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ABSTRACT

Inference-time scaling enhances a model’s reasoning by extending its chain-of-
thought (CoT). However, existing approaches typically rely on a single policy
trained with outcome-reward reinforcement learning (RL), which often suffers
from long-horizon plan failures, i.e., the implicit plan drifts away from any valid
strategy. This problem is particularly severe for smaller language models (LMs)
with long CoTs due to their limited capacity. To address this, we propose Multi-
Level Reasoning (MLR), which reformulates long-CoT generation as a two-level
stochastic process. Specifically, MLR employs two policies: a high-level planner
that generates step descriptors (abstract subgoals) and a low-level executor that
produces detailed content conditioned on these descriptors. The planner then gener-
ates the next subgoal based on the summarized current step, forming an alternating
plan–execute loop. To maintain scalability, we adopt a minimal design, where
the base model serves as the low-level policy and a lightweight LoRA module
implements the high-level policy. For training, we observe that outcome-reward
RL is inefficient and weakly informative for long trajectories (e.g., those exceeding
4K tokens). To overcome this, we introduce online Step-DPO, a process-level
preference optimization scheme that leverages Twisted Sequential Monte Carlo
(TSMC) to provide scalable stepwise supervision. This yields more effective train-
ing, improved stability, and higher accuracy. Extensive experiments on challenging
math, science, and logical reasoning benchmarks show that, with only 10% SFT
data and 5% of preference data, MLR outperforms both the DeepSeek-R1 distilla-
tion and the outcome-reward RL baselines across multiple base models and tasks.
More importantly, MLR exhibits slower performance degradation on long-horizon
reasoning, demonstrating stronger robustness under extended CoT generation.
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Figure 1: Long-horizon reasoning accuracy on (a) MATH500, (b) AIME24, and (c) Mixture benchmarks
(MATH500, AIME24, GPQA, BoardGameQA). We simulate long-horizon reasoning by concatenating multiple
problems in the prompt and report average accuracy. MLR consistently degrades more slowly than all baselines.
Additional experimental details and statistics are provided in Section D.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

OpenAI’s o1 series (OpenAI, 2024) introduce inference-time scaling by increasing the length of
the Chain-of-Thought (CoT) (Wei et al., 2022) reasoning process. This design yields significant
improvements in complex reasoning tasks compared to non-reasoning models, marking a major step
forward in language model (LM) capabilities. Building on this idea, DeepSeek (Guo et al., 2025)
proposes a large-scale reinforcement learning (RL) pipeline that directly incentivizes the generation
of long CoTs through policy optimization. Despite the effectiveness of these methods, approaches
that rely on single-policy long CoTs for RL face important limitations, including long-horizon plan
failures and the inherent challenges of RL with sparse outcome rewards1. These issues are especially
pronounced for smaller LMs with long CoTs due to their limited capacity.

In reinforcement learning, long-horizon policy learning remains a fundamental challenge due to
the difficult credit assignment (Kaelbling et al., 1996). To address this, hierarchical reinforcement
learning (HRL) (Dietterich, 2000) has been proposed, where high-level and low-level policies are
learned to operate at different temporal abstractions. While HRL proven effective in domains such as
robotics (Nachum et al., 2018; Gupta et al., 2019), its application to LMs2 presents several challenges:
1) Scalability. Modeling multiple policies, especially when implemented as separate LMs, can incur
significant computational overhead. Naı̈ve multi-agent setups will suffer from high communication
and synchronization costs, making HRL computationally expensive to scale (Guo et al., 2024b). 2)
Flexibility. The existing full-plan-then-execute structure (Huang et al., 2022; Xu et al., 2023) is brittle
in LM-based reasoning tasks where new information or execution failures may require mid-course
corrections. Thus, it is desirable to allow the high-level plan to evolve dynamically based on the
ongoing progress of the low-level execution process. To address these challenges, we propose a
multi-level reasoning (MLR) strategy, where the model alternates between generating a step-level
descriptor and its corresponding detailed content, to enable efficient multi-policy modeling and
dynamic plan adaptation.

More importantly, we introduce an online Step-DPO pipeline for long CoT training, which signifi-
cantly accelerates training and improves reasoning performance. Existing RL fine-tuning frameworks
struggle to obtain effective process-level supervision (Guo et al., 2025). First, evaluating the correct-
ness of intermediate steps is inherently difficult. Automated annotation using LLMs (Wang et al.,
2023b) often yields unreliable or noisy signals, while manual annotation (Lightman et al., 2023) is
prohibitively expensive at scale. Second, introducing a separate process reward model (PRM) adds
complexity. It is vulnerable to reward hacking (Gao et al., 2023), requires substantial training data,
and complicates the pipeline by necessitating repeated retraining. To overcome these limitations,
we repurpose Twisted Sequential Monte Carlo (TSMC) (Doucet et al., 2001; Del Moral et al., 2006;
Briers et al., 2010) as a process-level supervision signal for Step-DPO. In the LM-based reasoning
setting, the importance weight in TSMC estimates how much more likely a partial trajectory is to
lead to a correct outcome under the target distribution compared to the current policy. We then define
the process preference between two candidate continuations at the same step by comparing their
incremental log-weights. This formulation has two key advantages: 1) it converts the multiplicative
nature of sequential importance weights into an additive form, improving numerical stability; 2) it
aligns naturally with the pairwise preference structure of DPO training. Empirically, our approach
provides stable and informative step-level preferences, leading to more efficient training and stronger
performance on complex reasoning tasks.

