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Abstract

In recommendation systems, implicit feedback data can be automatically recorded
and is more common than explicit feedback data. However, implicit feedback
poses two challenges for relevance prediction, namely (a) positive-unlabeled (PU):
negative feedback does not necessarily imply low relevance and (b) missing not
at random (MNAR): items that are popular or frequently recommended tend to
receive more clicks than other items, even if the user does not have a significant
interest in them. Existing methods either overlook the MNAR issue or fail to
account for the inherent mechanism of the PU issue. As a result, they may lead to
inaccurate relevance predictions or inflated biases and variances. In this paper, we
formulate the implicit feedback problem as a counterfactual estimation problem
with missing treatment variables. Prediction of the relevance in implicit feedback is
equivalent to answering the counterfactual question that “whether a user would click
a specific item if exposed to it?". To solve the counterfactual question, we propose
the Counterfactual Implicit Feedback (Counter-IF) prediction approach that divides
the user-item pairs into four disjoint groups, namely definitely positive (DP), highly
exposed (HE), highly unexposed (HU), and unknown (UN) groups. Specifically,
Counter-IF first performs missing treatment imputation with different confidence
levels from raw implicit feedback, then estimates the counterfactual outcomes
via causal representation learning that combines pointwise loss and pairwise loss
based on the user-item pairs stratification. Theoretically the generalization bound
of the learned model is derived. Extensive experiments are conducted on publicly
available datasets to demonstrate the effectiveness of our approach. The code is
available at https://github.com/zhouchuanCN/NeurIPS25-Counter-IF.

1 Introduction

Recommender systems are technical tools that analyze historical user behavioral data to predict their
preferences and actively provide personalized recommendations [1, 2, 3], which have been widely
applied to various fields, such as e-commerce, streaming video, and social media [4, 5, 6, 7]. There
are two types of feedback mechanisms in user behavioral data, including explicit feedback [8, 9, 10],
which refers to the explicit signals that users directly express their preferences, such as product
ratings. Implicit feedback [11], on the other hand, comes from the indirect interactions between users
and the system, including unstructured behavioral trajectories such as the length of time spent on the
page, clicks, and so on. Implicit feedback has a great advantage over explicit feedback in terms of
data acquisition [12, 5], as most user behaviors are implicit [13], which can be collected continuously
on a large scale and can reflect the potential user demand more promptly.

In implicit feedback recommendation, the goal is to infer the user’s true relevance or preference for an
item from their behavior data, i.e., to determine whether the user is likely to be interested in an item.
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However, this process faces two key challenges. The first one is the positive-unlabeld (PU) learning
problem [14, 15]. The system only observes a binary signal of whether the user clicks the item, but
the clicking behavior does not fully reflect user preferences. Specifically, the items not clicked on may
be attributed to user disinterest, or they may not even be exposed to the user. The second challenge is
that the feedback data is missing not at random (MNAR) [16, 17]. For example, items frequently
recommended tend to attract more clicks, even if the user does not have a substantial interest in them.
In recent years, studies have begun to notice that MNAR in implicit feedback data can introduce bias
into predictions, thus damaging the performance of the recommendation system [18, 19, 20].

In the development of implicit feedback recommendation, early approaches such as weighted matrix
factorization (WMF) [21], exposure perception matrix factorization (ExpoMF) [8] and Bayesian
personalized ranking (BPR) [13] are based on the key assumption that the observed feedbacks
directly reflect the true preferences, whereas unobserved feedbacks are uniformly treated as negative
samples or given low weights. However, early methods assume that the missing mechanism is
missing completely at random (MCAR), ignoring the MNAR nature of implicit data, leading to biased
relevance estimation [16]. Recent studies attempt to introduce causal techniques into implicit feedback
modeling, e.g., through counterfactual bias correction using propensity score [22, 23]. However, these
causal learning methods still have some drawbacks. The first one is that propensity models are prone
to be overly confident, generating extremely inaccurate propensity score estimation [24, 25, 26]. And
like any propensity-based method, the bias and variance of the estimator can be extremely large with
small propensity [27, 28], thus affecting the effectiveness of relevance prediction. The second one is
that existing causal recommendation methods for implicit feedback data usually use EM algorithms to
estimate the exposure propensity, but the intrinsic positive-unlabeled mechanism of implicit feedback
is neglected, which may hinder the model from accurately estimating the propensity.

In this paper we propose that implicit feedback recommendation can be addressed by answering the
counterfactual question: whether a user would click a specific item if exposed to it? To tackle this
problem, we formulate it as a counterfactual outcome prediction problem with missing treatment. Let
the feedback label be the outcome, and the exposure be the treatment. To answer the counterfactual
question, we actually need to estimate the potential outcome corresponding to the exposed treatment
group, with treatment of only the exposed group observed. Although there has been work dealing
with the MNAR problem with explicit feedback data [27, 29, 30, 31], and remarkably much more
work in the area of statistics estimating causal effects [32, 33], none of them could be applied to the
counterfactual problem formulated in this paper. That is because all previous causal methods require
the treatment to be observed for every sample in the dataset. However, this counterfactual problem
brings unique challenges with missing treatment.

To overcome these challenges, we propose the Counterfactual Implicit Feedback (Counter-IF)
method for estimating counterfactual outcomes in the presence of missing treatment variables in
implicit feedback scenarios. To uncover more information from negative samples based on the
positive-unlabeled nature, the Counter-IF consists of stratifying user-item pairs in implicit feedback.
Specifically, using the estimated confidence, we impute the exposure only for samples with high
confidence. Apart from the definitely positive (DP) samples group, we classify the negative samples
into three groups based on the different reasons leading to unclick: those with high probability of
being exposed (HE) tend to have low relevance and those with high probability of being unexposed
(HU) tend to have higher relevance than other unknown (UN) negative samples. Counter-IF also
includes a causal representation learning framework that combines pointwise and pairwise losses
based on the imputed treatments, leading to accurate counterfactual outcomes estimation.

The main contributions can be summarized as follows:

• We are the first to formalize the relevance prediction problem under implicit feedback
scenarios as a counterfactual outcome estimation problem with missing treatments.

• We propose a sample stratification algorithm in Counter-IF for implicit feedback using a
treatment variable imputation method with confidence, reflecting different mechanisms of
negative sample generation.

• We propose a causal representation learning framework in Counter-IF to answer the for-
malized counterfactual questions. We theoretically derive the generalization bound of our
causal learning model.

