
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING LANGUAGE MODEL REASONING WITH
STRUCTURED MULTI-LEVEL MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference-time scaling enhances a model’s reasoning by extending its chain-of-
thought (CoT). However, existing approaches typically rely on a single policy
trained with outcome-reward reinforcement learning (RL), which often suffers
from long-horizon plan failures, i.e., the implicit plan drifts away from any valid
strategy. This problem is particularly severe for smaller language models (LMs)
with long CoTs due to their limited capacity. To address this, we propose Multi-
Level Reasoning (MLR), which reformulates long-CoT generation as a two-level
stochastic process. Specifically, MLR employs two policies: a high-level planner
that generates step descriptors (abstract subgoals) and a low-level executor that
produces detailed content conditioned on these descriptors. The planner then gener-
ates the next subgoal based on the summarized current step, forming an alternating
plan–execute loop. To maintain scalability, we adopt a minimal design, where
the base model serves as the low-level policy and a lightweight LoRA module
implements the high-level policy. For training, we observe that outcome-reward
RL is inefficient and weakly informative for long trajectories (e.g., those exceeding
4K tokens). To overcome this, we introduce online Step-DPO, a process-level
preference optimization scheme that leverages Twisted Sequential Monte Carlo
(TSMC) to provide scalable stepwise supervision. This yields more effective train-
ing, improved stability, and higher accuracy. Extensive experiments on challenging
math, science, and logical reasoning benchmarks show that, with only 10% SFT
data and 5% of preference data, MLR outperforms both the DeepSeek-R1 distilla-
tion and the outcome-reward RL baselines across multiple base models and tasks.
More importantly, MLR exhibits slower performance degradation on long-horizon
reasoning, demonstrating stronger robustness under extended CoT generation.

2 4 6 8 10
Number of Chained Problems

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

Long-horizon accuracy on MATH500
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

2 4 6 8 10
Number of Chained Problems

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ss

@
1

Long-horizon accuracy on AIME24
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

2 4 6 8 10
Number of Chained Problems

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ss

@
1

Long-horizon accuracy on Mixture benchmarks
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

2 4 6 8 10
Number of Chained Problems

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
1

Long-horizon accuracy on MATH500
Llama3.1-8B-Instruct
R1-Distill-Llama-8B
Llama3.1-8B-GRPO
Llama3.1-8B-MLR

(a) MATH500

2 4 6 8 10
Number of Chained Problems

0.0

0.2

0.4

0.6

Pa
ss

@
1

Long-horizon accuracy on AIME24
Llama3.1-8B-Instruct
R1-Distill-Llama-8B
Llama3.1-8B-GRPO
Llama3.1-8B-MLR

(b) AIME24

2 4 6 8 10
Number of Chained Problems

0.0

0.2

0.4

0.6

0.8

Pa
ss

@
1

Long-horizon accuracy on Mixture benchmarks
Llama3.1-8B-Instruct
R1-Distill-Llama-8B
Llama3.1-8B-GRPO
Llama3.1-8B-MLR

(c) Mixture
Figure 1: Long-horizon reasoning accuracy on (a) MATH500, (b) AIME24, and (c) Mixture benchmarks
(MATH500, AIME24, GPQA, BoardGameQA). We simulate long-horizon reasoning by concatenating multiple
problems in the prompt and report average accuracy. MLR consistently degrades more slowly than all baselines.
Additional experimental details and statistics are provided in Section D.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

OpenAI’s o1 series (OpenAI, 2024) introduce inference-time scaling by increasing the length of
the Chain-of-Thought (CoT) (Wei et al., 2022) reasoning process. This design yields significant
improvements in complex reasoning tasks compared to non-reasoning models, marking a major step
forward in language model (LM) capabilities. Building on this idea, DeepSeek (Guo et al., 2025)
proposes a large-scale reinforcement learning (RL) pipeline that directly incentivizes the generation
of long CoTs through policy optimization. Despite the effectiveness of these methods, approaches
that rely on single-policy long CoTs for RL face important limitations, including long-horizon plan
failures and the inherent challenges of RL with sparse outcome rewards1. These issues are especially
pronounced for smaller LMs with long CoTs due to their limited capacity.

In reinforcement learning, long-horizon policy learning remains a fundamental challenge due to
the difficult credit assignment (Kaelbling et al., 1996). To address this, hierarchical reinforcement
learning (HRL) (Dietterich, 2000) has been proposed, where high-level and low-level policies are
learned to operate at different temporal abstractions. While HRL proven effective in domains such as
robotics (Nachum et al., 2018; Gupta et al., 2019), its application to LMs2 presents several challenges:
1) Scalability. Modeling multiple policies, especially when implemented as separate LMs, can incur
significant computational overhead. Naı̈ve multi-agent setups will suffer from high communication
and synchronization costs, making HRL computationally expensive to scale (Guo et al., 2024b). 2)
Flexibility. The existing full-plan-then-execute structure (Huang et al., 2022; Xu et al., 2023) is brittle
in LM-based reasoning tasks where new information or execution failures may require mid-course
corrections. Thus, it is desirable to allow the high-level plan to evolve dynamically based on the
ongoing progress of the low-level execution process. To address these challenges, we propose a
multi-level reasoning (MLR) strategy, where the model alternates between generating a step-level
descriptor and its corresponding detailed content, to enable efficient multi-policy modeling and
dynamic plan adaptation.

More importantly, we introduce an online Step-DPO pipeline for long CoT training, which signifi-
cantly accelerates training and improves reasoning performance. Existing RL fine-tuning frameworks
struggle to obtain effective process-level supervision (Guo et al., 2025). First, evaluating the correct-
ness of intermediate steps is inherently difficult. Automated annotation using LLMs (Wang et al.,
2023b) often yields unreliable or noisy signals, while manual annotation (Lightman et al., 2023) is
prohibitively expensive at scale. Second, introducing a separate process reward model (PRM) adds
complexity. It is vulnerable to reward hacking (Gao et al., 2023), requires substantial training data,
and complicates the pipeline by necessitating repeated retraining. To overcome these limitations,
we repurpose Twisted Sequential Monte Carlo (TSMC) (Doucet et al., 2001; Del Moral et al., 2006;
Briers et al., 2010) as a process-level supervision signal for Step-DPO. In the LM-based reasoning
setting, the importance weight in TSMC estimates how much more likely a partial trajectory is to
lead to a correct outcome under the target distribution compared to the current policy. We then define
the process preference between two candidate continuations at the same step by comparing their
incremental log-weights. This formulation has two key advantages: 1) it converts the multiplicative
nature of sequential importance weights into an additive form, improving numerical stability; 2) it
aligns naturally with the pairwise preference structure of DPO training. Empirically, our approach
provides stable and informative step-level preferences, leading to more efficient training and stronger
performance on complex reasoning tasks.

We summarize our key contributions as follows:

• We propose a novel multi-level reasoning (MLR) framework that directly addresses the
limitations of single-policy long-CoT approaches, such as long-horizon plan failures and
inefficiency. MLR decomposes reasoning into alternating high-level step descriptors and
low-level detailed content, enabling structured abstraction, dynamic plan adjustment, and
more reliable long-horizon reasoning.

• We repurpose Twisted Sequential Monte Carlo (TSMC) to provide process-level preferences
for Step-DPO training. This eliminates the need for a separate process reward model,

1See Section 2 for a detailed discussion.
2Note that HRL differs from prompting-based approaches that decompose tasks in CoTs. Instead, it treats

high- and low-level actions as separate distributions with distinct objectives and temporal scopes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reducing overhead while supplying stable and informative supervision throughout long
reasoning trajectories.

• We perform extensive experiments on challenging benchmarks in math, science, and logical
reasoning. Results show that our approach consistently outperforms both distillation-based
long-CoT methods and RL methods that rely solely on outcome rewards.

2 INFERENCE-TIME SCALING VIA LONG CHAIN-OF-THOUGHT

Formulation. Consider a query q, reasoning models generate a CoT c before producing the final
response a, where q, c, a are all sequences of tokens, i.e., c = (c[1], c[2], · · · , c[L]). To improve
model performance, these models extend the length of c by incorporating human-like reasoning
behaviors such as exploration, self-verification and reflection. The generation of long CoTs follows
the standard autoregressive modeling: the probability of each token c[l] depends only on its preceding
tokens (c[1 : l − 1]), which enables the factorization of the joint likelihood of the entire sequence as:

pθ(c[1 : L]) =

L∏
l=1

pθ(c[l] | c[1 : l − 1]). (1)

Note that, for notational simplicity, we omit the conditioning on q in Eq. 1 and in the following
derivations. Training the model pθ involves maximizing the likelihood of each token conditioned on
its prefix, i.e., optimizing pθ(c[l] | c[1 : l − 1]) over the training data.

Post-training. Guo et al. (2025) detail how they incentivize the long CoT generation from a base
model through large-scale RL without relying on SFT. Specifically, they employ GRPO guided by
rule-based outcome reward. For each query q, GRPO samples a group of outputs {o1, o2, · · · , oG}
from the old policy πθold , where each output is composed of a CoT followed by the final response, i.e.,
oi = [ci, ai], and then optimizes the policy πθ by maximizing the corresponding objective.

Discussion on the weakness of single-policy long CoT. The above approach of using single-policy
long CoT enables inference-time scaling with LMs, but introduces several issues:

1) Long-horizon plan failures. In single-policy long CoT generation, the same policy is responsible
for both planning and execution. Without guidance or structure, errors can accumulate and cause
the implicit plan drifts away from any valid strategy (see examples in Section D).

2) Long-horizon RL with sparse outcome reward. Long CoTs involve thousands of token-level
actions before receiving a reward, which hinders effective credit assignment. As shown in
Figure 2, these trajectories can be extremely long, with errors occurring at widely varying
positions, which undermines the effectiveness of outcome-based fine-tuning. Moreover, Figure 3
shows that latency and memory usage grow rapidly with trajectory length, while outcome-based
supervision requires the entire trajectory to finish before feedback is provided. Consequently,
learning is slow and unstable, especially in the early stages when the model rarely produces
correct trajectories.

0 5 10 15 20 25 30
Number of Generated Tokens (K)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pe
rc

en
ta

ge
 (%

)

R1-Distill-Llama-8B on MATH500

(a) Trajectory length distribution.

0 20 40 60
Relative Position of First Error (%)

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

)

R1-Distill-Llama-8B on MATH500

(b) First error position distribution.

Figure 2: The Chain-of-Thought trajectories can be lengthy and the positions of the first error vary considerably,
making outcome-based RL fine-tuning inefficient. The statistics in (b) are based on 100 trajectories with incorrect
final answers, where the first error was manually identified.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

128 256 512 1k 2k 4k 8k
Maximum Response Length

0
200
400
600
800

1000
1200
1400

La
te

nc
y

(s
)

OOM
R1-Distill-Llama-8B on MATH500

(a) Single PPO step latency.

512 1k 2k 4k 8k 16k 32k
Maximum Response Length

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

R1-Distill-Llama-8B on MATH500

(b) Average outcome reward.

Figure 3: Training long trajectories with outcome rewards is highly inefficient. Both latency and memory usage
increase rapidly with trajectory length, and outcome-based supervision requires the entire trajectory to complete
before providing feedback. All measurements are obtained using Verl (Sheng et al., 2024) with vLLM (Kwon
et al., 2023) on a single A100 node (batch size = 32).

3 METHODOLOGY

3.1 ENHANCING INFERENCE-TIME SCALING WITH MULTI-LEVEL REASONING

Reformulation as MLR. We reconceptualize inference-time scaling by shifting from “single-policy
long CoT” to “multi-level reasoning” strategy (Figure 4). Here, the reasoning process is organized
hierarchically, capturing both high-level abstractions d and low-level details c. Formally, the overall
reasoning chain is represented at two levels: d = (d(1), · · · , d(M)) and c = (c(1), · · · , c(M)), where
M denotes the number of reasoning steps, d(m) is the descriptor of step m, and c(m) represents the
corresponding detailed content. The autoregressive likelihood can be factorized hierarchically as
follows:

pHθ (d) =

M∏
m=1

pHθ (d(m) | d(1:m−1), c′(1:m−1)), pLθ (c) =

M∏
m=1

pLθ (c
(m) | d(1:m), c(1:m−1)) (2)

where c′(m) denotes a compressed representation of the detailed content c(m). We also experimented
with removing the previous descriptors d(1:m−1) from Equation (2), but found that including them
improves performance and facilitates training. The inference procedure is summarized in Algorithm 1.

Architecture. Figure 5 illustrates the architecture used to implement our MLR strategy. The model
alternates between a high-level policy that produces step descriptors and a low-level policy that
generates the corresponding detailed content. The low-level policy is implemented with the base LM,

Direction vector of the first line is (3, 2, -6).

Question: The set of points (x,y,z) that satisfy $2x = 3y = -z$ is a line. The set of points (x,y,z) that satisfy $6x = -y = -4z$ is another line. Find
the angle between these lines, in degrees.

The angle between two lines in 3D space is …
their direction vectors.

Understanding the problem

Okay, so I need to find the angle between two lines in 3D space. … So first, I need to
find the direction vectors of each line.

Understanding the problem

Finding direction vectors

Starting with the first line: 2x = 3y = -z. Let me parse this equation. … Okay, so direction
vector \textbf{v} is (3, 2, -6).

Finding direction vectors

Both lines pass through the origin and
intersect there. … is 90 degrees.

Verifying the result using another method

But wait, just to be thorough, maybe I should check if the lines are … Therefore, the
angle between the two lines is 90 degrees.

Verifying the result using another method

High-level Abstraction (284 tokens) Low-level Details (2477 tokens)

⋮ ⋮

Figure 4: Illustration of MLR. MLR augments single-policy reasoning with an explicit high-level
policy which provides intent and structural guidance that narrows the search space, improves credit
assignment, and mitigates long-horizon planning failures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Low-level
Base model

High-level
LoRA

LM

(1)d (1)c 

(2)d (2)c 
(3)d

(1)d (1)c
(2)d

(2)c (3)c

High-level Abstraction

Low-level Details

(3)d

Summarization

(3)c

Figure 5: Overview of the proposed architecture. The model alternates between generating high-level
descriptors and corresponding low-level content in a structured manner. Additional insights and
ablations motivating these design choices are provided in Section C.

which conditions on the sequence of descriptors, prior detailed contents, and the current descriptor to
generate the detailed reasoning step. The high-level policy is implemented with a lightweight LoRA
module (Hu et al., 2022), which conditions on previous descriptors and their summaries to produce
the next descriptor. Since descriptors are much shorter than full reasoning content, this component
remains compact and computationally efficient. The design rationale behind this architecture as well
as ablation studies are provided in Section C. Additionally, we fine-tune an independent, lightweight
LLM for summarization, which is shared across different base models.

3.2 ONLINE STEP-DPO WITH PROCESS-LEVEL PREFERENCES

To train our model effectively, we introduce an online Step-DPO pipeline that iteratively updates the
policy through stepwise preference optimization.

Supervised fine-tuning. We collect long CoT examples from DeepSeek-R1 and use powerful
non-reasoning models (GPT-4o (OpenAI, 2024), DeepSeek-V3 (Liu et al., 2024)) to decompose them
into multiple reasoning steps, each annotated with a step-level descriptor via in-context learning.
To construct high-level abstractions, we further compress the detailed content of each step into a
concise summary using the same non-reasoning models. The resulting multi-level data consists of
aligned step descriptors, detailed contents, and summaries. We then fine-tune the base model on the
low-level detailed content using full SFT. Afterward, we freeze the base model and apply LoRA-based
fine-tuning on the high-level abstraction data. We also fine-tune an independent, lightweight LLM
on the summarization data. During the online Step-DPO procedure, the summarizer remains frozen.
A detailed discussion of design choices, including training order, full vs. adapter finetuning, and
ablations, is provided in Section C.

Multi-level Step-DPO. Following Lai et al. (2024), we optimize the MLR framework with the
following stepwise preference loss:

Ls-DPO := −E
(x(m),y

(m)
+ ,y

(m)
−)∼Dpref

1

M

M∑
m=1

log σ
[
β
(
log

pθ(y
(m)
+ | x(m))

pref(y
(m)
+ | x(m))

− log
pθ(y

(m)
− | x(m))

pref(y
(m)
− | x(m))

)]
.

(3)
where (x(m), y

(m)
+ , y

(m)
−) denotes the preference data at step m. During optimization, we main-

tain a low-level policy (the base LM) and a high-level policy (the LoRA adapter). For low-level
preference pairs, we disable the LoRA adapter and update only the base LM parameters with(
(d(1:m), c(1:m−1)), c

(m)
+ , c

(m)
−

)
; for high-level pairs, we freeze the base LM and update only the

LoRA parameters with
(
(d(1:m−1), c′(1:m−1)), d

(m)
+ , d

(m)
−

)
.

Multi-level update schemes. A key challenge in jointly optimizing the two policies lies in designing
an effective update scheme. We adopt an interleaved strategy: mini-batches of high-level and low-
level examples are alternated, allowing the planner and executor to be trained jointly while preserving
modularity. We compare this update scheme with cheaper alternatives in Section C.

Multi-round Step-DPO for online optimization. Motivated by the benefits of on-policy data
sampling in RL, we adopt an iterative Step-DPO framework for improved optimization. Specifically,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in the t-th iteration, we use the current policies to sample preference pairs to create the preference
data D(t)

pref. Then, we use to update the policies for the next iteration as

Lms-DPO := −E
(x(m),y

(m)
+ ,y

(m)
−)∼D(t)

pref

1

M

M∑
m=1

log σ
[
β
(
log

p
(t+1)
θ (y

(m)
+ | x(m))

p
(t)
θ (y

(m)
+ | x(m))

−log
p
(t+1)
θ (y

(m)
− | x(m))

p
(t)
θ (y

(m)
− | x(m))

)]
.

(4)
The training procedure is summarized in Algorithm 2. More implementation details are provided in
Section C.

Process preference modeling. A key component of our online Step-DPO pipeline is the process-
level supervision for both the high-level descriptors d(m) and the low-level detailed contents c(m).
Consider the full reasoning trajectory after a prefix x(m) as future tokens τm+1:M = (d(m+1), c(m+1),
. . . , d(M), c(M)), generated by a rollout policy proll. The survival probability of x(m) is

g(x(m)) = P(R = 1 | x(m)) = Eτm+1:M∼proll(·|x(m))

[
R(x(m), τm+1:M)

]
, (5)

where the terminal reward R(x(m), τm+1:M) is 1 if the final answer is correct, and 0 otherwise.

Given an estimate of the survival probability ĝ, we construct preference data using a utility defined as
the increment in log-survivability:

U(y(m)) = log g̃
(
x(m), y(m)

)
− log g̃(x(m)). (6)

where the survivability is clipped as g̃ = clip(ĝ, ε, 1 − ε) with ε = 0.001 for numerical stability.
Intuitively, U(y(m)) quantifies how the selected candidate changes the probability of eventual success
relative to the preceding prefix. Then we impose the condition that the utility difference satisfies the
following:

U(y
(m)
+)− U(y

(m)
−) = log g̃

(
x(m), y

(m)
+

)
− log g̃

(
x(m), y

(m)
−

)
> δ, (7)

where the margin threshold δ ensures the reliability of the preference data.

Twisted Sequential Monte Carlo. A key challenge of the above approach is computational cost:
estimating survivability naively requires running the base model multiple times per prefix. To address
this, we adopt a strategy based on Twisted Sequential Monte Carlo (TSMC) that provides accurate
survivability estimates while remaining computationally efficient. In particular, we use a lightweight
rollout model to generate fast continuations and apply importance weighting to correct for the
distribution mismatch.