We summarize our key contributions as follows:

• We propose a novel multi-level reasoning (MLR) framework that directly addresses the
limitations of single-policy long-CoT approaches, such as long-horizon plan failures and
inefficiency. MLR decomposes reasoning into alternating high-level step descriptors and
low-level detailed content, enabling structured abstraction, dynamic plan adjustment, and
more reliable long-horizon reasoning.

• We repurpose Twisted Sequential Monte Carlo (TSMC) to provide process-level preferences
for Step-DPO training. This eliminates the need for a separate process reward model,

1See Section 2 for a detailed discussion.
2Note that HRL differs from prompting-based approaches that decompose tasks in CoTs. Instead, it treats

high- and low-level actions as separate distributions with distinct objectives and temporal scopes.
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reducing overhead while supplying stable and informative supervision throughout long
reasoning trajectories.

• We perform extensive experiments on challenging benchmarks in math, science, and logical
reasoning. Results show that our approach consistently outperforms both distillation-based
long-CoT methods and RL methods that rely solely on outcome rewards.

2 INFERENCE-TIME SCALING VIA LONG CHAIN-OF-THOUGHT

Formulation. Consider a query q, reasoning models generate a CoT c before producing the final
response a, where q, c, a are all sequences of tokens, i.e., c = (c[1], c[2], · · · , c[L]). To improve
model performance, these models extend the length of c by incorporating human-like reasoning
behaviors such as exploration, self-verification and reflection. The generation of long CoTs follows
the standard autoregressive modeling: the probability of each token c[l] depends only on its preceding
tokens (c[1 : l − 1]), which enables the factorization of the joint likelihood of the entire sequence as:

pθ(c[1 : L]) =

L∏
l=1

pθ(c[l] | c[1 : l − 1]). (1)

Note that, for notational simplicity, we omit the conditioning on q in Eq. 1 and in the following
derivations. Training the model pθ involves maximizing the likelihood of each token conditioned on
its prefix, i.e., optimizing pθ(c[l] | c[1 : l − 1]) over the training data.

Post-training. Guo et al. (2025) detail how they incentivize the long CoT generation from a base
model through large-scale RL without relying on SFT. Specifically, they employ GRPO guided by
rule-based outcome reward. For each query q, GRPO samples a group of outputs {o1, o2, · · · , oG}
from the old policy πθold , where each output is composed of a CoT followed by the final response, i.e.,
oi = [ci, ai], and then optimizes the policy πθ by maximizing the corresponding objective.

Discussion on the weakness of single-policy long CoT. The above approach of using single-policy
long CoT enables inference-time scaling with LMs, but introduces several issues:

1) Long-horizon plan failures. In single-policy long CoT generation, the same policy is responsible
for both planning and execution. Without guidance or structure, errors can accumulate and cause
the implicit plan drifts away from any valid strategy (see examples in Section D).

2) Long-horizon RL with sparse outcome reward. Long CoTs involve thousands of token-level
actions before receiving a reward, which hinders effective credit assignment. As shown in
Figure 2, these trajectories can be extremely long, with errors occurring at widely varying
positions, which undermines the effectiveness of outcome-based fine-tuning. Moreover, Figure 3
shows that latency and memory usage grow rapidly with trajectory length, while outcome-based
supervision requires the entire trajectory to finish before feedback is provided. Consequently,
learning is slow and unstable, especially in the early stages when the model rarely produces
correct trajectories.
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(a) Trajectory length distribution.
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(b) First error position distribution.

Figure 2: The Chain-of-Thought trajectories can be lengthy and the positions of the first error vary considerably,
making outcome-based RL fine-tuning inefficient. The statistics in (b) are based on 100 trajectories with incorrect
final answers, where the first error was manually identified.
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(b) Average outcome reward.

Figure 3: Training long trajectories with outcome rewards is highly inefficient. Both latency and memory usage
increase rapidly with trajectory length, and outcome-based supervision requires the entire trajectory to complete
before providing feedback. All measurements are obtained using Verl (Sheng et al., 2024) with vLLM (Kwon
et al., 2023) on a single A100 node (batch size = 32).

3 METHODOLOGY

3.1 ENHANCING INFERENCE-TIME SCALING WITH MULTI-LEVEL REASONING

Reformulation as MLR. We reconceptualize inference-time scaling by shifting from “single-policy
long CoT” to “multi-level reasoning” strategy (Figure 4). Here, the reasoning process is organized
hierarchically, capturing both high-level abstractions d and low-level details c. Formally, the overall
reasoning chain is represented at two levels: d = (d(1), · · · , d(M)) and c = (c(1), · · · , c(M)), where
M denotes the number of reasoning steps, d(m) is the descriptor of step m, and c(m) represents the
corresponding detailed content. The autoregressive likelihood can be factorized hierarchically as
follows:

pHθ (d) =

M∏
m=1

pHθ (d(m) | d(1:m−1), c′(1:m−1)), pLθ (c) =

M∏
m=1

pLθ (c
(m) | d(1:m), c(1:m−1)) (2)

where c′(m) denotes a compressed representation of the detailed content c(m). We also experimented
with removing the previous descriptors d(1:m−1) from Equation (2), but found that including them
improves performance and facilitates training. The inference procedure is summarized in Algorithm 1.