• We conduct extensive experiments on publicly available real-world datasets, demonstrating
the proposed Counter-IF significantly outperforms state-of-the-art methods.
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2 Problem Setup of Implicit Feedback

Let u ∈ U denote a user, i ∈ I be an item and D = U × I be the set of all user-item pairs.
The complete set consists of |U| × |I| user-item pairs. The recommender system observes only
the implicit feedback Yu,i ∈ {0, 1}, which passively captures whether the user u clicks the item
i. The feature of (u, i) is denoted as Xu,i. We divide all user-item pairs according to Yu,i, i.e.,
D1 = {(u, i) | (u, i) ∈ D, Yu,i = 1} and D0 = {(u, i) | (u, i) ∈ D, Yu,i = 0}. Due to the sparsity
of positive samples in implicit feedback data, we have |D1| ≪ |D0|. A positive feedback Yu,i = 1
directly implies that u and i are relevant. However, we are not certain whether a negative feedback
Yu,i = 0 indicates the item is irrelevant to the user since it depends on whether u is exposed to i.

We consider the exposure Ou,i as a treatment, with Ou,i = 1 meaning that the user u is exposed to
the item i and vice versa. Note that we cannot observe Ou,i for all the user-item pairs in D. Instead,
we can merely infer that for those (u, i) ∈ D1, the user u must be exposed to item i, thus Ou,i = 1.
However, for those (u, i) ∈ D0, Ou,i is unknown. To more clearly formulate the implicit feedback
problem, we introduce the true relevance score Su,i ∈ {0, 1}, with Su,i = 1 indicating that u and i
are relevant and vice versa. Following previous work [16], we assume in this paper that:

Yu,i = Ou,i · Su,i. (1)

Given Yu,i = 1, Ou,i = 1 for (u, i) ∈ D1 and Yu,i = 0 for (u, i) ∈ D0, we would like to predict Su,i

for all (u, i) ∈ D. Note that Equation (1) implies Yu,i = 1 ⇐⇒ Ou,i = 1 and Su,i = 1.

3 Methodology

3.1 Causal Formulation of Implicit Feedback

Table 1: The user-item pairs are divided into four
subgroups from a principal stratification perspec-
tive, named Definitely Positive group, Highly Ex-
posed group, Highly Unexposed group, and Un-
known group. The red font indicates that the value
is imputed.

Group O R Y Y (1)
Definitely Positive (DP) 1 1 1 1
Highly Exposed (HE) 1 1 0 0

Highly Unexposed (HU) 0 1 0 ?
Unknown (UN) ? 0 0 ?

The question we aim to answer in implicit feed-
back recommendation is “whether a user would
click a specific item if exposed to it”, a typical
counterfactual question. Therefore, it is logi-
cal to express it in causal terminology. In this
paper, we employ the potential outcome frame-
work. In our causal formulation, we let Ou,i

be the treatment, and Yu,i(1) be the potential
outcome of feedback if forcing Ou,i = 1, and
Yu,i(0) be the potential outcome of feedback
if we force Ou,i = 0. We require the consis-
tency assumption, which means that if u is ex-
posed to i, the observed outcome of feedback is
the potential outcome we aim to estimate, i.e.,
Yu,i = Ou,iYu,i(1) + (1 − Ou,i)Yu,i(0). We
also assume that the stable unit treatment value assumption (SUTVA) holds, i.e., there should be
only one form of exposure between u and i, and there is no interference between user-item pairs. In
addition, we assume that the unconfoundedness assumption holds, i.e., Yu,i(1) ⊥⊥ Ou,i|Xu,i. In the
recommendation scenario, this assumption implies that the intrinsic relevance between u and i is
independent of whether to expose u to i. Then on the one hand, by the consistency assumption we
have Ou,i = 0 ⇒ Yu,i = Yu,i(0). Meanwhile, by Equation (1), we have Ou,i = 0 ⇒ Yu,i = 0. As a
consequence, Yu,i(0) = 0 for (u, i) ∈ D. On the other hand, we have Ou,i = 1 ⇒ Yu,i = Yu,i(1)
and Ou,i = 1 ⇒ Yu,i = Su,i. Combining the two equations derived under the condition Ou,i = 1,
we have Yu,i(1) = Su,i for (u, i) ∈ D.

Therefore, we transform the estimation of Su,i into the estimation of Yu,i(1). In other words, we
formulate the implicit feedback problem as missing treatment counterfactual problem, where the
treatment assignments to the samples with negative feedback are unknown, and we aim to estimate
the potential outcomes Yu,i(1). With the consistency assumption, we can infer that the potential
outcome Yu,i(1) = 1 for (u, i) ∈ D1, since for these samples Yu,i = 1, we can infer Ou,i = 1, then
Yu,i(1) = Yu,i = 1. However, for (u, i) ∈ D0, we are not sure whether Ou,i = 1 or Ou,i = 0, so we
cannot directly infer the value of Yu,i(1) for this group of user-item pairs.
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Figure 1: Missing treatment imputation with different confidence level from implicit feedback.

3.2 Stratification of User-Item Pairs

For the purpose of counterfactual estimation, it is almost impossible to solely rely on the outcome
variables and a small portion of the treatment variables. So we, therefore, wanted to dig deeper
into the intrinsic mechanisms of the implicit feedback data to get more information about exposure.
Unlike previous methods that impute treatments using a consistent scheme for all samples in D, based
on the diversity of meanings of negative samples in implicit feedback, we consider imputation only
for those items the system is highly confident to recommend to a user. Specifically, we define a binary
indicator Ru,i ∈ {0, 1}, which reflects the confidence of the recommender system in assigning the
treatment. Ru,i = 1 means that the system is with high confidence, and Ru,i = 0 means that the
system is not confident about treatment assignment. We denote the estimated confidence as R̂u,i for
our treatment imputation model. For those with high confidence, we impute the treatment as the
predicted Ôu,i. Then based on (Ôu,i, R̂u,i, Yu,i), we divide all user-item pairs into four strata:

• Definitely Positive (DP) Group DDP : This group consists of user-item pairs with Yu,i(1) =
1, the imputation method should be definitely confident about the corresponding treatment
Ou,i = 1, meaning u has definitely been exposed to i. We have DDP = D1.

• For user-item pairs in D0, we further classify them into three categories, according to the
estimated confidence indicator R̂u,i and imputed treatment Ôu,i:

– Highly Exposed (HE) Group: The imputation method has high confidence that the
user is exposed to the item (R̂u,i = 1 and Ôu,i = 1), thus impute the treatment as 1,
meaning the user tend to be exposed to the item (Ou,i = 1). However, the observed
Yu,i = 0, which means that Yu,i(1) is likely to be 0.