Given a prefix, the k-th particle at step m − 1 has state x
(m−1)
k . We first sample a candidate step

y
(m)
k ∼ proll

(
· | x(m−1)

k

)
and form the updated state x

(m)
k = [x

(m−1)
k , y

(m)
k]. Its importance weight

is updated as
W

(m)
k = W

(m−1)
k · w̃(m)

k , (8)
with incremental weight

w̃
(m)
k = Gm

(
x
(m)
k

)
·
pθ
(
x
(m)
k | x(m−1)

k

)
proll

(
x
(m)
k | x(m−1)

k

) ·
ϕm

(
x
(m)
k

)
ϕm−1

(
x
(m−1)
k

) . (9)

where W (m)
k is the m-th step importance weight with W

(0)
k = 1, the potential function Gm is defined

as Gm

(
x
(m)
k

)
= 1 for m < M and GM

(
x
(M)
k

)
= 1correct

(
x
(M)
k

)
, i.e., final answer correctness, pθ

denotes the base model, proll is the rollout policy, and ϕm is a learned survivability critic at step m.
When proll is close to pθ, the contribution from the survivability critic ϕm becomes negligible, and in
this case, we can simplify ϕm ≈ 1, leading to w̃

(m)
k ≈ Gm

(
x
(m)
k

)
. Finally, the survivability estimate

is given by:

ĝK(x(m)) =
1

K

K∑
k=1

W
(Mk)
k =

1

K

K∑
k=1

W
(m)
k

Mk∏
j=m+1

w̃
(j)
k ≈ W (m) · 1

K

K∑
k=1

1correct
(
x
(Mk)
k

)
. (10)

where K represents the number of particles, and W (m) is a shared term depending only on the
prefix x(m). Specifically, we fine-tune a small LM on the same low-level SFT data and use it as the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Prefix step

0.90
0.92
0.94
0.96

Es
t.

su
rv

iv
al

 a
cc

. MATH500

1.5B avg@1
1.5B avg@4

1.5B avg@8
8B avg@1

8B avg@4
8B avg@8

(a) Accuracy of survival prob. estimation.

1 5 10 15 20 25 30
Prefix step

0

250

500

750

1000

Ro
llo

ut
 ti

m
e

(s
)

MATH500
1.5B
8B

(b) Rollout time for batch size = 64.
Figure 6: Monte Carlo rollout analysis. (a) The accuracies of R1-Distill-LLaMA-8B and R1-Distill-Qwen-1.5B
are highly comparable. (b) Runtime grows with model size, with R1-Distill-LLaMA-8B substantially slower
than R1-Distill-Qwen-1.5B. Implementation details are provided in Section C.

rollout policy proll. This choice is justified for three reasons: (i) the small model shares a similar
distribution with the base model because it is trained on the same data; (ii) we only need to capture
the correct relative tendency; and (iii) rollout with a smaller model is significantly more cost-effective.
In Figure 6, the small model achieves comparable estimation accuracy while being much faster.
Additionally, we split the RL problems into easy and hard categories. For hard problems, where the
accuracy of the small model is significantly lower than that of the base model, we revert to using the
base model as the rollout policy. In practice, we use the base model for AIME24 and GPQA.

4 EXPERIMENTS

Dataset We evaluate our approach on math (MATH500 (Hendrycks et al., 2021), AIME24 (MAA,
2024)), science (GPQA-diamond (Rein et al., 2023)), and logical reasoning (BoardGameQA-hard
(Kazemi et al., 2023)). Detailed dataset statistics are provided in Section B. For training, we construct
a multi-level dataset and divide it into two parts: SFT data and online preference data for Step-DPO.
The SFT set contains about 80K examples produced using the multi-level decomposition procedure
described in Section 3.2. In addition, we reserve 10K prompts for Step-DPO training. Details of
dataset construction are provided in Section C.

Implementation details We fine-tune three base models, Qwen-2.5-1.5B (Yang et al., 2024a),
Qwen-2.5-MATH-7B (Yang et al., 2024b) and LLaMA-3.1-8B (Grattafiori et al., 2024), on the
low-level data with full parameter fine-tuning. The resulting models are frozen, and we apply LoRA
fine-tuning on the high-level policy. We also fully fine-tune a Qwen2.5-0.5B-Instruct model for
summarization, which is frozen after SFT and shared across all base models (see Section C for
more details). Our online Step-DPO pipeline is implemented with the TRL framework. In each
training round, we sample a batch of approximately 3K prompts. For each prompt, we randomly
select 4 reasoning steps and generate M = 2 candidate continuations per step. These candidates are
scored using the utility (Equation (6)). In experiments, we use Qwen-2.5-1.5B SFT on the low-level
data as the rollout policy, with K = 4 sampled rollouts per prefix (see Section 4 for parameter
studies). The fast rollout model is frozen after SFT and is shared across base models. From each
prefix, we form one preference pair, weighted by the utility margin δ = 0.4. Each update uses
mini-batches of size 32 for E = 4 epochs, and applies the standard Step-DPO objective with β = 0.1.
Generated continuations are capped at a maximum length of 8,192 tokens. More implementation
details, including ablation settings and hyperparameters, are provided in Section C.

Baselines We compare our method with the following baselines: the base model, the instruction
fine-tuned model, RL applied directly to the base model (SimpleRL (Zeng et al., 2025)), distillation

500 1000 1500 2000
Tokens

0

5

10

Pe
rc

en
ta

ge
 (%

) High-Level

2000 4000 6000 8000
Tokens

Low-Level

25 50 75 100 125 150
Tokens

Summary

Figure 7: Length distributions for high-level trajectories, low-level trajectories, and distilled summaries in our
SFT dataset. Trajectories longer than 8k tokens are truncated.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison across different benchmarks. The best performance for each task
using the same base model is in bold. Asterisks (∗) denote available results obtained from the official reports.

Math Science Logic

Method MATH500 AIME24 GPQA (Diamond) BoardGameQA (Hard) Avg. Pass@1
Pass@1 Pass@1 Cons@32 Pass@1 Pass@1

Qwen-2.5-1.5B
Base 29.6 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 21.2 ± 1.1 35.0 ± 1.8 21.5
Instruct 54.6 ± 0.4 3.3 ± 1.5 10.0 ± 0.3 25.2 ± 1.4 41.0 ± 1.0 31.0
SimpleRL 59.0∗ 6.7∗ 4.2∗ – – –
DeepSeek-R1-Distill 83.9∗ 28.9∗ 43.3 ± 0.4 33.8∗ 40.0 ± 2.2 47.7
Plan-and-Solve 60.8 ± 1.0 2.0 ± 1.4 6.2 ± 0.4 20.1 ± 1.6 44.6 ± 1.6 31.9
SFT + DPO 76.5 ± 1.3 12.0 ± 1.9 21.6 ± 0.7 27.6 ± 1.6 51.8 ± 1.7 42.0
SFT + Step-DPO 81.4 ± 1.2 24.0 ± 2.0 36.5 ± 0.7 29.0 ± 1.7 56.2 ± 1.7 47.8
SFT + GRPO 82.1 ± 1.2 25.2 ± 2.2 36.0 ± 0.8 30.2 ± 1.5 56.0 ± 1.6 48.4
MLR (SFT only) 62.0 ± 1.2 8.9 ± 1.4 13.3 ± 0.4 26.0 ± 2.0 46.4 ± 1.5 35.8
MLR 86.1 ± 1.0 31.2 ± 1.0 47.4 ± 0.4 37.6 ± 1.9 62.0 ± 1.7 54.2

Qwen-2.5-MATH-7B
Base 52.0 ± 0.5 2.0 ± 1.0 5.0 ± 0.3 20.5 ± 1.1 33.0 ± 1.6 26.9
Instruct 82.1 ± 0.4 16.7 ± 1.8 34.0 ± 0.4 27.8 ± 1.3 44.5 ± 1.4 42.8
SimpleRL 80.2∗ 40.0∗ 24.0∗ – – –
DeepSeek-R1-Distill 92.8∗ 55.5∗ 78.0 ± 0.4 49.1∗ 42.4 ± 1.4 60.0
Plan-and-Solve 85.6 ± 0.9 18.2 ± 1.7 34.9 ± 0.5 28.4 ± 1.6 52.1 ± 1.5 46.1
SFT + DPO 87.4 ± 1.0 36.0 ± 1.8 53.0 ± 0.5 36.0 ± 1.6 54.5 ± 1.5 53.4
SFT + Step-DPO 88.5 ± 0.9 48.5 ± 1.9 70.5 ± 0.5 48.0 ± 1.7 56.0 ± 1.6 60.3
SFT + GRPO 89.7 ± 1.0 46.5 ± 1.9 66.2 ± 0.5 46.0 ± 1.8 57.5 ± 1.6 59.9
MLR (SFT only) 86.3 ± 1.0 22.4 ± 1.9 40.5 ± 0.5 34.6 ± 1.7 54.8 ± 1.6 49.5
MLR 94.1 ± 0.9 58.8 ± 1.8 80.5 ± 0.4 51.2 ± 1.5 60.5 ± 1.6 66.2

Llama-3.1-8B
Base 13.6 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 1.0 2.0 ± 1.1 4.3
Instruct 51.9 ± 0.2 6.7 ± 1.8 13.3 ± 0.2 22.7 ± 0.6 40.0 ± 1.2 30.3
SimpleRL 23.0∗ 0.0∗ 0.2∗ – – –
DeepSeek-R1-Distill 89.1∗ 50.4∗ 70.0 ± 0.4 49.0∗ 46.0 ± 3.8 58.6
Plan-and-Solve 62.4 ± 1.1 12.3 ± 1.8 24.1 ± 0.4 31.0 ± 1.6 47.2 ± 1.7 38.2
SFT + DPO 74.1 ± 1.5 32.4 ± 1.8 52.0 ± 0.6 44.0 ± 1.7 56.0 ± 1.7 51.6
SFT + Step-DPO 82.4 ± 1.3 42.6 ± 2.0 61.2 ± 0.5 49.2 ± 1.5 62.1 ± 1.4 59.1
SFT + GRPO 86.5 ± 1.4 42.0 ± 2.0 61.0 ± 0.5 47.0 ± 1.6 64.5 ± 1.5 60.0
MLR (SFT only) 63.8 ± 1.2 20.2 ± 2.0 36.7 ± 0.4 36.2 ± 1.8 48.5 ± 1.8 42.2
MLR 91.5 ± 1.3 53.2 ± 2.0 73.3 ± 0.4 52.8 ± 1.5 67.0 ± 1.4 66.1

using vanilla long CoTs (R1-Distill (Guo et al., 2025)), RL applied to SFT model (DPO (Rafailov
et al., 2023), Step-DPO (Lai et al., 2024), GRPO (Shao et al., 2024)) and Plan-and-Solve (Wang
et al., 2023a). All baselines that we train ourselves (DPO, Step-DPO, GRPO, Plan-and-Solve) use
exactly the same data (see Section C for implementation details). Results for external baselines
(Instruct, SimpleRL, R1-Distill) are included as strong reference points. During evaluation, we use
greedy decoding for both Base and Instruct to produce more coherent and consistent CoTs. For all
other baselines and our method, we follow the setup in Guo et al. (2025), using sampling-based
decoding with a temperature of 0.6 and a top-p value of 0.95 to generate 8 responses per prompt to
reduce variance and repetition. Performance is measured using pass@1. For AIME24, we also report
consensus accuracy over 32 samples, denoted as cons@32.

Empirical results We first present representative model outputs in Section D, with additional error
analysis in Section D. Table 1 reports overall performance, and Figure 9 illustrates how MLR evolves
across training stages. We compare instruction fine-tuning, process-reward and outcome-reward

1 4 8 16
Rollout count

0.6

0.7

0.8

0.9

1.0

Se
le

ct
ed

 P
ai

r A
gr

.

MATH500

1.5B
8B

1 4 8 16
Rollout count

AIME24

1 4 8 16
Rollout count

GPQA

1 4 8 16
Rollout count

BoardGameQA

Figure 8: Agreement of selected preference pairs versus rollout count K for the rollout policy on (a) MATH500,
(b) AIME24, (c) GPQA, and (d) BoardGameQA. For each K, we evaluate the preference pairs selected by the
rollout policy and report the fraction whose preference direction matches that of the 8B base model using 16
rollouts. In practice, we use the base model as the rollout policy for AIME24 and GPQA.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation results using Qwen-2.5-1.5B. For the high-
level SFT ablation, all methods use the same low-level SFT. For
the hierarchical-level ablation, all variants share the same trained
model. Our approach is highlighted in bold.

Method MATH500 AIME24 Avg.
Pass@1 Pass@1 Cons@32 Pass@1

Ablation of high-level SFT strategies
SFT (low) + LoRA (high) 62.0 ± 1.2 8.9 ± 1.4 13.3 ± 0.4 35.5
Base + LoRA (high) 56.4 ± 1.5 4.1 ± 1.1 9.2 ± 0.7 30.3
SFT (high) 59.8 ± 1.3 6.5 ± 1.2 11.0 ± 0.5 33.2
Ablation of hierarchical levels
High-level + Low-level 86.1 ± 1.0 31.2 ± 1.0 47.4 ± 0.4 58.7
High-level only 80.0 ± 1.3 18.4 ± 2.0 30.5 ± 0.8 49.2
Low-level only 84.2 ± 1.1 27.1 ± 1.8 41.0 ± 0.6 55.7

SFT RFT-1 RFT-2 RFT-3 RFT-4
20

40

60

80

Pa
ss

@
1

(%
)

MATH500
AIME24
GPQA

BoardGameQA
Average

Figure 9: Performance of MLR over dif-
ferent training stages.

Table 3: Ablation results for the core components of MLR using LLaMA-3.1-8B.

Math Science Logic

Method MATH500 AIME24 GPQA (Diamond) BoardGameQA (Hard) Avg. Pass@1
Pass@1 Pass@1 Cons@32 Pass@1 Pass@1

Ours 91.5 ± 1.3 53.2 ± 2.0 73.3 ± 0.4 52.8 ± 1.5 67.0 ± 1.4 66.1
DPO-only 78.2 ± 1.4 38.1 ± 1.9 57.0 ± 0.5 46.0 ± 1.6 59.0 ± 1.6 55.3
Low-level policy + Step-DPO 82.4 ± 1.3 42.6 ± 2.0 61.2 ± 0.5 49.2 ± 1.5 62.1 ± 1.4 59.1
Low-level policy + DPO 74.1 ± 1.5 32.4 ± 1.8 52.0 ± 0.6 44.0 ± 1.7 56.0 ± 1.7 51.6
SFT-only 63.8 ± 1.2 20.2 ± 2.0 36.7 ± 0.4 36.2 ± 1.8 48.5 ± 1.8 42.2

RL, distillation with vanilla long CoTs, Plan-and-Solve, and MLR. Across all benchmarks, MLR
consistently outperforms all baselines, with its structured design enabling more effective reasoning
on complex, long-horizon tasks. In addition, the online step-DPO procedure yields substantial gains
over the SFT model. Finally, we report average response lengths across benchmarks: high-level
trajectories are approximately 10–20% the length of low-level ones (Figure 11).

Parameter studies We study the effect of varying the rollout count K. Utility estimates produced
by the 1.5B rollout policy with K rollouts are compared against reference utilities from the 8B model
using 16 rollouts (Figure 15). As expected, increasing K reduces estimator variance, though at the
cost of higher computation. To mitigate this overhead, we introduce a margin threshold δ when
selecting preference pairs. We further measure the agreement of the selected preference pairs as a
function of K, defined as the fraction whose preference direction agrees with the base model using 16
rollouts (Figure 8). Finally, we report model performance across training stages under different values
of K (Figure 12). The results show that our chosen setting attains comparable final performance
while substantially reducing computational cost. Implementation details are provided in Section D.

Ablation studies We conduct a series of ablation studies to evaluate the contributions of key
components in MLR. We compare five configurations: (i) the full method, (ii) only applying DPO,
(iii) using only the low-level policy with Step-DPO or (iv) DPO, and (v) training with SFT only.
Table 3 summarizes the results, which show that both multi-level modeling and step-level preferences
are essential. Figure 10 further illustrates this trend: our method achieves higher preference accuracy
throughout training. We additionally ablate the high-level SFT component (Table 2), evaluating two
alternatives: (i) applying LoRA to the original base model and (ii) full-parameter SFT. A detailed
discussion and implementation details are provided in Section C. We also ablate the hierarchical
structure (Table 2), comparing (i) high-level–only and (ii) low-level–only variants. Further analysis
and implementation details appear in Section D. Across all ablations, our full strategy yields the
strongest performance.

50 100 150 200 250 300
Training steps

60

80

Pr
ef

. a
cc

. (
%

)

LowLevel-StepDPO
LowLevel-DPO

MLR
Only DPO

Figure 10: Preference accuracy.

MATH500 AIME24 GPQA Board0

2

4

6

8

Av
g.

 re
sp

. l
en

gt
h

(K
)

0.4
1 0.7 0.3

3.7

7.8

6

2.2

High-level
Low-level

Figure 11: Avg. resp. length.

SFT RFT-1 RFT-2 RFT-3 RFT-4

25

30

35

Av
g.

 P
as

s@
1

(%
)

MATH500 + AIME24

K=1
K=4
K=8
K=16

Figure 12: Effect of K in MLR.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Reasoning models (OpenAI, 2024; Qwen-Team, 2024; Guo et al., 2025) represent a transformative
advancement in the evolution of LMs, sparking substantial interest in replicating their strong perfor-
mance. Several subsequent works (HuggingFace, 2025; OpenThoughts-Team, 2025; Bespoke-Labs,
2025; Muennighoff et al., 2025) have primarily relied on supervised fine-tuning (SFT). While this
approach has shown promising results, pure SFT is generally less efficient in utilizing training signals
compared to reinforcement learning (RL), as it passively imitates given demonstrations without
exploration or fine-grained credit assignment.

Recent RL-based works introduce improvements along three main dimensions:

1) RL Algorithms. RL methods for LLM reasoning mainly fall into PPO-, GRPO-, and REINFORCE-
based families. PPO variants (Yuan et al., 2025; Yue et al., 2025) improve value estimation and
stability; GRPO methods (Shao et al., 2024; Yu et al., 2025; Liu et al., 2025) remove the critic
and refine sampling, normalization, and token-level gradients; REINFORCE variants (Hu, 2025;
Kimi-Team et al., 2025) reduce variance through KL penalties and centralized rewards. Despite these
advances, all rely largely on sparse outcome rewards, which provide weak credit assignment for long
reasoning trajectories.

2) Reward Design. Most existing approaches define rewards based on outcome accuracy, format
compliance, and length constraints (Zhang et al., 2025a). Process rewards remain largely unexplored
in current pipelines.

3) Data Sampling Strategies. Curriculum learning (Hu et al., 2025; Zhang et al., 2025b) gradually
increases task difficulty during training. Rejection sampling (Wen et al., 2025; Yu et al., 2025) is
commonly used to filter low-quality samples and stabilize optimization.

However, outcome-reward RL is inherently inefficient and weakly informative for long trajectories.
Recent work (Lightman et al., 2023; Wang et al., 2023b) therefore explores Process Reward Models
(PRM), but they struggle in practice (Guo et al., 2025): 1) explicitly defining fine-grained reasoning
steps is difficult; 2) reliably verifying the correctness of each intermediate step is non-trivial; 3)
training a separate reward model introduces the risk of reward hacking and requires additional
training.

On the other hand, Direct Preference Optimization (DPO) (Rafailov et al., 2023) also faces limitations:
it relies on offline data and trajectory-level preferences. Step-DPO (Lai et al., 2024) mitigates this by
constructing curated step-wise preference data, while DPO with AI feedback (Cui et al., 2023; Guo
et al., 2024a) enables online updates. However, these approaches are not well suited for long CoTs,
as they rely on strong teacher models (e.g., GPT-4) to provide step-level preferences, both costly and
unreliable on harder tasks. To address this, we introduce a scalable TSMC-based approach to provide
stepwise preferences. Unlike naive tree-search methods (Wang et al., 2023b), which are prohibitively
expensive on long trajectories, our approach remains efficient and stable for long-horizon supervision.

