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Abstract
Automating GUI tasks remains challenging due
to reliance on textual representations, platform-
specific action spaces, and limited reasoning
capabilities. We introduce AGUVIS, a unified
vision-based framework for autonomous GUI
agents that directly operates on screen images,
standardizes cross-platform interactions and in-
corporates structured reasoning via inner mono-
logue. To enable this, we construct AGUVIS
DATA COLLECTION, a large-scale dataset with
multimodal grounding and reasoning annota-
tions, and develop a two-stage training pipeline
that separates GUI grounding from planning
and reasoning. Experiments show that AGUVIS
achieves state-of-the-art performance across of-
fline and real-world online benchmarks, mark-
ing the first fully autonomous vision-based GUI
agent that operates without closed-source models.
We open-source all datasets, models, and train-
ing recipes at https://aguvis-project.
github.io to advance future research.

1. Introduction
Graphical User Interfaces (GUIs) represent the primary
medium of human-computer interaction in digital envi-
ronments, from websites to desktop and mobile applica-
tions (Deng et al., 2023; Zhou et al., 2024; Xie et al., 2024;
Rawles et al., 2024b). Creating autonomous agents that can
effectively navigate these interfaces could revolutionize hu-
man productivity by enabling automated task execution us-
ing existing human-centric tools. Such automation requires
mastery of three core competencies: visual understanding to
comprehend complex interfaces, grounding to map natural
language instructions to visual elements, and planning &
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reasoning to synthesize observations into effective actions.
While recent advances in vision-language models (VLMs)
have significantly enhanced visual interface interpretation,
developing truly autonomous GUI agents remains challeng-
ing due to fundamental limitations in current approaches.

Although recent advances in large vision-language mod-
els (LVLMs) (OpenAI, 2024; Team et al., 2024; Li et al.,
2024a; Wang et al., 2024b; Deitke et al., 2024; Chen et al.,
2024b) have significantly enhanced the ability to interpret
complex visual interfaces, we identify several critical barri-
ers to advancing GUI automation. First, existing approaches
predominantly rely on textual representations (e.g., HTML
or accessibility trees) rather than visual ones (Gur et al.,
2024; Kim et al., 2023; Deng et al., 2023; Zhou et al., 2024;
Xie et al., 2024), whose input observation is lengthy (more
than 4K), and the length increases as the complexity of
the GUI grows (Xie et al., 2024), limiting generalization
and increasing computational overhead compared to more
natural image-based representations. Second, the hetero-
geneous action spaces across different platforms prevent
effective cross-environment learning, constraining the avail-
able training data for each environment and impeding further
scalability. Third, current methods either lack reliable vi-
sual grounding (Zheng et al., 2024a) or depend heavily on
closed-source language models for reasoning (Gou et al.,
2025; Lu et al., 2024), creating a fundamental bottleneck
in advancing model capabilities through training. Fourth,
existing methods typically train agents to generate “reac-
tive” low-level actions directly (Hong et al., 2024; Cheng
et al., 2024), failing to leverage the sophisticated reason-
ing capabilities inherent in vision-language models. This
reactive approach struggles with complex scenarios in the
real world that require careful planning and broad general-
ization. These limitations have prevented the development
of scalable, generalizable GUI agents that can operate au-
tonomously across diverse digital environments.

To address these challenges, we introduce AGUVIS (as
shown in Figure 1), a unified vision-based framework that
harmonizes visual observation and consistent action spaces
across diverse GUI environments. Our approach eliminates
dependence on platform-specific textual representations by
operating directly on screen images, enabling more natu-
ral and generalizable interface understanding. We develop
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Thought: I have set my starting point as 
Boston Logan Airport. To proceed, I need to click 
on the ‘To’ input field and ...



Low-level Instruction: Click on the 'To' 
input field and type 'North Station' as the 
destination.



Inner Monologue

Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')



GUI Action

Pure-vision Observation

User: Plan a trip from Boston Logan 
Airport to North Station.

Instruction

Unified Action Space

browser.select_option(x, y, value)

mobile.back()

terminate(status)

Pluggable Actions

pyautogui.click(x, y)

pyautogui.write(message)

pyautogui.press(‘enter’)

Basic Actions

Figure 1: Overview of AGUVIS unified GUI interaction framework for autonomous GUI agents.

a standardized action space through a plugin system that
maintains consistent interaction patterns across platforms
while accommodating environment-specific requirements.
Crucially, we incorporate explicit inner monologue during
training, allowing the model to develop sophisticated reason-
ing patterns that emulate human problem-solving processes.
This inner monologue enables the model to break down
complex tasks into manageable steps, consider alternative
approaches, and adapt to novel situations—capabilities that
go beyond simple reactive behaviors.

To enable this unified framework, we make several technical
contributions. First, we construct AGUVIS DATA COLLEC-
TION, a large-scale cross-platform dataset of GUI agent
trajectories that features comprehensive multimodal ground-
ing and reasoning annotations, including explicit reason-
ing paths captured through inner monologue. Second, we
develop a novel two-stage training pipeline that separates
GUI grounding from planning and reasoning, incorporating
structured thought processes to enhance autonomous navi-
gation capabilities. Finally, we demonstrate that AGUVIS
achieves state-of-the-art performance in both offline evalua-
tion and real-world online scenarios, marking the first fully
autonomous vision-based GUI agent that operates without
relying on closed-source models. By open-sourcing our
datasets, models, and training recipes, we provide a founda-
tion for future research in autonomous GUI interaction.

2. AGUVIS

2.1. Problem Formulation

GUI interaction presents unique challenges due to par-
tial observability and sequential decision-making, natu-
rally lending itself to modeling as a Partially Observable
Markov Decision Process (POMDP). We formalize this
as a tuple (S,A,O, T,O), where S represents possible
environment states, A denotes available actions, and O
refers to possible observations. The state transition func-
tion T : S × A × S → [0, 1] defines state transition
probabilities given actions, while the observation function

O : S ×A×O → [0, 1] specifies observation probabilities
given states and actions.

At each time step t, the agent receives an image observation
ot from the GUI environment and generates an action at
through a structured reasoning process. This process in-
volves inner monologue (Huang et al., 2022), which helps
the agent interpret observations and determine appropriate
actions. The agent then executes at, receives a new obser-
vation ot+1, and continues until achieving the goal G or
reaching a terminal state.

2.2. Unified GUI Interaction Framework

Contemporary GUI agents predominantly rely on platform-
specific representations like HTML or accessibility trees for
interface interpretation, leading to fragmented approaches
across different environments. We propose a unified frame-
work that operates purely through visual observations and
standardized interactions, addressing key limitations of ex-
isting methods while improving computational efficiency.

Our framework unifies both observation and action spaces
across platforms while incorporating structured reasoning
processes. For observations, we leverage direct visual in-
put instead of parsing platform-specific interface code, en-
abling the model to process GUIs as humans do - through
visual perception. The vision-centric approach not only
enhances generalization across platforms but also signifi-
cantly reduces computational overhead. While traditional
textual methods typically require processing 4k-6k tokens
per interaction—as shown in Figure 3 for HTML and re-
ported in Xie et al. (2024) for accessibility tree—our visual
approach maintains a constant token cost of 1,196 tokens
for 720p images, independent of interface complexity.

At each interaction step, the agent employs a two-
component inner monologue to bridge visual perception
with action execution. The first component performs ex-
plicit reasoning (ht) about the current state relative to the
task goal G and previous thoughts ht−1, enabling adaptive
planning. Finally, the agent generates precise action instruc-
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tions (ainstr
t ) that translate high-level intentions into concrete

interface interactions. This structured thought process en-
ables reliable handling of complex multi-step tasks.

For action execution, we adopt pyautogui as our univer-
sal interaction interface, supplemented by a flexible plugin
system. The pyautogui library provides a comprehen-
sive set of programmatic commands that mirror human in-
put behaviors, allowing us to represent GUI interactions
consistently across platforms. As shown in Table 9, this
standardized action space enables the model to translate its
inner monologue into concrete actions without requiring
environment-specific design.

Our plugin system extends the base pyautogui action
space to handle platform-specific requirements while main-
taining the natural flow of thought-to-action conversion. It
incorporates specialized interactions like mobile gestures,
platform-specific shortcuts, and meta-actions such as pro-
viding responses or signaling task completion. The system
aligns new actions with existing commands where possible,
using explicit descriptions only when necessary, ensuring
that the agent’s inner reasoning remains coherent across
different interaction modes. Details of these pluggable func-
tions, particularly for mobile environments, are provided in
Appendix A.2, where we describe specific mobile interac-
tion functions and their corresponding prompts.

By integrating visual perception, structured reasoning
through inner monologue, and unified action representa-
tion, our framework enables training a single model capable
of operating across diverse GUI environments. This inte-
grated approach not only simplifies the training process but
also promotes human-like interaction patterns and better
generalization to novel interfaces. The reduced computa-
tional overhead of visual processing, coupled with the power
of structured reasoning, makes this framework particularly
effective for real-world applications.

2.3. AGUVIS DATA COLLECTION

The effectiveness of GUI agents critically depends on high-
quality training data that captures both grounding accuracy
and complex reasoning patterns. However, collecting such
data presents unique challenges due to the diverse nature of
GUI environments and the need for detailed reasoning anno-
tations. We address these challenges through a two-pronged
data collection strategy that leverages existing resources and
automated augmentation techniques shown in Figure 2. Our
dataset consists of two splits: a grounding split focusing on
element localization and interaction (Table 10), and a plan-
ning & reasoning split capturing multi-step task completion
(Table 11). This division aligns with our framework’s dual
emphasis on visual understanding and structured reasoning.

Template-augmented Grounding Data. To create com-
prehensive grounding data, we employ a dual-source ap-
proach. First, we unify existing GUI datasets across plat-
forms by converting their instruction-action annotations
into our standardized pyautogui format. Second, we
leverage the rich metadata available in broader UI datasets
without action annotations, including all element positions
and attributes, to generate synthetic instruction-action pairs
through carefully designed templates. This approach not
only expands our training data but also ensures coverage of
diverse interface patterns and interaction types.