– Highly Unexposed (HU) Group: The imputation method has high confidence that the
user is unexposed to the item (Ru,i = 1 and Ôu,i = 0), thus impute the treatment as 0.
Yu,i(1) is more likely to be 1 than other negative samples.

– Unknown (UN) Group: The imputation method has low confidence to assign treatment
(Ru,i = 0), so we do not impute for the sample (Ou,i =?), keeping its multiple
interpretation nature.

As Table 1 shows, we can infer the value of Yu,i(1) for the DP and HE groups, but not for the HU
and UN groups. For the DP group Yu,i(1) = Yu,i = 1. For the HE group, given the imputation is
accurate, we have Yu,i(1) = Yu,i = 0.

3.3 Treatment Imputation with Confidence

Intuitively, we expect the DP group, consisting of user-item pairs known to be exposed, and the
HE group, which includes user-item pairs for whom the system has high confidence that they are
exposed, to be close to each other in a specific feature space. On the other hand, the HU group,
composed of user-item pairs for whom the system is confident that are unexposed, should be far
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away from the exposed groups (HE & DP). The remaining users, whose exposure status remains
uncertain, form the Unknown group (UN), positioned between the positive and negative groups. To
divide users into the four subgroups, we propose a novel exposure estimation approach to impute the
treatments for solving the counterfactual problem, as shown in Figure 1. Inspired by support vector
domain description [34], we propose a novel treatment imputation method that utilizes the distance
requirement between the four groups to assign samples to groups. Specifically, with feature xu,i ∈ X
as the input, we enclose a proportion of α samples of DP within a hypersphere, where α ∈ (0, 1) is
a hyperparameter. Then we assign the negative samples within the hypersphere into the HE group.
Then the farthest β proportion of the negative samples is assigned to the HU group, where β ∈ (0, 1)
is another hyperparameter. The remaining negative samples go to the UN group.

Our treatment assignment method aims to encapsulate α proportion of positive samples within a
hypersphere defined by its center a and radius r. The optimization problem can be formulated as:

min
r,a,ϵ

F (r, a) = r2 + C
∑

(u,i)∈DDP

ϵu,i,

s.t. ∥xu,i − a∥2 ≤ r2 + ϵu,i, ϵu,i ≥ 0,∀(u, i) ∈ DDP ,

where r is the radius of the hypersphere, a is its center, and ϵu,i are slack variables that allow certain
user-item samples to lie outside the hypersphere.

To solve this optimization problem, we incorporate the Lagrange multipliers λu,i ≥ 0 and γu,i ≥ 0
for each constraint:

L = r2 + C
∑

(u,i)∈DDP

{
ϵu,i − λu,i

(
r2 + ϵu,i − (x2

u,i − 2axu,i + a2)
)
− γu,iϵu,i

}
.

Then, the dual optimization problem can be represented as:

max
λ

∑
(u,i)∈DDP

λu,i(xu,i · xu,i)−
∑

(u,i),(u′,i′)∈DDP

λu,iλu′,i′(xu,i · xu′,i′),

s.t. 0 ≤ λu,i ≤ C.

To handle non-linearity in the data, we apply a kernel function K(xu,i, xu′,i′), which implicitly maps
the input data into a higher-dimensional feature space. A commonly used kernel is the Gaussian
radial basis function (RBF) kernel, defined as:

K(xu,i, xu′,i′) = exp(−q∥xu,i − xu′,i′∥),

where q controls the width of the kernel and thus the smoothness of the decision boundary.

The squared distance of a sample x from the center of the hypersphere is computed as:

d2(x) = K(x, x)− 2
∑

(u,i)∈DDP

λu′,i′K(xu,i, x) +
∑

(u,i),(u′,i′)∈DDP

λu,iλu′,i′K(xu,i, xu′,i′).

And the squared radius of the hypersphere is d2(xv). where xv is a support vector.

Then, we find the smallest α and the largest β proportion of {d2(xu,i) | (u, i) ∈ D0}, and denote the
threshold as r1 and r2 respectively to classify D0 into the following groups:

(u, i) ∈ DHE if d2(xu,i) ≤ r1,

(u, i) ∈ DUN if r1 < d2(xu,i) ≤ r2,

(u, i) ∈ DHU if d2(xu,i) > r2.

3.4 Counterfactual Representations

After obtaining a stratification for the samples, we propose a causal representation learning method to
predict the relevance between users and items across D. When Ou,i = 1, indicating that the relevance
scores for samples in HE and DP groups are observed, we can use pointwise loss to train the model
based on the outcomes Y (1). This ensures that the model effectively fits the potential outcome. In
contrast, when the samples are not assigned the treatment group (i.e., Ou,i = 0, corresponding to
the UN and HU groups), we treat these unobserved interactions as counterfactual data and employ
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Figure 2: Representation learning framework through a counterfactual lens: exploring four strata of
implicit feedback.

pairwise loss to model the relative rankings. This approach enhances the capability of our model to
capture user-item relevance across all samples.

The user-item feature xu,i is transformed into the representation Φ(xu,i). The prediction model h is
then applied to the representation Φ(xu,i) to output the predicted interaction outcome h(Φ(xu,i)).

For DP and HE samples, we apply a pointwise cross-entropy loss. This ensures that the model
accurately predicts the relevance based on the observed data. Specifically, for the DP samples, where
Y (1) = 1, we have:

Lpoint(h(Φ(XDP )), 1) = − 1

|DDP |
∑

(u,i)∈DDP

log h(Φ(xu,i)).

While for the HE samples, where Y (1) = 0, the loss is defined as:

Lpoint(h(Φ(XHP )), 0) = − 1

|DHE |
∑

(u,i)∈DHE

log(1− h(Φ(xu,i))).

Therefore, the whole point loss is defined below:

L1 = Lpoint(h(Φ(XDP )), 1) + Lpoint(h(Φ(XHP )), 0).

For the unobserved interactions (i.e., Ou,i = 0, corresponding to XUN and XHU ), we use the
pairwise loss to model the ranking of the interaction outcomes. Specifically, the following pairwise
loss is applied to optimize the relative ranking between strata:

Lpair(h(Φ(X+)), h(Φ(X−))) =
1

|D+| · |D−|
∑

(u,i)∈D+,(j,k)∈D−

log(σ(h(Φ(xu,i)))− h(Φ(xj,k)),

where D+ and D− are the sets of positive samples and negative samples. The pairwise ranking loss
encourages the model to assign higher scores to positive samples over negative samples.

