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ABSTRACT

This paper presents a new Convolutional Neural Network, named Contextual Con-
volutional Network, that capably serves as a general-purpose backbone for visual
recognition. Most existing convolutional backbones follow the representation-to-
classification paradigm, where representations of the input are firstly generated
by category-agnostic convolutional operations, and then fed into classifiers for
specific perceptual tasks (e.g., classification and segmentation). In this paper, we
deviate from this classic paradigm and propose to augment potential category mem-
berships as contextual priors in the convolution for contextualized representation
learning. Specifically, top-k likely classes from the preceding stage are encoded
as a contextual prior vector. Based on this vector and the preceding features, oft-
sets for spatial sampling locations and kernel weights are generated to modulate
the convolution operations. The new convolutions can readily replace their plain
counterparts in existing CNNs and can be easily trained end-to-end by standard
back-propagation without additional supervision. The qualities of Contextual Con-
volutional Networks make it compatible with a broad range of vision tasks and
boost the state-of-the-art architecture ConvNeXt-Tiny by 1.8% on top-1 accuracy
of ImageNet classification. The superiority of the proposed model reveals the po-
tential of contextualized representation learning for vision tasks. Code is available
at: https://github.com/liang4sx/contextual_cnnl

1 INTRODUCTION

Beginning with the AlexNet (Krizhevsky et al.| [2012)) and its revolutionary performance on the
ImageNet image classification challenge, convolutional neural networks (CNNs) have achieved
significant success for visual recognition tasks, such as image classification (Deng et al., [2009),
instance segmentation (Zhou et al.,[2017) and object detection (Lin et al.,[2014). Lots of powerful
CNN backbones are proposed to improve the performances, including greater scale (Simonyan
& Zisserman, [2014; Szegedy et al., 2015 [He et al.l 2016), more extensive connections (Huang
et al., 2017;[Xie et al.,|2017; Sun et al., 2019} |Yang et al., [2018), and more sophisticated forms of
convolution (Dai et al.| | 2017; Zhu et al., 2019} |Yang et al.|[2019). Most of these architectures follow
the representation-to-classification paradigm, where representations of the input are firstly generated
by category-agnostic convolutional operations, and then fed into classifiers for specific perceptual
tasks. Consequently, all inputs are processed by consecutive static convolutional operations and
expressed as universal representations.

In parallel, in the neuroscience community, evidence accumulates that human visual system integrates
both bottom-up processing from the retina and top-down modulation from higher-order cortical areas
(Rao & Ballard, [1999; [Lee & Mumford, [2003; [Friston) |2005). On the one hand, the bottom-up
processing is based on feedforward connections along a hierarchy that represents progressively
more complex aspects of visual scenes (Gilbert & Sigman, [2007). This property is shared with
the aforementioned representation-to-classification paradigm (Zeiler & Fergus} 2014; |Yamins et al.,
2014). On the other hand, recent findings suggest that the top-down modulation affects the bottom-up
processing in a way that enables the neurons to carry more information about the stimulus being
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(a) 3 x 3 contextual convolution (b) visualization of learned features

Figure 1: Left: Illustration of a 3 x 3 contextual convolution. Given preceding instance features
and top-k likely classes, sampling offsets and weight offsets are generated via non-linear layers.
These offsets are added to regular grid sampling locations and static kernel weights of a standard
convolution, respectively. Right: Grad-CAM visualization (Selvaraju et al., [2017) of the learned
features of ConvNeXt-T (Liu et al.,|2022)) and our model. Grad-CAM is used to interpret the learned
features by highlighting corresponding regions that discriminate the predicted class from other classes.

discriminated (Gilbert & Li,[2013). For example, recordings in the prefrontal cortex reveal that the
same neuron can be modulated to express different categorical representations as the categorical
context changes (e.g., from discriminating animals to discriminating cars) (Cromer et al.| [2010;
Gilbert & Li, 2013). Moreover, words with categorical labels (e.g., “chair’”’) can set visual priors
that alter how visual information is processed from the very beginning, allowing for more effective
representational separation of category members and nonmembers (Lupyan & Ward, 2013} Boutonnet
& Lupyan,|2015)). The top-down modulation can help to resolve challenging vision tasks with complex
scenes or visual distractors. This property is however not considered by recent CNN backbones yet.