Thought

Identifying the 'Wi-Fi 
subscriptions' ...


Low-level Instruction

Click on the “Wi-FI” 
subscription link to...

Prompt GPT-4o to generate 
structured Inner Monologue

Click (x, y)Show me the page 
about Wi-Fi setting

TrajectoriesUI Elements

Augmented Planning DataAugmented Inst. and Action Pairs

Visual Observation

GPT-4o

Instruction Ground Truth Action

Inner Monologue

Instruction-Action 
Augmentation

UI Element Coordinates

Maida Vale Library
Facebook
Mayfair

More (0.3370, 0.6483)
(0.1878, 0.9525)
(0.1378, 0.6483)
(0.1226, 0.9738)

Inst. Action

Click on Maida Vale Library

Drag to select Facebook

Right-Click on Mayfair

Double-Click on More pyautogui.doubleClick(0.3370, 0.6483)

pyautogui.click(0.1878, 0.9525)

pyautogui.moveTo(0.0956, 0.6483)

pyautogui.dragTo(0.1378, 0.6483)

pyautogui.rightClick(0.1226, 0.9738)

GUI Screenshot

Figure 2: AGUVIS DATA COLLECTION augmentation
pipeline for two-stage training data.

VLM-augmented Planning & Reasoning Trajectories.
While existing GUI agent datasets provide high-level goals
and action sequences (Deng et al., 2023; Rawles et al.,
2024b; Li et al., 2024c), they often lack the intermediate
reasoning steps crucial for advanced agent behavior. We
address this limitation through a novel VLM-based trajec-
tory augmentation process. For each trajectory step, we
construct a rich training example by first highlighting rele-
vant UI elements in the observation ot to guide the VLM’s
attention. Given the high-level goal G, the current image
observation ot, and the grounded action at, we prompt GPT-
4o to generate the inner monologue components: thoughts
ht, and low-level action instruction ainstr

t . To maintain tem-
poral coherence, we include previous action instructions
ainstr
1 , . . . , ainstr

t−1 in the context. The complete prompting tem-
plate and example are detailed in Appendix B.2 and Figure 6.
Our carefully crafted approach ensures the generated inner
monologues are predictive rather than post-hoc explanations,
enabling the agent to develop planning capabilities. Through
extensive human evaluation with quantitative analysis de-
tailed in Appendix B.3, we validate the quality of these aug-
mented trajectories, confirming that they effectively capture
not just the actions to take, but also the complete reasoning

3



AGUVIS: Unified Pure Vision Agents for Autonomous GUI Interaction

Table 1: Comparison of various planners and grounding methods on ScreenSpot across various device and input modalities.
The top part of table shows the results on original instructions evaluation setting while the bottom part shows results on
self-plan evaluation setting. Best results are in bold.

Planner Grounder Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3
AGUVIS-G-7B 88.3 78.2 88.1 70.7 85.7 74.8 81.8

GPT-4
SeeClick 76.6 55.5 68.0 28.6 40.9 23.3 48.8
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround 90.1 70.3 87.1 55.7 85.7 64.6 75.6

GPT-4o SeeClick 81.0 59.8 69.6 33.6 43.9 26.2 52.3
UGround 93.4 76.9 92.8 67.9 88.7 68.9 81.4

AGUVIS-7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
AGUVIS-72B 94.5 85.2 95.4 77.9 91.3 85.9 89.2

process leading to those actions. Our analysis reveals that
86.7% of the augmented data successfully demonstrates in-
termediate reasoning that aligns with both the ground truth
actions and the overall goal intention, with detailed failure
case analysis provided in Appendix B.3.2.

2.4. Model Architecture

Vision-based GUI agents require direct mapping between
visual observations and actions, necessitating an architec-
ture optimized for high-resolution image processing while
preserving spatial relationships. We selected Qwen2-VL as
our foundation, leveraging its NaViT-style image encoder’s
native support for dynamic resolution processing—a criti-
cal feature for handling diverse interface layouts. Another
key strength of the architecture lies in its position embed-
ding mechanism. By replacing traditional absolute position
embeddings with 2D-RoPE, the model maintains precise
spatial awareness across varying screen dimensions while
efficiently converting interface screenshots into visual to-
kens. These improvements significantly reduce computa-
tional overhead compared to conventional methods.

To validate our framework’s flexibility, we also implemented
it using LLaVA-OneVision, which similarly supports high-
resolution image processing with variable aspect ratios, al-
beit with higher token costs. This implementation confirms
our framework’s model-agnostic nature, with detailed com-
parisons presented in Section 4.1.

2.5. Training Paradigm

The training process of AGUVIS is divided into two stages:
Grounding Training and Planning & Reasoning Training.

Each stage leverages a distinct split from AGUVIS DATA
COLLECTION to progressively build the agentic abilities.
The complete training example templates and prompt for-
mats for both stages are detailed in Appendix C.1.

Stage 1: Grounding Training The first stage focuses
on developing fundamental GUI interaction capabilities
through efficient processing of single-screenshot environ-
ments. To address the challenge of multiple interactable
objects within each screenshot generating redundant train-
ing data, we implement a grounding packing strategy. This
approach bundles multiple instruction-action pairs into a sin-
gle image, creating a single-image-multiple-turn format. By
processing several grounding examples simultaneously from
each screenshot, we significantly reduce training overhead
while maintaining performance (shown in Appendix C.2).
The result of this stage is AGUVIS-G, a model equipped with
advanced GUI understanding and interaction capabilities.

Stage 2: Planning & Reasoning Training Building
on AGUVIS-G’s foundation, the second stage develops
advanced decision-making and reasoning abilities neces-
sary for complex, multi-step tasks. We leverage our de-
tailed inner-monologue trajectory data (as described in Sec-
tion 2.3) to implement a reasoning mixture approach, ex-
posing the model to varying levels of cognitive complexity.
This ranges from basic action instructions to comprehensive
inner monologues encompassing thoughts, and detailed ac-
tion plans. The dynamic adjustment of trajectory complexity
ensures the model develops adaptable reasoning patterns
and sophisticated decision-making capabilities. The final
result is AGUVIS, a fully-trained model capable of handling
both offline and online GUI tasks across diverse environ-
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Table 2: Performance comparison on Multimodal Mind2Web across different settings. We report element accuracy (Ele.Acc),
Operation F1 (Op.F1), and step success rate (Step SR). Best results are in bold. “T” means the textual HTML code as inputs.
“I” means the GUI images as inputs. More explanation about result source in Appendix D.2

Obs. Planner Grounder Cross-Task Cross-Website Cross-Domain

Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

T GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

T + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

I
GPT-4o SeeClick 32.1 - - 33.1 - - 33.5 - -
GPT-4V OmniParser 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
GPT-4o UGround 47.7 - - 46.0 - - 46.6 - -

I
SeeClick-9.6B 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8
AGUVIS-7B 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6

AGUVIS-72B 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2

ments with nuanced understanding and precision. Complete
training implementation details, including hardware con-
figurations, training durations, and hyperparameters, are
provided in Appendix C.2.

3. Experiments
3.1. GUI Grounding Evaluation

ScreenSpot. We first evaluated AGUVIS’s fundamental
GUI grounding capabilities using ScreenSpot (Cheng et al.,
2024), a benchmark that spans mobile, desktop, and website
platforms. Following established protocols from previous
work (Cheng et al., 2024; Gou et al., 2025), we tested under
two conditions: direct execution from original instructions
and self-planned execution requiring natural language plan-
ning before action.

The results in Table 1 demonstrate AGUVIS’s exceptional
grounding capabilities across platforms. Our AGUVIS-G-
7B, trained with the proposed grounding stage, significantly
outperforms existing models on original instructions. The
full model AGUVIS-7B shows even stronger performance
after planning trajectory training, surpassing previous ap-
proaches that rely on closed-source LLMs like GPT-4o. The
scaled version, AGUVIS-72B, achieves state-of-the-art per-
formance with an average score of 89.2.

3.2. Offline GUI Agent Evaluation

We assessed AGUVIS’s planning capabilities through two
major offline benchmarks: Multimodal-Mind2Web (Zheng
et al., 2024a) for website interaction and AndroidControl (Li
et al., 2024c) for mobile device operation.

Multimodal-Mind2Web. Multimodal-Mind2Web evalu-
ations focused on website navigation and interaction tasks.
Unlike previous approaches that utilize textual inputs (Deng

et al., 2023) or Set-of-Marks (Zheng et al., 2024a), AGUVIS
operates solely on GUI screenshots. The results in Table 2
show that AGUVIS achieves superior performance across
all metrics, with a particularly notable improvement in Step
Success Rate (+51.9% on average), highlighting enhanced
planning capabilities.

Table 3: Step Accuracy of out-of-domain data on Android-
Control under high-level tasks and low-level tasks. Best
performance is in bold. “Acc.Tree” means the textual acces-
sibility tree.

Obs. Planner Grounder Step Acc.
High Low

Acc. Tree GPT-4-Turbo Choice 42.1 55.0
PaLM 2S* Choice 58.5 77.5

Image

GPT-4-Turbo SeeClick 39.4 47.2
GPT-4-Turbo UGround 46.2 58.0
GPT-4o SeeClick 41.8 52.8
GPT-4o UGround 48.4 62.4

Image AGUVIS-7B 61.5 80.5
AGUVIS-72B 66.4 84.4

AndroidControl. For mobile interface interaction, we
evaluated AGUVIS on AndroidControl using a subset of 500
randomly sampled step-actions following the setting in Li
et al. (2024c). We tested both high-level planning scenarios
and low-level instruction execution, comparing against mod-
els using various input modalities. Table 3 demonstrates
AGUVIS’s superior performance in both settings, confirming
its effectiveness across different interaction paradigms.