Specifically, we observe that the interaction probability for the HE group is significantly greater than
that for the UN group, while the interaction probability for the HU group is markedly lower than that
for the UN group. We apply the interaction probabilities among various user-item groups to establish
positive and negative sample pairs and obtain the counterfactual loss:

L2 = Lpair(h(Φ(XDP )), h(Φ(XHE)) + Lpair(h(Φ(XUN )), h(Φ(XHE)) + Lpair(h(Φ(XHU )), h(Φ(XUN )).

To mitigate distributional shifts between different strata of samples, we introduce Integral Probability
Metric (IPM) regularization. IPM ensures that the representations of samples with confidence (R = 1)
and samples that are not sure (R = 0) are aligned in the representation space. Furthermore, we also
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introduce regularization for R = 1, O = 0 and R = 1, O = 1 samples to ensure consistency. The
IPM regularization terms are defined as:

LIPM = IPMG(p
R=0
Φ , pR=1

Φ ) + IPMG(p
R=1,O=0
Φ , pR=1,O=1

Φ ).

By introducing IPM, we aim to ensure that the model learns representations that generalize well
across different sample distributions. The IPM is defined as:

IPMG(p, q) := sup
g∈G

∣∣∣∣∫
S

g(s)(p(s)− q(s)) ds

∣∣∣∣ ,
where p and q are two probability distributions, and G is a class of functions for which we seek to
optimize the difference in expectations.

The total loss for the model incorporates both pointwise and pairwise losses, addressing the observed
and unobserved interactions across different strata. The final relevance prediction model is trained by
minimizing the following loss:

Ltotal = λpointL1 + λpairL2 + LIPM.

3.5 Theoretical Analysis

We theoretically derive the generalization bound under our framework and show that minimizing the
proposed pointwise loss L1, pairwise loss L2, and IPM loss LIPM can effectively control the bound.
First, we introduce the following assumption to ensure the existence of the inverse representation:
Assumption 3.1 (Inverse Representation and Function Class [35]). The representation Φ : X → A
is a one-to-one function, with inverse Ψ. Let G be a family of functions g : A → Y . Assume there
exists a constant BΦ > 0, such that 1

BΦ
· (h ◦ Φ ◦Ψ(a)− Y (1))2 ∈ G.

Based on Assumption 3.1, we then derive the following generalization bound:
Theorem 3.2 (Generalization Bound). Under Assumption 3.1, the deviation between the estimated
relevance h(Φ(x)) and expected relevance m1(x) = E[Y (1) | X = x] averaging on all user-item
pairs has the upper bound:

Ex[(h(Φ(x))−m1(x))
2] ≤ Ex|r,o[(h(Φ(x))− Y (1))2 | R = 1, O = 1]︸ ︷︷ ︸

factual loss of the DP and HE groups

+ P(O = 0 | R = 1) ·BΦ · IPMG(p
R=1,O=0
Φ , pR=1,O=1

Φ )︸ ︷︷ ︸
distribution shift on O given R=1

+P(R = 0)︸ ︷︷ ︸
UN group

·BΦ · IPMG(p
R=0
Φ , pR=1

Φ )︸ ︷︷ ︸
distribution shift on R

− E[(Y (1)−m1(x))
2]︸ ︷︷ ︸

variance of potential outcome

.

In the above bound, the first term is the factual loss based on the true value of Y (1) of the DP and
HE groups, which can be controlled by minimizing the Lpoint and Lpair. The second and third terms
are the IPM distance measuring the distribution shift on O = 1 and O = 0 given R = 1 group and
distribution shift on R = 1 and R = 0 weighted by the proportion of HU group given R = 1 and
proportion of UN group P(R = 0), respectively. These IPM distance terms can also be effectively
controlled by minimizing the proposed LIPM. Intuitively, if P(R = 0) = 0, there is no need to control
the distribution shift on R. The last term measures the minimal variance of potential outcomes, which
is independent of the model selection. See Appendix A for the detailed proof.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the performance of unbiased recommendations, we utilize two real-world
datasets: Coat and Yahoo! R3. Each dataset includes both biased training data and an unbiased test
set. The Coat dataset contains 6,960 biased ratings and 4,640 unbiased ratings provided by 290 users
for 300 items, where each user rates 16 randomly selected items. The Yahoo! R3 dataset includes
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Table 2: Ranking performance on Yahoo and Coat. We bold the best results and underline the best
baseline. The results with * indicate p < 0.05 using the pairwise t-test with the best competitor.

Methods K=3 K=5 K=8
NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K

Y
ah

oo

ExpoMF 0.524 ± 0.008 0.581 ± 0.012 0.461 ± 0.008 0.588 ± 0.007 0.736 ± 0.010 0.509 ± 0.007 0.652 ± 0.005 0.912 ± 0.003 0.548 ± 0.006
WMF 0.538 ± 0.005 0.596 ± 0.006 0.470 ± 0.004 0.600 ± 0.005 0.755 ± 0.011 0.529 ± 0.004 0.663 ± 0.004 0.918 ± 0.004 0.561 ± 0.004
Rel-MF 0.534 ± 0.008 0.599 ± 0.009 0.465 ± 0.008 0.593 ± 0.007 0.749 ± 0.010 0.523 ± 0.007 0.653 ± 0.004 0.918 ± 0.003 0.555 ± 0.005
Rel-MF-du 0.540 ± 0.008 0.596 ± 0.008 0.478 ± 0.009 0.611 ± 0.007 0.756 ± 0.010 0.530 ± 0.009 0.668 ± 0.007 0.915 ± 0.009 0.557 ± 0.008
BPR 0.517 ± 0.003 0.574 ± 0.005 0.455 ± 0.003 0.581 ± 0.006 0.732 ± 0.011 0.502 ± 0.005 0.654 ± 0.004 0.905 ± 0.005 0.542 ± 0.004
UBPR 0.532 ± 0.005 0.592 ± 0.005 0.470 ± 0.005 0.596 ± 0.002 0.746 ± 0.007 0.517 ± 0.003 0.657 ± 0.002 0.913 ± 0.003 0.555 ± 0.004
UBPR-nclip 0.536 ± 0.008 0.597 ± 0.008 0.474 ± 0.009 0.597 ± 0.006 0.746 ± 0.010 0.522 ± 0.009 0.659 ± 0.007 0.914 ± 0.007 0.557 ± 0.008
UPL 0.546 ± 0.005 0.603 ± 0.011 0.483 ± 0.004 0.610 ± 0.004 0.759 ± 0.007 0.532 ± 0.005 0.668 ± 0.004 0.922 ± 0.007 0.568 ± 0.004
RecRec 0.545 ± 0.007 0.602 ± 0.004 0.484 ± 0.008 0.607 ± 0.004 0.757 ± 0.004 0.533 ± 0.006 0.669 ± 0.004 0.923 ± 0.008 0.570 ± 0.006
Ours 0.562∗ ± 0.007 0.624∗ ± 0.009 0.499∗ ± 0.007 0.625∗ ± 0.005 0.776∗ ± 0.008 0.547∗ ± 0.006 0.681∗ ± 0.004 0.930 ± 0.004 0.582∗ ± 0.005