Motivated by the top-down modulation with categorical context in the brain, we present a novel archi-
tecture, namely Contextual Convolutional Networks (Contextual CNN), which augments potential
category memberships as contextual priors in the convolution for representation learning. Specifically,
the top-k likely classes by far are encoded as a contextual vector. Based on this vector and preceding
features, offsets for spatial sampling locations and kernel weights are generated to modulate the
convolutional operations in the current stage (illustrated in Fig. [Ta). The sampling offsets enable free
form deformation of the local sampling grid considering the likely classes and the input instance,
which modulates where to locate information about the image being discriminated. The weight offsets
allow the adjustment of specific convolutional kernels (e.g. “edges” to “corners”), which modulates
how to extract discriminative features from the input image. Meanwhile, the considered classes are
reduced from k to m (m < k) and fed to the following stage for further discrimination. By doing
so, the following stage of convolutions is conditioned on the results of the previous, thus rendering
convolutions dynamic in a smart way.

The proposed contextual convolution can be used as a drop-in replacement for existing convolutions
in CNNs and trained end-to-end without additional supervision. Serving as a general-purposed
backbone, the newly proposed Contextual CNN is compatible with other backbones or methods
in a broad range of vision tasks, including image classification, video classification and instance
segmentation. Its performance surpasses the counterpart models by a margin of +1.8% top-1 accuracy
(with 3% additional computational cost) on ImageNet-1K (Deng et al.,[2009), +2.3% top-1 accuracy
on Kinetics-400 (Kay et al., 2017), +1.1% box AP and +1.0% mask AP on COCO (Lin et al., 2014),
demonstrating the potential of contextualized representation learning for vision tasks. The qualitative
results also reveal that Contextual CNN can take on selectivity for discriminative features according
to the categorical context, functionally analogous to the top-down modulation of the human brain. As
shown in Figure [Tb] the counterpart model presents high but wrong score for “boathouse” w.r.t. the
groundtruth class “pier” based on features of the oceanside house, which are shared across images of
both classes. In contrast, the proposed model predicts correctly by generating features of the long
walkway stretching from the shore to the water, which is a crucial cue to discriminate “pier” from
“boathouse”. We hope that Contextual CNN'’s strong performance on various vision problems can
promote the research on a new paradigm of convolutional backbone architectures.
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2 RELATED WORKS

Classic CNNs. The exploration of CNN architectures has been an active research area. VGG nets
(Simonyan & Zissermanl 2014) and GoogLeNet (Szegedy et al., 2015) demonstrate the benefits of
increasing depth. ResNets (He et al., |2016) verify the effectiveness of learning deeper networks
via residual mapping. Highway Network adopts a gating mechanism to adjust the routing of short
connections between layers. More recently, some works include more extensive connections to
further improve the capacity of CNNs. For example, DenseNet (Huang et al.l 2017) connects
each layer to every other layer. ResNeXt (Xie et al., [2017) aggregates a set of transformations via
grouped convolutions. SENet (Hu et al.l 2018)) recalibrates channel-wise feature response using
global information. HRNet (Wang et al.| [2020)) connects the high-to-low resolution convolution
streams in parallel. FlexConv (Romero et al.,|2022)) learns the sizes of convolutions from training data.
Other recent works improve the efficiency of CNNs by introducing depthwise separable convolutions
(Howard et al.,2017) and shift operation (Wu et al.,2018a).