3.3. Online GUI Agent Evaluation

To validate real-world applicability, we evaluated AGU-
VIS across three comprehensive benchmarks: Mind2Web-
Live (Pan et al., 2024), AndroidWorld (Rawles et al., 2024a),
MobileMiniWob (Rawles et al., 2024b).
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Mind2Web-Live provides a dynamic web-based environ-
ment derived from Mind2Web, evaluating task completion
through step-by-step success rates. AndroidWorld operates
in a virtual Android environment, using a Pixel 6 phone sim-
ulator for mobile agent assessment. MobileMiniWob adapts
92 tasks from MiniWob++ to AndroidWorld environment,
providing standardized GUI interaction scenarios. More
details are in Appendix D.3. We test two distinct configura-
tions: one pairs GPT-4o as a planner with AGUVIS-7B as a
grounder, and the other employs AGUVIS-72B in both roles.

Table 4: Task Success Rate (SR) and efficiency costs on
Mind2Web-Live. Cost is calculated by dividing the model’s total
inference cost in USD by the number of successful steps.

Inputs Planner Grounder SR Cost

HTML

GPT-4-Turbo Choice 21.1 -
GPT-4o Choice 22.1 0.142
Llama-3.1-405B Choice 24.0 0.174
Llama-3.1-70B Choice 20.2 0.031
GPT-3.5-turbo Choice 17.3 0.092

Image
GPT-4-Turbo UGround 23.1 -
GPT-4o UGround 19.2 -
GPT-4o AGUVIS-7B 24.0 0.106

Image AGUVIS-72B 27.1 0.012

Results Tables 4 and 5 present our comprehensive find-
ings. When using GPT-4o as the planner, AGUVIS-7B
demonstrates superior performance across benchmarks com-
pared to existing methods. The unified AGUVIS-72B ap-
proach achieves best-in-class performance on Mind2Web-
Live and MobileMiniWob. These results, combined with our
model’s significant efficiency advantages, demonstrate the
strong potential of pure vision-based agents for real-world
GUI automation tasks.

Table 5: Task Success Rates (SR) on AndroidWorld (AW)
and MobileMiniWob(MMW). Best results are in bold.

Input Planner Grounder AWSR MMWSR

AXTree GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image
+ AXTree

GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 -
GPT-4o UGround 32.8 -
GPT-4o AGUVIS-7B 37.1 55.0

Image AGUVIS-72B 26.1 66.0

4. Analysis
4.1. Impact of Training Stages

We first assess the impact of each stage in our training
pipeline by evaluating several variants of AGUVIS. As
shown in Table 6, we examine the performance of: (a)
a model trained without the second stage (planning & rea-
soning), referred to as AGUVIS-G, and (b) Qwen2-VL, the
base model without both stages of specialized training. The
results demonstrate clear performance degradation when
either training stage is omitted. In particular, removing
Stage 2 (planning & reasoning) leads to significant drops in
performance across all metrics.

To verify that these improvements stem from our methodol-
ogy rather than the inherent capabilities of Qwen2-VL, we
conducted parallel experiments using LLaVA as an alterna-
tive backbone. The results in Table 15 show that even with
a weaker foundation model, the AGUVIS training pipeline
yields substantial improvements. For instance, LLaVA’s
performance on ScreenSpot improves from 3.8% to 81.2%
after applying our complete training process, validating the
effectiveness of our approach across different architectures.

4.2. Role of Inner Monologue

Inner monologue plays a crucial role in enhancing both plan-
ning and grounding capabilities. As demonstrated in Table
6, removing inner monologue from training data results in
significant performance drops across all benchmarks. The
impact is particularly noticeable in low-level tasks. For in-
stance, ScreenSpot performance falls from 84.4% to 79.3%,
and low-level AndroidControl drops from 80.5% to 69.1%.
This suggests that inner monologue aids not only high-level
planning but also precise low-level execution. More detailed
results are in Appendix E.1.2.

4.3. Cross-Platform Benefits

Our unified training approach enables effective knowledge
transfer across different platforms, allowing the model to
develop generalizable interaction capabilities. As shown
in Table 7, training on both web and mobile data leads
to significantly better performance compared to platform-
specific training. On web-specific tasks in Multimodal-
Mind2Web, models trained with both web and mobile data
achieve superior results compared to those trained solely on
web data or Mind2Web data alone.

These improvements highlight the ability of our framework
to leverage commonalities across different GUI environ-
ments, fostering generalization beyond individual datasets.
The combination of a pure vision approach and standardized
pyautogui actions establishes a shared representation
space, enabling effective cross-platform learning.
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Table 6: Ablation on AGUVIS-7B on MM-Mind2Web and AndroidControl benchmarks. We report the step success rate. We
provide a more comprehensive ablation in Appendix E.1

Settings ScreenSpot Multimodal-Mind2Web AndroidControl

Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS-7B 84.4 60.4 54.6 56.6 61.5 80.5
(a) w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
(b) w/o Stage 1 77.4 59.7 55.3 56.8 58.8 79.8
(c) w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

(d) w/o Inner Monologue 79.3 55.4 53.7 54.9 60.3 69.1

Table 7: Ablation study on Multimodal-Mind2Web, analyz-
ing the impact of training data from different device domains
within a unified action space.

Data #Traj. Task Website Domain

Web + Mobile 35k 58.5 55.4 54.8
Web Only 6k 53.1 50.3 52.2
Mind2Web Only 1k 50.9 44.9 47.7

To further evaluate the generalization capabilities of our
model, we tested it on OSWorld, a unified computer envi-
ronment designed for multimodal agents. OSWorld presents
complex workflows, encompassing 369 real-world com-
puter tasks that span web applications, desktop software,
and OS-level operations. The results are shown in Table 8.

Remarkably, despite being trained exclusively on web and
mobile trajectory data, our model demonstrates strong gen-
eralization to desktop GUI tasks. On OSWorld, when paired
with GPT-4o for planning, our model achieves a 17.04%
task success rate, significantly outperforming SoM-based
approaches (4.59%) and even surpassing Claude Computer-
Use (14.9%). Furthermore, AGUVIS-72B, when deployed
as an independent model, achieves 10.26%, demonstrat-
ing that our approach is competitive even without external
planning support. This result underscores that our approach
does not overfit to specific environments but instead captures
fundamental GUI interaction principles, enabling effective
transfer to novel computing scenarios.

4.4. Efficiency Benifits from Pure Vision Perception

The pure vision approach significantly reduces computa-
tional overhead compared to traditional textual methods. As
illustrated in Figure 3, while HTML-based approaches typi-
cally require processing about 4,000 tokens per interaction,
our vision-based method maintains a constant token cost of
1,196 tokens for 720p images, independent of interface com-
plexity. This efficiency translates to substantial practical
benefits in deployment, with our method reducing costs by
93% and input tokens per step by 70% compared to GPT-4o

Table 8: Success rate on the OSWorld benchmark in the
screenshot-only setting.

Planner Grounding Task SR

GPT-4o SoM 4.59
GPT-4o AGUVIS-7B 14.79
GPT-4o AGUVIS-72B 17.04

GPT-4o 5.03
GPT-4V 5.26

Gemini-Pro-1.5 5.40
Claude Computer-Use 14.9

OpenAI Operator 19.7

AGUVIS-72B 10.26

in Mind2Web-Live, as detailed in Figure 3 and Table 4.

Figure 3: Comparison of Input Tokens per Step and USD Effi-
ciency in GUI Interaction. The bar chart shows the input tokens
required per step during GUI interactions, while the line graph
illustrates USD Efficiency for all models.
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4.5. Error Analysis and Future Work

To understand failure modes and potential improvements,
we conducted a detailed error analysis on 50 samples from
the ScreenSpot dataset under the self-plan setting. Our anal-
ysis reveals two primary categories of errors, as shown in
Figure 4: 40% stem from ambiguous instructions that could
refer to multiple grounding targets, while the remaining 60%
are grounding errors. A critical finding is that the model
currently lacks the ability to indicate uncertainty or refuse
actions when faced with ambiguous instructions - an essen-
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tial capability for real-world deployment where incorrect
actions could have significant consequences.

Figure 4: Error analysis on Screenspot under the self-plan setting.
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When we enforce planning by prompting the agent model to
generate inner monologue before execution - as detailed in
Appendix E.2.1 - it resolves 20% of these grounding errors,
suggesting that explicit reasoning helps the model leverage
its knowledge more effectively. However, our analysis re-
veals a significant challenge: while many queries appear
simple syntactically, they actually require deeper semantic
understanding and domain knowledge. In these cases, the
model struggles to recognize the need for planning and de-
faults to direct grounding instead of explicit reasoning. We
provide illustrative examples of these semantically challeng-
ing cases in Appendix E.2.2.

These insights highlight several promising directions for fu-
ture work, along with concrete solutions. To develop more
reliable GUI agents for real-world settings, we propose in-
corporating adversarial training examples where the correct
action is to refuse execution or raise safety concerns, helping
models learn to handle ambiguous or potentially harmful
situations appropriately. To enhance the model’s ability to
identify semantically complex tasks requiring planning, we
suggest augmenting training data with explicit annotations
of task complexity and required reasoning depth, potentially
combined with a dynamic threshold system during inference
to balance planning overhead against accuracy gains. By
pursuing these directions, we can work toward GUI agents
that not only perform tasks accurately but also do so with ap-
propriate caution and self-awareness - a crucial requirement
for real-world deployment.