C
oa

t

ExpoMF 0.324 ± 0.007 0.340 ± 0.010 0.256 ± 0.007 0.372 ± 0.006 0.459 ± 0.012 0.287 ± 0.007 0.428 ± 0.008 0.601 ± 0.008 0.315 ± 0.008
WMF 0.333 ± 0.016 0.322 ± 0.019 0.264 ± 0.015 0.369 ± 0.016 0.412 ± 0.020 0.294 ± 0.015 0.426 ± 0.016 0.610 ± 0.025 0.325 ± 0.015
RelMF 0.338 ± 0.013 0.344 ± 0.018 0.267 ± 0.010 0.385 ± 0.005 0.462 ± 0.012 0.304 ± 0.006 0.433 ± 0.008 0.614 ± 0.022 0.338 ± 0.006
RelMF-du 0.340 ± 0.016 0.332 ± 0.023 0.275 ± 0.013 0.374 ± 0.010 0.420 ± 0.014 0.307 ± 0.009 0.458 ± 0.015 0.640 ± 0.021 0.353 ± 0.012
BPR 0.324 ± 0.011 0.325 ± 0.018 0.265 ± 0.010 0.370 ± 0.010 0.433 ± 0.017 0.290 ± 0.008 0.445 ± 0.009 0.640 ± 0.017 0.335 ± 0.007
UBPR 0.343 ± 0.012 0.342 ± 0.018 0.269 ± 0.012 0.384 ± 0.009 0.451 ± 0.017 0.306 ± 0.009 0.449 ± 0.009 0.642 ± 0.023 0.339 ± 0.008
UBPR-nclip 0.335 ± 0.007 0.345 ± 0.013 0.261 ± 0.006 0.368 ± 0.011 0.430 ± 0.022 0.290 ± 0.009 0.445 ± 0.007 0.640 ± 0.012 0.335 ± 0.006
UPL-BPR 0.345 ± 0.009 0.343 ± 0.014 0.273 ± 0.009 0.377 ± 0.009 0.427 ± 0.025 0.302 ± 0.007 0.438 ± 0.009 0.615 ± 0.014 0.340 ± 0.008
RecRec 0.360 ± 0.008 0.365 ± 0.014 0.284 ± 0.005 0.392 ± 0.009 0.452 ± 0.019 0.314 ± 0.006 0.454 ± 0.007 0.629 ± 0.018 0.354 ± 0.004
Ours 0.368 ± 0.011 0.382∗ ± 0.012 0.296∗ ± 0.009 0.414∗ ± 0.012 0.478∗ ± 0.014 0.332∗ ± 0.009 0.473∗ ± 0.012 0.660 ± 0.021 0.369∗ ± 0.009

Table 3: Ablation study on the Yahoo and Coat datasets.

Methods K=3 K=5 K=8
NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K

Y
ah

oo

w/o Wass w/o Pair 0.546 ± 0.008 0.609 ± 0.009 0.483 ± 0.009 0.611 ± 0.007 0.765 ± 0.008 0.531 ± 0.009 0.668 ± 0.007 0.923 ± 0.009 0.566 ± 0.004
w/o Wass w/o Point 0.552 ± 0.007 0.615 ± 0.010 0.488 ± 0.006 0.616 ± 0.008 0.770 ± 0.008 0.536 ± 0.007 0.673 ± 0.006 0.927 ± 0.005 0.572 ± 0.005
w/o Pair 0.552 ± 0.009 0.615 ± 0.010 0.488 ± 0.008 0.616 ± 0.006 0.770 ± 0.009 0.536 ± 0.007 0.673 ± 0.007 0.927 ± 0.007 0.572 ± 0.006
w/o Point 0.554 ± 0.005 0.614 ± 0.007 0.491 ± 0.006 0.619 ± 0.007 0.774 ± 0.004 0.540 ± 0.007 0.675 ± 0.008 0.927 ± 0.006 0.575 ± 0.007
w/o Wass 0.558 ± 0.008 0.623 ± 0.010 0.494 ± 0.009 0.620 ± 0.009 0.771 ± 0.009 0.540 ± 0.008 0.676 ± 0.006 0.927 ± 0.005 0.576 ± 0.008
All 0.562 ± 0.007 0.624 ± 0.009 0.499 ± 0.007 0.625 ± 0.005 0.776 ± 0.008 0.547 ± 0.006 0.681 ± 0.004 0.930 ± 0.004 0.582 ± 0.005

C
oa

t

w/o Wass w/o Pair 0.362 ± 0.010 0.376 ± 0.010 0.280 ± 0.009 0.398 ± 0.011 0.477 ± 0.012 0.314 ± 0.008 0.450 ± 0.010 0.618 ± 0.019 0.347 ± 0.007
w/o Wass w/o Point 0.363 ± 0.009 0.378 ± 0.010 0.285 ± 0.009 0.399 ± 0.010 0.477 ± 0.013 0.319 ± 0.009 0.450 ± 0.011 0.609 ± 0.020 0.352 ± 0.009
w/o Pair 0.366 ± 0.011 0.366 ± 0.012 0.290 ± 0.008 0.412 ± 0.010 0.485 ± 0.015 0.327 ± 0.011 0.472 ± 0.013 0.646 ± 0.022 0.368 ± 0.009
w/o Point 0.361 ± 0.009 0.363 ± 0.010 0.289 ± 0.009 0.407 ± 0.010 0.484 ± 0.013 0.325 ± 0.009 0.455 ± 0.011 0.614 ± 0.021 0.356 ± 0.009
w/o Wass 0.364 ± 0.010 0.377 ± 0.011 0.281 ± 0.010 0.402 ± 0.012 0.478 ± 0.014 0.317 ± 0.010 0.468 ± 0.012 0.656 ± 0.020 0.357 ± 0.008
All 0.368 ± 0.011 0.382 ± 0.012 0.296 ± 0.009 0.414 ± 0.012 0.478 ± 0.014 0.332 ± 0.009 0.473 ± 0.012 0.660 ± 0.021 0.369 ± 0.009

311,704 biased ratings and 54,000 unbiased ratings from 15,400 users interacting with 1,000 items.
The positive samples are sparse, which is consistent with the real-world situation. We employed the
preprocessing steps following previous studies [23, 36], which can be seen in the Appendix B.