Architecture. Figure 5 illustrates the architecture used to implement our MLR strategy. The model
alternates between a high-level policy that produces step descriptors and a low-level policy that
generates the corresponding detailed content. The low-level policy is implemented with the base LM,

Direction vector of the first line is (3, 2, -6).

Question: The set of points $(x,y,z)$ that satisfy $2x = 3y = -z$ is a line. The set of points $(x,y,z)$ that satisfy $6x = -y = -4z$ is another line. Find 
the angle between these lines, in degrees.

The angle between two lines in 3D space is …
their direction vectors.

Understanding the problem

Okay, so I need to find the angle between two lines in 3D space. …  So first, I need to 
find the direction vectors of each line.

Understanding the problem

Finding direction vectors

Starting with the first line: 2x = 3y = -z. Let me parse this equation. … Okay, so direction 
vector $\textbf{v}$ is (3, 2, -6).

Finding direction vectors

Both lines pass through the origin and 
intersect there. … is 90 degrees.

Verifying the result using another method

But wait, just to be thorough, maybe I should check if the lines are … Therefore, the 
angle between the two lines is 90 degrees.

Verifying the result using another method

High-level Abstraction (284 tokens) Low-level Details (2477 tokens)

⋮ ⋮

Figure 4: Illustration of MLR. MLR augments single-policy reasoning with an explicit high-level
policy which provides intent and structural guidance that narrows the search space, improves credit
assignment, and mitigates long-horizon planning failures.
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(2)d

(2)c (3)c

High-level Abstraction

Low-level Details

(3)d

Summarization

(3)c

Figure 5: Overview of the proposed architecture. The model alternates between generating high-level
descriptors and corresponding low-level content in a structured manner. Additional insights and
ablations motivating these design choices are provided in Section C.

which conditions on the sequence of descriptors, prior detailed contents, and the current descriptor to
generate the detailed reasoning step. The high-level policy is implemented with a lightweight LoRA
module (Hu et al., 2022), which conditions on previous descriptors and their summaries to produce
the next descriptor. Since descriptors are much shorter than full reasoning content, this component
remains compact and computationally efficient. The design rationale behind this architecture as well
as ablation studies are provided in Section C. Additionally, we fine-tune an independent, lightweight
LLM for summarization, which is shared across different base models.

3.2 ONLINE STEP-DPO WITH PROCESS-LEVEL PREFERENCES

To train our model effectively, we introduce an online Step-DPO pipeline that iteratively updates the
policy through stepwise preference optimization.

Supervised fine-tuning. We collect long CoT examples from DeepSeek-R1 and use powerful
non-reasoning models (GPT-4o (OpenAI, 2024), DeepSeek-V3 (Liu et al., 2024)) to decompose them
into multiple reasoning steps, each annotated with a step-level descriptor via in-context learning.
To construct high-level abstractions, we further compress the detailed content of each step into a
concise summary using the same non-reasoning models. The resulting multi-level data consists of
aligned step descriptors, detailed contents, and summaries. We then fine-tune the base model on the
low-level detailed content using full SFT. Afterward, we freeze the base model and apply LoRA-based
fine-tuning on the high-level abstraction data. We also fine-tune an independent, lightweight LLM
on the summarization data. During the online Step-DPO procedure, the summarizer remains frozen.
A detailed discussion of design choices, including training order, full vs. adapter finetuning, and
ablations, is provided in Section C.

Multi-level Step-DPO. Following Lai et al. (2024), we optimize the MLR framework with the
following stepwise preference loss:

Ls-DPO := −E
(x(m),y

(m)
+ ,y

(m)
− )∼Dpref

1

M

M∑
m=1

log σ
[
β
(
log

pθ(y
(m)
+ | x(m))

pref(y
(m)
+ | x(m))

− log
pθ(y

(m)
− | x(m))

pref(y
(m)
− | x(m))

)]
.

(3)
where (x(m), y

(m)
+ , y

(m)
− ) denotes the preference data at step m. During optimization, we main-

tain a low-level policy (the base LM) and a high-level policy (the LoRA adapter). For low-level
preference pairs, we disable the LoRA adapter and update only the base LM parameters with(
(d(1:m), c(1:m−1)), c

(m)
+ , c

(m)
−

)
; for high-level pairs, we freeze the base LM and update only the

LoRA parameters with
(
(d(1:m−1), c′(1:m−1)), d

(m)
+ , d

(m)
−

)
.

Multi-level update schemes. A key challenge in jointly optimizing the two policies lies in designing
an effective update scheme. We adopt an interleaved strategy: mini-batches of high-level and low-
level examples are alternated, allowing the planner and executor to be trained jointly while preserving
modularity. We compare this update scheme with cheaper alternatives in Section C.