5. Related Work
5.1. GUI Agent Benchmarks

Recent advancements in autonomous GUI agents have
spurred the development of numerous benchmarks assess-
ing agent capabilities across diverse platforms, including
those focused on the Web (Deng et al., 2023; Zhou et al.,

2024; Koh et al., 2024a; Lù et al., 2024; Drouin et al., 2024;
Pan et al., 2024), desktop (Xie et al., 2024; Bonatti et al.,
2024), and mobile environments (Rawles et al., 2024a;b;
Zhang et al., 2024b; Chai et al., 2024; Lu et al., 2024; Li
et al., 2024c). Furthermore, cross-platform datasets such as
ScreenSpot (Cheng et al., 2024), OmniACT (Kapoor et al.,
2024), GUICourse (Chen et al., 2024a), and CRAB (Xu
et al., 2024a) provide comprehensive evaluation frameworks
spanning multiple devices and interfaces. Evaluations on
specialized applications have also emerged, such as Spider-
2V (Cao et al., 2024) targeting data science and engineering
workflows. To thoroughly evaluate our proposed model’s
grounding and planning capabilities, we conduct extensive
experiments on relevant benchmarks under both online and
offline settings.

5.2. GUI Agent Models

Significant progress has been made in developing more
capable autonomous GUI agents. For web navigation, mod-
els such as WebGPT (Nakano et al., 2021), Lemur (Xu
et al., 2024b), Agent-Lumos (Yin et al., 2024), CogA-
gent (Hong et al., 2024), AutoWebGLM (Lai et al., 2024)
and xLAM (Zhang et al., 2024a) have demonstrated en-
hanced performance. Auto-GUI (Zhang & Zhang, 2024),
AppAgent (Zhang et al., 2025), and ScreenAgent (Niu et al.,
2024) propose novel approaches for direct GUI interaction
without relying on application-specific APIs. More recently,
research has targeted core capabilities of GUI agents like
grounding and planning & reasoning. Gou et al. (2025) and
Wu et al. (2025) propose scaling grounding data to improve
grounding ability. As for enhancing the planning and rea-
soning ability of GUI agents, some GUI agents for mobile
environments (Li et al., 2023; 2024b; Wang et al., 2024a)
explicitly incorporate planning trajectories for training. Koh
et al. (2024b) introduces an inference-time search algorithm
in interactive web environments. These advancements col-
lectively enable more sophisticated and capable GUI agents
for automated task completion across digital platforms.

6. Conclusion
We introduced AGUVIS, a unified pure vision-based frame-
work for autonomous GUI agents that operate across diverse
platforms. By leveraging vision-only observations and a
standardized action space, AGUVIS eliminates reliance on
platform-specific representations and closed-source mod-
els. Our structured reasoning approach, combined with a
large-scale dataset and a two-stage training pipeline, enables
superior grounding, planning, and reasoning. Extensive ex-
periments demonstrate state-of-the-art performance in both
offline and online GUI tasks. We open-source all datasets,
models, and training recipes to accelerate future research in
this domain.
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A. AGUVIS Unified Design
A.1. Details of Action Space in AGUVIS

In this section, we introduce our unified action space of our pure vision agent framework AGUVIS. As shown in Table 9, we
use default standard pyautogui actions with pluggable actions as the action space of AGUVIS, which ensures the agent
model’s universality across environments as well as its flexibility in the specific environment.

Table 9: Default standard pyautogui actions A with pluggable actions.

Category Action Space

Basic
Actions

pyautogui.moveTo(x, y)
pyautogui.click(x, y)
pyautogui.write(‘text’)
pyautogui.press(‘enter’)
pyautogui.hotkey(‘ctrl’, ‘c’)
pyautogui.scroll(200)
pyautogui.dragTo(x, y)

Pluggable
Actions

browser.select option(x, y, value)
mobile.swipe(from, to)
mobile.home()
mobile.back()
mobile.open app(name)
terminate(status)
answer(text)

... ...

A.2. Pluggable Functions: Mobile Environments as An Example

We provide the following pluggable functions for Aguvis in the mobile environment, along with their corresponding
descriptions.
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Pluggable Functions for AGUVIS

You are a GUI agent. You are given a task and a screenshot of the screen. You need
to perform a series of pyautogui actions to complete the task.

You have access to the following functions:
- {"name": "mobile.home", "description": "Press the home button"}
- {"name": "mobile.back", "description": "Press the back button"}
- {

"name": "mobile.long_press",
"description": "Long press on the screen",
"parameters": {

"type": "object",
"properties": {"x": {"type": "number", "description": "The x coordinate of
the long press"}, "y": {"type": "number", "description": "The y coordinate
of the long press"}},
"required": ["x", "y"]

}
}

- {
"name": "mobile.open_app",
"description": "Open an app on the device",
"parameters": {

"type": "object",
"properties": {"app_name": {"type": "string", "description": "The name of
the app to open"}},
"required": ["app_name"]

}
}

- {
"name": "terminate",
"description": "Terminate the current task and report its completion status",
"parameters": {

"type": "object",
"properties": {"status": {"type": "string", "enum": ["success"],
"description": "The status of the task"}},
"required": ["status"]

}
}

- {
"name": "answer",
"description": "Answer a question", "parameters": {

"type": "object",
"properties": {"answer": {"type": "string", "description": "The answer to
the question"}},
"required": ["answer"]

}
}

B. Data Curation of AGUVIS DATA COLLECTION

B.1. Detailed Source Dataset Statistics

We present the detailed statistical information of all training datasets utilized in both the grounding and planning & reasoning
stages. The statistics are shown in Table 10 and Table 11, respectively.
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Table 10: The grounding split of AGUVIS DATA COLLECTION. Each example in this split consists of a single-step trajectory.

Data source Platform Instruction #Trajectory

SeeClick (Cheng et al., 2024) Website Augmented 271K
GUIEnv (Chen et al., 2024a) Website Augmented 328K
GUIAct (Chen et al., 2024a) Website Original 67K
WebUI (Wu et al., 2023) Website Augmented 57K
Widget Captioning (Li et al., 2020b) Mobile Original 101K
RicoSCA (Li et al., 2020a) Mobile Original 173K
UI RefExp (Bai et al., 2021) Mobile Original 16K
RICO Icon (Deka et al., 2017) Mobile Augmented 16K
OmniACT (Kapoor et al., 2024) Desktop & Website Original 7K

Total 1.036M

B.2. Prompt for Augmenting Planning & Reasoning Trajectories

Prompt for GPT-4o generating planning & reasoning data

Goal: {goal}
Previous Actions: {previous_actions}

Given the current screenshot and the next ground truth action labeled as
`{current_action_instruction}`, the action commands is:
```json
{action_commands}
```
This element is highlighted in red bounding box in the image.

Describe the situation in detail, focusing on the goal and current observation.
Ensure your reasoning aligns with the goal and the labeled action, but avoid using
the labeled action or the highlighted bounding box as reasoning support, as they
represent hindsight rather than predictive insight. Conclude with a clear,
actionable instruction in one sentence. Aim to reason through the task as if solving
it, rather than simply reflecting on the labeled outcome. Use the first-person
perspective to represent the annotator's thought process.

We use GPT-4o as the foundational model to augment our integrated agent trajectory. In this stage, the Goal
represents the target of the trajectory, Previous Actions is a stack of all previous low-level instructions,
current action instruction refers to the low-level instruction corresponding to the current action in the dataset,
and action commands is the representation of the current action in the form of pyautogui code within the dataset.
We show the augmented examples generated by GPT-4o in Figure 5. This augmentation data serves to enrich reasoning
trajectories and can be generated using open-source VLMs (Bai et al., 2025), we leave exploring that approach for future
work.

Table 11: The planning & reasoning split of AGUVIS DATA COLLECTION.

Data source Platform Inner Monologue Avg. Steps #Trajectory

MM-Mind2Web (Zheng et al., 2024a) Website Generated 7.7 1,009
GUIAct (Chen et al., 2024a) Website Generated 6.7 2,482
MiniWoB++ (Zheng et al., 2024b) Website Generated 3.6 2,762
AitZ (Zhang et al., 2024b) Mobile Original 6.0 1,987
AndroidControl (Li et al., 2024c) Mobile Original 5.5 13,594
GUI Odyssey (Lu et al., 2024) Mobile Generated 15.3 7,735
AMEX (Chai et al., 2024) Mobile Generated 11.9 2,991
AitW (Rawles et al., 2024b) Mobile Generated 8.1 2,346

Total 35K
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B.3. Human Study on Augmented Data

B.3.1. QUALITATIVE HUMAN STUDY

Based on our findings that our Augmented Planning and Reasoning Data improves the performance of Aguvis, we conducted
a qualitative study on augmented data. From the VLM-augmented data, we selected 90 samples for a human study and
evaluated them according to specific criteria.

We determined that for augmented data to be considered successful, it must:

• Match the action type and action target elements of the ground truth,

• Correctly describe the step’s intention,

• Establish a clear connection between the step’s intention and the overall goal,

• Assist the agent in successfully completing the task.

Among the sampled data, we found that 86.7% demonstrated intermediate reasoning that aligned with the ground truth
actions and the overall goal’s action intention. The remaining 7.8% cases were influenced by dataset noise (irrelevant or
unnecessary actions within the task), and 5.5% cases were due to misinterpretations of the action intention under clean data.

B.3.2. FAILURE CASES UNDER NOISY TRAINING DATA

We analyzed error cases in the generated data and identified several issues. Specifically, we found that unnecessary actions
in the training data can lead to the VLM failing to establish a connection between these extra actions and the overall goal,
ultimately resulting in incorrect reasoning and planning.

While these redundant actions do not compromise the trajectory’s overall completeness or correctness, they do introduce
challenges for the VLM in generating accurate planning.

C. AGUVIS Training
C.1. Training Example Schema

Training Data Schema of Stage 1 Grounding

Prompt

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the screen. You need
to perform a series of pyautogui actions to complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot, instruction and
previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation

<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>
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Goal: Show me the page with information about Wi-
Fi subscriptions.





Previous actions:

Step 1: Click on the 'TRAVEL INFO' tab to explore 
available options for Wi-Fi subscription information.

Step 2: Click on the 'Pre-paid Wi-Fi' link to access 
Wi-Fi subscription information.