Dynamic CNNs. Different from the classic CNNs, dynamic CNNs adapt their structures or parameters
to the input during inference, showing better accuracy or efficiency for visual recognition. One line
of work drops part of an existing model based on the input instance. For example, some works skip
convolutional layers on a per-input basis, based on either reinforcement learning (Wang et al., 2018}
Wu et al., 2018b) or early-exit mechanism (Huang et al., 2018)). The other line of work uses dynamic
kernel weights or dynamic sampling offsets for different inputs. Specifically, some works aggregate
multiple convolution kernels using attention (Yang et al., 2019; (Chen et al., 2020) or channel fusion
(L1 et all 2021). WeightNet Ma et al.|(2020) unifies kernel aggregation and the channel excitation
via grouped fully-connected layers. |Dai et al.|(2017) and Zhu et al.|(2019) learn different sampling
offsets of convolution for each input image. The proposed Contextual CNN shares some similar high
level spirit with these dynamic CNNs. A key difference of our method is that we explicitly adopt
potential category memberships as contextual priors to constrain the adaptive inference.

There are some recent CNN architectures which have shared the same term “context” (Duta et al.,
2021 Marwood & Balujal, 2021)). The differences of our method lie in two folds. First, the context in
our work refers to the category priors (i.e., top-k likely classes) of each input while theirs refer to the
boarder receptive field of the convolutions. Second, our work modulates convolutional kernels (via
weight/sampling offsets) according to the category priors. They adopt multi-level dilated convolutions
and use soft attention on spatial & channel dimensions, respectively. Neither of them leverages the
category priors, nor modulates the convolutions to extract category-specific features.

3 CONTEXTUAL CONVOLUTIONAL NETWORKS

In this section, we describe the proposed Contextual Convolutional Networks. The overall architecture
is introduced in Section 3.I] In Section [3.2] we present contextualizing layers, which generate
contextual priors for Contextual CNN. In Section [3.3] we present contextual convolution blocks,
which modulate convolutions according to the contextual priors. Without loss of generality, this
section is based on the ConvNeXt-T version (Liu et al., 2022), namely Contextual ConvNeXt-T.
Detailed architecture specifications of Contextual CNN are in the supplementary material.

3.1 OVERALL ARCHITECTURE

An overview of Contextual CNN is presented in Figure 2] Consider an input RGB image of size
H x W x 3, where H is the height and W is the width. N; is the number of all possible classes for
the image (for example, N7 is 1000 for ImageNet-1K (Deng et al., 2009)). A set of class embeddings

& = {e%, e}, -, el } ,et € R is generated from an embedding layer of size N7 x d. These class

embeddings are constant in the whole network and form the basis of contextual priors.

Following common practice in prior vision backbones (He et al.,[2016; Xie et al., 2017; Radosavovic
et al.,2020; Liu et al.,[2022), Contextual CNN consists of a stem (“Stem’) that preprocesses the input
image, a network body (“‘Stagel-4") that generates the feature maps of various granularities and a
final head that predicts the output class. These components are introduced as follows.
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Figure 2: The architecture of a Contextual Convolutional Network (Contextual ConvNext-T). For
simplicity, we denote the downsampling layers at “Stage2-4” by “down.”.

The stem. Consistent with the standard design of ConvNeXt-T, the stem of Contexual ConvNeXt-T
uses a 4 x 4, stride 4 convolution. The stem results in a 4 x downsampling of the input image, while
the output features have C' = 96 channels.

The body. Several vanilla convolutional blocks are applied on the output features of the stem.
Maintaining the resolution of % X %, these blocks have an output channel size of C' and share
the same architecture as their ConvNeXt counterparts. These blocks are referred to as “Stagel”
in this work. A contextualizing layer (described in Section [3.2) is used afterwards to extract the
contextual prior from the most likely classes. It reduces the number of considered classes from V; to
Ny and merges the embeddings of the output Ny classes as a contextual prior. In parallel, a vanilla
convolutional layer is used to 2x downsample the resolution to % X % and doubles the channel size
to 2C. Taking the contextual prior and the downsampled feature map as inputs, a few contextual
convolution blocks (described in Section are applied for feature extraction. The contextualizing
layer, the downsampling layer and the following blocks are denoted as “Stage 2. The procedure is
rfe{peated twice, in “Stage 3" and “Stage 4”. Noting that “Stage 3” has a feature map resolution of
15 X Tv‘g, maintains 4C channels and reduces the number of considered classes to V3. “Stage 4” has
a feature map resolution of 3% X %, maintains 8C' channels and reduces the number of considered
classes to V4. As the number of considered classes reduces gradually, the contextual prior conveys
more fine-grained categorical information (shown in Fig. [Ta)), which modulates the higher-level
contextual convolutions to extract more discriminative features accordingly. Details of choosing the
numbers of considered classes (N5, N3 and N,) are in the supplementary material.