Multi-round Step-DPO for online optimization. Motivated by the benefits of on-policy data
sampling in RL, we adopt an iterative Step-DPO framework for improved optimization. Specifically,
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in the t-th iteration, we use the current policies to sample preference pairs to create the preference
data D(t)

pref. Then, we use to update the policies for the next iteration as

Lms-DPO := −E
(x(m),y

(m)
+ ,y

(m)
− )∼D(t)

pref

1

M

M∑
m=1

log σ
[
β
(
log

p
(t+1)
θ (y

(m)
+ | x(m))

p
(t)
θ (y

(m)
+ | x(m))

−log
p
(t+1)
θ (y

(m)
− | x(m))

p
(t)
θ (y

(m)
− | x(m))

)]
.

(4)
The training procedure is summarized in Algorithm 2. More implementation details are provided in
Section C.

Process preference modeling. A key component of our online Step-DPO pipeline is the process-
level supervision for both the high-level descriptors d(m) and the low-level detailed contents c(m).
Consider the full reasoning trajectory after a prefix x(m) as future tokens τm+1:M = (d(m+1), c(m+1),
. . . , d(M), c(M)), generated by a rollout policy proll. The survival probability of x(m) is

g(x(m)) = P(R = 1 | x(m)) = Eτm+1:M∼proll(·|x(m))

[
R(x(m), τm+1:M )

]
, (5)

where the terminal reward R(x(m), τm+1:M ) is 1 if the final answer is correct, and 0 otherwise.

Given an estimate of the survival probability ĝ, we construct preference data using a utility defined as
the increment in log-survivability:

U(y(m)) = log g̃
(
x(m), y(m)

)
− log g̃(x(m)). (6)

where the survivability is clipped as g̃ = clip(ĝ, ε, 1 − ε) with ε = 0.001 for numerical stability.
Intuitively, U(y(m)) quantifies how the selected candidate changes the probability of eventual success
relative to the preceding prefix. Then we impose the condition that the utility difference satisfies the
following:

U(y
(m)
+ )− U(y

(m)
− ) = log g̃

(
x(m), y

(m)
+

)
− log g̃

(
x(m), y

(m)
−

)
> δ, (7)

where the margin threshold δ ensures the reliability of the preference data.

Twisted Sequential Monte Carlo. A key challenge of the above approach is computational cost:
estimating survivability naively requires running the base model multiple times per prefix. To address
this, we adopt a strategy based on Twisted Sequential Monte Carlo (TSMC) that provides accurate
survivability estimates while remaining computationally efficient. In particular, we use a lightweight
rollout model to generate fast continuations and apply importance weighting to correct for the
distribution mismatch.

Given a prefix, the k-th particle at step m − 1 has state x
(m−1)
k . We first sample a candidate step

y
(m)
k ∼ proll

(
· | x(m−1)

k

)
and form the updated state x

(m)
k = [x

(m−1)
k , y

(m)
k ]. Its importance weight

is updated as
W

(m)
k = W

(m−1)
k · w̃(m)

k , (8)
with incremental weight

w̃
(m)
k = Gm

(
x
(m)
k

)
·
pθ
(
x
(m)
k | x(m−1)

k

)
proll

(
x
(m)
k | x(m−1)

k

) ·
ϕm

(
x
(m)
k

)
ϕm−1

(
x
(m−1)
k

) . (9)

where W (m)
k is the m-th step importance weight with W

(0)
k = 1, the potential function Gm is defined

as Gm

(
x
(m)
k

)
= 1 for m < M and GM

(
x
(M)
k

)
= 1correct

(
x
(M)
k

)
, i.e., final answer correctness, pθ

denotes the base model, proll is the rollout policy, and ϕm is a learned survivability critic at step m.
When proll is close to pθ, the contribution from the survivability critic ϕm becomes negligible, and in
this case, we can simplify ϕm ≈ 1, leading to w̃

(m)
k ≈ Gm

(
x
(m)
k

)
. Finally, the survivability estimate

is given by:

ĝK(x(m)) =
1

K

K∑
k=1

W
(Mk)
k =

1

K

K∑
k=1

W
(m)
k

Mk∏
j=m+1

w̃
(j)
k ≈ W (m) · 1

K

K∑
k=1

1correct
(
x
(Mk)
k

)
. (10)

where K represents the number of particles, and W (m) is a shared term depending only on the
prefix x(m). Specifically, we fine-tune a small LM on the same low-level SFT data and use it as the

6
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(b) Rollout time for batch size = 64.
Figure 6: Monte Carlo rollout analysis. (a) The accuracies of R1-Distill-LLaMA-8B and R1-Distill-Qwen-1.5B
are highly comparable. (b) Runtime grows with model size, with R1-Distill-LLaMA-8B substantially slower
than R1-Distill-Qwen-1.5B. Implementation details are provided in Section C.

rollout policy proll. This choice is justified for three reasons: (i) the small model shares a similar
distribution with the base model because it is trained on the same data; (ii) we only need to capture
the correct relative tendency; and (iii) rollout with a smaller model is significantly more cost-effective.
In Figure 6, the small model achieves comparable estimation accuracy while being much faster.
Additionally, we split the RL problems into easy and hard categories. For hard problems, where the
accuracy of the small model is significantly lower than that of the base model, we revert to using the
base model as the rollout policy. In practice, we use the base model for AIME24 and GPQA.