Finally, using a single policy for long-horizon reasoning introduces additional limitations such as
plan failures. MLR instead adopts a multi-level strategy, differing from existing planning methods
(Huang et al., 2022; Xu et al., 2023; Wang et al., 2023a) that generate a full plan upfront and assume
all subtasks succeed as written. Such fixed plans propagate early errors. In contrast, MLR learns
a planner that adapts its plans based on execution feedback, enabling revisions and yielding more
robust long-horizon reasoning.

6 CONCLUSION

We presented a novel multi-level reasoning (MLR) framework that enhances inference-time scaling
by structuring the reasoning process into interleaved high-level abstractions and low-level details.
This decomposition supports efficient multi-policy modeling and dynamic plan adaptation, addressing
critical challenges faced by single-policy long-CoT approaches. By sidestepping the limitations
of prior outcome supervision methods, MLR provides a scalable and robust pathway for training
reasoning-focused language models. Extensive experiments demonstrate consistent performance
gains across math, science, and logical reasoning tasks, highlighting MLR’s promise as a general-
purpose reasoning framework.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LIMITATIONS

Our method requires maintaining two separate policies and performing additional steps for process
supervision, which increases training complexity. To keep costs practical, we freeze the base model
for the high-level policy, decouple supervision estimation from trajectory generation, and alternate
policy updates. These strategies help manage training overhead; however, on resource-constrained
devices further optimizations, such as quantization, activation checkpointing, or memory-efficient
attention, may still be necessary. The approach also introduces extra hyperparameters, though most
can be assigned reasonable default values that transfer well across tasks. Our experiments indicate
that performance is robust to moderate variations in these settings, reducing the need for extensive
hyperparameter tuning.

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive demographic information. All
datasets are publicly available and used under their respective licenses. Our method aims to improve
the efficiency of large language models, which can promote accessibility and sustainability. We
acknowledge that LLMs may be misused for generating harmful or biased content, but our work does
not specifically target such applications. No conflicts of interest or ethical concerns are associated
with this research.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The main paper and
appendix provide detailed descriptions of our model architecture, training procedures, and evaluation
settings. All datasets used are publicly available, and we include a complete description of data
processing steps in the supplementary materials. Pseudocode and complexity analysis are provided in
the paper and appendix to clarify algorithmic details.

REFERENCES

Bespoke-Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distil-
lation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state–space models.
Annals of the Institute of Statistical Mathematics, 62:61–89, 2010.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
arXiv preprint arXiv:2310.01377, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227–303, 2000.

Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo methods in
practice, volume 1. Springer, 2001.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024a.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024b.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-
reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero, 2025.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

HuggingFace. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradictory
information. Advances in Neural Information Processing Systems, 36:39052–39074, 2023.

Kimi-Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

12

https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2501.12599

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

MAA. American invitational mathematics examination - aime. In
American Invitational Mathematics Examination - AIME 2024, Febru-
ary 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2025-05-15.

OpenAI. Learning to reason with language models, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/. Accessed: 2025-05-15.

OpenThoughts-Team. Open Thoughts. https://open-thoughts.ai, January 2025.

Qwen-Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023a.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023b.

13

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2501.19393
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://open-thoughts.ai
https://qwenlm.github.io/blog/qwq-32b-preview/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024b. URL https://arxiv.org/abs/2409.12122.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Gaohong Liu, Juncai Liu, Lingjun Liu, Haibin
Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Ru Zhang, Xin Liu,
Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable reinforcement learning
for advanced reasoning tasks, 2025. URL https://arxiv.org/abs/2504.05118.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Chong Zhang, Yue Deng, Xiang Lin, Bin Wang, Dianwen Ng, Hai Ye, Xingxuan Li, Yao Xiao,
Zhanfeng Mo, Qi Zhang, et al. 100 days after deepseek-r1: A survey on replication studies and
more directions for reasoning language models. arXiv preprint arXiv:2505.00551, 2025a.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chaohang
Wen, Haotian Zhang, Bin Chen, and Bing Yu. Srpo: A cross-domain implementation of large-scale
reinforcement learning on llm, 2025b. URL https://arxiv.org/abs/2504.14286.

14

https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2504.14286

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used Large Language Models (LLMs) only as assistive tools for grammar refinement, readability
improvements, and LaTeX formatting. They were not involved in generating research ideas, designing
methods, conducting experiments, or analyzing results. All technical content and conclusions are
entirely the work of the authors.

B DATASET STATISTICS

In this section, we provide statistics for all benchmark datasets used in our study. We consider
MATH500 (Hendrycks et al., 2021), AIME24 (MAA, 2024) for math reasoning, GPQA-diamond
(Rein et al., 2023) for science reasoning, and BoardGameQA-hard (Kazemi et al., 2023) for logical
reasoning. For MATH, there are 7,500 training samples and 5,000 test samples. MATH500 is a
subset of 500 representative test samples extracted by Lightman et al. (2023), with the remaining test
samples added to the training set.

The AIME dataset is based on the American Invitational Mathematics Examination, a high-level
math contest administered by the Mathematical Association of America (MAA) for high-achieving
middle and high school students. We use the data3 collected from 1983 to 2024, where each year
contains 15 questions prior to 2000 and 30 questions thereafter. The 2024 dataset is used as the test
set, while data from all previous years serve as the training set.

GPQA is a multiple-choice, Q&A dataset of very hard questions written and validated by experts
in biology, physics, and chemistry. It includes three subsets: main (448 questions), diamond (198
questions), and extended (546 questions). We use the diamond subset as the test set and combine the
remaining subsets for training. To prevent data leakage, any questions overlapping with the test set
are removed from the training set.

BoardGameQA is a claim verification problem with three types of labels (proved, disproved, un-
known), which involves reasoning with contradictory information guided by preferences over rules as
board games. The dataset is divided into 15 subsets based on reasoning depth and levels of conflict
or distractors, each with separate train, validation, and test splits. We define BoardGameQA-hard
as the union of all test sets from five challenging subsets: Main-depth3, DifficultConflict-depth2,
HighConflict-depth2, KnowledgeHeavy-depth2, and ManyDistractors-depth2, resulting in a total test
set of 500 examples. The remaining data from all subsets are used for training.

C IMPLEMENTATION DETAILS

Dataset construction. As mentioned above, we consider four publicly available reasoning bench-
marks: MATH500, AIME24, GPQA, and BoardGameQA. For each benchmark, we use the available
training split as seeds and reserve the test splits exclusively for evaluation. We randomly partition each
training split into SFT and RL subsets (60% / 40% ratio). Because AIME and GPQA contain very
few training questions, we augment their train splits with synthetic problems generated by GPT–4o
using the prompts provided in Section D. For each seed problem we sample multiple candidate
questions and retain only those whose final answers are mutually consistent with DeepSeek-R1, i.e.,
DeepSeek-R1 solves the problem and produces the same final answer as GPT–4o. This procedure
yields SFT sets of 7.2K MATH, 4K AIME, 4K GPQA, and 5K BoardGameQA problems, and RL
sets of 4.8K, 1.5K, 1.5K, and 2K problems, respectively. Unless otherwise stated, all methods that we
train ourselves (GRPO, Plan-and-Solve, MLR, and all ablations in Table 3) use exactly the same data,
ensuring a fair comparison. Results for external baselines (Instruct, SimpleRL, DeepSeek-R1-Distill),
marked with an asterisk in Table 1, are copied from their official reports and may rely on different
training corpora; we include them as strong reference points.

Specially, in the SFT phase, we generate multiple high-quality trajectories for each problem by
sampling four solutions from DeepSeek-R1, yielding approximately 80K filtered trajectories in total.
Each accepted trajectory is then decomposed into step-by-step reasoning segments using DeepSeek-
V3 via in-context learning, with each step annotated by a step descriptor. Because DeepSeek-V3 has

3https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024

15

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

a maximum response length constraint, we pre-screen trajectories to ensure compliance, and process
the remaining long trajectories using GPT-4o. To enable multi-level reasoning, we further distill
each step into a concise high-level summary, again using DeepSeek-V3 with in-context learning.
All prompts used throughout this pipeline are provided in Section D. Figure 7 presents the resulting
trajectory length distributions across different reasoning levels and their corresponding summaries.

Summarization. The summarization module in MLR serves to distill essential information from the
evolving trajectory, allowing the planner to operate on concise, high-level representations rather than
being overwhelmed by unnecessary details. This becomes particularly important when trajectories
grow long (e.g., beyond 4k tokens). We implement summarization as an independent component that
is shared across different base models. Although we explored reusing either the low-level or high-level
policy for this task, we found that doing so interferes with their primary roles. In contrast, training
a separate lightweight model for summarization is both simpler and more reliable. Specifically,
we use Qwen2.5-0.5B-Instruct, optimized with AdamW using a cosine learning-rate schedule with
linear warmup and a peak learning rate of 1 × 10−5. The prompt template for summarization is
provided in Section D, and the summary length distribution is shown in Figure 7. Note that we only
apply full-parameter SFT to the summarization model. During the online Step-DPO procedure, this
summarizer remains frozen, which we found to be sufficient in practice and contributes to more stable
overall training.

Supervised fine-tuning. We first fine-tune the base LM on low-level trajectories and then freeze
it, attaching a parameter-efficient LoRA adapter for high-level planning. The intuition behind this
design is twofold. Low-level trajectories are long, fine-grained, and cognitively harder, so they benefit
from full-parameter capacity. In contrast, high-level trajectories are short and abstract, making them
well-suited to lightweight LoRA tuning while avoiding interference with the executor. This training
order also reduces covariate shift: the planner is learned on top of the well-trained executor it is
intended to guide. From an optimization perspective, LoRA benefits from a stronger backbone (after
low-level SFT) and avoids overfitting by learning only a small number of parameters on high-level
data. Operationally, the approach is efficient at deployment time because it requires only a single
base model plus a small LoRA adapter (less than 2% additional parameters).

Hyperparameters. We train each base model on 80K multi-level examples using AdamW with
the same cosine schedule and warmup strategy as Step-DPO. We use a batch size of 256, a peak
learning rate of 2 × 10−5, and truncate sequences to 8,192 tokens. Training is run for 3 epochs.
Unless otherwise noted, all models are trained with the AdamW optimizer using a cosine learning-
rate schedule with linear warmup (5% of total steps). For the base LM (low-level policy), we
use a peak learning rate of 2 × 10−5, while the high-level LoRA module (r = 16, α = 32,
target modules=[q proj, k proj, v proj, o proj], no bias) is trained with a higher rate of 1 × 10−4

(dropout=0.1) to allow faster adaptation. We additionally verified that adding MLP projections
(up proj, down proj, gate proj) yields only marginal gains while substantially increasing the number
of trainable parameters.

Ablation study. To further validate our design choices, we compare against two alternative training
strategies for the high-level policy, while keeping the low-level training unchanged. This is important
because low-level modeling requires full-parameter updates due to its longer and more complex
reasoning trajectories; LoRA is insufficient for this component. We consider:

(i) LoRA on the original (non-SFT) base model: We directly apply LoRA tuning on the unfined-tuned
Qwen-2.5-1.5B base model using only high-level trajectories.

• Base: Qwen-2.5-1.5B
• LoRA: r = 16, α = 32, target modules=[q proj, k proj, v proj, o proj], no bias.
• Optimization: AdamW with a cosine learning-rate schedule and linear warmup, a peak

learning rate of 1× 10−4 and a a LoRA dropout of 0.1.

(ii) Full-parameter SFT on high-level trajectories: We train a separate base model using full SFT on
only high-level trajectories.

• Base: Qwen-2.5-1.5B

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Optimization: AdamW with a cosine learning-rate schedule and linear warmup, a peak
learning rate of 1× 10−5.

We evaluate both variants on MATH500 and AIME24. Table 2 summarizes the results. Our default
configuration (full SFT on low-level trajectories followed by LoRA tuning on high-level abstractions)
achieves the highest accuracy, particularly on the harder AIME tasks that require deeper multi-step
planning. We also observe that applying LoRA on top of the SFT-enhanced base model substantially
eases optimization and mitigates the overfitting issues that arise when fully fine-tuning a separate
base model using only high-level trajectories.

Monte Carlo rollout analysis We analyze Monte Carlo rollout behavior using R1-Distill-LLaMA-
8B and R1-Distill-Qwen-1.5B. Hidden CoTs are segmented into steps using \n\n. Estimation
accuracy measures the fraction of prefixes for which rollouts correctly determine whether the prefix
can still lead to a correct final solution.

For each partial trajectory, we assign a ground-truth survival label y ∈ {0, 1} using extensive Monte
Carlo lookahead with the base model: y = 1 if at least one rollout from the prefix reaches a correct
final answer (the prefix is survivable), and y = 0 otherwise.

Using the fast rollout model, we draw K continuations from each prefix and compute the estimated
survivability

ĝK =
1

K

K∑
k=1

1
(k)
correct.

We then predict a survival label

ŷK =

{
1, ĝK > 0,

0, otherwise.

A prediction is correct when ŷK = y. Estimated survival accuracy for a given K is the proportion of
prefixes where this prediction matches ground truth.

We present the results in Figure 6. R1-Distill-LLaMA-8B and R1-Distill-Qwen-1.5B exhibit highly
similar accuracy across prefix steps. As expected, runtime scales with model size: R1-Distill-LLaMA-
8B is substantially slower than R1-Distill-Qwen-1.5B. All measurements are obtained on a single
A100 GPU using vLLM.

Algorithm 1: Multi-Level Inference
1 Inputs: query q, high-level policy πθH ,

low-level policy πθL , summarizer πθS ;
2 Hyperparameter: max steps M ;
3 m← 1;
4 while m < M do
5 d(m) ∼ πθH (d | q, d(1:m−1), c′(1:m−1));
6 c(m) ∼ πθL(c | q, d

(1:m), c(1:m−1));
7 c′(m) ← πθS (d

(m), c(m));
8 if StopCriterion(d(m), c(m)) then
9 break;

10 m← m+ 1;
11 return (d(1:m), c(1:m));

Online Step-DPO. The reference model for KL
regularization in Step-DPO is the corresponding
SFT checkpoint. We perform 4 online training
rounds, with approximately 3K prompts per round,
as described in the main text. For each prompt,
we sample N = 4 candidate continuations using
temperature 0.7 and top-p = 0.9, and truncate con-
tinuations at 8,192 tokens to match the SFT con-
text length and keep attention computation within
our memory budget. Step-wise preference pairs
are constructed from these candidates and stored
in a replay buffer of size 50K; once the buffer is
full, older entries are discarded in FIFO order. We
optimize the policy with AdamW (learning rate
1×10−5, weight decay 0.1, β1 = 0.9, β2 = 0.95),
a global batch size of 256 preference pairs, gradi-
ent clipping with a maximum norm of 1.0, DPO
temperature β = 0.1, and KL coefficient λKL = 0.02. At each round, we perform one epoch of
updates over the current replay buffer. During optimization, we maintain a low-level policy (the
base LM) and a high-level policy (the LoRA adapter). For low-level preference pairs, we disable the
LoRA adapter and update only the base LM parameters; for high-level pairs, we freeze the base LM
and update only the LoRA parameters. Mini-batches of low- and high-level examples are interleaved
within each round, so that the executor and planner are optimized jointly while remaining modular.
To improve sample efficiency, we apply a dynamic dropout strategy that filters “easy” prefixes, i.e.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2: Online Step-DPO
1 Inputs: Low-level policy πθL , high-level policy πθH ; Reference models πL

ref, π
H
ref; Fast rollout policy

πroll; RL prompts DRL.
2 Hyperparams: rounds T , prompts per round N , sample steps per prompt Ms, rollout count K,

epochs E.

3 for t = 1 to T do
4 Sample prompts {qi}Ni=1 ⊂ DRL;
5 Initialize buffers D(t)

pref-L ← ∅, D
(t)
pref-H ← ∅;

6 foreach q do
7 (prefix(t)

H , prefix(t)
L)← GENERATEPREFIXES(π

(t)
θH

, π
(t)
θL

, q);
8 Randomly select a subset of stepsM (size Ms) for evaluation;
9 foreach m ∈M do

10 D(t,m)
pref-L ← COLLECTPAIR(π

(t)
θL

, prefix(t)
L [m]);

11 D(t,m)
pref-H ← COLLECTPAIR(π

(t)
θH

, prefix(t)
H [m]);

12 D(t)
pref-L ← D

(t)
pref-L ∪ D

(t,m)
pref-L ;

13 D(t)
pref-H ← D

(t)
pref-H ∪ D

(t,m)
pref-H ;

14 if t > 1 then
15 πL

ref ← π
(t−1)
θL

; πH
ref ← π

(t−1)
θH

;
16 for e = 1 to E do
17 STEPDPOUPDATE(π

(t)
θL

, πL
ref,D

(t)
pref-L);

18 STEPDPOUPDATE(π
(t)
θH

, πH
ref,D

(t)
pref-H);

19 return π
(T)
θL

, π
(T)
θH

;

prefixes for which all candidates induce the same utility; the dropout rate increases linearly from 0.1
to 0.9 over training. All experiments are conducted on 4× A100 GPUs (80GB) with bf16 precision.

Step-DPO update schemes. We compare the proposed update scheme against cheaper alternatives
under a matched online training budget (same number of prompts, candidates, and optimization steps).
In the planner-only variant, we freeze the SFT base LM and apply Step-DPO updates only to the
high-level LoRA adapter for all preference pairs, thereby testing whether adapting the planner alone is
sufficient once the executor has been trained. In a round-based variant, we first run Step-DPO for two
rounds updating only the low-level policy (LoRA disabled), and then for two rounds updating only
the high-level LoRA (base LM frozen), mirroring a coarse low-then-high schedule in the online phase.
Empirically, our joint modular scheme, which interleaves low-level and high-level updates while
restricting each preference type to its corresponding module, achieves the best overall performance
on MATH500 and AIME24, suggesting that simultaneously refining the executor and planner, while
keeping their parameter updates disentangled, is more effective than tuning either component in
isolation.

DPO baseline. To isolate the effect of step-wise supervision, we train a standard outcome-level
DPO baseline on the same online prompt pool and with the same rollout configuration as Step-DPO.
The reference model for KL regularization is the corresponding SFT checkpoint, and we run 4 online
training rounds with approximately 3K prompts per round. For each prompt, we sample N = 4
candidate continuations using temperature 0.7 and top-p = 0.9, truncating each continuation at 8,192
tokens to match the SFT context length. Preference pairs are constructed at the trajectory level: we
assign each candidate a scalar utility based on its final solution correctness and form DPO pairs from
these outcome-level utilities, ignoring intermediate prefixes. The resulting preference pairs are stored
in a replay buffer of size 50K with FIFO eviction, and we perform one epoch of DPO updates over
the buffer per round. We optimize a single policy (no hierarchical separation) with AdamW (learning
rate 1× 10−5, weight decay 0.1, β1 = 0.9, β2 = 0.95), using a global batch size of 256 preference
pairs, gradient clipping with a maximum norm of 1.0, DPO temperature β = 0.1, and KL coefficient
λKL = 0.02. All experiments are conducted on 4× A100 GPUs (80GB) with bf16 precision under
a matched online training budget to Step-DPO.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Steps

0.65

0.70

0.75

0.80
Ac

cu
ra

cy

Qwen2.5-1.5B SFT MATH accuracy during training

0 100 200 300 400 500
Steps

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

Qwen2.5-1.5B SFT AIME accuracy during training

Figure 13: Validation accuracy of Qwen2.5-1.5B SFT during GRPO training. For each question, we
sample 8 responses and calculate the overall average accuracy to ensure a stable evaluation.