The head. The head of Contextual CNN shares the same procedure of reducing considered classes
in the contextualizing layers (i.e., classifying in Section[3.2). And it finally reduces the number of
classes from V4 to 1. The final one class is used as the output class for the input image.

The loss. The number of considered classes are reduced progressively in Contextual CNN (N7 —
Ny — N3 — Ny — 1). For stage i (¢ € {1,2,3,4}), we adopt a cross entropy loss over the
corresponding classification scores s; (introduced in Section . Following Radford et al.| (2021)),
given the set of considered classes NV; (JNV;| = N;), the loss is calculated by:

O P d G Vs
e e (5 (V) ) @

where I is an indicator function, y denotes the ground-truth class and 7 is a learnable temperature
parameter. The overall loss of Contextual CNN is computed by:

L=a(Lly+ L+ L3)+ Ly, 2
where « is a weight scalar. It is empirically set as 0.15 for all experiments in this paper. More

discussions about « are in the supplementary material.

3.2 CONTEXTUALIZING LAYERS

Each contextualizing layer consists of two steps. The first step, dubbed classifying, reduces the
number of considered classes from N; to N;4, where ¢ is the index of the corresponding stage. The
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Figure 3: Illustration of (a) contextualizing and (b) modulation using contextual prior and features.

second step, dubbed merging, merges the embeddings of IV, ; considered classes into a contextual
prior for later contextual convolution blocks.

Classifying. As shown in Figure given the IN; considered classes, a set of class embeddings

&= {e}, €2, e, eﬁv ¢ ¢ is collected from the aforementioned embedding layer. Following |Radford
et al.| (2021)), to compare with these embeddings, the visual features x from the proceding stage
are projected to the embedding space. The projection involves a global average pooling and two
fully-connected (FC) layers. Layer Normalization (LN) (Ba et al.,[2016) and ReLU (Nair & Hintonl
2010) are used between the FC layers. The output of the projection is a visual feature vector with
dimension d. Then, cosine similarity is computed between the L2-normalized visual feature vector
and the L2-normalized embeddings of the N; classes. The resulting similarity vector s; is used as the
classification scores of the N; classes for loss calculation. The top-N;; highest scoring classes in s;

are collected and propagated to the following merging step as well as the next stage.

Merging. Given N, output classes from the classifying step, we merge their embeddings &1 =

1 2 Nit1
{€¢+17 Cit1s €1

uses two fully connected layers (followed by LN and ReL.U) and a 1D global average pooling layer
between them. The merging layers are different between stages. The generated context prior C
summarizes the similarities and differences between the considered classes. It acts as task information
for the extraction of more discriminative features in the following contextual convolution blocks.

} into the contextual prior C € R%*!. Specifically, the merging operation

3.3 CONTEXTUAL CONVOLUTION BLOCK

A vanilla ConvNeXt block contains one 7 x 7 depthwise convolution and two 1 x 1 pointwise
convolutions. A contextual convolution block in Contextual ConvNeXt-T is built by replacing the
7 x 7 depthwise convolution by a 7 x 7 contextual convolution with other layers unchanged.