Evaluation Metrics and Details. We use three common metrics to evaluate implicit recommendation
systems: NDCG@k (Normalized Discounted Cumulative Gain), Recall@k, and MAP@k (Mean
Average Precision). DCG@k evaluates the ranking quality by giving more weight to relevant items
appearing earlier in the list. Recall@k measures how many relevant items are retrieved within the top
k recommendations. MAP@k calculates the mean precision across users, considering both relevance
and order. Results are presented for k = 3, k = 5, and k = 8.

Hyperparamter Tuning. For each dataset, the data was divided into training and test sets. A portion
of 10% from the training set was randomly selected to serve as the validation set for hyperparameter
tuning. Several key parameters were adjusted during this phase. The latent factor dimensions,
representing user-item interactions, were explored within the range of 100 to 300, while the L2
regularization term was fine-tuned between [10−7, 10−3] for all models, and the λpoint as well as λpair
are tuned in {0.01, 0.1, 1, 10, 100}.

Baselines. To achieve a comprehensive comparison, we consider the following methods as baselines:
WMF [1], ExpoMF [8], Rel-MF [16], Rel-MF-du [16], BPR [13], UBPR [23], UBPR-nclip [23],
UPL [37], and RecRec [36].

4.2 Performance Comparison

We evaluate the performance of our proposed method against several baseline approaches on multiple
datasets, as shown in Table 2. The results highlight several key findings. Traditional methods like BPR
and WMF show moderate performance but struggle with the PU and MNAR challenges in implicit
feedback. BPR misclassifies potential positives as negatives by assuming unobserved interactions
are negative, while WMF treats unobserved interactions as low-weight positives, failing to fully
address false negatives. Methods like ExpoMF and Rel-MF improve by modeling exposure and item
popularity, reducing bias. ExpoMF incorporates exposure variables but remains limited by traditional
matrix factorization, while Rel-MF leverages item popularity to estimate propensities, though it still
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Figure 3: Sensitivity analysis on the proportion of the HE group α and the proportion of the HU
group β for samples in D0.
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Figure 4: The sensitivity of balancing weight between pointwise and pairwise losses.

struggles with unobserved items. UBPR and UBPR-nclip extend BPR to address PU and MNAR
problems, with UBPR-nclip further reducing bias through a non-clipping estimator. UPL simplifies
pairwise learning, performing well in high-variance scenarios. Finally, ReCRec shows strong results
but is computationally intensive, limiting scalability. Despite improvements over simpler models,
these baselines still fail to fully address the challenges of implicit feedback. Our method outperforms
all baselines by explicitly modeling exposure and preference to address PU and MNAR issues. By
combining the proposed treatment imputation and balanced representation learning, our method leads
to more accurate predictions.

4.3 Ablation Study

We conduct ablation studies to validate the effectiveness of our model by examining the impact of
the Wasserstein distance (Wass), pairwise loss (Pair), and pointwise loss (Point). Table 3 shows
performance metrics (NDCG@K, Recall@K, MAP@K) on Yahoo and Coat datasets. Removing any
component degrades performance, as each addresses positive-unlabeled and MNAR challenges in
implicit feedback. Removing both Wass and Pair (w/o Wass w/o Pair) yields the lowest performance,
as the model cannot stratify negative samples or learn robust representations. Similarly, removing
Wass and Point (w/o Wass w/o Point) compromises the causal learning framework. Removing only
Pair (w/o Pair) or Point (w/o Point) also reduces performance, though less severely. Both losses
contribute uniquely: Pair improves ranking, while Point predicts click likelihood under exposure.
Removing only Wass (w/o Wass) degrades performance, as the model loses the ability to stratify
negative samples by exposure probability, crucial for distinguishing unclicked items due to low
relevance versus lack of exposure. In summary, the proposed model with all components (Wass, Pair,
Point) achieves the best performance, highlighting the importance of each in addressing implicit
feedback challenges and estimating counterfactual outcomes with missing treatments.

4.4 Sensitivity Analysis

Threshold and proportion. Figure 3 shows the sensitivity of the model’s performance on the
proportion of the HE group α and the proportion of the HU group β for samples in D0. With very
low or very high α, performance tends to degrade because the model potentially excludes relevant
samples or includes irrelevant samples. Similarly, an extreme β degrades the performance.

Coefficients of the loss function. As shown in Figure 4, we investigate the impact of the coefficients
λpair and λpoint for the pairwise and pointwise losses in the proposed model. We evaluate the effects
of varying these coefficients on NDCG@K, Recall@K, and MAP@K across the Yahoo! R3 and Coat
datasets. The results show that setting λpair and λpoint within a moderate range (e.g., 0.1, 1, or 10)
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leads to significant improvements in ranking accuracy and click prediction. Excessively large values
(e.g., 100) overemphasize either ranking or click prediction, degrading performance. Similarly, very
small values (e.g., 0.01) fail to leverage both losses effectively, resulting in poor performance. The
optimal performance is achieved when these coefficients are set to 1 or 10, striking a balance between
ranking accuracy and click likelihood prediction.

5 Related Work

5.1 Implicit Feedback

Early work solving the positive-unlabeled problems in implicit recommender systems includes
weighted matrix factorization (WMF), and some approaches like MF [1] downweight negative
samples uniformly, some reweight samples via user activities [38], and others use item popularity
to adjust weights [39]. Exposure models, such as ExpoMF [8] models exposure probabilities
based on item popularity and text topics, while other methods incorporate social or community
data [12, 40]. Most methods rely on pointwise loss, but pairwise loss (e.g., Bayesian personalized
ranking, BPR [13]) is better suited for ranking tasks by learning relative preferences. However, these
methods do not consider the implicit feedback in MNAR, thus may get biased relevance prediction.

Recently, there are some propensity-based methods proposed to address positive-unlabeled and
MNAR issues. Rel-MF [22] leverages item popularity for propensity estimation and solves MNAR
problem in implicit feedback, while joint learning approaches [41, 42] infer both propensity and
recommendation models. Methods using small unbiased datasets employ embedding alignment [6],
knowledge distillation [43], or meta-learning [44] to learn exposure/propensity models. For pairwise
loss, UBPR [23] proposed a debiased loss. However, the propensity models are prone to be overly
confident, generating extremely inaccurate propensity score estimation [25, 26, 45]. And the bias and
variance of the estimator can be extremely large with small propensity [27, 28].

