from scratch as effectively from the
distilled dataset as it would from the original large
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dataset. As the scale of data and models continue to grow, this dataset distillation concept becomes even more
critical in the large data era, where datasets are often voluminous that they pose storage, computational,
and processing challenges. Generally, dataset distillation can level the playing field, allowing researchers with
limited computation and storage resources to participate in state-of-the-art foundational model training and
application development, such as affordable ChatGPT (Brown et al., 2020; OpenAI, 2023) and Stable Dif-
fusion (Rombach et al., 2022), in the current large data and large model regime. Moreover, by working
with distilled datasets, which are synthesized to retain the most representative information from Gaussian
noise initialization through gradient optimization at a high-level abstraction instead of closely resembling
the original dataset, there is potential to alleviate data privacy concerns, as raw, personally identifiable data
points might be excluded from the distilled version.

Recently, there has been a significant trend in adopting large models and large data across various research
and application areas. Yet, many prior dataset distillation methods (Wang et al., 2018; Zhao et al., 2020;
Zhou et al., 2022; Cazenavette et al., 2022a; Kim et al., 2022a; Cui et al., 2023) predominantly target datasets
like CIFAR, Tiny-ImageNet and downsampled ImageNet-1K, finding it challenging to scale their frameworks
for larger datasets, such as full ImageNet-1K (Deng et al., 2009). This suggests that these approaches have
not fully evolved in line with contemporary advancements and dominant methodologies.
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Figure 2: Motivation of our work. The left column
is the synthesized images after a few gradient up-
date iterations from Gaussian noise. Middle and right
columns are intermediate and final synthesized images.

In this study, we extend our focus even beyond
the ImageNet-1K dataset, venturing into the un-
charted territories of the full ImageNet-21K (Deng
et al., 2009; Ridnik et al., 2021) at a conven-
tional resolution of 224×224. This marks a pio-
neering effort in handling such a vast dataset for
dataset distillation task. Our approach harnesses
a straightforward yet effective global-to-local learn-
ing framework. We meticulously address each as-
pect and craft a robust strategy to effectively train
on the complete ImageNet-21K, ensuring compre-
hensive knowledge is captured. Specifically, follow-
ing a prior study (Yin et al., 2023), our approach
initially trains a model to encapsulate knowledge
from the original datasets within its dense parame-
ters. However, we introduce a refined training recipe
that surpasses the results of Ridnik et al. (2021) on
ImageNet-21K. During the data recovery/synthesis
phase, we employ a strategic learning scheme where
partial image crops are sequentially updated based
on the difficulty of regions: transitioning either from
simple to difficult, or vice versa. This progression is
modulated by adjusting the lower and upper bounds
of the RandomReiszedCrop data augmentation throughout varying training iterations. Remarkably, we ob-
serve that this straightforward learning approach substantially improves the quality of synthesized data. In
this paper, we delve into three learning paradigms for data synthesis linked to the curriculum learning frame-
work. The first is the standard curriculum learning, followed by its alternative approach, reverse curriculum
learning. Lastly, we also consider the basic and previously employed method of constant learning.
Motivation and Intuition. We aim to maximize the global informativeness of the synthetic data. Both
SRe2L (Yin et al., 2023) and our proposed approach utilize local mini-batch data’s mean and variance
statistics to match the global statistics of the entire original dataset, synthesizing data by applying gradient
updates directly to the image. The impact of such a strategy is that the initial few iterations set the stage
for the global structure of the ultimately generated image, as shown in Figure 2. Building upon the insights
derived from the analysis, we can leverage the global-to-local gradient refinement scheme for more expressive
synthesized data, in contrast, SRe2L does not capitalize on this characteristic. Specifically, our proposed
approach exploits this by initially employing large crops to capture a more accurate and complete outline of
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Figure 3: Illustration of crop distribution from different lower and upper bounds in RandomResizedCrop.
The first row is the central points of bounding boxes from different sampling scale hyperparameters. The
second and last rows correspond to 30 and 10 boxes of the crop distributions. In each row, from left to right,
the difficulty of crop distribution is decreasing.

objects, for building a better foundation. As the process progresses, it incrementally reduces the crop size
to enhance the finer, local details of the object, significantly elevating the quality of the synthesized data.
Global-to-local via Curriculum Sampling. RandomResizedCrop randomly crops the image to a certain
area and then resizes it back to the pre-defined size, ensuring that the model is exposed to different regions
and scales of the original image during training. As illustrated in Figure 3, the difficulty level of the cropped
region can be controlled by specifying the lower and upper bounds for the area ratio of the crop. This can
be used to ensure that certain portions of the image (small details or larger context) are present in the
cropped region. If we aim to make the learning process more challenging, reduce the minimum crop ratio.
This way, the model will often see only small portions of the image and will have to learn from those limited
contexts. If we want the model to see a larger context more frequently, increase the minimum crop ratio. In
this paper, we perform a comprehensive study on how the gradual difficulty changes by sampling strategy
influence the optimization of data generation and the quality of synthetic data for dataset distillation. Our
proposed curriculum data augmentation (CDA) is a heuristic and intuitive approach to simulate a global-to-
local learning procedure. Moreover, it is highly effective on large-scale datasets like ImageNet-1K and 21K,
achieving state-of-the-art performance on dataset distillation.
The Significance of Large-scale Dataset Condensation. Large models trained on large-scale datasets
consistently outperform smaller models and those trained on limited data (Dosovitskiy et al., 2020; Dehghani
et al., 2023; OpenAI, 2023). Their ability to capture intricate patterns and understand nuanced contextual
information makes them exceptionally effective across a wide range of tasks and domains. These models
play a crucial role in solving complex industrial challenges and accelerating the development of AI-driven
products and services, thereby contributing to economic growth and innovation. Therefore, adapting dataset
condensation or distillation methods for large-scale data scenarios is vital to unlocking their full potential in
both academic and industrial applications.
We conduct extensive experiments on the CIFAR, Tiny-ImageNet, ImageNet-1K, and ImageNet-21K
datasets. Employing a resolution of 224×224 and IPC 50 on ImageNet-1K, the proposed approach at-
tains an impressive accuracy of 63.2%, surpassing all prior state-of-the-art methods by substantial margins.
As illustrated in Figure 1, our proposed CDA outperforms SRe2L by 4∼6% across different architectures under
50 IPC, on both 1K and 4K recovery budgets. When tested on ImageNet-21K with IPC 20, our method
achieves a top-1 accuracy of 35.3%, which is closely competitive, exhibiting only a minimal gap compared
to the model pre-trained with full data, at 44.5%, while using 50× fewer training samples.

Our contributions of this work:

• We propose a new curriculum data augmentation (CDA) framework enabled by global-to-local gradient
update in data synthesis for large-scale dataset distillation.
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• We are the first to distill the ImageNet-21K dataset, which reduces the gap to its full-data training
counterparts to less than an absolute 15% accuracy.

• We conduct extensive experiments on CIFAR-100, Tiny-ImageNet, ImageNet-1K and ImageNet-21K
datasets to demonstrate the effectiveness of the proposed approach.