4 EXPERIMENTS

Dataset We evaluate our approach on math (MATH500 (Hendrycks et al., 2021), AIME24 (MAA,
2024)), science (GPQA-diamond (Rein et al., 2023)), and logical reasoning (BoardGameQA-hard
(Kazemi et al., 2023)). Detailed dataset statistics are provided in Section B. For training, we construct
a multi-level dataset and divide it into two parts: SFT data and online preference data for Step-DPO.
The SFT set contains about 80K examples produced using the multi-level decomposition procedure
described in Section 3.2. In addition, we reserve 10K prompts for Step-DPO training. Details of
dataset construction are provided in Section C.

Implementation details We fine-tune three base models, Qwen-2.5-1.5B (Yang et al., 2024a),
Qwen-2.5-MATH-7B (Yang et al., 2024b) and LLaMA-3.1-8B (Grattafiori et al., 2024), on the
low-level data with full parameter fine-tuning. The resulting models are frozen, and we apply LoRA
fine-tuning on the high-level policy. We also fully fine-tune a Qwen2.5-0.5B-Instruct model for
summarization, which is frozen after SFT and shared across all base models (see Section C for
more details). Our online Step-DPO pipeline is implemented with the TRL framework. In each
training round, we sample a batch of approximately 3K prompts. For each prompt, we randomly
select 4 reasoning steps and generate M = 2 candidate continuations per step. These candidates are
scored using the utility (Equation (6)). In experiments, we use Qwen-2.5-1.5B SFT on the low-level
data as the rollout policy, with K = 4 sampled rollouts per prefix (see Section 4 for parameter
studies). The fast rollout model is frozen after SFT and is shared across base models. From each
prefix, we form one preference pair, weighted by the utility margin δ = 0.4. Each update uses
mini-batches of size 32 for E = 4 epochs, and applies the standard Step-DPO objective with β = 0.1.
Generated continuations are capped at a maximum length of 8,192 tokens. More implementation
details, including ablation settings and hyperparameters, are provided in Section C.

Baselines We compare our method with the following baselines: the base model, the instruction
fine-tuned model, RL applied directly to the base model (SimpleRL (Zeng et al., 2025)), distillation
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Figure 7: Length distributions for high-level trajectories, low-level trajectories, and distilled summaries in our
SFT dataset. Trajectories longer than 8k tokens are truncated.
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Table 1: Overall performance comparison across different benchmarks. The best performance for each task
using the same base model is in bold. Asterisks (∗) denote available results obtained from the official reports.

Math Science Logic

Method MATH500 AIME24 GPQA (Diamond) BoardGameQA (Hard) Avg. Pass@1
Pass@1 Pass@1 Cons@32 Pass@1 Pass@1

Qwen-2.5-1.5B
Base 29.6 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 21.2 ± 1.1 35.0 ± 1.8 21.5
Instruct 54.6 ± 0.4 3.3 ± 1.5 10.0 ± 0.3 25.2 ± 1.4 41.0 ± 1.0 31.0
SimpleRL 59.0∗ 6.7∗ 4.2∗ – – –
DeepSeek-R1-Distill 83.9∗ 28.9∗ 43.3 ± 0.4 33.8∗ 40.0 ± 2.2 47.7
Plan-and-Solve 60.8 ± 1.0 2.0 ± 1.4 6.2 ± 0.4 20.1 ± 1.6 44.6 ± 1.6 31.9
SFT + DPO 76.5 ± 1.3 12.0 ± 1.9 21.6 ± 0.7 27.6 ± 1.6 51.8 ± 1.7 42.0
SFT + Step-DPO 81.4 ± 1.2 24.0 ± 2.0 36.5 ± 0.7 29.0 ± 1.7 56.2 ± 1.7 47.8
SFT + GRPO 82.1 ± 1.2 25.2 ± 2.2 36.0 ± 0.8 30.2 ± 1.5 56.0 ± 1.6 48.4
MLR (SFT only) 62.0 ± 1.2 8.9 ± 1.4 13.3 ± 0.4 26.0 ± 2.0 46.4 ± 1.5 35.8
MLR 86.1 ± 1.0 31.2 ± 1.0 47.4 ± 0.4 37.6 ± 1.9 62.0 ± 1.7 54.2

Qwen-2.5-MATH-7B
Base 52.0 ± 0.5 2.0 ± 1.0 5.0 ± 0.3 20.5 ± 1.1 33.0 ± 1.6 26.9
Instruct 82.1 ± 0.4 16.7 ± 1.8 34.0 ± 0.4 27.8 ± 1.3 44.5 ± 1.4 42.8
SimpleRL 80.2∗ 40.0∗ 24.0∗ – – –
DeepSeek-R1-Distill 92.8∗ 55.5∗ 78.0 ± 0.4 49.1∗ 42.4 ± 1.4 60.0
Plan-and-Solve 85.6 ± 0.9 18.2 ± 1.7 34.9 ± 0.5 28.4 ± 1.6 52.1 ± 1.5 46.1
SFT + DPO 87.4 ± 1.0 36.0 ± 1.8 53.0 ± 0.5 36.0 ± 1.6 54.5 ± 1.5 53.4
SFT + Step-DPO 88.5 ± 0.9 48.5 ± 1.9 70.5 ± 0.5 48.0 ± 1.7 56.0 ± 1.6 60.3
SFT + GRPO 89.7 ± 1.0 46.5 ± 1.9 66.2 ± 0.5 46.0 ± 1.8 57.5 ± 1.6 59.9
MLR (SFT only) 86.3 ± 1.0 22.4 ± 1.9 40.5 ± 0.5 34.6 ± 1.7 54.8 ± 1.6 49.5
MLR 94.1 ± 0.9 58.8 ± 1.8 80.5 ± 0.4 51.2 ± 1.5 60.5 ± 1.6 66.2