5.2 Causal Recommendation

Causal recommendations refer to applying the causal frameworks [46, 47, 48] to predict the conversion
rates [49] and provide personalized recommendations [50, 51]. Compared with previous recommen-
dation methods, the causal recommendations can address various biases, including the confounding
bias [52, 53, 54], popularity bias [55], selection bias [18, 56, 57], and exposure bias [58], which
previous methods fail to address because they highly rely on the associations. Most of the methods are
based on inverse-propensity or doubly robust weighting [59, 60, 61]. Some studies propose to use the
same training and inference space with entire-space multi-task learning approaches [62, 63, 28, 64].
They jointly train the parameters to achieve better recommendation performance. More recent
works focus on counterfactual learning, which predicts the counterfactual outcomes for the user-item
pairs [65, 66, 67]. However, most of them cannot achieve individual-level counterfactual predictions.
[68] extends the above methods to perform individual counterfactual predictions. However, the
above methods are mainly applied in explicit feedback recommendations. It is impossible to directly
apply the above methods to the implicit feedback because it is challenging to determine whether an
observed negative user-item pair is irrelevant in implicit feedback recommender systems.

6 Conclusion

In this paper, we focus on the problem of inferring the true relevance or preference of a user in the
implicit feedback recommendation scenarios. Specifically, to the best of our knowledge, we are the
first paper to formalize the relevance prediction problem as a counterfactual outcome estimation
problem with missing treatments, which provides a novel approach to tackle this problem. Corre-
spondingly, we propose a sample stratification method, which uses a treatment variable imputation
method with feature similarity-based confidence, reflecting different mechanisms of negative sample
generation. In addition, we propose a balanced representation-based causal learning framework to
answer the formalized counterfactual questions and theoretically derive the generalization bound
of our causal learning model, showing that minimizing the proposed loss functions can effectively
control the bound. Extensive experiments on public benchmark datasets show the effectiveness of
our method. One potential limitation is that the method requires pre-specification of the distance
thresholds. Changing the framework to an end-to-end manner may further help improve performance.
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• It should be clear whether the error bar is the standard deviation or the standard error
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eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
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• If there are negative societal impacts, the authors could also discuss possible mitigation
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks in our paper.
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• The answer NA means that the paper poses no such risks.
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
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• The answer NA means that the paper does not use existing assets.
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has curated licenses for some datasets. Their licensing guide can help determine the
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method in this paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem

Assumption A.1 (Inverse Representation and Function Class [35]). The representation Φ : X → A
is a one-to-one function, with inverse Ψ. Let G be a family of functions g : A → Y . Assume there
exists a constant BΦ > 0, such that 1

BΦ
· (h ◦ Φ ◦Ψ(a)− Y (1))2 ∈ G.

Based on Assumption A.1, we then derive the following generalization bound:
Theorem A.2 (Generalization Bound). Under Assumption A.1, the deviation between the estimated
relevance h(Φ(x)) and expected relevance m1(x) = E[Y (1) | X = x] averaging on all user-item
pairs has the upper bound:
Ex[(h(Φ(x))−m1(x))

2] ≤ Ex|r,o[(h(Φ(x))− Y (1))2 | R = 1, O = 1]︸ ︷︷ ︸
factual loss of the DP and HE groups

+ P(O = 0 | R = 1) ·BΦ · IPMG(p
R=1,O=0
Φ , pR=1,O=1

Φ )︸ ︷︷ ︸
distribution shift on O given R=1

+P(R = 0)︸ ︷︷ ︸
UN group

·BΦ · IPMG(p
R=0
Φ , pR=1

Φ )︸ ︷︷ ︸
distribution shift on R

− E[(Y (1)−m1(x))
2]︸ ︷︷ ︸

variance of potential outcome

.

Proof. For simplicity, we define ϵ(x) = E[(h(Φ(x))− Y (1))2 | X = x] and ϵTotal = Ex[ϵ(x)] =
E[(h(Φ(x))− Y (1))2]. The target error that we would like to bound is ϵTarget := Ex[(h(Φ(x))−
m1(x))

2]. We will first derive the connection between the target error ϵTarget and the total error
ϵTotal. Consider the following conditional expectation:

E[(h(Φ(x))− Y (1))2 | X = x]

=E[((h(Φ(x))−m1(x)) + (m1(x)− Y (1)))2 | X = x]

=E[(h(Φ(x))−m1(x))
2 | X = x] + E[(m1(x)− Y (1))2 | X = x]

+ 2E[(h(Φ(x))−m1(x)) · (m1(x)− Y (1)) | X = x]

=E[(h(Φ(x))−m1(x))
2 | X = x] + E[(m1(x)− Y (1))2 | X = x].

Taking expectation w.r.t the distribution of X , we have:
ϵTotal

=Ex{E[(h(Φ(x))− Y (1))2 | X = x]}
=Ex{E[(h(Φ(x))−m1(x))

2 | X = x]}+ Ex{E[(m1(x)− Y (1))2 | X = x]}
=E[(h(Φ(x))−m1(x))

2] + E[(m1(x)− Y (1))2]

=ϵTarget + E[(m1(x)− Y (1))2]. (2)

Denoting L(x) = (h(Φ(x)) − Y (1))2, v0 = P (R = 0), ϵR=1 = Ex[ϵ(x) | R = 1] and ϵR=0 =
Ex[ϵ(x) | R = 0], we can decompose ϵTotal as follows:

ϵTotal

=Ex|r[ϵ(x) | R = 1]P (R = 1) + Ex|r[ϵ(x) | R = 0]P (R = 0)

=ϵR=1(1− v0) + ϵR=0v0

=ϵR=1 − ϵR=1v0 + ϵR=0v0

=ϵR=1 + v0(ϵ
R=0 − ϵR=1)

=ϵR=1 + v0

(∫
ϵ(x)p(x | R = 0)dx−

∫
ϵ(x)p(x | R = 1)dx

)
=ϵR=1 + v0

∫
ϵ(x)(p(x | R = 0)− p(x | R = 1))dx

=ϵR=1 + v0

∫
E[(h(Φ(x))− Y (1))2 | X = x](p(x | R = 0)− p(x | R = 1))dx

=ϵR=1 + v0

∫
L(x)(p(x|R = 0)− p(x|R = 1))dx. (3)
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Based on Assumption A.1, we have L(x)/BΦ = 1
BΦ

(h ◦Ψ ◦Ψ(a)− Y (1))2 ∈ G, and thus∫
L(x)(p(x|R = 0)− p(x|R = 1))dx

=BΦ

∫
L(x)

BΦ
(p(x|R = 0)− p(x|R = 1))dx

=BΦ

∫
L(Ψ(a))

BΦ
(p(a|R = 0)− p(a|R = 1))da

≤BΦ · sup
g∈G

|
∫

g(a)(pR=0
Φ (a)− pR=1

Φ (a))da|

=BΦ · IPMG(p
R=0
Φ , pR=1

Φ ). (4)