2 Related Work

Dataset condensation or distillation strives to form a compact, synthetic dataset, retaining crucial informa-
tion from the original large-scale dataset. This approach facilitates easier handling, reduces training time,
and aims for performance comparable to using the full dataset. Prior solutions typically fall under four cat-
egories: Meta-Model Matching optimizes for model transferability on distilled data, with an outer-loop for
synthetic data updates, and an inner-loop for network training, such as DD (Wang et al., 2020), KIP (Nguyen
et al., 2021), RFAD (Loo et al., 2022), FRePo (Zhou et al., 2022), LinBa (Deng & Russakovsky, 2022), and
MDC (He et al., 2024); Gradient Matching performs a one-step distance matching between models, such
as DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), DCC (Lee et al., 2022), IDC (Kim et al., 2022b),
and MP (Zhou et al., 2024a); Distribution Matching directly matches the distribution of original and syn-
thetic data with a single-level optimization, such as DM (Zhao & Bilen, 2023), CAFE (Wang et al., 2022),
HaBa (Liu et al., 2022a), KFS (Lee et al., 2022), DataDAM (Sajedi et al., 2023), FreD Shin et al. (2024),
and GUARD (Xue et al., 2024); Trajectory Matching matches the weight trajectories of models trained on
original and synthetic data in multiple steps, methods include MTT (Cazenavette et al., 2022b), TESLA (Cui
et al., 2023), APM (Chen et al., 2023), and DATM (Guo et al., 2024).

Moreover, there are some recent methods out of these categories that have further improved the existing
dataset distillation. SeqMatch (Du et al., 2023) reorganizes the synthesized dataset during the distillation
and evaluation phases to extract both low-level and high-level features from the real dataset, which can
be integrated into existing dataset distillation methods. Deep Generative Prior (Cazenavette et al., 2023)
utilizes the learned prior from the pre-trained deep generative models to synthesize the distilled images.
RDED (Sun et al., 2024) proposes a non-optimization method to concatenate multiple cropped realistic
patches from the original data to compose the distilled dataset. D3M (Abbasi et al., 2024) condenses
an entire category of images into a single textual prompt of latent diffusion models. SC-DD (Zhou et al.,
2024b) proposes a self-supervised paradigm by applying the self-supervised pre-trained backbones for dataset
distillation. EDC (Shao et al., 2024b) explores a comprehensive design space that includes multiple specific,
effective strategies like soft category-aware matching and learning rate schedule to establishe a benchmark
for both small and large-scale dataset distillation. Ameliorate Bias (Cui et al., 2024) studies the impact
of bias within the original dataset on the performance of dataset condensation. It introduces a simple yet
effective approach based on a sample reweighting scheme that utilizes kernel density estimation.

SRe2L (Yin et al., 2023) is the first and mainstream framework to distill large-scale datasets, such as
ImageNet-1K, and achieve significant performance. Thus, we consider it as our closest baseline. More specif-
ically, SRe2L proposes a decoupling framework to avoid the bilevel optimization of model and synthesis
during distillation, which consists of three stages of squeezing, recovering, and relabeling. In the first squeez-
ing stage, a model is trained on the original dataset and serves as a frozen pre-train model in the following
two stages. During the recovering stage, the distilled images are synthesized with the knowledge recovered
from the pre-train model. At the last relabeling stage, the soft labels corresponding to synthetic images
are generated and saved by leveraging the pre-train model. Recently, distilling on large-scale datasets has
received significant attention in the community, and many works have been proposed, including (Sun et al.,
2023; Liu et al., 2023; Chen et al., 2023; Shao et al., 2024a; Zhou et al., 2024a; Wu et al., 2024; Abbasi
et al., 2024; Zhou et al., 2024b; Shao et al., 2024b; Xue et al., 2024; Qin et al., 2024; Gu et al., 2023; Ma
et al., 2024; Shang et al., 2024). Theses recent methods represent a comprehensive study and literature
on framework design space (Shao et al., 2024b) and adversarial robustness benchmarks (Wu et al., 2024)
in dataset distillation. They are substantially different from our input-optimization-based approach. Addi-
tionally, GUARD (Xue et al., 2024) incorporates curvature regularization to embed adversarial robustness,
focusing on a different objective than our CDA.
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Compared to earlier traditional dataset distillation baselines, CDA is fundamentally different in its approach:
(1) CDA exhibits better scalability. The previous works like DM (Zhao & Bilen, 2023), DSA (Zhao & Bilen,
2021), and FRePo (Zhou et al., 2022), work well on small-scale dataset distillation, but they are limited by
the huge computational cost and cannot be scaled to large datasets and models. (2) Different generation
paradigms. MTT (Cazenavette et al., 2022a) matches the model trajectories (weights) of training on distilled
and raw datasets; RDED (Sun et al., 2023) selects and combines the raw image patches with diversity;
D3M (Abbasi et al., 2024) leverages text-to-image diffusion models to generate distilled images. Thus, MTT
proposes matching trajectories, RDED proposes non-optimizing, and D3M proposes diffusion-model-based
generation paradigms which do not align with to our knowledge-distillation-based generation approach. (3)
Unique evaluation recipes. For instance, RDED utilizes a unique smoothed LR schedule for the learning rate
reduction throughout the evaluation, which improves evaluation performance effectively1.

3 Approach

3.1 Preliminary: Dataset Distillation

The goal of dataset distillation is to derive a concise synthetic dataset that maintains a significant proportion
of the information contained in the original, much larger dataset. Suppose there is a large labeled dataset
Do =

{
(x1, y1) , . . . ,

(
x|Do|, y|Do|

)}
, our target is to formulate a compact distilled dataset, represented as

Dd =
{

(x′
1, y′

1) , . . . ,
(

x′
|Dd|, y′

|Dd|

)}
, where y′ is the soft label corresponding to synthetic data x′, and

|Dd| ≪ |Do|, preserving the essential information from the original dataset Do. The learning objective based
on this distilled synthetic dataset is:

θDd
= arg min

θ
LDd

(θ) (1)

LDd
(θ)=E(x′,y′)∈Dd

[
ℓ(ϕθDd

(x′), y′)
]

(2)

where ℓ is the regular loss function such as the soft cross-entropy, and ϕθDd
is model. The primary objective of

the dataset distillation task is to generate synthetic data aimed at attaining a specific or minimal performance
disparity on the original validation data when the same models are trained on the synthetic data and the
original dataset, respectively. Thus, we aim to optimize the synthetic data Dd by:

arg min
Dd,|Dd|

(
sup

{∣∣∣ℓ (
ϕθDo

(xval), yval

)
− ℓ

(
ϕθDd

(xval), yval

)∣∣∣}
(xval,yval)∼Do

)
(3)

where (xval, yval) are sample and label pairs in the validation set of the real dataset Do. Then, we learn
<data, label>∈Dd with the corresponding number of distilled data in each class.