GRPO baseline. To compare MLR with a standard single-policy preference-optimization method,
we train a GRPO baseline on the same prompt pool as Step-DPO. We first construct a single-policy
SFT checkpoint by fine-tuning Qwen-2.5-1.5B on the processed low-level trajectories in which all
step descriptors are removed from both inputs and targets, using the same optimizer, schedule, and
token budget as our low-level SFT. Starting from this checkpoint, we apply full-parameter GRPO,
keeping a frozen copy of the SFT model as the reference policy. We implement the baseline using the
Verl (Sheng et al., 2024) framework and vLLM (Kwon et al., 2023) as the rollout backend. The actor
and reference are both initialized from the same SFT checkpoint. For each prompt, we sample groups
of N = 4 candidate continuations with temperature 0.7 and top-p = 0.9, cap the maximum response
length at 4,096 tokens to respect GPU memory limits, and assign a rule-based outcome reward of
1 if the final answer is correct and 0 otherwise. We optimize the actor with AdamW (learning rate
5× 10−7, weight decay 0.1) under a KL-penalty objective with coefficient λKL = 0.02, using bf16
precision, gradient checkpointing, and FlashAttention (Dao, 2023) on 4× A100 GPUs (80GB). We
train for 4 epochs, using a global batch size of 32 (PPO mini-batch sizes 16, micro-batch sizes 2,
respectively), and evaluate every 100 steps on the held-out validation split, selecting the checkpoint
with the best validation Pass@1.

We visualize the validation accuracy of Qwen2.5-1.5B SFT during GRPO training in Figure 13. For
each question, we sample 8 responses and report the average accuracy to obtain a stable estimate.
The evolution of the average response length during GRPO is shown in Figure 14, and the final
evaluation results are summarized in Table 1. Compared with our strategy, GRPO is less efficient for
long-horizon reasoning: outcome rewards are (i) sparse: for long trajectories, a single scalar signal
is often insufficient to localize errors; and (ii) computationally expensive: generating full rollouts
requires substantial memory and compute. When starting from fine-tuned models with long CoTs,

0 100 200 300 400 500
Steps

1200

1400

1600

1800

2000

2200

Av
er

ag
e

le
ng

th
 p

er
 re

sp
on

se

Qwen2.5-1.5B SFT average response length during training

Figure 14: The average response length of Qwen2.5-1.5B SFT on the training set during GRPO.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

these costs limit our ability to apply GRPO to larger base models. In contrast, our online Step-DPO
procedure is easier to implement and control, and provides a more practical alternative for finetuning
long-horizon reasoning policies.

Qwen-2.5-MATH-7B. We repeat the above protocol on a 7B model. We first obtain a single-policy
SFT checkpoint by fine-tuning Qwen-2.5-MATH-7B on the same processed low-level trajectories
(step descriptors removed from inputs and targets). Starting from this checkpoint, we run full-
parameter GRPO with a frozen copy of the SFT model as the reference. Training uses FSDP sharding,
bf16 precision, activation checkpointing, and FlashAttention on 8×A100 (80GB), with a global
batch size of 32 implemented as a micro-batch of 1 per GPU and 4 gradient-accumulation steps.
Rollouts are generated with vLLM: for each prompt we sample N=4 candidates (temperature 0.7,
top-p=0.9) and cap the maximum response length at 4,096 tokens. We optimize with AdamW
(learning rate 5 × 10−7, weight decay 0.1) under a KL penalty with coefficient λKL=0.02, and
evaluate every 100 steps, selecting the checkpoint with the best validation Pass@1.

Llama-3.1-8B. We follow the same procedure with Llama-3.1-8B. A single-policy SFT checkpoint is
first obtained on the same low-level trajectories, after which we apply full-parameter GRPO using
a frozen reference initialized from the SFT checkpoint. We train with FSDP, bf16, activation
checkpointing, and FlashAttention on 8×A100 (80GB), using a global batch size of 32 realized
as a micro-batch of 1 per GPU and 4 gradient-accumulation steps. Rollouts use vLLM with N=4
candidates per prompt (temperature 0.7, top-p=0.9) and a 4,096-token cap. The optimizer, KL
objective, evaluation cadence, and model selection criteria are identical to the 7B setting. For
additional memory headroom, the frozen reference is sharded; when necessary, we load the reference
in 8-bit for forward-only KL without changing any other hyperparameters.

Plan-and-Solve baseline. We compare against Plan-and-Solve (Wang et al., 2023a), which first
proposes a concise, global plan and then executes the solution conditioned on that plan. The
example prompt is given in Section D. For a fair comparison, we use the same backbone as our
method and fine-tune two LoRA heads on top of it: a planner (Problem → Plan) and an executor
(Problem+Plan → Solution). At inference we follow the standard two-pass Plan-and-Solve pipeline:
Pass-1 generates the plan; Pass-2 solves the problem conditioned on that plan.

Training data creation. Using the same training set as our method, we prompt a strong teacher
model (DeepSeek-V3.2) to produce corresponding trajectories. We filter trajectories by final-answer
correctness and basic format checks. We match the total number of accepted trajectories to our
method (80K) to ensure a fair comparison.

Training configuration. Unless otherwise noted, we freeze the backbone and train LoRA adapters
with identical hyperparameters for planner and executor.

• Backbone: Qwen-2.5-1.5B. LoRA: r = 16, α = 32, target modules=[q proj, k proj, v proj,
o proj], no bias. Optimization: AdamW, cosine decay with 3% warm-up, learning rate
1× 10−4.

• Backbone: Qwen-2.5-MATH-7B. Same LoRA configuration. Same optimization configura-
tion except for learning rate 5× 10−5.

• Backbone: Llama-3.1-8B. Same LoRA configuration. Same optimization configuration
except for learning rate 5× 10−5.

Results. Table 1 summarizes performance. Because Plan-and-Solve here is trained only with SFT,
we compare it against MLR (SFT-only). Across all three backbones, our method outperforms Plan-
and-Solve, with the largest margins on the harder benchmarks (AIME, GPQA). We observe that
Plan-and-Solve often implicitly assumes all subtasks succeed as initially planned; errors in early steps
can propagate, and the executor may partially deviate from the plan. In contrast, our approach learns
a better planner that can adapt its plans based on execution signals, enabling revisions rather than
committing to a fixed blueprint. This adaptive coupling between planner and executor yields more
stable long-horizon reasoning than prompting a plan upfront and executing it verbatim.

Evaluation. During evaluation, we use greedy decoding for both the base model and the instruction
fine-tuned model to produce more coherent and consistent CoTs. For all other baselines and our
method, we follow the decoding protocol in Guo et al. (2025), using sampling-based decoding

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with a temperature of 0.6 and a top-p value of 0.95 to generate 8 responses per prompt to reduce
variance and repetition. For MLR, we employ a single base LM for both levels and switch the
high-level LoRA adapter on or off depending on the generation stage (Algorithm 1). Specifically,
we enable the high-level LoRA adapter to produce step descriptors (planning), and then disable the
adapter to generate the corresponding low-level trajectories conditioned on these descriptors. The
maximum generation length for all models is set to 16,384 tokens. Performance is measured using
Pass@1 = 1

k

∑k
i=1 pi, where pi denotes the correctness of the i-th response. For AIME24, we also

report consensus accuracy over 32 samples, denoted as cons@32.

D ADDITIONAL RESULTS

Examples of MLR outputs. In this section, we present additional results to further demonstrate and
analyze the effectiveness of our method. We showcase representative output examples generated by
MLR across different datasets (Section D). Each sample consists of a two-level reasoning trajectory,
comprising shared reasoning steps annotated with both a step descriptor and corresponding step
content. In the high-level trajectory, the step descriptor is generated by the high-level module, while
the step content is produced by the compressor, which takes the low-level content as input and outputs
a concise abstraction. In the low-level trajectory, the step descriptor is provided by the high-level
module, and the step content is directly generated by the low-level base model.

Error analysis. To better understand the strengths and limitations of our framework, we conduct
detailed error analysis. To further enhance verification and error localization, we incorporate auxiliary
models (OpenAI’s o1 and o1-mini) to assist in identifying potential reasoning flaws. Specifically,
we first evaluate whether the auxiliary model can independently solve each task without access to
the ground-truth final answer or reference solution. If the auxiliary model successfully produces the
correct solution, we then use it to help analyze erroneous trajectories generated by our framework.
The error analysis provided by the auxiliary model is subsequently reviewed and confirmed by human
evaluators. Through this process, we identify several recurring error patterns: 1) High-level step
descriptor errors: redundant branching (multiple step descriptors that pursue the same subtask),
unclosed loops (steps are never marked as “complete,” leading to repeated revisitation), dead-end
retention (contradicted or unproductive exploratory branches are retained), copy-pasted fallback
(guessed answers are repeated verbatim under different step descriptors). 2) Low-level step content
errors: logical misapplication (misuse of domain-specific rules or principles), contradiction tolerance
(inconsistent constraints are not resolved), repetitive reasoning (redundant inference chains without
new contributions), failure to propagate known facts (previously inferred information is ignored in
later steps), looping filler (verbose or stalled reasoning with redundant rephrasing).

Parameter studies on rollout count In our online step-DPO, the rollout count K directly affects
the quality of the preference pairs. We first examine how K influences the reliability of the utility

5 0 5
Reference Utility

5

0

5

Es
tim

at
ed

 U
til

ity

MATH500 (K=1)

1 0 1
Reference Utility

1

0

1

Es
tim

at
ed

 U
til

ity

MATH500 (K=4)

1 0 1
Reference Utility

1

0

1

Es
tim

at
ed

 U
til

ity

MATH500 (K=8)

1 0 1
Reference Utility

1

0

1

Es
tim

at
ed

 U
til

ity

MATH500 (K=16)

5 0 5
Reference Utility

5

0

5

Es
tim

at
ed

 U
til

ity

AIME24 (K=1)

1 0 1
Reference Utility

1

0

1

Es
tim

at
ed

 U
til

ity

AIME24 (K=4)

0.5 0.0 0.5
Reference Utility

0.5

0.0

0.5

Es
tim

at
ed

 U
til

ity

AIME24 (K=8)

0.5 0.0 0.5
Reference Utility

0.5

0.0

0.5

Es
tim

at
ed

 U
til

ity

AIME24 (K=16)

Figure 15: Effect of rollout count on the reliability of utility estimates. We compare utilities estimated by the
1.5B model under K rollouts to reference utilities by the 8B model using 16 rollouts for 100 sampled prefixes
from MATH500 and AIME24, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

estimates defined in Equation (6). To do so, we compare utilities estimated by the 1.5B model under
various K to reference utilities produced by the 8B model with 16 rollouts, using 100 sampled
prefixes from MATH500 and AIME24, respectively (Figure 15). As expected, larger K reduces
estimator variance but increases computational cost. To control this overhead, we apply a margin
threshold δ when selecting preference pairs which allows us to use smaller K while maintaining
reliability of the preference data. Next, we evaluate the agreement of selected preference pairs as a
function of K, defined as the fraction of pairs whose preference direction agrees with the base model
using 16 rollouts (Figure 8). For each K, we generate 100 preference pairs following Equation (7).
We then recompute the reference utilities of both options and check whether the chosen response has
higher reference utility than its alternative. Pairs that satisfy this condition are counted as agreed, and
we report the average agreement for each K. We consider both the 1.5B model and the 8B base model
as rollout policy. In practice, we use the base model as the rollout policy for AIME24 and GPQA.
Finally, we study model performance across training stages under different rollout counts (Figure 12).
Starting from the same SFT model, we generate the same number of preference pairs for each K
and all train for 4 epochs. We report performance on MATH500 and AIME24 throughout training.
Overall, our setting achieves comparable final accuracy while significantly reducing computational
cost.

Ablations on hierarchical levels To investigate the role of different levels, we conduct an ablation
study on the hierarchical structure. We consider two variants: (1) High-level only: the high-level
module directly predicts summaries without invoking the low-level module; (2) Low-level only:
the low-level module is required to predict both the high-level step descriptions and the detailed
reasoning without guidance from the high-level module. The evaluation protocol matches our main
setting, and the results are reported in Table 2. Our full method consistently outperforms both variants,
especially on the challenging AIME24 dataset. The high-level-only variant underperforms because
the planner lacks grounded execution learning, making direct summary prediction unreliable for
difficult reasoning tasks. We show an erroneous example in Section D. The low-level-only variant is
weaker because the absence of explicit high-level guidance causes the low-level module to drift and
accumulate errors as the trajectory grows longer. Overall, these results demonstrate that our two-level
design yields better performance on long-horizon reasoning tasks.

Long-horizon reasoning test. To further evaluate our method on long-horizon reasoning, we
simulate a multi-question setting by concatenating multiple problems into a single prompt. We

1 2 4 6 8 10
Number of Problems

0K

5K

10K

15K

20K

Av
er

ag
e

re
sp

on
se

 le
ng

th

MATH500
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

1 2 4 6 8 10
Number of Problems

0K

5K

10K

15K

20K

25K

Av
er

ag
e

re
sp

on
se

 le
ng

th

AIME24
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

1 2 4 6 8 10
Number of Problems

0K

5K

10K

15K

20K

Av
er

ag
e

re
sp

on
se

 le
ng

th

Mixture benchmarks
Qwen2.5-1.5B-Instruct
R1-Distill-Qwen-1.5B
Qwen2.5-1.5B-GRPO
Qwen2.5-1.5B-MLR

1 2 4 6 8 10
Number of Problems

0K

2K

5K

8K

10K

12K

15K

Av
er

ag
e

re
sp

on
se

 le
ng

th

MATH500
Llama-3.1-8B-Instruct
R1-Distill-Llama-8B
Llama-3.1-8B-GRPO
Llama-3.1-8B-MLR

(a) MATH500

1 2 4 6 8 10
Number of Problems

0K

5K

10K

15K

20K

25K

Av
er

ag
e

re
sp

on
se

 le
ng

th

AIME24
Llama-3.1-8B-Instruct
R1-Distill-Llama-8B
Llama-3.1-8B-GRPO
Llama-3.1-8B-MLR

(b) AIME24

1 2 4 6 8 10
Number of Problems

0K

5K

10K

15K

20K

Av
er

ag
e

re
sp

on
se

 le
ng

th

Mixture benchmarks
Llama-3.1-8B-Instruct
R1-Distill-Llama-8B
Llama-3.1-8B-GRPO
Llama-3.1-8B-MLR

(c) Mixture

Figure 16: Long-horizon reasoning response length on (a) MATH500, (b) AIME24, and (c) Mixture benchmarks
(MATH500, AIME24, GPQA, BoardGameQA). We simulate long-horizon reasoning by concatenating multiple
problems in the prompt and report average accuracy. Compared with R1-Distill models, which are prone to
getting lost in long trajectories and entering dead loops, MLR benefits from explicit planning and is able to solve
all problems more effectively.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

consider three configurations: (i) multiple problems from MATH500, (ii) multiple problems from
AIME24, and (iii) mixed batches drawn from MATH500, AIME24, GPQA, and BoardGameQA.
For each configuration, we randomly select 100 problems from the corresponding benchmarks and
treat their questions as a mini-batch. The batch size varies from 1 to 10; for each size, we present
all questions in the batch in one prompt and ask the LLM to solve them jointly. To mitigate cases
where the model gets stuck on a single problem, we explicitly instruct it to skip a question if it
cannot make progress. Prompt template can be found in Section D. For instruction-tuned models,
we use greedy decoding. For the other baselines, for every mini-batch we sample 8 responses with
temperature 0.6 and top p = 0.95, using a maximum context length of 32K tokens, to reduce variance
and then report accuracy averaged over the 100 problems. Note that all methods are trained only in
the single-question setting, so this constitutes a fully out-of-distribution evaluation. Figure 1 shows
the results: MLR consistently degrades more slowly than all baselines across datasets and base
models, highlighting the benefits of explicit planning for long-horizon reasoning. We further report
the corresponding length distributions for different scenarios in Figure 16.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Example of Long-horizon Plan Failures (DeepSeek-R1-Distill-Llama-8B on MATH500)
Prompt:
What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2?

Response:
<think>
Okay, so I need to find the smallest positive integer multiple of 30 that can be written using only the digits 0
and 2. Hmm, let me think about how to approach this.

First, I remember that a multiple of 30 must be divisible by both 3 and 10. So, let's break down what that
means.

Divisibility by 10: For a number to be divisible by 10, it must end with a 0. That makes sense because any
number ending in 0 is a multiple of 10. So, whatever number I come up with must end with a 0. That means
the last digit is fixed as 0.

Divisibility by 3: For a number to be divisible by 3, the sum of its digits must be a multiple of 3. Since the
number can only have digits 0 and 2, the sum of the digits will just be the number of 2s multiplied by 2. So,
the total sum is 2 times the number of 2s. This sum needs to be divisible by 3.

So, putting that together, I need a number that consists of one or more 2s followed by a 0. The number of 2s
should be such that the total sum (which is 2 times the number of 2s) is divisible by 3.

Let me formalize that. Let's say the number has 'n' number of 2s followed by a 0. So, the number would be
222...20, with 'n' 2s and ending with a 0.

The sum of the digits is 2n, and we need 2n to be a multiple of 3. So, 2n = 0 mod 3. Which means n must be a
multiple of 3 because 2 and 3 are coprime (they have no common divisors other than 1). So, n needs to be
divisible by 3.

Therefore, the smallest number of 2s needed is 3, right? Because 3 is the smallest positive integer divisible by
3.

So, if n = 3, the number would be 2220. Let me check that.

2220 is a multiple of 30? Let's see. 2220 divided by 30 is 74, which is an integer. So, yes, 2220 is a multiple
of 30.

But is it the smallest?

Wait, maybe I can find a smaller number with fewer digits? Let me think. The number must end with a 0, so
the last digit is fixed. The other digits can be 0 or 2. But if I try to make a smaller number, maybe with fewer
digits, but still only 0s and 2s.

Let me consider numbers of different lengths and see if they can satisfy the conditions.

Starting with the smallest possible number: 1 digit. It would have to be 0, but 0 is not positive. So, no good.

2 digits: The number would be 20. Is 20 a multiple of 30? 20 divided by 30 is less than 1, so no. Also, 20 is
not a multiple of 30.

3 digits: Let's see. The possible numbers are 200, 220, and 222.

200: 200 divided by 30 is approximately 6.666, not an integer. 220 divided by 30 is about 7.333, not integer.
222 divided by 30 is 7.4, which isn't integer either. So, none of these are multiples of 30.

4 digits: Let's list possible numbers. They end with 0, so the last digit is 0, and the first three digits are either 0
or 2.

Possible numbers: 2000, 2200, 2220, 2222, 2020, 2022, 2202, 2220, 2222, etc. Wait, but actually, the first
three digits can be any combination of 0s and 2s. So, all numbers of the form 2220, 2202, 2022, 0222, but
0222 is not a valid number since it starts with 0. So, the numbers are 2220, 2202, 2022.

Check each:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2220: As before, 2220 / 30 = 74, which is integer. So, that's a multiple.

2202: 2202 / 30 is 73.4, which isn't integer.

2022: 2022 / 30 is 67.4, which isn't integer.

So, the only 4−digit number that works is 2220.

But earlier, with 3 digits, we had 2220 as well. Wait, so 2220 is a 4−digit number, but 3−digit numbers didn't
work. So, 2220 is the first one.

Wait, but hold on. Maybe there's a 3−digit number that's a multiple of 30, but I haven't considered all
possibilities. Let me check again.

Wait, 2220 is a 4−digit number, but what about a 3−digit number? 222 is 222. 222 divided by 30 is 7.4, which
isn't integer. 2220 is 74. So, maybe 2220 is the first one.

Wait, but hold on. Maybe a 3−digit number with two 2s and a 0. Let's see: 220, 202, 022. But 022 isn't a 3−
digit number, it's just 22. So, 220 is 220, which is 220 / 30 ˜= 7.333, not integer. 202 is 202 / 30 ˜= 6.733, also
not integer. So, no luck.

So, in the 3−digit numbers, there's no multiple of 30 that can be formed with 0s and 2s. So, moving on to 4−
digit numbers.

Wait, but 2220 is a 4−digit number, but is that the smallest? Wait, let me think. Is there a smaller number with
4 digits, but starting with 2, and having 2s and 0s, but not necessarily 3 2s? Wait, no, because if you have 2 2s,
then 220, 202, 022. None of these are divisible by 30.

So, the only 4−digit number is 2220, which is 2220. But wait, maybe a 5−digit number? No, 2220 is already a
4−digit number, which is smaller than a 5−digit number. So, 2220 is smaller.