Action: pyautogui.click(x=0.8018, y=0.6183)



Generated Planning

Goal: Find the documents required to sell a car in 
New Jersey for which payments are being paid and it 
has single person on the title who can come to the 
store



Previous actions:

Step 1: Click on the 'Sell/Trade' link in the navigation 
bar to proceed.

Step 2: Select 'New Jersey' from the dropdown menu 
labeled 'In what state are you selling the car?'.




Action: pyautogui.click(x=0.5938, y=0.8633)


Thought: To determine the document requirements 
for selling a car in New Jersey, I need to select options 
that accurately reflect the current status of the car's 
payments and ownership. Since payments are being 
made, I will choose 'Yes' for that question to proceed 
and assess any further requirements or conditions this 
might bring into play.



Low-level Instruction: Click on the 'Yes' radio button 
next to 'Are you making payments on the car?'

Generated Planning

Thought: Identifying the 'Wi-Fi subscriptions' link on 
the United Wi-Fi page aligns perfectly with the goal of 
finding subscription information. I am considering 
available options and see a dedicated link for 
subscriptions.




Low-level Instruction: Click on the 'Wi-Fi 
subscriptions' link to access information about Wi-Fi 
subscriptions.

Figure 5: Examples of augmented planning and reasoning data generated by GPT-4o. The position of the mouse in the
image represents the ground truth click position in the training data.
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Training Data Schema of Stage 2 Planning

Prompt

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the screen. You need
to perform a series of pyautogui actions to complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot, instruction and
previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation

<|im_start|>assistant<|recipient|>all
Thought: {Planning}
Low-level Instruction: {Low-level Instruction}
<|im_end|>
<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>

AGUVIS introduces a novel explicit planning and reasoning training framework that differs from existing approaches. We
illustrate these differences with visual examples in Figure 6. While existing training datasets utilize trajectory data to
fine-tune agents, these approaches often involve agents directly outputting action commands (e.g., via pyautogui), bypassing
the generation of observations, thoughts, and low-level instructions in natural language that correspond to actions. To elicit
the reasoning and planning capabilities of vision-language models and provide the model with richer context for action
generation, we scale up training datasets that explicitly require the model to output reasoning and planning steps. Moreover,
this approach enhances the interpretability of computer-use agents’ behavior, laying a solid foundation for future research.

C.2. Training Details

For AGUVIS based on the Qwen2-VL backbone, we set the maximum pixels for each image to 1280× 720 to achieve a
better trade-off between performance and efficiency1. Following the SFT strategy in Wang et al. (2024b), we freeze the ViT
parameters during training. For AGUVIS based on the LLaVA-OneVision backbone, we adopt the anyres strategy, which
splits high-resolution images into multiple patches following (Li et al., 2024a). The maximum sequence length of tokens
is set to 8192 for all models. We use Adam optimizer (Loshchilov & Hutter, 2019) for both grounding and planning &
reasoning training stages and employ a cosine learning rate scheduler with a warm-up ratio of 3% steps. In the grounding
stage, we introduce a grounding packing strategy to enhance training efficiency. We conduct an ablation study using the
grounding data of website platform to investigate the strategy effectiveness. We observe that it reduces overall GPU hours
from 6 hours to 1 hour. Moreover, this strategy even marginally improve the performance of ScreenSpot website split from
73.3 to 76.8.

We train AGUVIS with a batch size of 128 for 1 epoch in each stage. The peak learning rate is set to 1e-5 for AGUVIS-7B
and 5e-6 for AGUVIS-72B. Our codebase is based on Pytorch (Paszke et al., 2019) and Huggingface Transformers (Wolf
et al., 2019). During training, we utilize the strategies of DeepSpeed optimization (Rajbhandari et al., 2020), BF16 format
and gradient checkpointing to save GPU memory. We train AGUVIS on a cluster of H100-80G GPUs: AGUVIS-7B uses 8
nodes and completes the grounding training within 5 hours and planning & reasoning training within 1 hour. AGUVIS-72B
uses 16 nodes and completes the grounding training within 30 hours and planning & reasoning training within 6 hours.

1During preliminary experiments, we observe that increasing the maximum pixels to 1920 × 1080 does not yield significant
improvements on ScreenSpot performance.
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Existing GUI Agent Data

Please generate the next move according to the 
UI screenshot, instruction and previous actions.



Instruction: Plan a trip from Boston Logan 
Airport to North Station.



Previous actions:

Step 1: Click on the 'Trip Planner' tab to begin 
planning the trip.

Step 2: Click on the 'From' input field and type 
'Boston Logan Airport'.

Step 3: Click on 'Boston Logan Int'l Airport, 1 
Harborside Dr, East Boston, MA 02128, United 
States' to set it as my starting location.





Thought: I have set my starting point as Boston Logan 
Airport. To proceed, I need to set the destination to 
North Station, allowing the trip planner to suggest 
routes. 


Low-level Instruction: Click on the 'To' input field and 
type 'North Station' as the destination.



Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')


Aguvis Collection Data

Prompt

Generation

Please generate the next move according to the 
UI screenshot, instruction and previous actions.



Instruction: Plan a trip from Boston Logan 
Airport to North Station.



Previous actions:

Step 1: pyautogui.click(x=0.4754, y=0.2062)

Step 2: pyautogui.click(x=0.3295, y=0.4)

pyautogui.write(text='Boston Logan Airport')

Step 3: pyautogui.click(x=0.3262, y=0.4764)















Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')


Prompt

Generation

Image Input

Figure 6: Compared to the schema of exisiting gui agent data (left), the schema of AGUVIS planning & reasoning data
(right) includes explicit reasoning process with informative natural language previous action context.
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D. Evaluation Benchmarks
In this section, we introduce more details of evaluation benchmarks used in our work.

D.1. GUI Grounding Evaluation

ScreenSpot. ScreenSpot (Cheng et al., 2024)is a typical benchmark designed specifically for GUI visual grounding,
consisting of 1.2K single-step instructions and coordinates of the target elements. This dataset encompasses a variety of
grounding instructions tailored for mobile, desktop, and website platforms, and categorizes element types into text and
icons/widgets. The benchmark is assessed under two distinct settings: (1) Original Instructions: models perform grounding
actions directly following the original instructions; and (2) Self-plan: models are required to generate plans in natural
language based on the original instructions before executing grounding actions.

D.2. Offline GUI Agent Evaluation

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluating the offline planning
capabilities of GUI agents on websites, which builds on the original Mind2Web (Deng et al., 2023). We report element
accuracy (Ele.Acc), Operation F1 (Op.F1), and step success rate (Step SR).

In Table 2 for Multimodal Mind2Web (Zheng et al., 2024a), we only report element accuracy for SeeClick (Cheng et al.,
2024) and CogAgent (Hong et al., 2024). This is because the original SeeClick and CogAgent models were evaluated on
Mind2Web (Deng et al., 2023), not Multimodal Mind2Web, making the examples misaligned and incomparable. Therefore,
we referenced the results from UGround (Gou et al., 2025), where they report the element accuracy of the SeeClick and
CogAgent models on Multimodal Mind2Web, striving to comprehensively present all previously representative methods.

AndroidControl. Following the setting in Li et al. (2024c), we randomly sample 500 step-actions from AndroidControl
full test set to create a subset, and we report the step accuracy on out-of-domain (OOD) data within both high-level and
low-level tasks. The high-level task setting necessitates that the model plans and executes actions, whereas the low-level
task setting requires the model to simply adhere to human-labeled instructions for executing the next-step action.

D.3. Online GUI Agent Evaluation

Mind2Web-Live. We adopt Mind2Web-Live (Pan et al., 2024) to evaluate GUI agents’ online planning, a derived dynamic
data set from Mind2Web, comprising 104 real-time interactive web tasks. It evaluates whether each required step within
a task has been successfully completed and uses the task success rate (Task SR) as the reported metric. The original
Mind2Web-Live is built with WebCanvas (Pan et al., 2024), which is a text-based agent framework. To better accommodate
the unified observation and action space of pure vision models, we utilize BrowserGym (Drouin et al., 2024) as the evaluation
environment for online web tasks which provide support for pure vision-based agent models. BrowserGym is a browser
testing environment built on the Playwright (Microsoft, 2024) engine. We incorporate all Mind2Web-Live tasks and
evaluation into BrowserGym, involving registering all Mind2Web-Live tasks, setting up the entry points for these tasks, and
porting the Mind2Web-Live evaluation functions to BrowserGym.

As Mind2Web-Live is a text-based benchmark, we have to adapt its evaluation function to suit our pure vision-based model.
To achieve this, we introduce the two modifications following:

• For the Mind2Web-Live benchmark’s click verification, we adapt our coordinate-based approach by comparing the
ground truth CSS selector’s bounding box (when available) with our click coordinates, as we cannot directly identify
HTML elements.

• Similarly, for input validation, we retrieve and compare the value of the ground truth input element (if present) with the
expected value, circumventing the need for precise HTML element identification based on CSS selectors.

The Mind2Web-Live environment relies on real-world websites, many of which implement detection systems for automated
browser testing and reCAPTCHA challenges. These factors created difficulties during evluation on the Mind2Web-Live
dataset, resulting in a lower task success rate (Task SR). Specifically, we observed the following websites to have significant
issues with automation detection:
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• kohls. Model using the search functionality on the Kohls website through Playwright directly results in a 502 Bad
Gateway error.

• target. We are unable to open target’s job website using Playwright due to network connection error.

• united. We are unable to open united website using Playwright due to network connection error.

In addition to the websites that were consistenly prone to failure, several other sites intermittently blocked our Playwright
access during testing. In total, we encountered 18 network errors and 6 reCAPTCHA tasks that the model was unable to
complete, preventing our model from scoring on these 24 tasks.