3.2 Dataset Distillation on Large-scale Datasets

Currently, the prevailing majority of research studies within dataset distillation mainly employ datasets of a
scale up to ImageNet-1K (Cazenavette et al., 2022b; Cui et al., 2023; Yin et al., 2023) as their benchmarking
standards. In this work, we are the pioneer in showing how to construct a strong baseline on ImageNet-
21K (the approach is equivalently applicable to ImageNet-1K) by incorporating insights presented in recent
studies, complemented by conventional optimization techniques. Our proposed baseline is demonstrated to
achieve state-of-the-art performance over prior counterparts. We believe this provides substantial significance
towards understanding the true impact of proposed methodologies on dataset distillation task and towards
assessing the true gap with full original data training. We further propose a curriculum training paradigm to
achieve a more informative representation of synthetic data. Following prior work in dataset distillation (Yin
et al., 2023), we focus on the decoupled training framework, Squeeze-Recover-Relabel, to save computation
and memory consumption on large-scale ImageNet-21K, the procedures are listed below:
Squeeze: Building A Strong Pre-trained Model on ImagNet-21K. To obtain a squeezing model,
we use a relatively large label smooth of 0.2 together with Cutout (DeVries & Taylor, 2017) and RandAug-
ment (Cubuk et al., 2020), as shown in Appendix B.4. This recipe helps achieve ∼2% improvement over the
default training (Ridnik et al., 2021) on ImageNet-21K, as provided in Table 21.

1Therefore, to ensure a fair and straightforward comparison, these baseline results in our experimental section have been
taken directly from the best evaluation performance reported by their original papers.
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Recover: Curriculum Training for Better Representation of Synthetic Data. A well-crafted
curriculum data augmentation is employed during the synthesis stage to realize the global-to-local learning
scheme and enhance the representational capability of the synthetic data. This step is crucial, serving to
enrich the generated images by embedding more knowledge accumulated from the original dataset, thereby
making them more informative. Detailed procedures will be further described in the following Section 3.3.
Relabel: Post-training on Larger Models with Stronger Training Recipes. Prior studies, such as
TESLA (Cui et al., 2023), have encountered difficulties, particularly, a decline in accuracy when utilizing
models of larger scale. The reason may be that the trajectory-based matching approaches, e.g., MTT and
TESLA, generate images by excessively optimizing to align the dense training trajectories of model weights
at each epoch between real and distilled datasets on specific backbone models. As a result, the distilled
dataset becomes overly dependent on these models, potentially leading to overfitting and reduced effectiveness
when training other models, particularly larger ones. This further suggests that the synthetic data used is
potentially inadequate for training larger models. Conversely, the data we relabel show improvement with
the use of larger models combined with enhanced post-training methodologies, displaying promise when
applied to larger datasets in distillation processes.

We have also observed that maintaining a smaller batch size is crucial for post-training on synthetic data
to achieve commendable accuracy. This is attributed to the Generalization Gap (Keskar et al., 2016; Hoffer
et al., 2017), which suggests that when there is a deficiency in the total training samples, the model’s capacity
to generalize to new, unseen data is not robust. In the context of synthetic data, the generalization gap can be
exacerbated due to the inherent differences between synthetic and real data distributions. Smaller batch sizes
tend to introduce more details/noises into the gradient updates during training, which, counterintuitively, can
help in better generalizing to unseen data by avoiding overfitting to the synthetic dataset’s general patterns.
The noise can also act as a regularizer, preventing the model from becoming too confident in its predictions on
the synthetic data, which may not fully capture the complexities of large batch-size data. Employing smaller
batch sizes while training on the small-scale synthetic data allows models to explore the loss landscape more
meticulously before converging to an optimal minimum. In Table 6, we empirically notice that utilizing a
small batch size can improve model evaluation performance. This observed phenomenon aligns with the
Generalization Gap theory, which arises when there is a lack of training samples.

3.3 Global-to-local Gradient Update via Curriculum

In SRe2L (Yin et al., 2023) approach, the key of data synthesis revolves around utilizing the gradient
information emanating from both the semantic class and the predictions of the pre-trained squeezing model,
paired with BN distribution matching. Let (x, y) be an example x for optimization and its corresponding
one-hot label y for the pre-trained squeezing model. Throughout the synthesis process, the squeezing model
is frozen to recover the encoded information and ensure consistency and reliability in the generated data.
Let T (x) be the target training distribution from which the data synthesis process should ultimately learn
a function of desired trajectories, where T is a data transformation function to augment input samples to
various levels of difficulties. Following Bengio et al. (2009), a weight 0 ≤ Ws(x) ≤ 1 is defined and applied
to example x at stage s in the curriculum sequence. The training distribution Ds(x) is:

Ds(x) ∝Ws(x)T (x) ∀x (4)

In our scenario, since the varying difficulties are governed by the data transformation function T , we can
straightforwardly employ Ws(x) = 1 across all stages. Consequently, the training distribution solely depends
on T (x) and can be simplified as follows:

D(x) ∝ T (x) ∀x (5)

By integrating curriculum learning within the data synthesis phase, this procedure can be defined as:
Definition 1 (Curriculum Data Synthesis). In the data synthesis optimization, the corresponding sequence
of distributions D(x) will be a curriculum if there is an increment in the entropy of these distributions,
i.e., the difficulty of the transformed input samples escalates and becomes increasingly challenging for the
pre-trained model to predict as the training progresses.

6



Published in Transactions on Machine Learning Research (11/2024)

...

Crop(1)

Opt(1) Opt(2) ... Opt(S)

synthetic

× S times

initial image

Optimizer

synthetic
image

CurriculumCrop(2) Crop(S)

initial

...

...

Opt(s) Optimizer at step s

Figure 4: Illustration of global-to-local
data synthesis. This figure shows our spe-
cific curriculum procedure in data synthe-
sis to provide a comprehensive overview
of our dataset distillation framework. It
starts with a large area (single bounding-
box in each step) to optimize the image,
building a better initialization, and then
gradually narrows down the image area
of learning process so that it can focus
on more detailed areas.

Thus, the key for our curriculum data synthesis becomes how
to design T (x) across different training iterations. The follow-
ing section discusses several strategies to construct this in the
curriculum scheme.
Baseline: Constant Learning (CTL). This is the regular
training method where all training examples are typically treated
equally. Each sample from the training dataset has an equal
chance of being transformed in a given batch, assuming no diffi-
culty imbalance or biases across different training iterations.
CTL is straightforward to implement since we do not have to
rank or organize examples based on difficulty. In practice, we use
RandomResizedCrop to crop a small region via current crop ratio
randomly sampled from a given interval [min_crop, max_crop]
and then resize the cropped image to its original size, formulated
as follows:

xT ←RandomResizedCrop(xs, min_crop = αl, max_crop = αu)
(6)

where αl and αu are the constant lower and upper bounds of crop
scale.
Curriculum Learning (CL). As shown in Algorithm 1, in our
CL, data samples are organized based on their difficulty. The
difficulty level of the cropped region can be managed by defining
the lower and upper scopes for the area ratio of the crop. This en-
ables the assurance that specific crops of the image (small details
or broader context) are included in the cropped region. For the
difficulty adjustment, the rate at which more difficult examples
are introduced and the criteria used to define difficulty are adjusted dynamically as predetermined using the
following schedulers.

0 100
Distillation progress (%)

0.08

1

Cr
op

 ra
tio

Constant

0 milestone 100
Distillation progress (%)

Step Linear Cosine

u

l

Figure 5: Crop ratio schedulers of prior CTL solu-
tion (left) and our Global-to-local (right) enabled by
curriculum. The colored regions depict the random
sampling intervals for the crop ratio value in each
iteration under different schedulers.