But wait, hold on. Let me consider 2220. It's 2220, but is there a smaller number with 4 digits that can be
formed with 0s and 2s? Wait, 2220 is 2220. But what about 2220, 2202, 2022, etc. Wait, none of the other
permutations of 2s and 0s in 4 digits are multiples of 30. So, 2220 is the only one.

But wait, is 2220 the minimal? Because 2220 is a 4−digit number, but is there a 3−digit number that's a
multiple of 30? Wait, I don't think so, because 2220 is the first multiple of 30 with only 2s and 0s.

Wait, hold on. Let me think differently. Maybe instead of 2220, there's a smaller number.

Wait, 2220 is 2220, but if I can find a number with fewer digits, like 220, but 220 is not a multiple of 30. 220
divided by 30 is 7.333. Not integer.

Wait, 202: 202 / 30 is 6.733. Not integer. 200: 200 / 30 is 6.666. Not integer. 222: 222 / 30 is 7.4. Not integer.
So, none of these are multiples of 30.

Wait, so maybe 2220 is the first one. But 2220 is a 4−digit number. Is there a 3−digit number that can be
formed with 2s and 0s that is a multiple of 30? Let me think.

Wait, 2220 is the first one. So, 2220 is 2220. But 2220 is 2220, which is 2220. But if I can write a 3−digit
number with 2s and 0s that's a multiple of 30, that would be smaller than 2220.

Wait, 2220 is 4 digits, but 222 is 3 digits. But 222 is not a multiple of 30. So, no.

Wait, maybe 220 is 220, but that's 220, which is not a multiple of 30. 200 is 200, which is not a multiple of 30.
222 is 222, which is not a multiple of 30. So, yeah, no luck.

So, 2220 is the first one.

Wait, but hold on. Let me think again. If I can have a number that is 200...0, but with some 2s in between. But
the sum of digits must be a multiple of 3, so as we saw earlier, the number of 2s must be a multiple of 3.

So, with 3 2s, we get 2220, which is 2220. But is there a way to have 2s in other positions? Like 2020, 2002,
2022, etc. But as we saw, those are not multiples of 30.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Wait, 2020: sum of digits is 2 + 0 + 2 + 0 = 4, which is not a multiple of 3, so it's not divisible by 3, hence not
divisible by 30. Similarly, 2002: 2 + 0 + 0 + 2 = 4, same thing. 2200: 2 + 2 + 0 + 0 = 4, same. 2220: 2 + 2 + 2
+ 0 = 6, which is a multiple of 3. So, 2220 is the first one.

So, perhaps 2220 is the minimal.

Wait, but hold on. Let me check if 2220 is indeed the minimal. Maybe a number with 4 digits but starting with
2, and with other digits as 2s and 0s, but the number of 2s is more than 3? But no, because 2220 is the first
one where the number of 2s is 3, which is the minimal multiple of 3.

Wait, but maybe 2220 is the minimal, but is there a smaller number? Let me think.

Wait, 2220 is 2220, which is a 4−digit number. Is there a 3−digit number with 2s and 0s that is a multiple of
30? As we saw, 2220 is the first one. So, 2220 is the minimal.

Wait, but hold on. Maybe I can have a number like 2200, which is 2200, but the sum is 4, which isn't a
multiple of 3. So, not divisible by 3. So, no.

Wait, 2202: sum is 2 + 2 + 0 + 2 = 6, which is a multiple of 3, but 2202 divided by 30 is 73.4, which isn't
integer. So, not a multiple.

Similarly, 2022: sum is 2 + 0 + 2 + 2 = 6, which is a multiple of 3, but 2022 / 30 is 67.4, not integer. So, no.

2002: sum is 4, not multiple of 3.

2220: sum is 6, which is multiple of 3, and 2220 / 30 is 74, which is integer. So, that works.

Therefore, 2220 is the minimal number.

Wait, but hold on. Let me think if there's a smaller number.

Wait, 2220 is 2220, which is a 4−digit number. Is there a 3−digit number that can be formed with 2s and 0s,
which is a multiple of 30? As we saw, 2220 is the first one, so no, there's no smaller number.

Wait, but hold on again. Let me think about 2220. Is it the minimal, or is there a smaller number with 4 digits
but starting with 2, and having 2s and 0s, but arranged in a different way?

Wait, for example, 2020: sum is 4, which is not multiple of 3, so not divisible by 3. 2002: same. 2200: same.
So, no.

So, 2220 is the minimal.

Wait, but hold on, let me think of another approach. Maybe think of numbers in base 10, with digits only 0
and 2, and divisible by 30.

So, the number must end with 0, and the sum of digits must be a multiple of 3.

So, as we saw, the number must have a number of 2s equal to 3, 6, 9, etc.

Therefore, the minimal number is 2220, which is 3 digits.

Wait, 2220 is 4 digits. So, 2220 is 2220, which is 4 digits, and it's the first one.

But wait, 2220 is a 4−digit number. Is there a 3−digit number? 2220 is 2220, which is 2220. But 222 is 3
digits, but 222 is not a multiple of 30.

Wait, so 2220 is the minimal.

Wait, but I just thought of another way. Maybe if we can have a number with a 0 at the end, and two 2s, but
also have another 2 somewhere in the middle. But the sum of digits must be a multiple of 3, so 2 + 2 + 0 = 4,
which isn't a multiple of 3. So, that's not good. So, 2220 is the minimal.

Wait, but 2220 is a 4−digit number, but 2220 is 2220, which is 2220, which is 2220. Hmm, but 2220 is the
minimal.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Wait, hold on, but is 2220 the minimal? Let me think of 20220, but that's a 5−digit number, which is larger
than 2220, so not helpful.

Wait, so 2220 is 2220, which is 4 digits, and it's the minimal.

Wait, but hold on, maybe 20220 is a 5−digit number, but 2220 is smaller.

Wait, so 2220 is 2220, which is 4 digits, and it's smaller than 20220.

Therefore, 2220 is the minimal.

Wait, but now, hold on, another thought. Maybe a number with 2220 is 2220, but is there a number with 2220
in a different arrangement? For example, 20220 is a 5−digit number, but 2220 is 4 digits, so 2220 is smaller.

Therefore, 2220 is the minimal.

Wait, but let me just confirm once again. 2220 is 2220, which is 2220. Let me see if any number with fewer
digits can be formed.

Wait, 2220 is 4 digits. 222 is 3 digits, but 222 is not a multiple of 30. 2220 is 4 digits, and it's a multiple of 30.

Wait, so 2220 is the minimal.

Wait, but wait, 20220 is a 5−digit number, which is 20220, which is 20220. But 2220 is smaller.

Wait, but hold on, 2220 is a 4−digit number, which is 2220, so 2220 is smaller than 20220, which is a 5−digit
number.

Therefore, 2220 is the minimal.

Wait, but I just thought of another approach. Maybe think of the number as starting with 2, followed by 2s and
0s.

So, for example, 2220, 2202, 2022, 2002, 2220, etc. But as we saw, only 2220 is a multiple of 30.

Wait, but 2220 is a 4−digit number, which is 2220. 2220 is 2220, which is 2220, so it's a 4−digit number.

Wait, but let me think of the number 2220. Is that the minimal?

Wait, 2220 is 2220, which is 2220. So, 2220 is a multiple of 30, but is there a smaller number?

Wait, 2220 is 2220, which is 2220, which is 2220, which is 2220.

Wait, but 2220 is 2220, which is 2220, so is that the minimal? Or is there a number with fewer digits?

Wait, 2220 is 4 digits. 222 is 3 digits. 222 is not a multiple of 30. So, 2220 is the minimal.

Wait, but wait, another idea: 2220 is 2220, which is 2220, which is 2220, which is 2220.

Wait, but if I can have a number with 2s and 0s, but with leading 2s and trailing 0s, but in between, perhaps 2s
can be placed in different positions.

Wait, but as we saw, the sum of digits must be a multiple of 3, so the number of 2s must be a multiple of 3.

Therefore, the minimal number is 2220, which is 2220.

Wait, so 2220 is 4 digits, and it's the minimal. So, 2220 is the answer.

Wait, but wait, I just thought of something else. What if the number is 20220? That's 5 digits, but it's 20220,
which is 20220. 2220 is 2220, which is smaller. So, 2220 is smaller.

Wait, but 2220 is 2220, which is a 4−digit number. 20220 is 20220, which is a 5−digit number, so 2220 is
smaller.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Therefore, 2220 is the minimal.

Wait, but I'm confused because 2220 is 2220, which is 2220. So, that's a 4−digit number, and it's the minimal.

Wait, but hold on, let me just confirm if 2220 is indeed the minimal.

Wait, 2220 is 2220, which is 2220. Let me check if 2220 is a multiple of 30. 2220 divided by 30 is 74, which
is an integer. So, yes, it is.

So, 2220 is the minimal.

Wait, but hold on, 2220 is 2220, which is 2220, which is a 4−digit number.

But, is there a smaller number?

Wait, 2220 is 2220, which is 2220. But, 2220 is 2220, which is 2220. So, it's 2220, which is 2220. So, 2220 is
the minimal.

Wait, but wait, 2220 is 2220, which is 2220, which is a 4−digit number. So, 2220 is 2220, which is 2220.

Wait, so that's the minimal.

Wait, but wait, hold on, 2220 is 2220, which is 2220, which is 2220. So, it's 2220.

Wait, so is 2220 the minimal.

Wait, but hold on, another thought. Let me think of numbers with 2s and 0s, but in different positions, but the
sum of digits must be a multiple of 3.

So, 2220 is 2220, which is 2220, sum is 6, which is a multiple of 3.

Wait, but if I have a number like 20220, which is 5 digits, sum is 6, which is multiple of 3, but 20220 is 20220,
which is larger than 2220.

So, 2220 is the minimal.

Wait, but hold on, another idea. Maybe 20220 is 20220, which is 20220, which is a 5−digit number, which is
20220, which is larger than 2220, which is 4−digit.

So, 2220 is smaller.

Wait, so 2220 is the minimal.

Wait, but, wait, let me think of the number 2220. It's 2220, which is 2220, which is 2220. So, 2220 is a 4−
digit number.

But, 2220 is 2220, which is 2220, so that's 2220.

Wait, so, yeah, 2220 is the minimal.

Wait, but, hold on, I just thought of another number. Let's say 2220 is 2220, which is 2220. But, 2220 is 2220,
which is 2220. So, is there a smaller number?

Wait, 2220 is 2220, which is 2220, which is 2220, which is 2220. So, 2220 is 2220, which is 2220. So, 2220
is 2220, which is 2220.

Wait, so, that's the minimal.

Wait, so, conclusion: 2220 is the minimal.

Wait, but hold on, I just thought of something else. Maybe a number like 2220 is 2220, but 2220 is 2220,
which is 2220, which is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220, which is 2220.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Wait, so, 2220 is 2220, which is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220.

Wait, so, that's 2220, which is 2220, which is 2220.

Wait, but, hold on, let me think again.

Wait, 2220 is 2220, which is 2220, which is 2220.

Wait, but 2220 is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220.

Wait, so, 2220 is 2220, which is 2220.

Wait, so, that's 2220, which is 2220.

Wait, so, yeah, 2220 is 2220.

...

Data Augmentation Prompt
Prompt:
A planet with a mass equivalent to that of two Earths is orbiting in a circular orbit around a star with a mass
three times that of the Sun, at a distance of two AU. On which of the following celestial objects does the
gravitational force of the planet exceed the centrifugal force (i.e., the gravitational force of the planet
dominates)?

a) An object with a 0.002 Earth masses located at 0.012 AU distance from the planet
b) An object with a 0.006 Earth masses located at 0.014 AU distance from the planet
c) An object with a 0.001 Earth masses located at 0.019 AU distance from the planet
d) An object with a 0.003 Earth masses located at 0.021 AU distance from the planet

Generate a new graduate−level physics questions similar in difficulty and style to this GPQA item, but with
different physical setup and different correct answer. Please provide correct answers within \boxed{} and
explanations as well.

Response:
Here is a new graduate−level physics problem modeled in a similar style and complexity as the original
GPQA item:

−−−

Question:

A moon with a mass of 0.3 Earth masses is orbiting a gas giant of 5 Jupiter masses at a circular orbital radius
of 0.015 AU. The gas giant itself is orbiting a star of 2.5 solar masses at a distance of 5 AU in a nearly circular
orbit. On which of the following small objects located near the moon does the gravitational force due to the
moon exceed the tidal/centrifugal force exerted by the planet−star system (i.e., the object is within the moon's
gravitational dominance, or its Hill sphere)?

a) An object with a 0.0005 Earth masses located 0.0009 AU from the moon
b) An object with a 0.001 Earth masses located 0.0012 AU from the moon
c) An object with a 0.0003 Earth masses located 0.0016 AU from the moon
d) An object with a 0.0008 Earth masses located 0.0020 AU from the moon

−−−

Correct Answer:
a

−−−

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Explanation:

To determine whether the gravitational force of the moon dominates over the tidal force of the planet−star
system, we compare the object's distance from the moon to the **Hill radius** of the moon.

The Hill radius (R H) of the moon in orbit around the gas giant is approximately:

[
R H = a \left(\frac{m {\text{moon}}}{3 M {\text{planet}}} \right)ˆ{1/3}
]

Where:

* (a = 0.015 , \text{AU}) (moon's distance from the planet),
* (m {\text{moon}} = 0.3 M \oplus = 0.3 \times 3 \times 10ˆ{−6}M \odot = 9 \times 10ˆ{−7}M \odot)
,
* (M {\text{planet}} = 5 M J = 5 \times 0.001 M \odot = 0.005 M \odot).

[
R H = 0.015 \left(\frac{9 \times 10ˆ{−7}}{3 \times 0.005} \right)ˆ{1/3} = 0.015 \left(\frac{9 \times
10ˆ{−7}}{0.015} \right)ˆ{1/3}
]

[
= 0.015 \left(6 \times 10ˆ{−5} \right)ˆ{1/3} \approx 0.015 \times 0.039 = 5.85 \times 10ˆ{−4} , \text{AU
}
]

So the Hill radius is roughly:

[
R H \approx 0.000585 , \text{AU}
]

Any object located significantly **within** this Hill radius is gravitationally bound to the moon.

Analysis of options:

* a) 0.0009 AU −> slightly *outside* the Hill sphere, but close. Check force ratio.
* b) 0.0012 AU −> further out, gravity weaker.
* c) 0.0016 AU −> clearly outside.
* d) 0.0020 AU −> definitely outside.

But wait! Option a) is **outside** the Hill radius. Is this a problem?

Actually, note that **I must have made a miscalculation in Hill radius**. Let's double−check with clearer
units.

−−−

Let's use:

[
R H = a \left(\frac{m}{3M} \right)ˆ{1/3}
]

Let's convert all to Earth masses.

* (m {\text{moon}} = 0.3 M \oplus)
* (M {\text{planet}} = 5 M J = 5 \times 317.8 M \oplus = 1589 M \oplus)

[
R H = 0.015 \left(\frac{0.3}{3 \times 1589} \right)ˆ{1/3} = 0.015 \left(\frac{0.3}{4767} \right)ˆ{1/3}
]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

[
= 0.015 \left(6.29 \times 10ˆ{−5} \right)ˆ{1/3} \approx 0.015 \times 0.0397 = 5.96 \times 10ˆ{−4} , \text{
AU}
]

Yes, similar result: Hill radius ≈ 0.0006 AU.

So **only objects within ˜0.0006 AU are gravitationally bound to the moon**.

Thus:

* a) 0.0009 AU −> **outside** −> not gravitationally dominated by moon
* b) 0.0012 AU −> more outside
* c) 0.0016 AU −> even more outside
* d) 0.0020 AU −> most outside

So this suggests **none of them** is within the Hill sphere.

But the question instead asks: On which object does the moon's gravitational force exceed the centrifugal
force − which doesn't require strictly within Hill radius, but instead compares:

[
F g = \frac{G m {\text{moon}} m o}{rˆ2}, \quad F c = m o r \omegaˆ2 = m o r \left(\frac{vˆ2}{rˆ2} \
right)
]

Instead, we can check whether:

[
\frac{G m {\text{moon}}}{rˆ2} > r \omegaˆ2
]

or compare acceleration toward moon vs centrifugal acceleration in planet's frame.

But using Hill sphere is a solid approximation of where gravitational dominance lies. So any object within ≈
0.0006 AU is bound to the moon.

That makes none of the options clearly inside − but we can **adjust option a)** to say:

Corrected option a):
a) An object with 0.0005 Earth masses located at **0.0005 AU** from the moon

Then:

[
0.0005 < 0.0006 \Rightarrow \text{within Hill sphere}
]

Thus, **moon dominates gravitationally**.

−−−

**Final Answer: a **

Let me know if you'd like more questions like this or ones involving different physics principles (e.g., general
relativity, electromagnetism, quantum).

Trajectory Segmentation Prompt
Break down a reasoning process into well−defined stages using the following structure for each stage:
`###### stage description ######` *detailed reasoning* `########################`

Task Details:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1. **Input:** A problem and the reasoning process to solve it.
2. **Output:** The reasoning process segmented into different stages, each encapsulated by a descriptive tag.
3. **Important:** You should only segment the process and add stage description WITHOUT changing the
reasoning process.

Input Example:
Problem:
What is the area, in square units, of a triangle with vertices at \(A(1, 1), B(6, 1), C(3, 7) \)?

Reasoning:
Let's explore how to find the area of a triangle with vertices at \(A(1, 1) \), \(B(6, 1) \), and \(C(3, 7) \).

First, we'll consider using the formula for the area of a triangle given its vertices \(A(x 1, y 1) \), \(B(x 2,
y 2) \), and \(C(x 3, y 3) \). The formula is:
\[
\text{Area} = \frac{1}{2} |x 1(y 2−y 3) + x 2(y 3−y 1) + x 3(y 1−y 2)|
\]

Now, let's substitute the coordinates of the vertices into this formula. For our triangle, \(A(1, 1) \), \(B(6, 1)
\), and \(C(3, 7) \), the expression becomes:
\[
\text{Area} = \frac{1}{2} |1(1−7) + 6(7−1) + 3(1−1)|
\]

Let's pause and calculate each term carefully.

The first term is \(1(1−7) \), which simplifies to \(1 \times (−6) = −6 \).

The second term is \(6(7−1) \), which simplifies to \(6 \times 6 = 36 \).

The third term is \(3(1−1) \), which simplifies to \(3 \times 0 = 0 \).

Putting it all together, we have:
\[
\text{Area} = \frac{1}{2} |−6 + 36 + 0|
\]

Now, we compute the expression inside the absolute value:
\[
−6 + 36 + 0 = 30
\]

Therefore, the area becomes:
\[
\text{Area} = \frac{1}{2} \times 30 = 15
\]

Let's take a moment to review and ensure all calculations are correct. The process checks out, and everything
seems consistent with the method. So, the area of the triangle is \(\boxed{15}\) square units.

Output Example:
Understanding the problem
Let's explore how to find the area of a triangle with vertices at \(A(1, 1) \), \(B(6, 1) \), and \(C(3, 7) \).
########################

Recall the formula
First, we'll consider using the formula for the area of a triangle given its vertices \(A(x 1, y 1) \), \(B(x 2,
y 2) \), and \(C(x 3, y 3) \). The formula is:
\[
\text{Area} = \frac{1}{2} |x 1(y 2−y 3) + x 2(y 3−y 1) + x 3(y 1−y 2)|
\]
########################

Substitute the coordinates

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Now, let's substitute the coordinates of the vertices into this formula. For our triangle, \(A(1, 1) \), \(B(6, 1)
\), and \(C(3, 7) \), the expression becomes:
\[
\text{Area} = \frac{1}{2} |1(1−7) + 6(7−1) + 3(1−1)|
\]
########################

Perform the calculations
Let's pause and calculate each term carefully.

The first term is \(1(1−7) \), which simplifies to \(1 \times (−6) = −6 \).