AndroidWorld. AndroidWorld (Rawles et al., 2024b) is a benchmark operating on an Android virtual environment,
capable of dynamically instantiating with randomly generated parameters to generate unique tasks for automatic evaluation.
It spans 20 real-world applications, encompassing 116 diverse tasks. To assess the pure vision agent models, we follow the
instructions in Rawles et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The benchmark incorporates a fully automated task-level evaluation system that automatically assesses
whether a state has successfully completed a designated task. The AndroidWorld environment supports optional inputs such
as Set-of-Mark (SoM) and textual AXTree information, which most multimodal models currently rely on to complete tasks.
However, we solely use raw screenshots as the observation input and restrict the model to coordinate-level actions and basic
mobile functions.

MobileMiniWob. MobileMiniWob (Rawles et al., 2024b) is the instantiation of 92 tasks from MiniWob++ (Zheng et al.,
2024b) in the AndroidWorld environment. Thus, we adopt the same observation and action space used in AndroidWorld and
use a real-time evaluation function to determine task success.

D.3.1. PROMPTS FOR USING GPT-4O AS PLANNING MODEL

In all online experiments, we employed two settings: GPT-4o as the planner, AGUVIS-7B as the grounder, and AGUVIS-72B
as both the planner and grounder. For experiments where AGUVIS-72B served as both the planner and grounder, the prompt
was straightforward: we only needed to provide AGUVIS-72B with a single prompt at each step, and it could independently
handle reasoning, planning, and grounding. We use prompt for forcing plan to improve AGUVIS-72B’s performance on the
online experiments, as illustrated in Appendix E.2.1

In the GPT-4o + AGUVIS-7B setting, the situation was more complex. Two key challenges needed to be addressed:
making GPT-4o’s planning usable by AGUVIS-7B and determining which actions required AGUVIS-7B for ground-
ing. To address these challenges, we modified GPT-4o’s prompts based on Mind2Web-Live (BrowserGym) and An-
droidWorld to enable it to delegate grounding actions to AGUVIS-7B when necessary and to share its planning outputs
with AGUVIS-7B. Specifically, we append <|im start|>assistant<|recipient|>all\nThought:{GPT-4o
Thought}\nAction:{GPT-4o Low-level Instruction} to the end of the prompt and therefore let AGUVIS-7B
generate grounding actions based on GPT-4o’s response.

Table 12: Prompt used for the planning model in Mind2Web-Live, modified from the prompt in (Drouin et al., 2024)

Instructions
Review the current state of the page and all other information to find the best possible next action to accomplish
your goal. Your answer will be interpreted and executed by a program, make sure to follow the formatting
instructions.

Goal: {Goal}
Observation of current step
Current URL: {URL}
History of interaction with the task: {History}
Action Space
8 different types of actions are available.

Continued on the next page
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Table 12 – Continued from the previous page

Instructions
Review the current state of the page and all other information to find the best possible next action to accomplish
your goal. Your answer will be interpreted and executed by a program, make sure to follow the formatting
instructions.

noop(wait ms: float = 1000)
Description: Do nothing, and optionally wait for the given time (in milliseconds).

send msg to user(text: str)
Description: Sends a message to the user.

scroll(delta x: float, delta y: float, relative: bool = False)
Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or down scrolling, negative
for left or up scrolling. Dispatches a wheel event.

fill(element: str, value: str)
Description: Fill out a form field. It focuses the element and triggers an input event with the entered text.
It works for <input>, <textarea>, and [contenteditable] elements. The ’element’ parameter represents the
semantic information of the element you want to fill.

click(element: str, button: Literal[‘left’, ‘middle’, ‘right’] = ‘left’)
Description: Click an element. The ‘element’ parameter represents the semantic information of the element you
want to click.

dblclick(element: str, button: Literal[‘left’, ‘middle’, ‘right’] = ‘left’)
Description: Double click an element. The ‘element’ parameter represents the semantic information of the
element you want to double click.

hover(element: str)
Description: Hover over an element. The ‘element’ parameter represents the semantic information of the
element you want to hover over.

keyboard press(key: str)
Description: Press a combination of keys. Accepts the logical key names that are emitted in the keyboardE-
vent.key property of the keyboard events: Backquote, Minus, Equal, Backslash, Backspace, Tab, Delete, Escape,
ArrowDown, End, Enter, Home, Insert, PageDown, PageUp, ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9,
KeyA - KeyZ, etc. You can alternatively specify a single character you’d like to produce such as “a” or “#”.
Following modification shortcuts are also supported: Shift, Control, Alt, Meta.

Only a single action can be provided at once. Example:
fill(‘comment text area’, ‘This is an example’)
Note: you are on mac so you should use Meta instead of Control for Control+C etc.

Table 13: Prompts used for the planning model in AndroidWorld, modified from the prompt in (Rawles et al., 2024a)

Instruction
You are an agent who can operate an Android phone on behalf of a user. Based on user’s goal/request, you may
- Answer back if the request/goal is a question (or a chat message), like user asks “What is my schedule for
today?”.

Continued on the next page
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Table 13 – Continued from the previous page

- Complete some tasks described in the requests/goals by performing actions (step by step) on the phone.

When given a user request, you will try to complete it step by step. At each step, you will be given the current
screenshot and a history of what you have done (in text). Based on these pieces of information and the goal, you
must choose to perform one of the action in the following list (action description followed by the JSON format)
by outputing the action in the correct JSON format.
- If you think the task has been completed, finish the task by using the status action with complete as goal status:
{“action type”: “status”, “goal status”: “complete”}
- If you think the task is not feasible (including cases like you don’t have enough information or can not perform
some necessary actions), finish by using the ‘status’ action with infeasible as goal status: {“action type”:
“status”, “goal status”: “infeasible”}
- Answer user’s question: {“action type”: “answer”, “text”: “answer text”}
- Click/tap on an element on the screen. Please describe the element you want to click using natural language.
{“action type”: “click”, “target”: target element description}.
- Long press on an element on the screen, similar with the click action above, use the semantic description to
indicate the element you want to long press: {“action type”: “long press”, “target”: target element description}.
- Type text into a text field (this action contains clicking the text field, typing in the text and pressing the enter,
so no need to click on the target field to start), use the semantic description to indicate the target text field:
{“action type”: “input text”, “text”: text input, “target”: target element description}
- Press the Enter key: {“action type”: “keyboard enter”}
- Navigate to the home screen: {“action type”: “navigate home”}
- Navigate back: {“action type”: “navigate back”}
- Scroll the screen or a scrollable UI element in one of the four directions, use the same semantic description as
above if you want to scroll a specific UI element, leave it empty when scroll the whole screen: {“action type”:
“scroll”, “direction”: up, down, left, right, “element”: optional target element description}
- Open an app (nothing will happen if the app is not installed): {“action type”: “open app”, “app name”: name}
- Wait for the screen to update: {“action type”: “wait”}

Guidelines
Here are some useful guidelines you need to follow:
General:
- Usually there will be multiple ways to complete a task, pick the easiest one. Also when something does not
work as expected (due to various reasons), sometimes a simple retry can solve the problem, but if it doesn’t
(you can see that from the history), SWITCH to other solutions.
- Sometimes you may need to navigate the phone to gather information needed to complete the task, for example
if user asks “what is my schedule tomorrow”, then you may want to open the calendar app (using the ‘open app’
action), look up information there, answer user’s question (using the ‘answer’ action) and finish (using the
‘status’ action with complete as goal status).
- For requests that are questions (or chat messages), remember to use the ‘answer’ action to reply to user
explicitly before finish! Merely displaying the answer on the screen is NOT sufficient (unless the goal is
something like “show me ...”).
- If the desired state is already achieved (e.g., enabling Wi-Fi when it’s already on), you can just complete the
task.
Action Related:
- Use the ‘open app’ action whenever you want to open an app (nothing will happen if the app is not installed),
do not use the app drawer to open an app unless all other ways have failed.
- Use the ‘input text’ action whenever you want to type something (including password) instead of clicking
characters on the keyboard one by one. Sometimes there is some default text in the text field you want to type
in, remember to delete them before typing.
- For ‘click’, ‘long press’ and ‘input text’, the target element description parameter you choose must based on
a VISIBLE element in the screenshot.

Continued on the next page
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Table 13 – Continued from the previous page

- Consider exploring the screen by using the ‘scroll’ action with different directions to reveal additional content.
- The direction parameter for the ‘scroll’ action can be confusing sometimes as it’s opposite to swipe, for
example, to view content at the bottom, the ‘scroll‘ direction should be set to “down”. It has been observed that
you have difficulties in choosing the correct direction, so if one does not work, try the opposite as well.
Text Related Operations:
- Normally to select certain text on the screen: (i) Enter text selection mode by long pressing the area where
the text is, then some of the words near the long press point will be selected (highlighted with two pointers
indicating the range) and usually a text selection bar will also appear with options like ‘copy’, ‘paste’, ‘select
all’, etc. (ii) Select the exact text you need. Usually the text selected from the previous step is NOT the one you
want, you need to adjust the range by dragging the two pointers. If you want to select all text in the text field,
simply click the ‘select all’ button in the bar.
- At this point, you don’t have the ability to drag something around the screen, so in general you can not select
arbitrary text.
- To delete some text: the most traditional way is to place the cursor at the right place and use the backspace
button in the keyboard to delete the characters one by one (can long press the backspace to accelerate if there
are many to delete). Another approach is to first select the text you want to delete, then click the backspace
button in the keyboard.
- To copy some text: first select the exact text you want to copy, which usually also brings up the text selection
bar, then click the ‘copy’ button in bar.
- To paste text into a text box, first long press the text box, then usually the text selection bar will appear with a
‘paste’ button in it.
- When typing into a text field, sometimes an auto-complete dropdown list will appear. This usually indicating
this is a enum field and you should try to select the best match by clicking the corresponding one in the list.

E. Analysis
E.1. More Training Ablation

E.1.1. TRAINING STRATEGY ABLATION

To further demonstrate the contribution of Stage 1 (GUI Grounding), Stage 2 (GUI Planning & Reasoning), and their
combination to model training, we conducted an ablation study. Specifically, we designed five experimental settings on
AGUVISQWEN2-VL and AGUVISLLAVA-OV:

• Stage 1 → Stage 2 corresponds to the staged configuration AGUVIS used in our paper, where Stage 1 is followed by
Stage 2 sequentially.