Step. Step scheduler reduces the minimal scale by a
factor for every fixed or specified number of iterations,
as shown in Figure 5 right.
Linear . Linear scheduler starts with a high initial
value and decreases it linearly by a factor γ to a min-
imum value over the whole training.
Cosine. Cosine scheduler modulates the distribution
according to the cosine function of the current itera-
tion number, yielding a smoother and more gradual
adjustment compared to step-based methods.
As shown in Figure 5, the factor distribution manages
the difficulty level of crops with adjustable αu and αl

for CTL and milestone for CL.

Data Synthesis by Recovering and Relabeling.
After receiving the transformed input xT , we update it by aligning between the final classification label and
intermediate Batch Normalization (BN) statistics, i.e., mean and variance from the original data. This stage
forces the synthesized images to capture a shape of the original image distribution. The learning goal for
this stage can be formulated as follows:

x′
T = arg min ℓ (ϕθ (xT ) , y) +Rreg (7)

where ϕθ is the pre-trained squeezing model and will be frozen in this stage. During synthesis, only the input
crop area will be updated by the gradient from the objective. The entire training procedure is illustrated in
Figure 4. After synthesizing the data, we follow the relabeling process in SRe2L to generate soft labels using
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Algorithm 1: Our CDA via RandomResizedCrop
Input: squeezed model ϕθ, recovery iteration S, curriculum milestone T , target label y, default lower

and upper bounds of crop scale βl and βu in RandomResizedCrop, decay of lower scale bound γ
Output: synthetic image x
Initialize: x0 from a standard normal distribution
for step s from 0 to S-1 do

if s ≤ T then

α←


βu if step
βl + γ ∗ (βu − s/T ) if linear
βl + γ ∗ (βu + cos (π ∗ s/T )) /2 if cosine

else
α← βl

end
xT ← RandomResizedCrop(xs, min_crop = α, max_crop = βu)
x′

T ← xT is optimized w.r.t ϕθ and y in Eq. 7.
xs+1 ← ReverseRandomResizedCrop(xs, x′

T )
end
return x← xS

FKD (Shen & Xing, 2022) with the integration of the small batch size setting for post-training. Rreg is the
regularization term used in Yin et al. (2023), its detailed formulation using channel-wise mean and variance
matching is:

Rreg (x′) =
∑

k

∥µk (x′)− E (µk | Do)∥2 +
∑

k

∥∥σ2
l (x′)− E

(
σ2

k | Do

)∥∥
2

≈
∑

k

∥∥µk (x′)−BNRM
k

∥∥
2 +

∑
k

∥∥σ2
k (x′)−BNRV

k

∥∥
2

(8)

where k is the index of BN layer, µk (x′) and σ2
k (x′) are the channel-wise mean and variance in current

batch data. BNRM
k and BNRV

k are mean and variance in the pre-trained model at k-th BN layer, which are
globally counted.
Advantages of Global-to-local Synthesis. The proposed CDA enjoys several advantages: (1) Stabilized
training: Curriculum synthesis can provide a more stable training process as it reduces drastic loss fluctu-
ations that can occur when the learning procedure encounters a challenging sample early on. (2) Better
generalization: By gradually increasing the difficulty, the synthetic data can potentially achieve better gener-
alization on diverse model architectures in post-training. It reduces the chance of the synthesis getting stuck
in poor local minima early in the training process. (3) Avoid overfitting: By ensuring that the synthetic data
is well-tuned on simpler examples before encountering outliers or more challenging data, there is a potential
to reduce overfitting. Specifically, better generalization here refers to the ability of models trained on the
distilled datasets to perform well across a wider range of evaluation scenarios. However, avoiding overfitting
particularly refers to our curriculum strategy during the distillation process, where we use a flexible region
update in each iteration to prevent overfitting that could occur with a fixed region update.

4 Experiments

4.1 Datasets and Implementation Details

We verify the effectiveness of our approach on small-scale CIFAR-100 and various ImageNet scale datasets,
including Tiny-ImageNet (Le & Yang, 2015), ImageNet-1K (Deng et al., 2009), and ImageNet-21K (Ridnik
et al., 2021). For evaluation, we train models from scratch on synthetic distilled datasets and report the
Top-1 accuracy on real validation datasets. Default lower and upper bounds of crop scales βl and βu are 0.08
and 1.0, respectively. The decay γ is 0.92. In Curriculum Learning (CL) settings, the actual lower bound
is dynamically adjusted to control difficulty, whereas the upper bound is fixed to the default value of 1.0 to
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Table 1: Comparison with state-of-the-art methods on various datasets.

Dataset CIFAR-100 Tiny-ImageNet ImageNet-1K ImageNet-21K
IPC 10 50 10 50 100 10 50 100 200 10 20
Ratio (%) 2 10 2 10 20 0.8 4 8 16 0.8 1.6
DM 29.7±0.3 43.6±0.4 12.9±0.4 24.1±0.3 - 5.7±0.1 11.4±0.9 - - - -
DSA 32.3±0.3 42.8±0.4 - - - - - - - - -
FRePo 42.5±0.2 44.3±0.2 25.4±0.2 - - - - - - - -
MTT 39.7±0.4 47.7±0.2 23.2±0.2 28.0±0.3 - - - - - - -
DataDAM 34.8±0.5 49.4±0.3 18.7±0.3 28.7±0.3 - 6.3±0.0 15.5±0.2 - - - -
TESLA 41.7±0.3 47.9±0.3 - - - 17.8±1.3 27.9±1.2 - - - -
DATM 47.2±0.4 55.0±0.2 31.1±0.3 39.7±0.3 - - - - - - -
Full Dataset1 79.1 61.2 69.8 38.5
SRe2L 23.5±0.8 51.4±0.8 17.7±0.7∗ 41.1±0.4 49.7±0.3 21.3±0.6∗ 46.8±0.2 52.8±0.4 57.0±0.3 18.5±0.2∗ 21.8±0.1∗

CDA (Ours) 49.8±0.6 64.4±0.5 21.3±0.3 48.7±0.1 53.2±0.1 33.5±0.3 53.5±0.3 58.0±0.2 63.3±0.2 22.6±0.2 26.4±0.1
∗ Replicated experiment results are marked with ∗, while the other baseline results are referenced from original papers.
1 The full dataset results refer to Top-1 val accuracy achieved by a ResNet-18 model trained on the full dataset, the architecture is
the same as SRe2L and our CDA.

ensure there is a probability of cropping and optimizing the entire image in any progress. More details are
provided in the Appendix B.

4.2 CIFAR-100

Table 2: Comparison on CIFAR-100.
CIFAR-100 (IPC) DC DSA DM MTT SRe2L Ours

1 12.8 13.9 11.4 24.3 – 13.4
10 25.2 32.3 29.7 40.1 – 49.8
50 – 42.8 43.6 47.7 49.4 64.4

Result comparisons with baseline meth-
ods, including DM (Zhao & Bilen, 2023),
DSA (Zhao & Bilen, 2021), FRePo (Zhou
et al., 2022), MTT (Cazenavette et al., 2022b),
DataDAM (Sajedi et al., 2023), TESLA (Cui
et al., 2023), DATM (Guo et al., 2024), and
SRe2L (Yin et al., 2023) on CIFAR-100 are presented in Table 2 and Table 1. Our model is trained with an
800ep budget. It can be observed that our CDA validation accuracy outperforms all baselines under 10 and
50 IPC. And our reported results have the potential to be further improved as training budgets increase.
Overall, our CDA method is also applicable to small-scale dataset distillation.