For a vanilla 7 x 7 depthwise convolution, consider the convolution kernel w of size 1 X ¢ X 7 X 7,
where c is the input channel sizeﬂ For each position p on the output feature map y, the convolution
first samples K = 49 locations over the input feature map x using a regular grid g, then sums all
sampled values weighted by w:

K
y(p) =Y w(k)-x(p +g(k)). 3)
k=1

In contextual convolutions, we augment the kernel weight w with weight offsets Aw, and augment
the grid g with sampling offsets Ap:
K
y(p) =) (w(k) +Aw(k)) - x(p + g(k) + Ap(k)). €
k=1

Weight offsets. The weight offsets Aw allow the adaptive adjustment of the convolution weights
according to the contextual priors. As illustrated in Figure[3b] to obtain Aw, we squeeze the input

'Depthwise convolutions operate on a per-channel basis and do not change the channel size of features.
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map x via global average pooling (GAP) and then concatenate the resulting feature vector with
the contextual prior C. Two FC layers with LN and ReLU between them are applied afterwards to
generate Aw. Notably, we configure the size of Aw as 1 X ¢ x 7 x 7, same as the dimensions of w,
to allow the summation in equation 4}

Sampling offsets. Following [Dai et al.| (2017)) and |[Zhu et al.| (2019), the sampling offsets Ap are
applied to enable free-form deformation of the sampling grid. In our case, we compute the sampling
offsets considering not only the input features but also the contextual priors. As shown in Figure [3b}
inspired by [Liang et al.|(2022), we first expand the contextual prior C to the same spatial shape of x,
then concatenate them along the channel dimension. The resulting maps are then fed to a nonlinear
convolutional block consisting of one 1 x 1 convolution (followed by LN and ReLLU) and one 7 x 7
depthwise convolution (with the same kernel size and dilation as the replaced vanilla convolution).
The output sampling offsets have the same resolution as the input features. The channel size 2K
corresponds to K 2D offsets.

To balance accuracy and efficiency, only one of every three blocks is replaced by contextual convolu-
tion block in Contextual ConvNeXt-T. More details are in the supplementary material.

4 EXPERIMENTS

In the following, Contextual CNN is compared with the state of the arts (SOTAs) on three tasks, i.e.,
image classification, video classification and instance segmentation. We then ablate important design
elements and analyze internal properties of the method via exemplification and visualizations.

4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. For image classification, we benchmark Contextual CNN on ImageNet-1K (Deng et al.,
2009). It contains 1.28M training images and 50K validation images from 1, 000 classes. The top-1
accuracy on a single crop of size 224 x 224 is reported. To compare with SOTAs, we instantiate
Contextual CNN using the recent method ConvNeXt (Liu et al.,2022)), dubbed Contextual ConvNeXt.
Following [Touvron et al.[(2021); Liu et al.|(2021;|2022)), we train the model for 300 epochs using an
AdamW optimizer (Loshchilov & Hutter,|2017) with a learning rate of 0.001. The batch size we use
is 4,096 and the weight decay is 0.05. We adopt the same augmentation and regularization strategies
as|Liu et al.|(2022) in training. Unless otherwise specified, the channel size of class embeddings d is
256. The numbers of considered classes for the four stages are: N; = 1000, N = 500, N3 = 200
and N4 = 50. More details and discussions are in the supplementary material.

Table 1: Comparison with the state-of-the-arts on ImageNet-1K. “FLOPs” denotes multiply-add
operations. Following |[Liu et al.|(2021), inference throughput is measured on a V100 GPU.

image
size

throughput  top-1
(images/s)  acc.

RegNetY-4G (Radosavovic et al., [2020) 2242 21M 4.0G 1156.7 80.0

RegNetY-8G (Radosavovic et al., [2020) 2242 39M 8.0G 591.7 81.7
RegNetY-16G (Radosavovic et al.,[2020) 2242 84M 16.0G 334.7 82.9