Llama-3.1-8B
Base 13.6 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 1.0 2.0 ± 1.1 4.3
Instruct 51.9 ± 0.2 6.7 ± 1.8 13.3 ± 0.2 22.7 ± 0.6 40.0 ± 1.2 30.3
SimpleRL 23.0∗ 0.0∗ 0.2∗ – – –
DeepSeek-R1-Distill 89.1∗ 50.4∗ 70.0 ± 0.4 49.0∗ 46.0 ± 3.8 58.6
Plan-and-Solve 62.4 ± 1.1 12.3 ± 1.8 24.1 ± 0.4 31.0 ± 1.6 47.2 ± 1.7 38.2
SFT + DPO 74.1 ± 1.5 32.4 ± 1.8 52.0 ± 0.6 44.0 ± 1.7 56.0 ± 1.7 51.6
SFT + Step-DPO 82.4 ± 1.3 42.6 ± 2.0 61.2 ± 0.5 49.2 ± 1.5 62.1 ± 1.4 59.1
SFT + GRPO 86.5 ± 1.4 42.0 ± 2.0 61.0 ± 0.5 47.0 ± 1.6 64.5 ± 1.5 60.0
MLR (SFT only) 63.8 ± 1.2 20.2 ± 2.0 36.7 ± 0.4 36.2 ± 1.8 48.5 ± 1.8 42.2
MLR 91.5 ± 1.3 53.2 ± 2.0 73.3 ± 0.4 52.8 ± 1.5 67.0 ± 1.4 66.1

using vanilla long CoTs (R1-Distill (Guo et al., 2025)), RL applied to SFT model (DPO (Rafailov
et al., 2023), Step-DPO (Lai et al., 2024), GRPO (Shao et al., 2024)) and Plan-and-Solve (Wang
et al., 2023a). All baselines that we train ourselves (DPO, Step-DPO, GRPO, Plan-and-Solve) use
exactly the same data (see Section C for implementation details). Results for external baselines
(Instruct, SimpleRL, R1-Distill) are included as strong reference points. During evaluation, we use
greedy decoding for both Base and Instruct to produce more coherent and consistent CoTs. For all
other baselines and our method, we follow the setup in Guo et al. (2025), using sampling-based
decoding with a temperature of 0.6 and a top-p value of 0.95 to generate 8 responses per prompt to
reduce variance and repetition. Performance is measured using pass@1. For AIME24, we also report
consensus accuracy over 32 samples, denoted as cons@32.

Empirical results We first present representative model outputs in Section D, with additional error
analysis in Section D. Table 1 reports overall performance, and Figure 9 illustrates how MLR evolves
across training stages. We compare instruction fine-tuning, process-reward and outcome-reward
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Figure 8: Agreement of selected preference pairs versus rollout count K for the rollout policy on (a) MATH500,
(b) AIME24, (c) GPQA, and (d) BoardGameQA. For each K, we evaluate the preference pairs selected by the
rollout policy and report the fraction whose preference direction matches that of the 8B base model using 16
rollouts. In practice, we use the base model as the rollout policy for AIME24 and GPQA.
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Table 2: Ablation results using Qwen-2.5-1.5B. For the high-
level SFT ablation, all methods use the same low-level SFT. For
the hierarchical-level ablation, all variants share the same trained
model. Our approach is highlighted in bold.

Method MATH500 AIME24 Avg.
Pass@1 Pass@1 Cons@32 Pass@1

Ablation of high-level SFT strategies
SFT (low) + LoRA (high) 62.0 ± 1.2 8.9 ± 1.4 13.3 ± 0.4 35.5
Base + LoRA (high) 56.4 ± 1.5 4.1 ± 1.1 9.2 ± 0.7 30.3
SFT (high) 59.8 ± 1.3 6.5 ± 1.2 11.0 ± 0.5 33.2
Ablation of hierarchical levels
High-level + Low-level 86.1 ± 1.0 31.2 ± 1.0 47.4 ± 0.4 58.7
High-level only 80.0 ± 1.3 18.4 ± 2.0 30.5 ± 0.8 49.2
Low-level only 84.2 ± 1.1 27.1 ± 1.8 41.0 ± 0.6 55.7
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Figure 9: Performance of MLR over dif-
ferent training stages.

Table 3: Ablation results for the core components of MLR using LLaMA-3.1-8B.