4.3 Tiny-ImageNet

Results on the Tiny-ImageNet dataset are detailed in the second group of Table 1 and the first group of
Table 4. Our CDA outperforms all baselines except DATM under 10 IPC. Compared to SRe2L, our CDA
achieves average improvements of 7.7% and 3.4% under IPC 50 and IPC 100 settings across ResNet-{18,
50, 101} validation models, respectively. Importantly, CDA stands as the inaugural approach to diminish the
Top-1 accuracy performance disparity to less than 10% between the distilled dataset employing IPC 100 and
the full Tiny-ImageNet, signifying a breakthrough on this dataset.

4.4 ImageNet-1K

Table 3: Constant learning result. αl and αu stand for the min_crop and max_crop parameters in Random-
ResizedCrop. ‡ represents the results from SRe2L implementation but following the setting in the table.

Constant learning type \ α 0.08 0.2 0.4 0.6 0.8 1.0
Easy (αl = α, αu = βu (1.0)) 44.90‡ 47.88 46.34 45.35 43.48 41.30
Hard (αl = βl (0.08), αu = α) 22.99 34.75 42.76 44.61 45.76 44.90‡

Constant Learning (CTL). We leverage a ResNet-18 and employ synthesized data with 1K recovery
iterations. As observed in Table 3, the results for exceedingly straightforward or challenging scenarios fall
below the reproduced SRe2L baseline accuracy of 44.90%, especially when α ≥ 0.8 in easy and α ≤ 0.4 in
hard type. Thus, the results presented in Table 3 suggest that adopting a larger cropped range assists in
circumventing extreme scenarios, whether easy or hard, culminating in enhanced performance. A noteworthy
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Table 4: Comparison with baseline on various datasets.

Dataset IPC ResNet-18 ResNet-50 ResNet-101
SRe2L Ours SRe2L Ours SRe2L Ours

Tiny-IN 50 41.1 48.7↑7.6 42.2 49.7↑7.5 42.5 50.6↑8.1

100 49.7 53.2↑3.5 51.2 54.4↑3.2 51.5 55.0↑3.5

IN-1K
50 46.8 53.5↑6.7 55.6 61.3↑5.7 57.6 61.6↑4.0

100 52.8 58.0↑5.2 61.0 65.1↑4.1 62.8 65.9↑3.1

200 57.0 63.3↑6.3 64.6 67.6↑3.0 65.9 68.4↑2.5

IN-21K 10 18.5 22.6↑4.1 27.4 32.4↑5.0 27.3 34.2↑6.9

20 21.8 26.4↑4.6 31.3 35.3↑4.0 33.2 36.1↑2.9

observation is the crucial role of appropriate lower and upper bounds for constant learning in boosting
validation accuracy. This highlights the importance of employing curriculum data augmentation strategies
in data synthesis.
Curriculum Learning (CL). We follow the recovery recipe of SRe2L’s best result for 4K recovery iterations.
As illustrated in Table 1 and the second group of Table 4, when compared to the strong baseline SRe2L,
CDA enhances the validation accuracy, exhibiting average margins of 6.1%, 4.3%, and 3.2% on ResNet-{18,
50, 101} across varying IPC settings. Furthermore, as shown in Figure 1, the results achieve with our CDA
utilizing merely 1K recovery iterations surpass those of SRe2L encompassing the entire 4K iterations. These
results substantiate the efficacy and effectiveness of applying CDA in large-scale dataset distillation.

4.5 ImageNet-21K

Pre-training Results. Table 21 of the Appendix presents the accuracy for ResNet-18 and ResNet-50 on
ImageNet-21K-P, considering varying initial weight configurations. Models pre-trained by us and initial-
ized with ImageNet-1K weight exhibit commendable accuracy, showing a 2.0% improvement, while models
initialized randomly achieve marginally superior accuracy. We utilize these pre-trained models to recover
ImageNet-21K data and to assign labels to the synthetic images generated. An intriguing observation is the
heightened difficulty in data recovering from pre-trained models that are initialized randomly compared to
those initialized with ImageNet-1K weight. Thus, our experiments employ CDA specifically on pre-trained
models that are initialized with ImageNet-1K weight.
Validation Results. As illustrated in Table 1 and the final group of Table 4, we perform validation
experiments on the distilled ImageNet-21K employing IPC 10 and 20. This yields an extreme compression
ratio of 100× and 50×. When applying IPC 10, i.e., the models are trained utilizing a distilled dataset that
is a mere 1% of the full dataset. Remarkably, validation accuracy surpasses 20% and 30% on ResNet-18 and
ResNet-{50, 101}, respectively. Compared to reproduced SRe2L on ImageNet-21K, our approach attains
an elevation of 5.3% on average under IPC 10/20. This not only highlights the efficacy of our approach
in maintaining dataset essence despite high compression but also showcases the potential advancements in
accuracy over existing methods.

4.6 Ablations
Table 5: Applicability of our proposed method on SC-DD (Zhou et al., 2024a).

Method Tiny-ImageNet ImageNet-1K
SC-DD 45.5 53.1
SC-DD+Curriculum (Ours) 46.5↑1.0 54.0↑0.9

Applicability. Our method is designed to be applicable to general decoupled dataset distillation approaches.
To demonstrate this, we apply our approach to the self-supervised SC-DD (Zhou et al., 2024b). As shown in
Table 5, our method achieves 1.0 and 0.9 improvements on Tiny-ImageNet and ImageNet-1K, respectively.
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Curriculum Scheduler. To schedule the global-to-local learning, we present three distinct types of cur-
riculum schedulers, step, linear, and cosine to manipulate the lower bounds on data cropped augmentation.
As illustrated in Figure 5, the dataset distillation progress is divided into two phases by a milestone. It is
observed that both linear and cosine with continuous decay manifest robustness across diverse milestone
configurations and reveal a trend of enhancing accuracy performance when the milestone is met at a later
phase, as shown in Figure 6. Moreover, cosine marginally outperforms linear in terms of accuracy towards
the end. Consequently, we choose to implement the cosine scheduler, assigning a milestone percentage of
1.0, to modulate the minimum crop ratio adhering to the principles of curriculum learning throughout the
progression of synthesis.

10 20 30 40 50 60 70 80 90 100
Milestone Percentage (%)

41
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43
44
45
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47
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Figure 6: Ablation study on three different schedulers with varied milestone settings. Each number is
obtained by averaging repeated experiments with three different seeds. The figure shows that the difference
between linear and cosine schedulers is marginal and the best result for linear is at the milestone of 90%
while the cosine scheduler performs similarly or better in the end. To avoid manually setting the milestone
percentage for the linear scheduler, we adopt the cosine scheduler with a milestone percentage of 100% in
our experiments.