The second term is \(6(7−1) \), which simplifies to \(6 \times 6 = 36 \).

The third term is \(3(1−1) \), which simplifies to \(3 \times 0 = 0 \).
########################

Calculate the final result
Putting it all together, we have:
\[
\text{Area} = \frac{1}{2} |−6 + 36 + 0|
\]

Now, we compute the expression inside the absolute value:
\[
−6 + 36 + 0 = 30
\]

Therefore, the area becomes:
\[
\text{Area} = \frac{1}{2} \times 30 = 15
\]
########################

Review the result
Let's take a moment to review and ensure all calculations are correct. The process checks out, and everything
seems consistent with the method. So, the area of the triangle is \(\boxed{15}\) square units.
########################

Important: You should only segment the process and add stage description WITHOUT changing the reasoning
process.

MLR High-level Prompt Template
You are a high−level planner that controls a multi−step reasoning process.

Given a problem and the previous completed stages in the format `###### stage description ######` *
summary* `########################`, generate the next stage descrition as a concise subgoal.

{Problem}

{Previous stages}

MLR Low-level Prompt Template
You are a reasoning module for math, science, and logic problems.

Given a problem, the previously completed stages, and the current stage description in the format `######
stage description ######` *detailed reasoning* `########################`, produce the detailed
reasoning for the current stage.

{Problem}

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

{Previous stages}

{Current stage description}

Stage Summarization Prompt Template
You are a summarization module for math, science, and logic problems.

Given the stage description, summarize the key conclusion by extracting the essential results achieved so far.
Try to be as concise as possible while preserving necessary information.

{Stage description}

{Detailed reasoning}

MLR Output (high-level) - MATH500
Problem:
The set of points (x, y, z) that satisfy 2x = 3y = −z is a line.
The set of points (x, y, z) that satisfy 6x = −y = −4z is another line.
Find the angle between these lines, in degrees.

Solution:
Understanding the problem
The angle between two lines in 3D space is determined by the angle between their direction vectors.
First step: find the direction vectors for each line.
########################

Finding direction vectors
Direction vector of the first line is (3, 2, −6).
########################

Finding the second direction vector
Direction vector is (2, −12, −3).
No further simplification possible.
Direction vector u is (2, −12, −3).
########################

Calculating the angle using the dot product formula
Direction vectors: (3, 2, −6) and (2, −12, −3).
Dot product: 3*2 + 2*(−12) + (−6)*(−3) = 6 −24 + 18 = 0.
Since the dot product is zero, the vectors are perpendicular.
Therefore, the angle between the lines is 90 degrees.
########################

Verifying the result using another method
− Both lines pass through the origin and intersect there.
− Their direction vectors are perpendicular (dot product is zero).
− Therefore, the angle between the two lines is 90 degrees.
########################

Extract the final answer

Thus, the final answer is 90◦ .
########################

MLR Output (low-level) - MATH500
Problem:
The set of points (x, y, z) that satisfy 2x = 3y = −z is a line.
The set of points (x, y, z) that satisfy 6x = −y = −4z is another line.
Find the angle between these lines, in degrees.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Solution:
Understanding the problem
Okay, so I need to find the angle between two lines in 3D space. The lines are given by the equations 2x = 3y
= −z and 6x = −y = −4z. Hmm, let me recall how to approach this. I think the angle between two lines is
determined by the angle between their direction vectors. So first, I need to find the direction vectors of each
line.
########################

Finding direction vectors
Starting with the first line: 2x = 3y = −z. Let me parse this equation. It's saying that 2x, 3y, and −z are all
equal to each other. Let me denote this common value as some parameter, say t. So, 2x = t, 3y = t, −z = t.
Then, solving for x, y, z in terms of t:

x = t/2, y = t/3, z = −t.

So the parametric equations for the first line are:

x = (1/2)t,

y = (1/3)t,

z = −t.

Therefore, the direction vector of the first line is given by the coefficients of t, which is (1/2, 1/3, −1). But to
make it easier, maybe I can multiply by 6 to eliminate the denominators. Multiplying each component by 6
gives (3, 2, −6). So the direction vector is (3, 2, −6). Let me check that: starting from 2x = 3y = −z, if I set t =
6x, then 3y = 6x => y = 2x, and −z = 6x => z = −6x. So the direction vector is (x, y, z) = (x, 2x, −6x), which
is in the direction of (1, 2, −6). Wait, but earlier I got (3, 2, −6). Hmm, maybe I made a mistake there. Let me
clarify.

If 2x = 3y = −z, then let me set 2x = k. Then 3y = k => y = k/3, and −z = k => z = −k. So x = k/2, y = k/3, z
= −k. So the direction vector is (k/2, k/3, −k). To make this a direction vector, we can take k = 6 (the least
common multiple of denominators 2 and 3). Then x = 3, y = 2, z = −6. So the direction vector is (3, 2, −6). So
that's correct. Okay, so direction vector v is (3, 2, −6).
########################

Finding the second direction vector
Now the second line: 6x = −y = −4z. Similarly, let's set 6x = m. Then −y = m => y = −m, and −4z = m => z
= −m/4. So x = m/6, y = −m, z = −m/4. Therefore, the direction vector is (m/6, −m, −m/4). Again, to eliminate
denominators, multiply by 12 (the least common multiple of 6 and 4). Then x = 2, y = −12, z = −3. So the
direction vector is (2, −12, −3). Alternatively, simplifying further, we can factor out a common factor. Let's
see, 2, −12, −3. The greatest common divisor is 1, so maybe that's the simplest form. Alternatively, we can
divide by 1, so the direction vector is (2, −12, −3). Alternatively, maybe we can write it as (2, −12, −3) or
simplify by dividing by a common factor. Let's check: 2 and −12 have a common factor of 2, but −3 doesn't.
So maybe (2, −12, −3) is the simplest. Alternatively, if we factor out a 1, it's still the same. So direction vector
u is (2, −12, −3).
########################

Calculating the angle using the dot product formula
Now, to find the angle between the two lines, we need the angle between their direction vectors v and u. The
formula for the angle θ between two vectors is:

cos θ = (v · u)/(||v||||u||)

So first, let's compute the dot product of v and u. v is (3, 2, −6), u is (2, −12, −3).

Dot product = (3)(2) + (2)(−12) + (−6)(−3) = 6 −24 + 18 = 6 −24 is −18, −18 +18 is 0. Wait, the dot product is
zero? That would mean the vectors are perpendicular, so the angle between them is 90 degrees. But that
seems surprising. Let me double−check the calculations.

v · u = (3)(2) + (2)(−12) + (−6)(−3) = 6 −24 + 18.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

6 −24 is −18, −18 +18 is 0. Yep, that's correct. So the dot product is indeed zero, which implies that the
vectors are orthogonal. Therefore, the angle between them is 90 degrees. Hmm, so is that the answer? 90
degrees? That seems straightforward, but let me confirm once again.

Alternatively, maybe I made a mistake in determining the direction vectors. Let me check the direction
vectors again.

First line: 2x = 3y = −z. Let me parametrize it differently. Let's set 2x = k. Then 3y = k => y = k/3, and −z =
k => z = −k. So x = k/2, y = k/3, z = −k. So direction vector is (k/2, k/3, −k). To eliminate fractions, multiply
by 6: (3, 2, −6). Correct.

Second line: 6x = −y = −4z. Let's set 6x = m. Then −y = m => y = −m, and −4z = m => z = −m/4. So x = m
/6, y = −m, z = −m/4. Direction vector is (m/6, −m, −m/4). Multiply by 12: (2, −12, −3). Correct.

So direction vectors are (3, 2, −6) and (2, −12, −3). Their dot product is 3*2 + 2*(−12) + (−6)*(−3) = 6 −24 +
18 = 0. So yes, they are perpendicular. Therefore, the angle between the lines is 90 degrees.
########################

Verifying the result using another method
But wait, just to be thorough, maybe I should check if the lines are indeed skew lines or intersecting lines. If
they intersect, then the angle between them is still defined as the angle between their direction vectors. If they
are skew lines, the angle is still the same. So regardless, the angle between them is determined by their
direction vectors.

Alternatively, maybe I can check if the lines are coplanar or not, but since they are in 3D space, unless they
are parallel or intersecting, they are skew. But since their direction vectors are not scalar multiples, they are
not parallel, so they are skew lines. But the angle between them is still the angle between their direction
vectors.

Alternatively, maybe the problem is designed such that the angle is 90 degrees, but let me verify once more.

Alternatively, maybe I can check with another method. Let me compute the cross product of the direction
vectors to find the sine of the angle, but since the dot product is zero, the angle must be 90 degrees.

Alternatively, if the dot product is zero, the vectors are perpendicular, so the angle is 90 degrees.

Alternatively, maybe the problem is designed to have a right angle, but I need to confirm.

Alternatively, maybe I made a mistake in the direction vectors. Let me check again.

First line: 2x = 3y = −z. Let me take a point on the line. Let me choose x=0. Then 3y = −z. Let me set y=0,
then z=0. So the point (0,0,0) is on the line. Then, direction vector is (1/2, 1/3, −1) as found earlier. So
direction vector is (1/2, 1/3, −1). So if I take t=1, the point is (1/2, 1/3, −1). So direction vector is (1/2, 1/3,
−1). Multiplying by 6 gives (3, 2, −6). Correct.

Second line: 6x = −y = −4z. Let me take x=0. Then −y = −4z => y = 4z. Let me set z=0, then y=0. So the
point (0,0,0) is on this line as well. Wait, both lines pass through the origin? Then they intersect at the origin.
But if they intersect, then they are coplanar, but in 3D space, two lines that intersect are coplanar, but the
angle between them is still determined by their direction vectors. However, if they intersect, the angle
between them is the angle between their direction vectors, which is 90 degrees. So even if they intersect, the
angle between them is 90 degrees. So that's consistent.

But wait, if both lines pass through the origin, and they intersect at the origin, but their direction vectors are
perpendicular, then the angle between them is 90 degrees. So that's correct.

Alternatively, maybe I can check with another point. Let's take a point on the first line. For example, take x=1.
Then 2*1=3y => y=3/2, and −z=3*1 => z=−3. So the point (1, 3/2, −3). Similarly, take x=1 on the second
line. Then 6*1=−y => y=−6, and −4z= −6 => z=1.5. So the point (1, −6, 1.5). Now, check if these two points
are connected by a line that is perpendicular to both direction vectors. But maybe that's overcomplicating.
Since the direction vectors are perpendicular, the angle is 90 degrees.

Alternatively, maybe I can check the angle using another formula. The angle between two lines is given by
the angle between their direction vectors. Since the dot product is zero, the angle is 90 degrees. So I think that'
s correct.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Therefore, the angle between the two lines is 90 degrees.
########################

Extract the final answer

Thus, the final answer is 90◦ .
########################

MLR Output (high-level) - AIME24
Problem:
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c = 300 and
a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000.

Solution:
Understanding the problem
Triples (a, b, c) of nonnegative integers must satisfy:
− a+ b+ c = 300

− a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000

The sum a2b+ a2c+ b2a+ b2c+ c2a+ c2b can be rewritten as a2(b+ c) + b2(a+ c) + c2(a+ b).
########################

Verifying the algebraic manipulation
Factoring terms:
− a2b+ a2c = a2(b+ c)

− b2a+ b2c = b2(a+ c)

− c2a+ c2b = c2(a+ b)

So, the expression simplifies to a2(b+ c) + b2(a+ c) + c2(a+ b).
########################

Substituting the sum constraint
Expression after substitution:
a2(300− a) + b2(300− b) + c2(300− c)
########################

Setting up the main equation
Main equation:
a2(300− a) + b2(300− b) + c2(300− c) = 6, 000, 000
########################

Expanding and simplifying the equation
Expanded expression:
300(a2 + b2 + c2)− (a3 + b3 + c3) = 6, 000, 000
This relates to the sum a+ b+ c = 300.
########################

Expressing in terms of symmetric sums
S1 = a + b + c = 300
S2 = ab + bc + ca
S3 = abc

a2 + b2 + c2 = S12 − 2S2

a3 + b3 + c3 = S13 − 3S1S2 + 3S3

Substituting into the equation:
300(S12 − 2S2)− (S13 − 3S1S2 + 3S3) = 6, 000, 000
########################

Plugging in the known value and simplifying
First term: 27, 000, 000− 600S2

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Second term: −27, 000, 000 + 900S2− 3S3
Combine: 27, 000, 000− 600S2− 27, 000, 000 + 900S2− 3S3 = 6, 000, 000
Simplify: 300S2− 3S3 = 6, 000, 000
Divide by 3: 100S2− S3 = 2, 000, 000
########################

Analyzing the new equation and possible values
Equation: 100S2 − S3 = 2, 000, 000
Given: S1 = a+ b+ c = 300, S2 = ab+ bc+ ca, S3 = abc
Need: Integer solutions for nonnegative a, b, c with a+ b+ c = 300 and 100S2 − S3 = 2, 000, 000.
Approach: Consider cases with symmetry (e.g., two variables equal or all equal) to find possible solutions.
########################

Checking the case where all variables are equal
If a = b = c = 100, then a+ b+ c = 300, S2 = 30, 000, S3 = 1, 000, 000, and 100S2 − S3 = 2, 000, 000,
which satisfies the condition.
So, (100, 100, 100) is a solution, and since all are equal, there is only one such triple.
########################

Checking the case where two variables are equal
Case: a = b ̸= c
c = 300 − 2a

S2 = −3aˆ2 + 600a
S3 = aˆ2(300 − 2a)

Equation:
aˆ3 − 300aˆ2 + 30,000a − 1,000,000 = 0
Factor: (a − 100)ˆ3 = 0⇒ a = 100 is the only solution.

Conclusion: The only solution in this case is a = b = c = 100; no other solutions when two variables are equal.
########################

Considering the case where all variables are distinct
All variables distinct:
Given S1 = 300, 100S2 − S3 = 2, 000, 000, and S3 = 100S2 − 2, 000, 000.
Since S3 = abc ≥ 0, S2 ≥ 20, 000.
Maximum S2 = 30, 000, minimum S2 = 0.
So, for all variables distinct, S2 must be between 20,000 and 30,000, and S3 = 100S2 − 2, 000, 000.
The original equation reduces to 300S2 − 3S3 = 6, 000, 000, confirming the earlier result.
########################

Factoring the equation for further simplification
Given 100S2 − S3 = 2,000,000 and S1 = 300,
S3 = 100S2 − 2,000,000, and S3 = abc, so
abc = 100(ab + bc + ca) − 2,000,000.

Rearranged and factored,
(a − 100)(b − 100)(c − 100) = 0.
########################

Interpreting the factored equation and finding solutions
At least one of a, b, or c must be 100.
The other two variables sum to 200 (since a + b + c = 300).
All nonnegative integer triples (a, b, c) where one is 100 and the other two sum to 200 are solutions.
This condition is equivalent to the original equation, so all such triples satisfy both equations.
########################

Counting the number of valid triples
Case 1: a = 100⇒ 201 triples
Case 2: b = 100⇒ 201 triples
Case 3: c = 100⇒ 201 triples
Triple (100,100,100) is counted 3 times (once in each case).
Using inclusion−exclusion:
Total triples = 3×201 − 3 + 1 = 601.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

########################

Verifying the counting with a small example
Listed all possible triples: (1,0,2), (1,1,1), (1,2,0), (0,1,2), (2,1,0), (0,2,1), (2,0,1) − total of 7 triples.

Using inclusion−exclusion: 3× 3− 3× 1 + 1 = 9− 3 + 1 = 7.

Conclusion: The formula works for this small example.
########################

Extract the final answer
Thus, the final answer is 601 .
########################

MLR Output (low-level) - AIME24
Problem:
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c = 300 and
a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000.

Solution:
Understanding the problem
Okay, so the user is trying to solve a problem involving finding triples (a, b, c) of nonnegative integers that
satisfy two conditions: a + b + c = 300 and aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b = 6,000,000. They started
by considering factoring the expression and noticed that it can be rewritten as aˆ2(b + c) + bˆ2(a + c) + cˆ2(a +
b).
########################

Verifying the algebraic manipulation
First, I need to verify if their initial approach is correct. Let's check the expression:

Original expression: aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b

Factoring terms:

aˆ2b + aˆ2c = aˆ2(b + c)
bˆ2a + bˆ2c = bˆ2(a + c)
cˆ2a + cˆ2b = cˆ2(a + b)
So yes, the expression simplifies to aˆ2(b + c) + bˆ2(a + c) + cˆ2(a + b). That's a good start.
########################

Substituting the sum constraint
Next, since a + b + c = 300, we can substitute (b + c) with (300 − a), similarly for the others. Let's apply that
substitution:

Expression becomes: aˆ2(300 − a) + bˆ2(300 − b) + cˆ2(300 − c)
########################

Setting up the main equation
So the equation is: aˆ2(300 − a) + bˆ2(300 − b) + cˆ2(300 − c) = 6,000,000
########################

Expanding and simplifying the equation
Now, the user might need to find a way to relate this to the sum a+ b+ c = 300. Perhaps expanding the
terms or looking for symmetry could help. Let's consider expanding each term:

For each variable x (where x is a, b, or c), the term xˆ2(300 − x) = 300xˆ2 − xˆ3. So the entire expression
becomes:

300(aˆ2 + bˆ2 + cˆ2) − (aˆ3 + bˆ3 + cˆ3) = 6,000,000

So we have:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

300(aˆ2 + bˆ2 + cˆ2) − (aˆ3 + bˆ3 + cˆ3) = 6,000,000
########################

Expressing in terms of symmetric sums
Now, we also know that a + b + c = 300. Let's denote S1 = a + b + c = 300, S2 = ab + bc + ca, and S3 = abc.
We can express aˆ2 + bˆ2 + cˆ2 in terms of S1 and S2:

aˆ2 + bˆ2 + cˆ2 = (a + b + c)ˆ2 − 2(ab + bc + ca) = S1ˆ2 − 2S2

Similarly, the sum of cubes can be expressed using the identity:

aˆ3 + bˆ3 + cˆ3 = (a + b + c)ˆ3 − 3(a + b + c)(ab + bc + ca) + 3abc = S1ˆ3 − 3S1S2 + 3S3

Substituting these into the equation:

300(S1ˆ2 − 2S2) − (S1ˆ3 − 3S1S2 + 3S3) = 6,000,000
########################

Plugging in the known value and simplifying
Plugging in S1 = 300:

300(300ˆ2 − 2S2) − (300ˆ3 − 900S2 + 3S3) = 6,000,000

Let's compute each term step by step:

First term: 300*(300ˆ2 − 2S2) = 300*(90,000 − 2S2) = 27,000,000 − 600S2

Second term: −(300ˆ3 − 900S2 + 3S3) = −27,000,000 + 900S2 − 3S3

Combining both terms:

27,000,000 − 600S2 −27,000,000 + 900S2 − 3S3 = 6,000,000

Simplify:

(27,000,000 −27,000,000) + (−600S2 + 900S2) −3S3 = 6,000,000

Which simplifies to:

300S2− 3S3 = 6, 000, 000

Divide both sides by 3:

100S2 − S3 = 2,000,000
########################

Analyzing the new equation and possible values
So now we have an equation involving S2 and S3: 100S2 − S3 = 2,000,000

But we also know that S1 = 300, S2 = ab + bc + ca, and S3 = abc. So we need another relation between S2
and S3. However, with three variables and two equations (S1, S2, S3), we might need to find possible integer
solutions.

Alternatively, perhaps we can consider that a, b, c are nonnegative integers summing to 300, and we need to
find the number of triples such that 100S2 − S3 = 2,000,000.

This seems complicated. Maybe there's a symmetry or specific values that satisfy this equation. Let's consider
possible cases where two variables are equal, or all three are equal.
########################

Checking the case where all variables are equal
First, check if all three are equal: a = b = c. Then a + b + c = 3a = 300⇒ a = 100. So (100, 100, 100). Let's
check if this satisfies the second equation.