• Stage 1 + Stage 2 represents a joint training setup, where two stages are combined into a training process.

• w/o Stage x indicates the absence of the respective stage in the setting.

Note that for the setting of removing Stage 2 (w/o Stage 2 or w/o Stage 1 & 2), the models are fine-tuned on the corresponding
task-specific dataset for planning tasks.

From the first two rows in Table 14, it can be observed that the differences between models trained with Staged Training
and Joint Training setups are relatively minor. However, a clear trend emerges: models trained using the Joint Training
setup perform better on GUI grounding tasks but exhibit inferior performance on datasets requires planning ability such as
MM-Mind2Web and AndroidControl High-level. This trend implies grounding data in Stage 1 is more abundant, dominating
the optimization process and biasing the model toward grounding tasks. In contrast, the data in Stage 2, which combines
planning and grounding, is of higher quality and better aligned with the agent’s deployment scenarios. This rationale
underpins our decision to position Stage 2 later in the training sequence.

Moreover, it is observed that compared to AGUVISQWEN2-VL trained through both Stage 1 and Stage 2, the model trained
with only Stage 2 data maintains similar performance on MM-Mind2Web and AndroidControl but exhibits a notable decline
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in GUI grounding performance on ScreenSpot. This suggests that the stability on Mind2Web and AndroidControl can be
attributed to Qwen2VL’s pre-training on natural image grounding. However, the diverse image and domain requirements of
the ScreenSpot GUI grounding test set highlight the necessity of extensive and varied grounding training from Stage 1. This
training is essential for improving the grounding performance required for a cross-platform GUI agent model.

To verify this analysis, we conduct the same ablation study on the LLaVA model, as shown in Table 15. From the results, we
can see that the original LLaVA did not undergo extensive natural image grounding training during the training process,
making it insufficient for LLaVA to excel when only Stage 1 or Stage 2 is conducted. When both Stage 1 and Stage 2 are
performed, LLaVA can be significantly improved, even surpassing previous SOTA results. This validates the above analysis
and further demonstrates that our method is model-agnostic and universally applicable to popular VLMs like Qwen2-VL
and LLaVA.

Table 14: Ablation study of AGUVISQWEN2-VL on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl

Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 84.4 58.5 55.4 54.8 61.5 80.5
Stage 1 + 2 85.0 56.1 53.1 55.6 59.2 80.9
w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
w/o Stage 1 77.4 59.7 55.3 55.8 58.8 79.8
w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

Table 15: Ablation study of AGUVISLLAVA-OV on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl

Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 81.2 55.3 50.0 50.8 60.7 82.4
w/o Stage 2 70.0 43.4 39.0 40.7 54.9 65.6
w/o Stage 1 71.3 42.5 40.3 42.8 61.4 80.5
w/o Stage 1 & 2 3.8 33.8 30.5 32.4 50.4 50.0

E.1.2. DATA STRATEGY ABLATION

To investigate the impact of different device domain datasets within a unified action space, we designed three settings on the
MM-Mind2Web dataset: (1) training with the complete dataset comprising both Web and Mobile data, (2) training using
only the Web data, and (3) fine-tuning exclusively on the MM-Mind2Web dataset. All three experiments include fine-tuning
on the MM-Mind2Web dataset.

Table 16: Ablation Study of The Impact of Mobile Data on MM-Mind2Web.

Model Training Data MM-Mind2Web

Cross-Task Cross-Website Cross-Domain

AGUVISQWEN2-VL

Web + Mobile (Stage 2 Equivalent) 58.5 55.4 54.8
Web Only 53.1 50.3 52.2
Mind2Web Only 50.9 44.9 47.7

AGUVISLLAVA-OV

Web + Mobile (Stage 2 Equivalent) 55.3 50.0 50.8
Web Only 44.9 43.5 42.1
Mind2Web Only 43.4 39.0 40.7
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Table 17: Ablation Study of the Impact of Inner Monologue.

AGUVIS ScreenSpot Multimodal-Mind2Web AndroidControl

Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS 84.4 58.5 55.4 54.8 61.5 80.5
AGUVIS w/o IM 79.3 55.4 53.7 54.9 60.3 69.1

The experimental results, presented in the Table 7, demonstrate that training AGUVIS with both Web and Mobile data
consistently outperforms the setting trained exclusively on MM-Mind2Web. This performance gain underscores the
contribution of Mobile data to enhancing cross-device domain generalization in the Web domain, validating the effectiveness
of our cross-platform data.

In addition, we conducted ablation study on the role of incorporating inner monologue (IM) in training. The result shown
in Table 17 demonstrated clear performance gain from inner monologue. This gain can be attributed to two key factors:
the use of inner monologue enables the model to elicit reasoning about the current step while also serving as context to
facilitate more effective planning for subsequent steps. Additionally, incorporating low-level instructions from the training
data improves the accuracy of the model’s action execution, as demonstrated in both the Screenspot and AndroidControl
low-level tasks. This is mainly because the low-level instructions of inner monologue act as atomic instruction and grounding
action pairs, also enhancing the grounding ability of our GUI agents.

E.2. Planning Analysis

E.2.1. PROMPTS FOR SELF-PLANNING AND ENFORCED PLANNING MODE.

In Appendix C.1, we present the training data schema for Stage 1 and Stage 2. We use the special token <|recipient|>
along with os or all to control whether the message content is an inner monologue or a pyautogui action command.
Thanks to this design, we can use <|recipient|> during the inference phase to control the content generated by the
agent model.

In the Enforced Plan Setting, we employ the <|recipient|>all\nThought prompt to compel the model to generate
a planning phase following this. This setting explicitly requires the model to utilize inner monologue for high-level reasoning
before taking actions. While in the Self-plan setting, we do not add any word after <|recipient|>, so the model
can choose to generate os to directly produce a pyautogui command, or generate all to first create natural language
reasoning and then generate a pyautogui command. Thus, the model can autonomously determine whether to generate
planning thoughts based on the complexity of tasks.

As noted in Section 4.5, the enforced planning resolves approximately 20% of grounding errors by encouraging the model
to carefully consider the task context, potential ambiguities, and available UI elements before committing to action.

Prompt Template For Self-plan Setting

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the screen. You need
to perform a series of pyautogui actions to complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next move according
to the ui screenshot, instruction and previous actions.

Instruction: {goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>
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Prompt Template For Enforced Plan Setting

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the screen. You need
to perform a series of pyautogui actions to complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next move according
to the ui screenshot, instruction and previous actions.

Instruction: {overall_goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>all
Thought:

28



AGUVIS: Unified Pure Vision Agents for Autonomous GUI Interaction

E.2.2. CASES OF INNER MONOLOGUE BONUS

Task Instruction: add a new file

pyautogui.click(x=0.3997, y=0.0148) 

Thought: To add a new file, I need to select the 'New' option 
from the context menu. This will likely open a dialog or prompt 
to create a new file, aligning with the goal of adding a new file 
to the directory.

Action: Click on the 'New' option in the context menu.

pyautogui.click(x=0.6836, y=0.2535) 

Task Instruction: send current page

pyautogui.click(x=0.9792, y=0.8046) 

Thought: To share the current page, I need to find and click the 
share icon, which is typically represented by a network or link 
symbol. This icon is usually located in the browser's toolbar or 
menu.

Action: Click the share icon in the browser to share the current 
page.

pyautogui.click(x=0.9792, y=0.876) 

Task Instruction: go to personal homepage

pyautogui.click(x=0.0219, y=0.0333) 

Thought: To reach the personal homepage, I need to interact 
with the user profile element, which is typically represented by 
an avatar or username. This element is usually clickable and 
leads to the user's profile page.

Action: Click on the user profile icon or username at the top 
right corner to go to the personal homepage.

pyautogui.click(x=0.9615, y=0.0326) 

Task Instruction: rate this product with four stars

pyautogui.click(x=0.2271, y=0.2926) 

Thought: To achieve the goal of rating the product with four 
stars, I need to click on the fourth star in the rating section. 
This will ensure the product is rated with four stars, aligning 
with the task requirement.

Action: Click on the fourth star in the rating section to rate the 
product with four stars.

pyautogui.click(x=0.2445, y=0.293) 

Task Instruction: switch to song lyric

pyautogui.click(x=0.5, y=0.9252) 

Thought: To switch to song lyrics, I need to find and click on 
the lyrics button, which is typically represented by a text or chat 
icon. This icon is usually located at the bottom of the screen 
among other playback controls.

Action: Click on the lyrics icon at the bottom of the screen to 
switch to song lyrics.

pyautogui.click(x=0.2352, y=0.9267) 

Task Instruction: change dark mode options

pyautogui.click(x=0.7306, y=0.3575) 

Thought: To change the dark mode options, I need to select the 
'More Dark mode options' option. This will likely lead to 
additional settings related to dark mode.

Action: Click on 'More Dark mode options' to explore further 
settings.

pyautogui.click(x=0.4991, y=0.6742) 

Figure 7: Benefits of inner monologue in autonomous GUI interactions across Desktop, Website, and Mobile environments.
Gray indicates output without inner monologue, yellow with inner monologue.
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E.3. AGUVIS Trajectories Examples on Online Evaluation

E.3.1. MIND2WEB-LIVE CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To find the list of Men's 
Blazers, I need to navigate to the 'MEN' 
section first. The 'MEN' tab is visible in 
the navigation bar, which is the logical 
next step to access men's clothing 
categories.



Low-level instruction: Click on the 
'MEN' tab in the navigation bar.

Action: pyautogui.click(x=0.456, y=0.049)

Task

Planner

Show me the list of Men's Blazers, Black, Size M on uniqlo.

Aguvis72B&

Step 1

Thought: To filter the list of men's 
blazers to show only black options, I 
need to select the 'BLACK' color option 
from the color filter menu.