Batch Size in Post-training. We perform an ablation study to assess the influence of utilizing smaller
batch sizes on the generalization performance of models when the synthetic data is limited. We report results
on the distilled ImageNet-21K from ResNet-18. In Table 6, a rise in validation accuracy is observed as batch
size reduces, peaking at 16. This suggests that smaller batch sizes enhance performance on small-scale
synthetic datasets. However, this leads to more frequent data loading and lower GPU utilization in our case,
extending training times. To balance training time with performance, we chose a batch size of 32 for our
experiments.

4.7 Analysis

Table 6: Ablation on
batch size in validation.
Batch Size Acc. (%)

128 20.79
64 21.85
32 22.54
16 22.75
8 22.41

Cross-Model Generalization. The challenge of ensuring distilled datasets gen-
eralize effectively across models unseen during the recovery phase remains signifi-
cant, as in prior approaches (Zhao et al., 2020; Cazenavette et al., 2022a), synthetic
images were optimized to overfit the recovery model. In the first group of Table 7,
we deploy our ImageNet-1K distilled datasets to train various validation models,
and we attain over 60% Top-1 accuracy with most of these models. Additionally,
our performance in Top-1 accuracy surpasses that of SRe2L across all validation
models spanning various architectures. Although DeiT-Tiny is not validated with
a comparable Top-1 accuracy to other CNN models due to the ViT’s inherent
characteristic requiring more training data, CDA achieves double cross-model gen-
eration performance on the DeiT-Tiny validation model, compared with SRe2L. More validation models on
distilled ImageNet-1K are included in Table 19 of the Appendix. The second group of Table 7 supports
further empirical substantiation of the CDA’s efficacy in the distillation of large-scale ImageNet-21K datasets.
The results demonstrate that the CDA’s distilled datasets exhibit reduced dependency on specific recovery
models, thereby further alleviating the overfitting optimization issues.
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Table 7: Cross-model generation on distilled ImageNet-1K with 50 IPC and ImageNet-21K with 20 IPC.

Dataset Method Validation Model
R18 R50 R101 DenseNet-121 RegNet-Y-8GF ConvNeXt-Tiny DeiT-Tiny

IN-1K SRe2L 46.80 55.60 57.60 49.74 60.34 53.53 15.41
CDA (ours) 53.45 61.26 61.57 57.35 63.22 62.58 31.95

IN-21K SRe2L 21.83 31.26 33.24 24.66 34.22 34.95 15.76
CDA (ours) 26.42 35.32 36.12 28.66 36.13 36.31 18.56

Table 8: Classification accuracy using
MobileNet-V2.

Top-1 (%) Dataset
SRe2L CDA (ours) Real

global 79.34 81.25 82.16
cropped 87.48 82.44 72.73

Impact of Curriculum. To study the curriculum’s advantage on
synthetic image characteristics, we evaluate the Top-1 accuracy on
CDA, SRe2L and real ImageNet-1K training set, using a mean of ran-
dom 10-crop and global images. We employ PyTorch’s pre-trained
MobileNet-V2 to classify these images. As shown in Table 8, CDA im-
ages closely resemble real ImageNet images in prediction accuracies,
better than SRe2L. Consequently, curriculum data augmentation
improves global image prediction and reduces bias and overfitting
post-training on simpler, cropped images of SRe2L.

Figure 7: Synthetic ImageNet-21K images (Plant).

Visualization and Discussion. Figure 7 provides
a comparative visualization of the gradient synthetic
images at recovery steps of {100, 500, 1K, 2K} to
illustrate the differences between SRe2L and CDA
within the dataset distillation process. SRe2L im-
ages in the upper line exhibit a significant amount
of noise, indicating a slow recovery progression in
the early recovery stage. On the contrary, due to
the mostly entire image optimization in the early
stage, CDA images in the lower line can establish the
layout of the entire image and reduce noise rapidly.
And the final synthetic images contain more visual
information directly related to the target class Plant. Therefore, the comparison highlights CDA’s ability
to synthesize images with enhanced visual coherence to the target class, offering a more efficient recovery
process. More visualizations are provided in Appendix D.

Synthesis Cost. We highlight that there is no additional synthesis cost incurred in our CDA to SRe2L (Yin
et al., 2023) under the same recovery iteration setting. Specifically, for ImageNet-1K, it takes about 29 hours
to generate the distilled ImageNet-1K with 50 IPC on a single A100 (40G) GPU and the peak GPU memory
utilization is 6.7GB. For ImageNet-21K, it takes 11 hours to generate ImageNet-21K images per IPC on a
single RTX 4090 GPU and the peak GPU memory utilization is 15GB. In our experiment, it takes about 55
hours to generate the entire distilled ImageNet-21K with 20 IPC on 4× RTX 4090 GPUs in total. Selecting
representative real images for input data initialization instead of the Gaussian noise initialization will be an
effective way to further accelerate image distillation and reduce synthesis costs. It can potentially reduce the
number of recovery iterations required to achieve high-quality distilled data and this approach could lead to
faster convergence and lower synthesis costs. Nevertheless, we present our detailed training time on several
tested models, as shown in Table 9.

Table 9: Detailed training time on different models.
Model ResNet-18 ResNet-50 ResNet-101 DenseNet-121 RegNet-Y-8GF ConvNeXt-Tiny DeiT-Tiny
Training time (A100 GPU hours) 2.3 7.1 12.5 9.1 13.6 18.3 4.6

4.8 Application: Continual Learning

The distilled datasets, comprising high-semantic images, possess a boosted representation capacity compared
to the original datasets. This attribute can be strategically harnessed to combat catastrophic forgetting
in continual learning. We have further validated the effectiveness of our introduced CDA synthesis within
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various continual learning scenarios. Following the setting introduced in SRe2L (Yin et al., 2023), we
conducted 5-step and 10-step class-incremental experiments on Tiny-ImageNet, aligning our results against
the baseline SRe2L and a randomly selected subset on Tiny-ImageNet for comparative analysis. As illustrated
in Figure 8, our CDA distilled dataset notably surpasses SRe2L, exhibiting an average advantage of 3.8% and
4.5% on 5-step and 10-step class-incremental learning assignments respectively. This demonstrates the
substantial benefits inherent in the generation of CDA, particularly in mitigating the complexities associated
with continual learning.
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Figure 8: 5/10-step class-incremental learning on Tiny-IN.

5 Conclusion

We presented a new framework focused on global-to-local gradient refinement through curriculum data syn-
thesis for large-scale dataset distillation. Our approach involves a practical paradigm with detailed pertaining
for compressing knowledge, data synthesis for recovery, and post-training recipes. The proposed approach
enables the distillation of ImageNet-21K to 50× smaller while maintaining competitive accuracy levels. In
regular benchmarks, such as ImageNet-1K and CIFAR-100, our approach also demonstrated superior per-
formance, surpassing prior state-of-the-art methods by substantial margins. We further show the capability
of our synthetic data on downstream tasks of cross-model generalization and continual learning. With the
recent substantial growth in the size of both models and datasets, the critical need for dataset distillation on
large-scale datasets and models has become increasingly prominent and urgent. Our future work will focus
on distilling more modalities like language and speech.