Combining Eq. (3) and Eq. (4), we have

ϵTotal ≤ ϵR=1 + v0 ·BΦ · IPMG(p
R=0
Φ , pR=1

Φ ). (5)

Next, we denote u0 = P (O = 0 | R = 1), ϵR=1,O=1 = Ex|r,o[ϵ(x) | R = 1, O = 1] and
ϵR=1,O=0 = Ex|r,o[ϵ(x) | R = 1, O = 0] and then decompose ϵR=1 as follows:

ϵR=1

=ϵR=1,O=1 · (1− u0) + ϵR=1,O=0 · u0

=ϵR=1,O=1 + u0 · (ϵR=1,O=0 − ϵR=1,O=1)

=ϵR=1,O=1 + u0

(∫
ϵ(x)p(x | R = 1, O = 0)dx−

∫
ϵ(x)p(x | R = 1, O = 1)dx

)
=ϵR=1,O=1 + u0

∫
ϵ(x)(p(x | R = 1, O = 0)− p(x | R = 1, O = 1))dx

=ϵR=1,O=1

+ u0

∫
E[(h(Φ(x))− Y (1))2 | X = x](p(x | R = 1, O = 0)− p(x | R = 1, O = 1))dx

=ϵR=1,O=1 + u0

∫
L(x)(p(x | R = 1, O = 0)− p(x | R = 1, O = 1))dx. (6)

Analogous to the derivation of Eq. (4), we have∫
L(x)(p(x | R = 1, O = 0)− p(x | R = 1, O = 1))dx

=BΦ

∫
L(x)

BΦ
(p(x | R = 1, O = 0)− p(x | R = 1, O = 1))dx

=BΦ

∫
L(Ψ(a))

BΦ
(p(a | R = 1, O = 0)− p(a | R = 1, O = 1))da

≤BΦ · sup
g∈G

|
∫

g(a)(pR=1,O=0
Φ (a)− pR=1,O=1

Φ (a))da|

=BΦ · IPMG(p
R=1,O=0
Φ , pR=1,O=1

Φ ). (7)

Combining Eq. (6) and Eq. (7), we have

ϵR=1 ≤ ϵR=1,O=1 + u0 ·BΦ · IPMG(p
R=1,O=0
Φ , pR=1,O=1

Φ ). (8)

Note that ϵR=1,O=1 = Ex|r,o[ϵ(x) | R = 1, O = 1] = Ex|r,o[(h(Φ(x))− Y (1))2 | R = 1, O = 1],
and combining the results of Eq. (2), Eq. (5) and Eq. (8), we complete the proof of the theorem.
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B Data Preprocess

All of the datasets used in this paper contain user ratings on an item as explicit feedback. So we
simulate the implicit feedback mechanism using the following data preprocessing pipeline.

1. Transform all ratings into relevance scores using the following formula:

γu,i = ϵ+ (1− ϵ)
2ru,i − 1

2rmax − 1
,

where ru,i denotes the rating for each user-item pair in the observed set O, and rmax is the
maximum rating. The parameter ϵ ∈ [0, 1] controls the noise level. Following the previous
studies [23, 36], we set ϵ = 0.1 for the training datasets and ϵ = 0 for the test datasets to
ensure unbiased evaluation.

2. Sample the binary relevance Su,i using Bernoulli sampling:

Su,i ∼ Bern(γu,i), ∀(u, i) ∈ O,

where Bern(·) denotes the Bernoulli distribution.
3. Define the exposure variable for all user-item pair (u, i) ∈ U × I:

Ou,i =

{
1 if item i is rated by user u,
0 if item i is not rated by user u.

4. Finally, we sample the binary outcome as the implicit feedback:

Yu,i =

{
Su,i if Ou,i = 1,

0 if Ou,i = 1.

Note that Su,i and Ou,i are unobservable in our setting and the training data is {(u, i, Yu,i) :
(u, i) ∈ U × I}.

C Efficient Alternatives of Kernel-Based Hypersphere Model

Although the kernel-based hypersphere model in Section 3.3 introduces O(m2) complexity with
m positive samples, we would like to emphasize that the calculation of the kernel function is only
one possible option; the core lies in the framework of treatment imputation with confidence. Here,
we provide two more efficient and scalable kernel function approximation methods, i.e., Random
Fourier Features (RFF) [69] and Nyström approximation [70] to replace the method in Section 3.3.
Experimental results on the Coat and Yahoo datasets are presented in 4, showing that regardless of
the kernel function calculation method adopted, the ranking performance is guaranteed.

Table 4: Ranking performance with efficient alternatives of kernel-based hypersphere model.

Methods K=3 K=5 K=8
NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K NDCG@K Recall@K MAP@K

Y
ah

oo Ours (SVDD) 0.562 ± 0.007 0.624 ± 0.009 0.499 ± 0.007 0.625 ± 0.005 0.776 ± 0.008 0.547 ± 0.006 0.681 ± 0.004 0.930 ± 0.004 0.582 ± 0.005
Ours (RFF) 0.578 ± 0.003 0.645 ± 0.005 0.513 ± 0.003 0.639 ± 0.003 0.790 ± 0.003 0.560 ± 0.003 0.693 ± 0.002 0.939 ± 0.002 0.585 ± 0.003
Ours (Nyström) 0.572 ± 0.007 0.637 ± 0.005 0.508 ± 0.008 0.634 ± 0.005 0.786 ± 0.004 0.555 ± 0.007 0.685 ± 0.006 0.925 ± 0.004 0.587 ± 0.007

C
oa

t Ours (SVDD) 0.368 ± 0.011 0.382 ± 0.012 0.296 ± 0.009 0.414 ± 0.012 0.478 ± 0.014 0.332 ± 0.009 0.473 ± 0.012 0.660 ± 0.021 0.369 ± 0.009
Ours (RFF) 0.361 ± 0.012 0.384 ± 0.022 0.282 ± 0.015 0.387 ± 0.005 0.454 ± 0.030 0.309 ± 0.010 0.468 ± 0.008 0.671 ± 0.036 0.360 ± 0.011
Ours (Nyström) 0.389 ± 0.011 0.390 ± 0.017 0.314 ± 0.012 0.427 ± 0.023 0.495 ± 0.038 0.347 ± 0.019 0.486 ± 0.015 0.653 ± 0.030 0.384 ± 0.013

D Experiments Compute Resources

We conduct all experiments on a server with 112-core Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz.
The server is equipped with a 512GB random access memory (RAM). To reproduce all the experi-
mental results including the baselines takes a few hours.
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