model #param. FLOPs

Swin-T (Liu et al., 2021) 2242 28M 4.5G 757.9 81.3
Swin-S (Liu et al.,[2021) 2242 50M 8.7G 436.7 83.0
Swin-B (Liu et al., 2021) 2242 88M 15.4G 286.6 83.5
ConvNeXt-T (Liu et al., [2022) 2242 29M 4.5G 774.7 82.1
ConvNeXt-S (Liu et al., 2022) 2242 50M 8.7G 4471 83.1
ConvNeXt-B (Liu et al., 2022) 2242 89M 15.4G 292.1 83.8
Contextual ConvNeXt-T (ours) 2242 32M 4.6G 770.6 83.9
Contextual ConvNeXt-S (ours) 2242 53M 8.9G 445.2 84.6
Contextual ConvNeXt-B (ours) 2242 93M 15.8G 291.0 85.2
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Results. Table[T| presents the ImageNet-1K results of various SOTA architectures, including Reg-
Net (Radosavovic et al., [2020), Swin Transformer (Liu et al., |2021) and ConvNeXt (Liu et al.|
2022). Contextual ConvNeXt outperforms all these architectures with similar complexities, e.g.,
+1.8%/+1.5%/41.4% vs. ConvNeXt-T/S/B. The above results verify the effectiveness of Contex-
tual CNN for large-scale image classification, showing the potential of contextualized represention
learning. Inspired by Swin Transformer, to compare efficiency with hardware-optimized classic
CNNs, we adopt an efficient batch computation approach for contextual convolutions (detailed in §3
of the supplementary material). Thus, in addition to the noticeably better performances, Contextual
ConvNeXt also enjoys high inference throughput comparable to ConvNeXt.

4.2 EMPIRICAL EVALUATION ON DOWNSTREAM TASKS

Table 2: Kinetics-400 video action classifcation results using TSM (Lin et al., 2019). T denotes the
reproduced results using the same training recipe.

backbone image size #frames FLOPs top-1 top-5
ResNet50 2242 16 65G 7477 914
ResNet101 2242 16 125G 759 921
Contextual ResNet50 (ours) 2242 16 68G 77.0 93.1

Table 3: COCO object detection and segmentation results using Mask-RCNN. Following |Liu et al.
(2021)), FLOPs are calculated with image size 1280 x 800.

backbone FLOPs APY= APbor Apbor Apmask  Apmask  Apmask

Swin-T (Liu et al., 2021) 267G 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T (Liu et al.,[2022) 262G 46.2 67.9 50.8 41.7 65.0 44.9
Contextual ConvNeXt-T (ours) 267G 47.3 69.0 52.2 42.7 66.2 45.6

Video classification on Kinetics-400. Kinetics-400 (Kay et al., | 2017)) is a large-scale video action
classification dataset with 240K training and 20K validation videos from 400 classes. We fine-tune a
TSM (Lin et al., 2019) model with a Contextual CNN based on ResNet50 (He et al., 2016). For a
fair comparison, the model is first pretrained on ImageNet-1K following the original ResNet50, then
fine-tuned on Kinetics-400 following TSM. More details are in the supplementary material.

Tablelists the video action classification results of Contextual ResNet50 and ResNet50 / ResNet101.
It is observed that Contextual ResNet50 is +2.3%/+1.7% better on top-1/5 accuracy than ResNet50
with similar computation cost. Moreover, Contextual ResNet50 is even better than the more so-
phisticated backbone ResNet101. These results verify that the Contextual CNN architecture can be
effectively extended to general visual recognition tasks like video classification.

Instance segmentation on COCO. The instance segmentation experiments are conducted on COCO
(Lin et al., [2014)), which contains 118K training and 5K validation images. Following Swin Trans-
former, we fine-tune Mask R-CNN (He et al., 2017) on the COCO dataset with the aforementioned
Contextual ConvNeXt backbones. The training details are deferred to the supplementary material.

Table E] shows the instance segmentation results of Swin Transformer, ConvNeXt and Contextual
ConvNeXt. With similar complexity, our method achieves better performance than ConvNeXt
and Swin-Transformer in terms of both box and mask AP. This demonstrates that the superiority
of Contextual CNN’s contextualized representations still hold for downstream dense vision tasks,
indicating that Contextual CNN is able to serve as a general-purpose backbone for computer vision.

4.3 ABLATION STUDY

We ablate major design elements in Contextual CNN using ImageNet-1K dataset. All ablation models
are based on ResNet50 (He et al., 2016)). Details of the architecture are in the supplementary material.