Compute S2 = ab + bc + ca = 3*100*100 = 30,000

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

S3 = 100ˆ3 = 1,000,000

Then 100S2 − S3 = 100*30,000 − 1,000,000 = 3,000,000 − 1,000,000 = 2,000,000. Hey, that works! So (100,
100, 100) is a solution. But the problem asks for the number of triples, so this is one solution.

But there might be others. Let's check if permutations of this count, but since all are equal, there's only one
such triple.
########################

Checking the case where two variables are equal
Now, consider cases where two variables are equal. Let's say a = b ̸= c. Then a + a + c = 300⇒ 2a + c = 300
⇒ c = 300 − 2a.

Now, compute S2 and S3:

S2 = aˆ2 + 2ac = aˆ2 + 2a(300 − 2a) = aˆ2 + 600a − 4aˆ2 = −3aˆ2 + 600a

S3 = aˆ2c = aˆ2(300 − 2a)

Now plug into 100S2 − S3 = 2,000,000:

100*(−3aˆ2 + 600a) − aˆ2(300 − 2a) = 2,000,000

Compute each term:

100*(−3aˆ2 + 600a) = −300aˆ2 + 60,000a

Subtract aˆ2(300 − 2a) = −300aˆ2 + 2aˆ3

So total equation:

−300aˆ2 + 60,000a − 300aˆ2 + 2aˆ3 = 2,000,000

Combine like terms:

2aˆ3 − 600aˆ2 + 60,000a − 2,000,000 = 0

Divide both sides by 2:

aˆ3 − 300aˆ2 + 30,000a − 1,000,000 = 0

Now, we need to solve this cubic equation for integer a, where a must be a nonnegative integer such that c =
300 − 2a ≥ 0⇒ a ≤ 150.

Let's try possible integer roots. Possible rational roots are factors of 1,000,000 divided by factors of 1 (leading
coefficient). So possible roots are divisors of 1,000,000. Let's test a = 100:

100ˆ3 − 300*100ˆ2 + 30,000*100 − 1,000,000 = 1,000,000 − 3,000,000 + 3,000,000 − 1,000,000 = 0. So a =
100 is a root. That corresponds to the case where a = b = 100, c = 100, which we already considered.

Factor out (a − 100):

Using polynomial division or synthetic division:

Divide aˆ3 − 300aˆ2 + 30,000a − 1,000,000 by (a − 100).

Using synthetic division:

100 | 1 −300 30,000 −1,000,000

100 −20,000 1,000,000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

1 −200 10,000 0
So the cubic factors as (a − 100)(aˆ2 − 200a + 10,000)

Now solve aˆ2 − 200a + 10,000 = 0

Discriminant D = 40,000 − 40,000 = 0. So a = (200)/2 = 100. Thus, the cubic factors as (a − 100)ˆ3. So the
only solution is a = 100. Therefore, in the case where two variables are equal, the only solution is when all
three are equal. So no other solutions in this case.
########################

Considering the case where all variables are distinct
Next, consider the case where all three variables are distinct. Let's see if there are any solutions where a, b, c
are different.

This might be more complex. Let's think if there's a way to parameterize the variables or use Vieta's formulas.
Since we have S1 = 300, S2, and S3 related by 100S2 − S3 = 2,000,000, perhaps we can express S3 in terms
of S2: S3 = 100S2 − 2,000,000.

But we also know that for nonnegative integers a, b, c, S3 = abc must be nonnegative. So 100S2 − 2,000,000
≥ 0⇒ S2 ≥ 20,000.

But S2 = ab + bc + ca. Given that a + b + c = 300, what's the maximum and minimum possible S2?

The maximum S2 occurs when two variables are as large as possible. For example, if one variable is 0, then
S2 = ab where a + b = 300, which is maximized when a = b = 150, giving S2 = 150*150 = 22,500. If all
variables are equal, S2 = 3*100*100 = 30,000. Wait, but if a = b = c = 100, then S2 = 3*100*100 = 30,000.
Wait, but earlier when we considered two variables equal, S2 was −3aˆ2 + 600a, which for a=100 gives S2
=30,000. So S2 can range depending on the distribution.

Wait, actually, S2 can be calculated as (a + b + c)ˆ2 − (aˆ2 + bˆ2 + cˆ2)/2, but maybe it's better to think in
terms of maximizing/minimizing S2 given a + b + c = 300.

The maximum of S2 occurs when two variables are as large as possible, which would be when one variable is
0, and the other two sum to 300. Then S2 = (150)(150) = 22,500. Wait, but earlier when all three are equal, S2
= 3*100*100 = 30,000, which is larger. So actually, the maximum S2 occurs when all variables are equal.
Because S2 = ab + bc + ca is maximized when the variables are equal, by the inequality that ab + bc + ca ≤ (a
+ b + c)ˆ2 / 3, which for a + b + c = 300 gives S2 ≤ 300ˆ2 / 3 = 30,000, achieved when a = b = c = 100.

Similarly, the minimum S2 occurs when one variable is 300 and the others are 0, giving S2 = 0. So S2 ranges
from 0 to 30,000.

But in our case, S2 must be at least 20,000 because S3 = 100S2 − 2,000,000 ≥ 0⇒ S2 ≥ 20,000. So S2 is
between 20,000 and 30,000.

But how does this help us? We need to find triples (a, b, c) such that S2 is between 20,000 and 30,000, and S3
= 100S2 − 2,000,000. Additionally, since a, b, c are nonnegative integers summing to 300, we can model this
as solving for a, b, c with these constraints.

Alternatively, perhaps there's a substitution or another identity that can be used. Let's revisit the original
equation:

aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b = 6,000,000

Notice that this can be written as ab(a + b) + bc(b + c) + ca(c + a). Wait, but that's similar to the earlier
expression. Alternatively, factor differently:

= ab(a + b) + bc(b + c) + ca(c + a)

But since a + b + c = 300, we can write a + b = 300 − c, etc. So:

= ab(300 − c) + bc(300 − a) + ca(300 − b)

Which expands to:

300ab − abc + 300bc − abc + 300ca − abc

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

= 300(ab + bc + ca) − 3abc

So the equation becomes:

300S2 − 3S3 = 6,000,000

Which simplifies to 100S2 − S3 = 2,000,000, which matches what we had earlier.
########################

Factoring the equation for further simplification
So we have 100S2 − S3 = 2,000,000, and S1 = 300. So S3 = 100S2 − 2,000,000.

But S3 = abc, so abc = 100(ab + bc + ca) − 2,000,000.

This seems like a complicated equation to solve for integers a, b, c ≥ 0 with a + b + c = 300.

But perhaps there's a way to parameterize this. Let's consider that abc = 100(ab + bc + ca) − 2,000,000.

Rearranging:

abc − 100ab − 100bc − 100ca = −2,000,000

Add 10000(a + b + c) to both sides:

abc − 100ab − 100bc − 100ca + 10000(a + b + c) = −2,000,000 + 10000*300

Compute the right−hand side:

−2,000,000 + 3,000,000 = 1,000,000

Now, the left−hand side can be factored:

abc − 100ab − 100bc − 100ca + 10000a + 10000b + 10000c

Factor terms:

= abc + (−100ab −100bc −100ca) + 10000(a + b + c)

Notice that this resembles (a − 100)(b − 100)(c − 100) expanded. Let's check:

Expand (a − 100)(b − 100)(c − 100):

= abc − 100ab − 100ac − 100bc + 10,000a + 10,000b + 10,000c − 1,000,000

Compare to our left−hand side:

Left−hand side after adding 10000(a + b + c):

abc −100ab −100bc −100ca + 10,000a + 10,000b + 10,000c

So the difference between this and the expanded (a −100)(b −100)(c −100) is the constant term −1,000,000.
Therefore:

(a − 100)(b − 100)(c − 100) = abc −100ab −100ac −100bc +10,000a +10,000b +10,000c −1,000,000

But our left−hand side is:

abc −100ab −100bc −100ca +10,000a +10,000b +10,000c = (a −100)(b −100)(c −100) + 1,000,000

Therefore, the equation becomes:

(a −100)(b −100)(c −100) + 1,000,000 = 1,000,000

So:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

(a −100)(b −100)(c −100) = 0
########################

Interpreting the factored equation and finding solutions
Ah! This simplifies things. Therefore (a − 100)(b − 100)(c − 100) must be zero. Which means at least one of
the factors must be zero. Therefore, at least one of a, b, c must be equal to 100.

So the solutions are all triples (a, b, c) where at least one of a, b, or c is 100, and the other two variables sum
to 200 (since a + b + c = 300).

Therefore, the problem reduces to finding all nonnegative integer triples (a, b, c) such that one of them is 100,
and the other two sum to 200. However, we also need to ensure that the original equation holds, but since we
derived that this condition is equivalent to the original equation, all such triples will satisfy both equations.
########################

Counting the number of valid triples
Now, let's count the number of such triples.

Case 1: a = 100. Then b + c = 200. The number of nonnegative integer solutions for (b, c) is 201 (from b=0 to
b=200). However, since triples are ordered, each solution here corresponds to a unique triple (100, b, c).

Case 2: b = 100. Similarly, a + c = 200. Number of solutions: 201.

Case 3: c = 100. Similarly, a + b = 200. Number of solutions: 201.

However, we have to subtract the overlaps where two variables are 100. For example, if a = 100 and b = 100,
then c = 100, which is counted in all three cases. There are three such overlapping triples: (100,100,100),
(100,100,100), etc., but since it's the same triple, it's only counted once in each case. Wait, actually, when we
count the three cases, the triple (100,100,100) is included in all three cases. So total overlaps are:

Each triple where two variables are 100 is counted in two cases. For example, (100,100,100) is counted in all
three cases. Wait, no, if a = 100, b = 100, then c = 100, so it's counted once in each case. Wait, no, when a =
100, b can be 100, which gives c = 100. Similarly for the other cases. So the triple (100,100,100) is counted
three times in total (once in each case). Similarly, any triple where exactly two variables are 100 would be
counted twice. Wait, but if two variables are 100, say a = 100 and b = 100, then c = 100, which is the same as
all three being 100. So there are no triples where exactly two variables are 100 because that forces the third to
also be 100. Therefore, the only overlap is the triple (100,100,100), which is counted three times.

Therefore, using inclusion−exclusion:

Total triples = 3*201 − 3*1 + 1*1 = 603 − 3 + 1 = 601.
########################

Verifying the counting with a small example
But let's check with a small example. Suppose we have variables summing to 3 instead of 300, and we want to
count triples where one variable is 1. Then:

Case 1: a=1, b + c =2⇒ (1,0,2), (1,1,1), (1,2,0)

Case 2: b=1, a + c =2⇒ (0,1,2), (1,1,1), (2,1,0)

Case 3: c=1, a + b =2⇒ (0,2,1), (1,1,1), (2,0,1)

Total listed triples: (1,0,2), (1,1,1), (1,2,0), (0,1,2), (2,1,0), (0,2,1), (2,0,1). That's 7 triples. Using inclusion−
exclusion:

3*3 − 3*1 + 1 = 9 − 3 + 1 = 7. Correct. So the formula works.
########################

Extract the final answer
Thus, the final answer is 601 .
########################

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

MLR Output (high-level) - GPQA (Diamond)
Problem:
Q: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one is treated with sodium hydride, followed by
benzyl bromide, forming product 1. 1 is treated with p−toluenesulfonyl hydrazide in the presence of a
catalytic amount of HCl, forming product 2. 2 is treated at low temperature with n−butyllithium, followed by
aqueous ammonium chloride, forming product 3. 3 is stirred with Pd/C under a hydrogen atmosphere,
forming product 4. What is the structure of product 4?

Choices:
A. (((3−isopropylcyclohexyl)methoxy)methyl)benzene
B. (3−isopropylcyclohexyl)methanol
C. N'−(3−(hydroxymethyl)−5−isopropylcyclohexyl)−4−methylbenzenesulfonohydrazide
D. 3−((benzyloxy)methyl)−1−butyl−5−isopropylcyclohexan−1−ol

Solution:
Understanding the problem and outlining the approach
Need to determine the structure of product 4 in the reaction sequence.
Approach: break down each step carefully to understand how product 4 is formed.
########################

Interpreting the starting material's structure
The starting material is 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one.
− The cyclohexanone ring has a hydroxymethyl group at position 3.
− At position 5, there is a prop−1−en−2−yl group, which is CH2=C(CH3)− (a methyl group attached to a
double bond).
− The structure is a cyclohexanone ring with these two substituents at positions 3 and 5.
########################

Analyzing the first reaction: NaH and benzyl bromide
NaH deprotonates the hydroxymethyl group to form an alkoxide, which then reacts with benzyl bromide to
form a benzyl ether. Product 1 is 3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one, where the
hydroxymethyl group is converted to a benzyloxymethyl group.
########################

Analyzing the second reaction: p−toluenesulfonyl hydrazide and HCl
Product 1 reacts with p−toluenesulfonyl hydrazide (TsNHNH2) and catalytic HCl to form a tosylhydrazone.
The ketone group (cyclohexanone) reacts with the hydrazide, losing water and forming a hydrazone. Product
2 is the tosylhydrazone of the ketone, with all other substituents (including prop−1−en−2−yl) unchanged. The
structure is N'−(3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexylidene)−4−
methylbenzenesulfonohydrazide.
########################

Analyzing the third reaction: n−butyllithium and aqueous ammonium Product 2 is treated with n−
butyllithium and aqueous ammonium chloride (Shapiro reaction), converting the ketone−derived hydrazone
into an alkene. The cyclohexanone ring becomes a cyclohexene ring with a double bond between C1 and C2.
Product 3 is a cyclohexene with a benzyloxymethyl group at C3 and an isopropenyl group at C5.
########################

Analyzing the fourth reaction: hydrogenation with Pd/C and H2
− Hydrogenation with Pd/C and H 2 saturates all double bonds.
− The cyclohexene ring becomes a cyclohexane ring.
− The isopropenyl group (CH 2=C(CH 3)−) is reduced to an isopropyl group (CH 2CH(CH 3)−).
− Product 4: cyclohexane ring with a benzyloxymethyl group at C3 and an isopropyl group at C5.
− The ring is fully saturated; no other changes occur.
########################

Recapping the sequence and mapping substituent positions
Starting material: cyclohexan−1−one
Position 3: hydroxymethyl→ benzyloxymethyl (after NaH/benzyl bromide)
Position 1: ketone→ tosylhydrazone→ double bond (after Shapiro reaction)
Ring: cyclohexene (double bond between 1 and 2)
Position 5: prop−1−en−2−yl (CH2=C(CH3)−)
Final product: 3−(benzyloxymethyl)−5−isopropylcyclohexane

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

########################

Evaluating the effect of hydrogenolysis on the benzyl ether
The benzyloxymethyl group should remain after hydrogenation with Pd/C, as benzyl ethers are generally
stable under these conditions. Therefore, product 4 should have a benzyloxymethyl group at position 3 and
isopropyl at position 5 on cyclohexane. None of the options match this structure.
########################

Re−examining the possibility of benzyl ether cleavage under hydrogenation
− Ketone is at position 1 on the cyclohexane ring.
− Substituents at positions 3 (benzyloxymethyl) and 5 (isopropyl) are two positions apart.
− After Shapiro elimination, double bond forms between positions 1 and 2.
− Hydrogenation restores the single bond; substituents remain at positions 3 and 5.
− In product 4, cyclohexane ring has benzyloxymethyl at position 3 and isopropyl at position 5.
− This arrangement does not match any of the answer choices.
########################

Considering the effect of hydrogenolysis on the benzyl ether group
Step 1: alkylation to benzyloxymethyl−correct.
Step 2: tosylhydrazone formation at ketone−correct.
Step 3: Shapiro reaction forms alkene between positions 1 and 2−correct.
Step 4: hydrogenation saturates both the 1−2 alkene and isopropenyl group to isopropyl.
Final product: 3−(benzyloxymethyl)−5−isopropylcyclohexane.
None of the options exactly match this structure.
########################

Realizing benzyl ether cleavage under hydrogenation conditions
Starting material: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one.
− Tosylhydrazone forms at position 1 (the ketone).
− Elimination forms an alkene between positions 1 and 2.
− Substituents at 3 (hydroxymethyl) and 5 (prop−1−en−2−yl) remain.
− Hydrogenation reduces the double bond (1,2) and the prop−1−en−2−yl group at 5.
− Final product: cyclohexane ring with substituents at 3 (hydroxymethyl) and 5 (isopropyl).
− Question: how to name this compound.
########################

Applying IUPAC nomenclature and lowest locant rule
After renumbering to give the substituents the lowest possible numbers, the hydroxymethyl group is at
position 1 and the isopropyl at position 3. The correct IUPAC name is 1−(hydroxymethyl)−3−
isopropylcyclohexane, also named as (3−isopropylcyclohexyl)methanol. Therefore, option B is correct.
########################

Final conclusion and answer selection
Numbering changes to give the lowest possible numbers, repositioning the substituents as 1 and 3 instead of 3
and 5.
Correct answer is B.
########################

Extract the final answer
Thus, the final answer is B .
########################

MLR Output (low-level) - GPQA (Diamond)
Problem:
Q: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one is treated with sodium hydride, followed by
benzyl bromide, forming product 1. 1 is treated with p−toluenesulfonyl hydrazide in the presence of a
catalytic amount of HCl, forming product 2. 2 is treated at low temperature with n−butyllithium, followed by
aqueous ammonium chloride, forming product 3. 3 is stirred with Pd/C under a hydrogen atmosphere,
forming product 4. What is the structure of product 4?