Math Science Logic

Method MATH500 AIME24 GPQA (Diamond) BoardGameQA (Hard) Avg. Pass@1
Pass@1 Pass@1 Cons@32 Pass@1 Pass@1

Ours 91.5 ± 1.3 53.2 ± 2.0 73.3 ± 0.4 52.8 ± 1.5 67.0 ± 1.4 66.1
DPO-only 78.2 ± 1.4 38.1 ± 1.9 57.0 ± 0.5 46.0 ± 1.6 59.0 ± 1.6 55.3
Low-level policy + Step-DPO 82.4 ± 1.3 42.6 ± 2.0 61.2 ± 0.5 49.2 ± 1.5 62.1 ± 1.4 59.1
Low-level policy + DPO 74.1 ± 1.5 32.4 ± 1.8 52.0 ± 0.6 44.0 ± 1.7 56.0 ± 1.7 51.6
SFT-only 63.8 ± 1.2 20.2 ± 2.0 36.7 ± 0.4 36.2 ± 1.8 48.5 ± 1.8 42.2

RL, distillation with vanilla long CoTs, Plan-and-Solve, and MLR. Across all benchmarks, MLR
consistently outperforms all baselines, with its structured design enabling more effective reasoning
on complex, long-horizon tasks. In addition, the online step-DPO procedure yields substantial gains
over the SFT model. Finally, we report average response lengths across benchmarks: high-level
trajectories are approximately 10–20% the length of low-level ones (Figure 11).

Parameter studies We study the effect of varying the rollout count K. Utility estimates produced
by the 1.5B rollout policy with K rollouts are compared against reference utilities from the 8B model
using 16 rollouts (Figure 15). As expected, increasing K reduces estimator variance, though at the
cost of higher computation. To mitigate this overhead, we introduce a margin threshold δ when
selecting preference pairs. We further measure the agreement of the selected preference pairs as a
function of K, defined as the fraction whose preference direction agrees with the base model using 16
rollouts (Figure 8). Finally, we report model performance across training stages under different values
of K (Figure 12). The results show that our chosen setting attains comparable final performance
while substantially reducing computational cost. Implementation details are provided in Section D.

Ablation studies We conduct a series of ablation studies to evaluate the contributions of key
components in MLR. We compare five configurations: (i) the full method, (ii) only applying DPO,
(iii) using only the low-level policy with Step-DPO or (iv) DPO, and (v) training with SFT only.
Table 3 summarizes the results, which show that both multi-level modeling and step-level preferences
are essential. Figure 10 further illustrates this trend: our method achieves higher preference accuracy
throughout training. We additionally ablate the high-level SFT component (Table 2), evaluating two
alternatives: (i) applying LoRA to the original base model and (ii) full-parameter SFT. A detailed
discussion and implementation details are provided in Section C. We also ablate the hierarchical
structure (Table 2), comparing (i) high-level–only and (ii) low-level–only variants. Further analysis
and implementation details appear in Section D. Across all ablations, our full strategy yields the
strongest performance.
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5 RELATED WORK

Reasoning models (OpenAI, 2024; Qwen-Team, 2024; Guo et al., 2025) represent a transformative
advancement in the evolution of LMs, sparking substantial interest in replicating their strong perfor-
mance. Several subsequent works (HuggingFace, 2025; OpenThoughts-Team, 2025; Bespoke-Labs,
2025; Muennighoff et al., 2025) have primarily relied on supervised fine-tuning (SFT). While this
approach has shown promising results, pure SFT is generally less efficient in utilizing training signals
compared to reinforcement learning (RL), as it passively imitates given demonstrations without
exploration or fine-grained credit assignment.

Recent RL-based works introduce improvements along three main dimensions:

1) RL Algorithms. RL methods for LLM reasoning mainly fall into PPO-, GRPO-, and REINFORCE-
based families. PPO variants (Yuan et al., 2025; Yue et al., 2025) improve value estimation and
stability; GRPO methods (Shao et al., 2024; Yu et al., 2025; Liu et al., 2025) remove the critic
and refine sampling, normalization, and token-level gradients; REINFORCE variants (Hu, 2025;
Kimi-Team et al., 2025) reduce variance through KL penalties and centralized rewards. Despite these
advances, all rely largely on sparse outcome rewards, which provide weak credit assignment for long
reasoning trajectories.

2) Reward Design. Most existing approaches define rewards based on outcome accuracy, format
compliance, and length constraints (Zhang et al., 2025a). Process rewards remain largely unexplored
in current pipelines.

3) Data Sampling Strategies. Curriculum learning (Hu et al., 2025; Zhang et al., 2025b) gradually
increases task difficulty during training. Rejection sampling (Wen et al., 2025; Yu et al., 2025) is
commonly used to filter low-quality samples and stabilize optimization.

However, outcome-reward RL is inherently inefficient and weakly informative for long trajectories.
Recent work (Lightman et al., 2023; Wang et al., 2023b) therefore explores Process Reward Models
(PRM), but they struggle in practice (Guo et al., 2025): 1) explicitly defining fine-grained reasoning
steps is difficult; 2) reliably verifying the correctness of each intermediate step is non-trivial; 3)
training a separate reward model introduces the risk of reward hacking and requires additional
training.

On the other hand, Direct Preference Optimization (DPO) (Rafailov et al., 2023) also faces limitations:
it relies on offline data and trajectory-level preferences. Step-DPO (Lai et al., 2024) mitigates this by
constructing curated step-wise preference data, while DPO with AI feedback (Cui et al., 2023; Guo
et al., 2024a) enables online updates. However, these approaches are not well suited for long CoTs,
as they rely on strong teacher models (e.g., GPT-4) to provide step-level preferences, both costly and
unreliable on harder tasks. To address this, we introduce a scalable TSMC-based approach to provide
stepwise preferences. Unlike naive tree-search methods (Wang et al., 2023b), which are prohibitively
expensive on long trajectories, our approach remains efficient and stable for long-horizon supervision.