Block design (Table[d). We empirically analyze the effect of the proposed components in our work:
contextualizing layers and contextual convolutions. First, compared with vanilla ResNet50 (al), sim-
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Table 4: Ablations on the proposed components. “Ctx” denotes contextualizing layers. “CtxConv”
denotes contextual convolutions. “Deform” denotes deformable convolutions V2 (Zhu et al., 2019).

model #param. FLOPs top-1 acc.
al R50 25.5M 4.1G 76.58
a2 + Ctx 25.7M 4.1G 77.18
a3 + CtxConv 27.2M 4.2G 77.59
a4 + Deform 25.7M 4.2G 77.24
as + Ctx + CtxConv 27.9M 4.3G 79.35

ply using contextual prior C as an extra input (via expanding and concatenating) to the convolutions
(a2) shows a slightly better result (+0.60%). This reveals that feeding the contextual prior without
modulations provides limited gains for representation learning. Second, applying contextual convolu-
tions alone (a3) leads to a +1.01% gain on top-1 accuracy while applying deformable convolutions
(Zhu et al.| 2019) alone shows a +0.66% gain (a4). The results imply that modulating convolutions
according only to input features improves the expressive power of learned representations. This spirit
is shared between contextual convolutions, deformable convolutions and other forms of dynamic
convolutions. Third, combining the two proposed components, we observe a significant gain of
+2.77% compared to the classic CNN (a5 vs. al) and a gain of +1.76%/+2.11% compared to the
dynamic CNNs (a5 vs. a3/a4). The results verify that the categorical context provides important cues
about the more discriminative directions to modulate the convolutions, highlighting the advantage of
using potential category memberships as contextual priors.

Table 5: Ablations on contextual modulations.

weight offset sampling offset #param. FLOPs top-1 acc.

bl 255M  4.1G 77.18
b2 v 27.5M  4.2G 78.30
b3 v 259M  43G 78.44
b4 v v 279M  4.3G 79.35

Modulation design (Table[5). We investigate how the two forms of contextual modulations in con-
volutions affect the performance. Using weight/sampling offsets alone brings in a +1.12%/41.26%
improvement (b2/b3 vs. bl), which indicates that either form of the modulations leverages the
categorical context to some degree. Combining the two forms leads to a more significant gain of
+2.17% (b4 vs. bl). This implies that the two forms of modulations complete each other.

Table 6: Ablations on contextualizing. d is the dimension of class embeddings.

Stagel Stage2 Stage3 Stage4 d #param. FLOPs top-1 acc.
cl 256 255M  4.1G 76.58

c2 v 256 26.M  4.1G 77.86
c3 v v 256 27M 4.2G 78.63
cd v v v 256 279M 4.3G 79.35
¢S v v v v 256 28.0M 4.3G 77.99
c6b v v v 64 273M 4.2G 77.59
c7 v v v 128 27.5M  4.3G 78.44
c8 v v v 512 283M  4.3G 78.89

Contextualizing design (Table[6). We study the influence of two hyperparameters: the number of
contextual stages and the dimension of class embeddings d. First, the model with 3 contextual stages
(“Stage2-4”) yields the best top-1 accuracy compared to those with more or less contextual stages (c3
vs. cO/cl/c2/c4). This suggests that our contextual modulation is more effective on middle-level and
high-level features. Then, by increasing the dimension of class embeddings d, the accuracy improves
steadily and saturates at 256 (c4 vs. c¢6/c7/c8). This reveals the strategy of setting d in practice.
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4.4 MORE ANALYSIS

image ConvNeXt-T ours image ConvNeXt-T ours
grey wolf: 34% husky (GT): 59% electric fan: 22% space heater (GT): 60%
husky (GT): 26% grey 4wg]f; 17% space heater (GT): 19% electric fan: 10%

Figure 4: Comparison of Grad-CAM visualization results. The Grad-CAM visualization is calculated
for the last convolutional outputs. “GT” denotes the ground truth class of the image.