Choices:
A. (((3−isopropylcyclohexyl)methoxy)methyl)benzene
B. (3−isopropylcyclohexyl)methanol

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

C. N'−(3−(hydroxymethyl)−5−isopropylcyclohexyl)−4−methylbenzenesulfonohydrazide
D. 3−((benzyloxy)methyl)−1−butyl−5−isopropylcyclohexan−1−ol

Solution:
Understanding the problem and outlining the approach
Okay, so I need to figure out the structure of product 4 in this reaction sequence. Let me start by breaking
down each step carefully.
########################

Interpreting the starting material's structure
First, the starting material is 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. Let's draw that out.
The cyclohexanone ring has a hydroxymethyl group at position 3 and a prop−1−en−2−yl group (which is an
allyl group attached at the middle carbon, so it's actually a methyl group attached to a double bond, right? So
like CH2−C(CH2)− maybe? Wait, prop−1−en−2−yl would be CH2=C(CH3)−, right? So the substituent is a
methyl group attached to a double bond. So the cyclohexanone ring has that at position 5 and the
hydroxymethyl at position 3.
########################

Analyzing the first reaction: NaH and benzyl bromide
Then, the first step is treatment with sodium hydride, followed by benzyl bromide. Sodium hydride is a strong
base, so maybe it deprotonates something. The hydroxymethyl group has an −OH. Deprotonating that would
give an alkoxide, which is a good nucleophile. Then benzyl bromide would act as an alkylating agent. So the
benzyl group (Bn) would be attached to the oxygen, making a benzyl ether. So product 1 would be 3−(
benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. That makes sense because the hydroxymethyl
becomes benzyloxymethyl after alkylation.
########################

Analyzing the second reaction: p−toluenesulfonyl hydrazide and HCl
Next, product 1 is treated with p−toluenesulfonyl hydrazide (TsNHNH2) with catalytic HCl. That's typically
used to form a tosylhydrazone. The ketone group (cyclohexanone) would react with the hydrazide. The
mechanism is that the ketone attacks the hydrazide, losing water and forming a hydrazone. So product 2
would be the tosylhydrazone of the ketone. So the cyclohexanone becomes a cyclohexylidene group linked to
the tosylhydrazide. So structure would be N'−(3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexylidene)
−4−methylbenzenesulfonohydrazide. Wait, but maybe the prop−1−en−2−yl is still present? The reaction is
only on the ketone, so the other substituents remain.
########################

Analyzing the third reaction: n−butyllithium and aqueous ammonium chloride (Shapiro reaction)
######
Third step: product 2 is treated with n−butyllithium at low temperature, then aqueous ammonium chloride.
This sounds like the Shapiro reaction. The Shapiro reaction uses tosylhydrazones treated with a strong base
like n−BuLi to form alkenes via elimination. The mechanism involves deprotonation and elimination of the
tosylhydrazide group, forming a double bond. So the cyclohexanone ring, which had the hydrazone, would
become a cyclohexene ring? Wait, but the starting material already has an allyl group (prop−1−en−2−yl). Wait
, maybe the Shapiro reaction here is converting the ketone−derived hydrazone into an alkene. But the original
ketone is at position 1 (cyclohexan−1−one). So after Shapiro, that would form a double bond between C1 and
C2? So the cyclohexanone becomes cyclohexene with the substituents. So product 3 would be 3−(
benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexene, but the position of the double bond would be between
C1 and C2? Wait, maybe I need to think about regiochemistry here. The Shapiro reaction typically gives less
substituted alkenes because it's a concerted elimination. But in the cyclohexane ring, the original ketone is at
position 1. So when eliminating, the hydrazone is at C1, and the adjacent hydrogen is at C2. So elimination
would form a double bond between C1 and C2. But the ring already has substituents at C3 (benzyloxymethyl)
and C5 (prop−1−en−2−yl). So after elimination, the ring becomes a cyclohexene with double bond between
C1 and C2. So product 3 is 1,2−cyclohexenyl with substituents at C3 and C5. But the prop−1−en−2−yl is
another substituent. Wait, but maybe the prop−1−en−2−yl is an isopropenyl group (CH2=C(CH3)−). So
product 3 would have a cyclohexene ring (double bond between 1 and 2), a benzyloxymethyl group at 3, and
an isopropenyl group at 5. Then, when treated with n−BuLi, but after that, aqueous ammonium chloride. Wait,
the Shapiro reaction usually forms alkenes via deprotonation and elimination. But maybe in this case, after
forming the hydrazone, treatment with n−BuLi leads to deprotonation and elimination of the tosylhydrazide,
giving the alkene. So product 3 would be the cyclohexene derivative with those substituents.
########################

Analyzing the fourth reaction: hydrogenation with Pd/C and H2

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Then, product 3 is stirred with Pd/C under hydrogen. Hydrogenation. So any double bonds would be
hydrogenated. The cyclohexene ring's double bond (from the Shapiro reaction) would be hydrogenated to a
single bond. Also, the prop−1−en−2−yl group (isopropenyl, CH2=C(CH3)−, so that's a vinyl group with a
methyl substituent on the double bond) would be hydrogenated, making it a prop−2−yl group (isopropyl
group). Wait, prop−1−en−2−yl is CH2=C(CH3)−, so hydrogenation would make CH2CH(CH3). So the
isopropenyl becomes isopropyl. Also, the cyclohexene from the Shapiro reaction (double bond between 1 and
2) would become cyclohexane again. So product 4 would have a cyclohexane ring with substituents: at C3,
benzyloxymethyl; at C5, isopropyl. But wait, after hydrogenation, the ring is fully saturated. Also, the
hydroxymethyl group at 3 is now a benzyloxymethyl. But after hydrogenation, is there any other change?
########################

Recapping the sequence and mapping substituent positions
Wait, let's recap: Starting material: cyclohexan−1−one (so position 1 is the ketone). Substituents: at 3,
hydroxymethyl; at 5, prop−1−en−2−yl (CH2=C(CH3)−). Step 1: deprotonate hydroxymethyl's OH with NaH,
then benzyl bromide gives benzyloxymethyl at position 3. Step 2: form tosylhydrazone at the ketone (position
1). So now, the hydrazone is at position 1. Step 3: Shapiro reaction (n−BuLi) eliminates the tosylhydrazide,
forming a double bond between position 1 and 2. So the ring becomes cyclohexene (positions 1 and 2 double
bond). So now, the substituents are at 3 (benzyloxymethyl), 5 (CH2=C(CH3)−), and the ring has a double
bond between 1 and 2. Step 4: hydrogenation with Pd/C and H2. The double bonds in the molecule (both the
cyclohexene ring's 1,2−double bond and the prop−1−en−2−yl group's double bond) would be hydrogenated.
So the cyclohexene becomes cyclohexane (single bond between 1 and 2), and the prop−1−en−2−yl becomes
isopropyl (CH(CH3)2). So the substituent at position 5 becomes isopropyl. So product 4 would be 3−(
benzyloxymethyl)−5−isopropylcyclohexane. Wait, but cyclohexane is a six−membered ring. The substituents
are at positions 3 and 5. But then, after hydrogenation, the ring is fully saturated. Also, the hydroxymethyl
was at 3, which became benzyloxymethyl. But after hydrogenation, is there any other change?
########################

Evaluating the effect of hydrogenolysis on the benzyl ether
Wait, but in the final hydrogenation step, maybe the benzyloxymethyl group is hydrogenated? But benzyl
ethers are generally stable under hydrogenation unless there's a catalyst that cleaves ethers. But Pd/C usually
doesn't cleave ethers. So the benzyloxymethyl should remain. So product 4 should have a benzyloxymethyl
group at position 3 and isopropyl at position 5 on cyclohexane. But none of the options have that.
########################

Re−examining the possibility of benzyl ether cleavage under hydrogenation
Wait, maybe I messed up the numbering. Let me try to visualize the cyclohexane ring. Let's imagine the
ketone at position 1. Then positions 2, 3, 4, 5, 6 go around the ring. So if the ketone is at position 1, then
substituents at 3 and 5 would be two positions apart. After elimination (Shapiro), the double bond is between
1 and 2. Then hydrogenation would bring back the single bond. So the substituents at 3 and 5 are in the same
positions. So in product 4, the cyclohexane ring has a benzyloxymethyl group at position 3 and an isopropyl
group at position 5. But the answer choices don't have that.
########################

Considering the effect of hydrogenolysis on the benzyl ether group
Wait, but let me double−check the steps again. Maybe I made a mistake. Step 1: alkylation of hydroxymethyl
to benzyloxymethyl. Correct. Step 2: formation of tosylhydrazone at the ketone. Correct. Step 3: Shapiro
reaction with n−BuLi. The Shapiro reaction involves deprotonation adjacent to the hydrazone, leading to
elimination of the tosylhydrazide and formation of an alkene. So the ketone (position 1) becomes a double
bond between positions 1 and 2. Step 4: hydrogenation of the alkene (positions 1−2) and the isopropenyl
group (position 5) to isopropyl. So product 4 would have a cyclohexane ring with substituents: at position 3,
benzyloxymethyl; at position 5, isopropyl. So the structure is 3−(benzyloxymethyl)−5−isopropylcyclohexane.
But looking at the options, none of them exactly match.
########################

Realizing benzyl ether cleavage under hydrogenation conditions
Wait, maybe I messed up the positions during the Shapiro reaction. Let's think again. The starting material is
3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. When we form the tosylhydrazone at position 1
(the ketone), then eliminate to form the alkene between positions 1 and 2. Now, the ring has a double bond
between 1 and 2. The substituents at 3 and 5 are still in their original positions. Then, hydrogenation reduces
the double bond between 1 and 2 and the prop−1−en−2−yl group at 5. So after hydrogenation, the ring is
cyclohexane with substituents at 3 (hydroxymethyl) and 5 (isopropyl). But how is this named?
########################

Applying IUPAC nomenclature and lowest locant rule

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Alternatively, maybe the numbering changes when the ketone is removed. Originally, the ketone is at position
1. After converting it to CH2 via hydrogenation, maybe the numbering starts from the hydroxymethyl group
as position 1. In IUPAC nomenclature, the numbering is done to give the substituents the lowest possible
numbers. So if the hydroxymethyl is at position 1 and the isopropyl at position 3, that would be lower than if
they were at 3 and 5. So the new numbering would be: 1: hydroxymethyl (original 3) 2: CH2 (original 4) 3:
isopropyl (original 5) 4: CH2 (original 6) 5: CH2 (original 1) 6: CH2 (original 2) Wait, this might not be
accurate. Let me think of the cyclohexane as a chair. If the original positions are 1 (top), 2, 3, 4 (bottom), 5, 6.
After removing the ketone (position 1 becomes CH2), and having substituents at 3 and 5. If we renumber to
give the lowest numbers, we need to choose a direction where the substituents are at lower positions. If we
start numbering from the hydroxymethyl (original 3) as position 1, then the isopropyl is at original 5, which
would be position 3 in the new numbering (since it's two positions away in the ring). This gives substituents at
positions 1 and 3, which is lower than 3 and 5. Therefore, the correct IUPAC name would be 1−(
hydroxymethyl)−3−isopropylcyclohexane, which is named as (3−isopropylcyclohexyl)methanol. Because the
methanol group (hydroxymethyl) is considered as the substituent at position 1, and the isopropyl at position 3.
Thus, option B is correct.
########################

Final conclusion and answer selection
Ah, so the key here is that the numbering changes to give the lowest possible numbers, which would
reposition the substituents as 1 and 3 instead of 3 and 5. Therefore, the correct answer is B.
########################

Extract the final answer
Thus, the final answer is B .
########################

MLR Output (high-level) - BoardGameQA (Hard)
Problem:
A few players are playing a boardgame. The current state of the game is as follows. The dachshund has a
football with a radius of 15 inches. And the rules of the game are as follows. Rule1: If the dachshund has a
football that fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for the worm. Rule2:
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly. Based
on the game state and the rules and preferences, does the stork dance with the butterfly?

Solution:
Recap the problem and rules
The dachshund has a football with a radius of 15 inches.
The football fits in a 36.6 x 33.1 x 40.7 inches box.
########################

Identify the key condition to check
Key condition: If the dachshund's football fits in the box, Rule 1 applies (dachshund brings oil tank),
triggering Rule 2 (stork can't dance).
If the football doesn't fit, Rule 1 doesn't apply (no oil tank), so Rule 2 might not be triggered, allowing the
stork to dance.
########################

Analyze the football's dimensions and assumptions
The football has a radius of 15 inches.
Assuming it is a sphere, the diameter is 30 inches.
The problem uses ``radius'', so the football is treated as a sphere.
########################

Compare the football's size to the box
Diameter of football: 30 inches.
Box dimensions: 36.6 x 33.1 x 40.7 inches.
30 < 36.6 (length), 30 < 33.1 (width), 30 < 40.7 (height).
The football fits in the box in all dimensions.
########################

Apply Rule 1 based on the fit
Diameter (30 inches) is less than all box dimensions, so the football fits.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

By Rule 1, the dachshund brings an oil tank for the worm.
########################

Apply Rule 2 and conclude
Applying Rule 2: since at least one animal (the dachshund) brings an oil tank, the stork does not dance with
the butterfly.
########################

Extract the final answer
Thus, the final answer is disproved .
########################

MLR Output (low-level) - BoardGameQA (Hard)
Problem:
A few players are playing a boardgame. The current state of the game is as follows. The dachshund has a
football with a radius of 15 inches. And the rules of the game are as follows. Rule1: If the dachshund has a
football that fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for the worm. Rule2:
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly. Based
on the game state and the rules and preferences, does the stork dance with the butterfly?

Solution:
Recap the problem and rules
Okay, let's try to figure out whether the stork dances with the butterfly based on the given rules and the current
game state.

First, let's recap the information provided. The dachshund has a football with a radius of 15 inches. The rules
are:

If the dachshund's football fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for
the worm.
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly.
The question is whether the stork dances with the butterfly. To determine that, we need to check if any animal
(in this case, possibly the dachshund) brings an oil tank for the worm. If they do, then by Rule 2, the stork
won't dance. If not, then maybe the stork does dance.
########################

Identify the key condition to check
So, the key here is whether the dachshund's football fits into the specified box. If it does, then Rule 1 applies,
and the dachshund brings the oil tank, which triggers Rule 2, preventing the stork from dancing. If the football
doesn't fit, then Rule 1 doesn't apply, so the dachshund doesn't bring the oil tank, and Rule 2 might not be
triggered, allowing the stork to dance.
########################

Analyze the football's dimensions and assumptions
Now, let's focus on the football's dimensions. The football has a radius of 15 inches. Wait, a football is
typically an elongated shape, like a prolate spheroid, but maybe in this game, it's considered a sphere? The
problem mentions a radius, which is a term used for spheres. If it's a sphere with radius 15 inches, then the
diameter would be 30 inches (since diameter is twice the radius). However, if it's an American football shape,
the dimensions would be different. But since the problem specifies a radius, I think we can assume it's a
sphere here.
########################

Compare the football's size to the box
So, diameter of the football is 30 inches. Now, the box has dimensions 36.6 x 33.1 x 40.7 inches. To fit the
sphere inside the box, the sphere must fit in all three dimensions. That is, the diameter of the sphere must be
less than or equal to each of the box's dimensions.

Checking each dimension:

Length: 36.6 inches. The diameter is 30, which is less than 36.6. So okay.
Width: 33.1 inches. 30 is less than 33.1. Okay.
Height: 40.7 inches. 30 is less than 40.7. Okay.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

########################

Apply Rule 1 based on the fit
Since the diameter (30 inches) is less than all the box's dimensions, the football should fit inside the box.
Therefore, according to Rule 1, the dachshund brings an oil tank for the worm.
########################

Apply Rule 2 and conclude
Then, applying Rule 2: since at least one animal (the dachshund) brings an oil tank, the stork does not dance
with the butterfly.

Therefore, the answer is that the stork does not dance with the butterfly.
########################

Extract the final answer
Thus, the final answer is disproved .
########################

Long-horizon Reasoning Test Prompt Template
You are given multiple problems:

{Problem 1}

{Problem 2}

...

{Problem N}

Solve these problems in order. Please reason step by step for each problem, and at the end provide **all final
answers in a single JSON list**, where each answer is wrapped in `\boxed{}`. If you cannot solve a problem
, write `\boxed{N/A}` for that entry.

Output format:
```json
['\\boxed{answer1}', '\\boxed{answer2}', ..., '\\boxed{answerN}']
```

MLR (high-level only) Output
Problem:
Define
p =

∑∞
k=1

1
k2 and q =

∑∞
k=1

1
k3 . Find a way to write∑∞

j=1

∑∞
k=1

1
(j+k)3

in terms of p and q.

Solution:
Understanding the problem
The goal is to express
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}
\]
in terms of \(p \) and \(q \). The current stage involves understanding the problem and identifying the key
components to work with.
########################

Recall the definitions of \(p \) and \(q \
\(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \) are defined as
the sums of the reciprocals of squares and cubes, respectively.
########################

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Identify the desired expression
The desired expression is:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}
\]
This is the sum of the reciprocals of the fourth powers of the sums of \(j \) and \(k \), from \(j = 1 \) to \(
j = \infty \) and from \(k = 1 \) to \(k = \infty \).
########################

Consider symmetry and possible simplifications
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The symmetry between \(j\) and \(k\)
suggests potential simplifications or transformations. The current stage is focusing on identifying the key
components and considering symmetry to simplify the expression.
########################

Attempt to express the sum in terms of \(p \) and \(q \
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The current stage is attempting to express this
sum in terms of \(p \) and \(q \), which are defined as \(\sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(\sum
{k=1}ˆ\infty \frac{1}{kˆ3}\), respectively. The goal is to find a relationship between these sums and the
given expression.
########################

Recall known results for symmetric sums
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The goal is to express this sum in terms of \(p
\) and \(q\), where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{k
ˆ3}\). The current stage is exploring known results for symmetric sums and potential simplifications.
########################

Attempt to simplify using known results
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The current stage is attempting to simplify
this expression using known results for symmetric sums, focusing on possible relationships with \(p\) and \(
q\).
########################

Consider using known results for symmetric sums
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) is being considered in terms of
\(p\) and \(q\), where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{k
ˆ3}\). The goal is to find a relationship between \(p\) and \(q\) and the given sum.
########################

Recall the identity for the sum of reciprocals of squares
The identity for the sum of reciprocals of squares is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ2} = p
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \).
########################

Recall the identity for the sum of reciprocals of cubes
The identity for the sum of reciprocals of cubes is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ3} = q
\]
where \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \).
########################

Recall the identity for the sum of reciprocals of fourth powers
The identity for the sum of reciprocals of fourth powers is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ4} = \frac{p}{2} + \frac{1}{4}q
\]

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \).
########################

Apply the identity to the given sum
The given sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(
p\) and \(q\) using the identity:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
########################

Verify the result with a specific example
The given sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(
p\) and \(q\) using the identity:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

Alternative approach using generating functions
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

Review the result for potential simplifications
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

Finalize the answer
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).

Thus, the final answer is
1

2
p+

1

4
q .

########################

Plan-and-Solve Prompt
Q: Let x, y and z be positive real numbers that satisfy the following system of equations:

log2

(
x
yz

)
= 1

2

log2
(

y
xz

)
= 1

3

log2

(
z
xy

)
= 1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers. Find m+ n.

A: Let's first understand the problem, extract relevant variables and their corresponding numerals, and
make a complete plan. Then, let's carry out the plan, calculate intermediate variables (pay attention
to correct numerical calculation and commonsense), solve the problem step by step, and show the
answer.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Output:
Given:

log2

(
x
yz

)
= 1

2

log2
(

y
xz

)
= 1

3

log2

(
z
xy

)
= 1

4

The value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers.

Plan:
1. Convert each logarithmic equation to its exponential form.
2. Use properties of exponents and logarithms to simplify the expressions.
3. Combine like terms and solve for the values of x, y, and z.
4. Substitute these values into the expression

∣∣log2(x4y3z2)
∣∣.

5. Simplify this expression to find
∣∣log2(x4y3z2)

∣∣.
6. Express it as a fraction m

n
with m and n being relatively prime.

7. Find m+ n.

Calculation:

Step 1: Convert each logarithmic equation to its exponential form

From the given equations, we have:
x = 21/2yz

y = 21/3xz

z = 21/4xy

Step 2: Use properties of exponents and logarithms to simplify the expressions

We can rewrite each equation using the property of exponents:
x =
√
2yz

y = 3
√
2xz

z = 4
√
2xy

Step 3: Solve for the values of x, y, and z

Multiply all three equations together:
(
√
2yz)(3

√
2xz)(4

√
2xy) = (

√
2)(3
√
2)(4
√
2)xyz2

This simplifies to:
x2y2z2 =

√
2(3
√
2)(4
√
2)

Since (
√
2)(3
√
2)(4
√
2) = 2(1/2+1/3+1/4) = 2(6+4+3)/12 = 213/12, we get:

x2y2z2 = 213/12

Taking the square root on both sides:
xyz = 213/24

Now, substitute back to find individual values:
x =
√
2yz

y = 3
√
2xz

z = 4
√
2xy

Step 4: Substitute these values into the expression
∣∣log2(x4y3z2)

∣∣
Substitute x =

√
2yz into x4y3z2:

x4y3z2 = (
√
2yz)4(yz)3(z)2 = 22(y4z4)y3z2 = 4(y4z4)y3z2 = 4(y7z6)

So,

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

∣∣x4y3z2
∣∣ = 4(y7z6)

Using the earlier result xyz = 213/24, we know:

y7z6 =
(

213/24

x

)7

·
(

213/24

y

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Simplifying further:

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Finally:∣∣x4y3z2
∣∣ = 4(y7z6) = 4

(
213/24√

2yz

)7

·
(

213/24

3√2xz

)6

= 4
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

= 4
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Therefore:∣∣log2(x4y3z2)
∣∣ = log2(4) = 2

Thus:∣∣log2(x4y3z2)
∣∣ = 2

1

Answer:
m = 2, n = 1
m+ n = 2 + 1 = 3

The final answer is 3 .

55

	Introduction
	Inference-time Scaling via Long Chain-of-Thought
	Methodology
	Enhancing inference-time scaling with multi-level reasoning
	Online Step-DPO with Process-Level Preferences

	Experiments
	Related Work
	Conclusion
	LLM Usage
	Dataset Statistics
	Implementation Details
	Additional Results