Limitations. Our proposed approach is robust to generate informative images, while we also clarify that the
quality of our generated data is not comparable to the image quality achieved by state-of-the-art generative
models on large-scale datasets. This difference is expected, given the distinct goals of dataset distillation
versus generative models. Generative models aim to synthesize highly realistic images with detailed features,
whereas dataset distillation methods focus on producing images that capture the most representative infor-
mation possible for efficient learning in downstream tasks. Realism is not the primary objective in dataset
distillation.
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Appendix

A Datasets Details
We conduct experiments on three ImageNet scale datasets, Tiny-ImageNet (Le & Yang, 2015), ImageNet-
1K (Deng et al., 2009), and ImageNet-21K (Ridnik et al., 2021). The dataset details are as follows:

• CIFAR-100 dataset composes 500 training images per class, each with a resolution of 32×32 pixels, across
100 classes.

• Tiny-ImageNet dataset is derived from ImageNet-1K and consists of 200 classes. Within each category,
there are 500 images with a uniform 64×64 resolution.

• ImageNet-1K dataset comprises 1,000 classes and 1,281,167 images in total. We resize all images into
standard 224×224 resolution during the data loading stage.

• The original ImageNet-21K dataset is an extensive visual recognition dataset containing 21,841 classes
and 14,197,122 images. We use ImageNet-21K-P (Ridnik et al., 2021) which utilizes data processing to
remove infrequent classes and resize all images to 224×224 resolution. After data processing, ImageNet-
21K-P dataset consists of 10,450 classes and 11,060,223 images.

B Implementation Details

B.1 CIFAR-100

Hyper-parameter Setting. We train a modified ResNet-18 model (He et al., 2020) on CIFAR-100 training
data with a Top-1 accuracy of 79.1% using the parameter setting in Table 10a. The well-trained model serves
as the recovery model under the recovery setting in Table 10b.

Table 10: Hyper-parameter settings on CIFAR-100.

(a) Squeezing/validation setting.

config value
optimizer SGD
base learning rate 0.1
momentum 0.9
weight decay 5e-4
batch size 128 (squeeze) / 8 (val)
learning rate schedule cosine decay
training epoch 200 (squeeze) / 800 (val)
augmentation RandomResizedCrop

(b) Recovery setting.

config value
αBN 0.01
optimizer Adam
base learning rate 0.25
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovery iteration 1,000
augmentation RandomResizedCrop

Due to the low resolution of CIFAR images, the default lower bound βl needs to be raised from 0.08 (ImageNet
setting) to a higher reasonable value in order to avoid the training inefficiency caused by extremely small
cropped areas with little information. Thus, we conducted the ablation to select the optimal value for the
default lower bound βl in RandomResizedCrop operations in Table 11. We choose 0.4 as the default lower
bound βl in Algorithm 1 to exhibit the best distillation performance on CIFAR-100. We adopt a small batch
size value of 8 and extend the training budgets in the following validation stage, which aligns with the strong
training recipe on inadequate datasets.

Table 11: Ablation on the lower bound βl setting in distilling CIFAR-100.

default lower bound βl 0.08 0.2 0.4 0.6 0.8 1.0
validation accuracy (800ep) (%) 58.5 62.14 64.0 63.36 61.65 54.43
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B.2 Tiny-ImageNet

Hyper-parameter Setting. We train a modified ResNet-18 model (He et al., 2020) on Tiny-ImageNet
training data with the parameter setting in Table 12a and use the well-trained ResNet-18 model with a
Top-1 accuracy of 61.2% as a recovery model for CDA. The recovery setting is provided in Table 12b.

Table 12: Hyper-parameter settings on Tiny-ImageNet.

(a) Squeezing/validation setting.

config value
optimizer SGD
base learning rate 0.2
momentum 0.9
weight decay 1e-4
batch size 256 (squeeze) / 64 (val)
learning rate schedule cosine decay
training epoch 50 (squeeze) / 100 (val)
augmentation RandomResizedCrop

(b) Recovery setting.

config value
αBN 1.0
optimizer Adam
base learning rate 0.1
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovery iteration 4,000
augmentation RandomResizedCrop

Small IPC Setting Comparison. Table 13 presents the result comparison among our CDA, DM (Zhao &
Bilen, 2023) and MTT (Cazenavette et al., 2022b). Consider that our approach is a decoupled process of
dataset compression followed by recovery through gradient updating. It is well-suited to large-scale datasets
but less so for small IPC values. As anticipated, there is no advantage when IPC value is extremely low, such
as IPC = 1. However, when the IPC is increased slightly, our method demonstrates considerable benefits
on accuracy over other counterparts. Furthermore, we emphasize that our approach yields substantial
improvements when afforded a larger training budget, i.e., more training epochs.

Table 13: Comparison with baseline methods on Tiny-ImageNet.

Tiny-ImageNet IPC DM MTT CDA (200ep) CDA (400ep) CDA (800ep)
1 3.9 8.8 2.38 ± 0.08 2.82 ± 0.06 3.29 ± 0.26
10 12.9 23.2 30.41 ± 1.53 37.41 ± 0.02 43.04 ± 0.26
20 – – 43.93 ± 0.20 47.76 ± 0.19 50.46 ± 0.14
50 24.1 28.0 50.26 ± 0.09 51.52 ± 0.17 55.50 ± 0.18

Continual Learning. We adhere to the continual learning codebase outlined in Zhao et al. (2020) and val-
idate provided SRe2L and our CDA distilled Tiny-ImageNet dataset under IPC 100 as illustrated in Figure 8.
Detailed values are presented in the Table 14 and Table 15.

Table 14: 5-step class-incremental learning on Tiny-ImageNet. This complements details in the left subfigure
of Figure 8.

# class 40 80 120 160 200
SRe2L 45.60 48.71 49.27 50.25 50.27

CDA (ours) 51.93 53.63 53.02 52.60 52.15

Table 15: 10-step class-incremental learning on Tiny-ImageNet. This complements details in the right
subfigure of Figure 8.

# class 20 40 60 80 100 120 140 160 180 200
SRe2L 38.17 44.97 47.12 48.48 47.67 49.33 49.74 50.01 49.56 50.13

CDA (ours) 44.57 52.92 54.19 53.67 51.98 53.21 52.96 52.58 52.40 52.18
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B.3 ImageNet-1K

Hyper-parameter Settings. We employ PyTorch off-the-shelf ResNet-18 and DenseNet-121 with the
Top-1 accuracy of {69.8%, 74.4%} which are trained with the official recipe in Table 16a. And the recovery
settings are provided in Table 16c, and it is noteworthy that we tune and set distinct parameters αBN and
learning rate for different recovery models in Table 16d. Then, we employ ResNet-{18, 50, 101, 152} (He
et al., 2016), DenseNet-121 (Huang et al., 2017), RegNet (Radosavovic et al., 2020), ConvNeXt (Liu et al.,
2022b), and DeiT-Tiny (Touvron et al., 2021) as validation models to evaluate the cross-model generalization
on distilled ImageNet-1K dataset under the validation setting in Table 16b.

Table 16: Hyper-parameter settings on ImageNet-1K.