Low-level instruction: Click on the 
'BLACK' color option to filter the blazers 
by black color.

Action: pyautogui.click(x=0.303, y=0.324)

Step 6

Thought: To find the specific black, size 
M blazers, I need to apply the 
appropriate filters. The 'Color' filter is 
crucial for narrowing down the options 
to black blazers.



Low-level instruction: Click on the 
'Color' filter to select black.

Action: pyautogui.click(x=0.478, y=0.351)

Step 5

Thought: I need to select the 'Blazers' 
option under 'MEN / Outerwear' to 
proceed with finding men's blazers in 
black, size M.



Low-level instruction: Click on the 
'Blazers' option under 'MEN / Outerwear' 
to view the list of men's blazers.

Action: pyautogui.click(x=0.15, y=0.344)

Step 4

**DONE**

Step 9

Thought: To achieve the goal of 
filtering for men's black blazers in size 
M, I need to select the 'M' size option 
from the list. This will update the search 
results to show only the blazers 
available in size M.



Low-level instruction: Click on the 
checkbox next to size 'M' to filter the 
results for size M blazers.

Action: pyautogui.click(x=0.273, y=0.388)

Step 8

Thought: I need to apply the size filter 
to narrow down the results to size M. 
The next logical step is to interact with 
the size filter option.



Low-level instruction: Click on the 
'Size' filter to select size M.

Action: pyautogui.click(x=0.401, y=0.353)

Step 7

Thought: To find men's blazers, I need 
to use the search bar to input the 
keyword 'blazers'. This will help me 
locate the specific category of clothing 
I'm interested in.



Low-level instruction: Type 'blazers' 
into the search bar to find men's blazers.

Action:

pyautogui.click(x=0.203, y=0.828)

pyautogui.write(message='blazers')

Grounder

Step 3

Thought: To find the list of Men's 
Blazers, I need to navigate to the 
relevant section. The search bar is 
available, which can be used to directly 
search for 'blazers'



Low-level instruction: Click on the 
search bar to start typing 'blazers'.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Figure 8: Example of AGUVIS-72B as planner and grounder executing on Mind2Web-Live task. Due to space limitations,
we present here the trajectory generated guided by Thought.
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E.3.2. MIND2WEB-LIVE CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: To find a walkthrough guide 
for Assassin's Creed Valhalla on IGN, I 
should use the search functionality. The 
search icon is visible on the left sidebar. 
Clicking on it should allow me to enter 
the search query.



Low-level instruction: 

click('search icon')

Action: pyautogui.click(x=0.033, y=0.4014)

Task

Planner

Find a walkthrough guide for Assassin's Creed Valhalla on ign

Aguvis7BGPT-4o

Step 1

Thought: To find the walkthrough 
guide, I should look for a section or link 
that specifically mentions guides or 
walkthroughs. Since I don't see any 
relevant links or sections immediately, I 
should scroll further down the page to 
see if more content is revealed.



Low-level instruction: scroll(0, 500)

Action: /

Step 6

Thought: I am currently on the 
Assassin's Creed Valhalla page on IGN, 
and I have clicked on the "Overview" tab. 
To find the walkthrough guide, I should 
look for a section or link that specifically 
mentions "walkthrough" or "guide."



Low-level instruction: scroll(0, 300)

Action: /

Step 5

Thought: To find a walkthrough guide, I 
should look for relevant sections or links 
on this page. The page has tabs like 
Overview, Playlists, and Reviews. The 
walkthrough guide is likely to be under 
one of these tabs, possibly the Overview 
or Playlists tab.



Low-level instruction: click('Overview 
tab')

Action: pyautogui.click(x=0.2115, y=0.7222)

Step 4

**DONE**

Step 8

Thought: There is also a "Walkthrough" 
link under the "Top Guide Sections" on 
the right side. Clicking the 
"Walkthrough" link should take me 
directly to the walkthrough guide.



Low-level instruction: 
click('Walkthrough')

Action: pyautogui.click(x=0.5852, y=0.7681)

Step 7

Thought: The search results for 
"Assassin's Creed Valhalla walkthrough" 
are displayed. The first result is 
"Assassin's Creed Valhalla." This is likely 
to contain the walkthrough guide we are 
looking for. I should click on this result 
to proceed.



Low-level instruction: click('Assassin\'s 
Creed Valhalla')

Action: pyautogui.click(x=0.4991, y=0.4847)

Grounder

Step 3

Thought: The search bar is now visible. 
To find a walkthrough guide for 
Assassin's Creed Valhalla, I need to enter 
the search query in the search bar.



Low-level instruction:

fill('search input field', 'Assassin\'s Creed 
Valhalla walkthrough')

Action: 

pyautogui.click(x=0.4991, y=0.3417)

pyautogui.write(text="Assassin's Creed 
Valhalla walkthrough")

Step 2

Figure 9: Example of GPT-4o as planner and AGUVIS-7B as grounder executing on Mind2Web-Live task.
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E.3.3. ANDROIDWORLD CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To achieve the goal of 
managing expenses in Pro Expense, I 
need to open the app first. The list of 
apps includes Pro Expense, which is 
relevant to the task at hand.



Low-level instruction: Open the Pro 
Expense app using mobile.open_app.

Action:

mobile.open_app(app_name='Pro Expense')

Task

Planner

Delete all but one of any expenses in pro expense that are exact duplicates, 
ensuring at least one instance of each unique expense remains.

Aguvis72B&

Step 1

Thought: To achieve the goal of 
deleting duplicate expenses, I need to 
access the Expense Logs to view all 
expenses and identify duplicates. The 
Expense Logs option is visible in the 
menu.



Low-level instruction: Click on 
'Expense Logs' to view the list of 
expenses.

Action: pyautogui.click(x=0.272, y=0.317)

Grounder

Step 3

Thought: To achieve the goal of 
deleting duplicate expenses, I need to 
access the list of all expenses. The 
current screen shows recent expenses, 
but I need to navigate to a section where 
I can view and manage all expenses. The 
menu icon at the top left is likely the 
gateway to accessing more options, 
including the full list of expenses.



Low-level instruction: Click on the 
menu icon at the top left to access more 
options.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Thought: I need to delete one of the 
duplicate 'Public Transit' entries to 
ensure only one unique entry remains. 
This aligns with the goal of removing 
duplicate expenses.



Low-level instruction: Click on one of 
the 'Public Transit' entries to delete it.

Action: pyautogui.click(x=0.545, y=0.614)

Step 4

Step 7

Thought: I need to confirm the deletion 
of the duplicate 'Public Transit' entry to 
ensure only one unique entry remains.



Low-level instruction: Click on the 
'CONFIRM' button to delete the selected 
duplicate entry.

Action: pyautogui.click(x=0.532, y=0.923)

Step 6

Thought: I need to delete duplicate 
entries, ensuring at least one unique 
entry remains. The current focus is on 
the 'Public Transit' entry, which seems to 
be a duplicate. I should delete this entry 
to meet the goal.



Low-level instruction: Click on the 
delete icon next to the 'Public Transit' 
entry to remove it.

Action: pyautogui.click(x=0.909, y=0.693)

Step 5

**DONE**

Figure 10: Example of AGUVIS-72B as planner and grounder executing on AndroidWorld task. Due to space limitations, we
present here the trajectory generated guided by Thought.
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E.3.4. ANDROIDWORLD CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: Open the Simple SMS 
Messenger app to send a text message.



Low-level instruction: {"action_type": 
"open_app", "app_name": "Simple SMS 
Messenger"}

Action: /

Step 1

Thought: Input the phone number into 
the "Add Contact or Number..." field.



Low-level instruction: {"action_type": 
"input_text", "text": "+16597910719", 
"target": "Add Contact or Number..."}

Action: 

pyautogui.click(x=0.4991, y=0.1504)

pyautogui.write(message=’+16597910719’)

Step 3

Thought: Start a new conversation to 
send the text message.



Low-level instruction: {"action_type": 
"click", "target": "Start a conversation"}

Action: pyautogui.click(x=0.5, y=0.1996)

Step 2

Thought: Tap the checkmark to confirm 
the phone number and proceed to the 
message input screen.



Low-level instruction: {"action_type": 
"click", "target": "checkmark icon"}

Action: pyautogui.click(x=0.9407, y=0.1483)

Step 4

Step 7

Thought: Send the message by tapping 
the send button.



Low-level instruction: {"action_type": 
"click", "target": "send button with SMS 
icon"}

Action: pyautogui.click(x=0.9306, y=0.6025)

Step 6

Thought: Input the message "Beauty is 
in the eye of the beholder." into the 
message field.



Low-level instruction: {"action_type": 
"input_text", "text": "Beauty is in the eye 
of the beholder.", "target": "Type a 
message..."}

Action:

pyautogui.click(x=0.4991, y=0.6075)

pyautogui.write(‘Beauty is in the eye of the 
beholder.’)

Step 5

**DONE**

Task

Planner

Send a text message using Simple SMS Messenger to +16597910719 with 
message: Beauty is in the eye of the beholder.

Aguvis7BGPT-4o Grounder

Figure 11: Example of GPT-4o as planner and AGUVIS-7B as grounder executing on AndroidWorld task.
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E.4. Case of AGUVIS Generalization in Real-World Scenarios

Thought: To proceed with finding a flight, I need to dismiss the privacy pop-up to 
access the search functionality.

Low-level instruction: Click 'No, thanks' to dismiss the privacy pop-up.

Action: pyautogui.click(x=0.498, y=0.603)

Thought: To proceed with contacting support, I need to close this overlay to access the 
main page where the 'Contact Us' or 'Support' link is likely located.

Low-level instruction: Click the 'X' button to close the cookie consent overlay.

Action: pyautogui.click(x=0.704, y=0.093)

Figure 12: Case of AGUVIS generalization in real-world scenarios: closing cookie pop-ups, which is an out-of-domain
situation in our training data.
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