Output classes of Stagel  Output classes of Stage2 ~ Output classes of Stage3  Output classes of Staged
N, = 500 Ny = 200 Ny =50 Ns=1 ConvNeXt-T ours

(a) Selected classes from “Stagel” to “Stage4” (b) Confusion matrix

Figure 5: Left: The t-SNE distributions of the class embeddings on ImageNet-1K. The points in blue
denote the selected classes of the corresponding stage and the point in red denotes the groud-truth
class. Right: Comparison of class embeddings between ConvNeXt-T and our Contextual ConvNext-T
on ImageNet-1K. For ConvNeXt-T, we normalize the weights of the classifier as its class embeddings
(1000 x 768). The confusion matrix denotes the similarity matrix of class embeddings (1000 x 1000).

Analysis of generated features. We adopt Grad-CAM (Selvaraju et al.} 2017) to interpret the learned
features by highlighting the regions that discriminate different classes (shown in Figure[d). In the
first case, the counterpart (ConvNeXt-T) generates features w.r.t. the face of the animal, which shares
similar appearances between “husky” and “wolf”. Our model generates features of the ears that are
long and stand upright, which are the key factor to differentiate “husky” from “wolf” (offset and
triangular). In the second case, the counterpart generates features w.r.t. the base and the center hub of
the object, both are shared between “space heater” and “electric fan”. In contrast, our model generates
features of the fan region, which is very different between the two categories (filaments vs. vanes). In
summary, the counterpart generates shared patterns of the most likely classes, which help select these
classes out of 1,000 classes but fail to further differentiate them. This behavior is reasonable since the
convolutions in the model are category-agnostic. Contextual CNN, in contrast, takes a few most likely
classes as contextual priors and learns to generate more discriminative features w.r.t. these classes.
Thus, our model is superior in resolving the above challenging cases that confuse the counterpart.

Analysis of class embeddings. Figure|5a visualizes the stage-wise classifying of Contextual CNN.
Specifically, we first adopt t-SNE (Van der Maaten & Hinton, 2008)) to visualize the class embeddings
of the model. We then highlight the selected classes from “Stagel” to “Stage4”. The results suggest
that the contextual prior progressively converges to semantic neighbors of the groundtruth class.
Figure [5b| compares the confusion matrix of class embeddings between ConvNext-T and Contextual
ConvNeXt-T. Following |Chen et al.| (2019), we uses the weights of the last fully-connected layer
of ConvNext-T as its class embeddings. One can observe that the class embeddings learned by our
model exhibit more effective separation of category memberships.

5 CONCLUSION

This paper presents Contextual Convolutional Network, a new CNN backbone which leverages a few
most likely classes as contextual information for representation learning. Contextual CNN surpasses
the performance of the counterpart models on various vision tasks including image classification,
video classification and object segmentation, revealing the potential of contextualized representation
learning for computer vision. We hope that Contextual CNN’s strong performance on various vision
problems can promote the research on a new paradigm of convolutional backbone architectures.



Published as a conference paper at ICLR 2023

A ETHICS STATEMENT

First, most modern visual models, including Swin Trasnformer, ConvNeXt and the proposed Con-
textual CNN, perform best with their huge model variants as well as with large-scale training. The
accuracy-driven practice consumes a great amount of energy and leads to an increase in carbon
emissions. One important direction is to encourage efficient methods in the field and introduce more
appropriate metrics considering energy costs. Then, many of the large-scale datasets have shown
biases in various ways, raising the concern of model fairness for real-world applications. While our
method enjoys the merits of large-scale training, a reasonable approach to data selection is needed to
avoid the potential biases of visual inference.

B REPRODUCIBILITY STATEMENT

‘We make the following efforts to ensure the reproducibility of this work. First, we present detailed
architecture specifications of Contextual ConvNeXt and Contextual ResNet50 in §1 of the supple-
mentary material. Second, we provide detailed experimental settings (e.g., the training recipes) of
Contextual CNN for all involved tasks in §2 of the supplementary material. Third, code of Contextual
CNN is available at: https://github.com/liangd4sx/contextual_cnn.
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