(a) Squeezing setting.

config value
optimizer SGD
base learning rate 0.1
momentum 0.9
weight decay 1e-4
batch size 256
lr step size 30
lr gamma 0.1
training epoch 90
augmentation RandomResizedCrop

(b) Validation setting.

config value
optimizer AdamW
base learning rate 1e-3
weight decay 1e-2
batch size 128
learning rate schedule cosine decay
training epoch 300
augmentation RandomResizedCrop

(c) Shared recovery setting.

config value
optimizer Adam
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
augmentation RandomResizedCrop

(d) Model-specific recovery setting.

config ResNet-18 DenseNet-121
αBN 0.01 0.01
base learning rate 0.25 0.5
recovery iteration 1,000 / 4,000 1,000

Histogram Values. The histogram data of ImageNet-1K comparison with SRe2L in Figure 1 can be
conveniently found in the following Table 17 for reference.

Table 17: ImageNet-1K comparison with SRe2L. This table complements details in Figure 1.

Method \Validation Model ResNet-18 ResNet-50 ResNet-101 DenseNet-121 RegNet-Y-8GF
SRe2L (4K) 46.80 55.60 57.59 49.74 60.34

Our CDA (1K) 52.88 60.70 61.10 57.26 62.94
Our CDA (4K) 53.45 61.26 61.57 57.35 63.22

To conduct the ablation studies efficiently in Table 3, Table 22 and Figure 6, we recover the data for 1,000
iterations and validate the distilled dataset with a batch size of 1,024, keeping other settings the same as
Table 16. Detailed values of the ablation study on schedulers are provided in Table 18.
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Table 18: Ablation study on three different schedulers with varied milestone settings. It complements details
in Figure 6.

Scheduler \ Milestone 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Step 45.46 46.08 46.65 46.75 46.87 46.13 45.27 44.97 42.49 41.18

Linear 45.39 46.30 46.59 46.51 46.60 47.18 47.13 47.37 48.06 47.78
Cosine 45.41 45.42 46.15 46.90 46.93 47.42 46.86 47.33 47.80 48.05

Cross-Model Generalization. To supplement the validation models on distilled ImageNet-1K in Table 7,
including more different architecture models to evaluate the cross-architecture performance. We have con-
ducted validation experiments on a broad range of models, including SqueezeNet, MobileNet, EfficientNet,
MNASNet, ShuffleNet, ResMLP, AlexNet, DeiT-Base, and VGG family models. These validation models are
selected from a wide variety of architectures, encompassing a vast range of parameters, shown in Table 19.
In the upper group of the table, the selected models are relatively small and efficient. There is a trend that
its validation performance improves as the number of model parameters increases. In the lower group, we
validated earlier models AlexNet and VGG. These models also show a trend of performance improvement
with increasing size, but due to the simplicity of early model architectures, such as the absence of residual
connections, their performance is inferior compared to more recent models. Additionally, we evaluated our
distilled dataset on ResMLP, which is based on MLPs, and the DeiT-Base model, which is based on trans-
formers. In summary, the distilled dataset created using our CDA method demonstrates strong validation
performance across a wide range of models, considering both architectural diversity and parameter size.

Table 19: ImageNet-1K Top-1 on cross-model generation. Our CDA dataset consists of 50 IPC.

Model SqueezeNet MobileNet EfficientNet MNASNet ShuffleNet ResMLP
#Params (M) 1.2 3.5 5.3 6.3 7.4 30.0
accuracy (%) 19.70 49.76 55.10 55.66 54.69 54.18
Model AlexNet DeiT-Base VGG-11 VGG-13 VGG-16 VGG-19
#Params (M) 61.1 86.6 132.9 133.0 138.4 143.7
accuracy (%) 14.60 30.27 36.99 38.60 42.28 43.30

B.4 ImageNet-21K

Hyper-parameter Setting. ImageNet-21K-P (Ridnik et al., 2021) proposes two training recipes to train
ResNet-{18, 50} models. One way is to initialize the models from well-trained ImageNet-1K weight and train
on ImageNet-21K-P for 80 epochs, another is to train models with random initialization for 140 epochs, as
shown in Table 20a. The accuracy metrics on both training recipes are reported in Table 21. In our
experiments, we utilize the pre-trained ResNet-{18, 50} models initialized by ImageNet-1K weight with the
Top-1 accuracy of {38.1%, 44.2%} as recovery model. And the recovery setting is provided in Table 20c.
Then, we evaluate the quality of the distilled ImageNet-21K dataset on ResNet-{18, 50, 101} validation
models under the validation setting in Table 20b. To accelerate the ablation study on the batch size setting
in Table 6, we train the validation model ResNet-18 for 140 epochs.

C Reverse Curriculum Learning

Reverse Curriculum Learning (RCL). We use a reverse step scheduler in the RCL experiments, starting
with the default cropped range from βl to βu and transitioning at the milestone point to optimize the whole
image, shifting from challenging to simpler optimizations. Other settings follow the recovery recipe on
ResNet-18 for 1K recovery iterations. Table 22 shows the RCL results, a smaller step milestone indicates an
earlier difficulty transition. The findings reveal that CRL does not improve the generated dataset’s quality
compared to the baseline SRe2L, which has 44.90% accuracy.
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Table 20: Hyper-parameter settings on ImageNet-21K.

(a) Squeezing setting.

config value
optimizer Adam
base learning rate 3e-4
weight decay 1e-4
batch size 1,024
learning rate schedule cosine decay
label smooth 0.2
training epoch 80/140
augmentation CutoutPIL,

RandAugment

(b) Validation setting.

config value
optimizer AdamW
base learning rate 2e-3
weight decay 1e-2
batch size 32
learning rate schedule cosine decay
label smooth 0.2
training epoch 300
augmentation CutoutPIL,

RandomResizedCrop
(c) Recovery setting.

config value
αBN 0.25
optimizer Adam
base learning rate 0.05 (ResNet-18), 0.1 (ResNet-50)
momentum β1, β2 = 0.5, 0.9
batch size 100
learning rate schedule cosine decay
recovery iteration 2,000
augmentation RandomResizedCrop

Table 21: Accuracy of ResNet-{18, 50} on ImageNet-21K-P.

Model Initial Weight Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-18 (Ours) ImageNet-1K 38.1 67.2
Random 38.5 67.8

Ridnik et al. (2021) ImageNet-1K 42.2 72.0

ResNet-50 (Ours) ImageNet-1K 44.2↑2.0 74.6↑2.6

Random 44.5↑2.3 75.1↑3.1

Table 22: Ablation of reverse curriculum learning.

Step Milestone Accuracy (%)
0.2 41.38
0.4 41.59
0.6 42.60
0.8 44.39

D Visulization

We provide additional comparisons of four groups of visualizations on synthetic ImageNet-21K images at
recovery steps of {100, 500, 1,000, 1,500, 2,000} between SRe2L (upper) and CDA (lower) in Figure 9. The
chosen target classes are Benthos, Squash Rackets, Marine Animal, and Scavenger.

In addition, we present our CDA’s synthetic ImageNet-1K images in Figure 10 and ImageNet-21K images in
Figure 11 and Figure 12.
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Figure 9: Synthetic ImageNet-21K data visualization comparison.
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Figure 10: Synthetic ImageNet-1K data visualization from CDA.
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Figure 11: Synthetic ImageNet-21K data distilled from ResNet-18 by CDA.
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Figure 12: Synthetic ImageNet-21K data distilled from ResNet-50 by CDA.
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