Finally, using a single policy for long-horizon reasoning introduces additional limitations such as
plan failures. MLR instead adopts a multi-level strategy, differing from existing planning methods
(Huang et al., 2022; Xu et al., 2023; Wang et al., 2023a) that generate a full plan upfront and assume
all subtasks succeed as written. Such fixed plans propagate early errors. In contrast, MLR learns
a planner that adapts its plans based on execution feedback, enabling revisions and yielding more
robust long-horizon reasoning.

6 CONCLUSION

We presented a novel multi-level reasoning (MLR) framework that enhances inference-time scaling
by structuring the reasoning process into interleaved high-level abstractions and low-level details.
This decomposition supports efficient multi-policy modeling and dynamic plan adaptation, addressing
critical challenges faced by single-policy long-CoT approaches. By sidestepping the limitations
of prior outcome supervision methods, MLR provides a scalable and robust pathway for training
reasoning-focused language models. Extensive experiments demonstrate consistent performance
gains across math, science, and logical reasoning tasks, highlighting MLR’s promise as a general-
purpose reasoning framework.
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LIMITATIONS

Our method requires maintaining two separate policies and performing additional steps for process
supervision, which increases training complexity. To keep costs practical, we freeze the base model
for the high-level policy, decouple supervision estimation from trajectory generation, and alternate
policy updates. These strategies help manage training overhead; however, on resource-constrained
devices further optimizations, such as quantization, activation checkpointing, or memory-efficient
attention, may still be necessary. The approach also introduces extra hyperparameters, though most
can be assigned reasonable default values that transfer well across tasks. Our experiments indicate
that performance is robust to moderate variations in these settings, reducing the need for extensive
hyperparameter tuning.

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive demographic information. All
datasets are publicly available and used under their respective licenses. Our method aims to improve
the efficiency of large language models, which can promote accessibility and sustainability. We
acknowledge that LLMs may be misused for generating harmful or biased content, but our work does
not specifically target such applications. No conflicts of interest or ethical concerns are associated
with this research.
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We have made significant efforts to ensure the reproducibility of our work. The main paper and
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processing steps in the supplementary materials. Pseudocode and complexity analysis are provided in
the paper and appendix to clarify algorithmic details.
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A LLM USAGE

We used Large Language Models (LLMs) only as assistive tools for grammar refinement, readability
improvements, and LaTeX formatting. They were not involved in generating research ideas, designing
methods, conducting experiments, or analyzing results. All technical content and conclusions are
entirely the work of the authors.

B DATASET STATISTICS

In this section, we provide statistics for all benchmark datasets used in our study. We consider
MATH500 (Hendrycks et al., 2021), AIME24 (MAA, 2024) for math reasoning, GPQA-diamond
(Rein et al., 2023) for science reasoning, and BoardGameQA-hard (Kazemi et al., 2023) for logical
reasoning. For MATH, there are 7,500 training samples and 5,000 test samples. MATH500 is a
subset of 500 representative test samples extracted by Lightman et al. (2023), with the remaining test
samples added to the training set.

The AIME dataset is based on the American Invitational Mathematics Examination, a high-level
math contest administered by the Mathematical Association of America (MAA) for high-achieving
middle and high school students. We use the data3 collected from 1983 to 2024, where each year
contains 15 questions prior to 2000 and 30 questions thereafter. The 2024 dataset is used as the test
set, while data from all previous years serve as the training set.

GPQA is a multiple-choice, Q&A dataset of very hard questions written and validated by experts
in biology, physics, and chemistry. It includes three subsets: main (448 questions), diamond (198
questions), and extended (546 questions). We use the diamond subset as the test set and combine the
remaining subsets for training. To prevent data leakage, any questions overlapping with the test set
are removed from the training set.

BoardGameQA is a claim verification problem with three types of labels (proved, disproved, un-
known), which involves reasoning with contradictory information guided by preferences over rules as
board games. The dataset is divided into 15 subsets based on reasoning depth and levels of conflict
or distractors, each with separate train, validation, and test splits. We define BoardGameQA-hard
as the union of all test sets from five challenging subsets: Main-depth3, DifficultConflict-depth2,
HighConflict-depth2, KnowledgeHeavy-depth2, and ManyDistractors-depth2, resulting in a total test
set of 500 examples. The remaining data from all subsets are used for training.

C IMPLEMENTATION DETAILS

Dataset construction. As mentioned above, we consider four publicly available reasoning bench-
marks: MATH500, AIME24, GPQA, and BoardGameQA. For each benchmark, we use the available
training split as seeds and reserve the test splits exclusively for evaluation. We randomly partition each
training split into SFT and RL subsets (60% / 40% ratio). Because AIME and GPQA contain very
few training questions, we augment their train splits with synthetic problems generated by GPT–4o
using the prompts provided in Section D. For each seed problem we sample multiple candidate
questions and retain only those whose final answers are mutually consistent with DeepSeek-R1, i.e.,
DeepSeek-R1 solves the problem and produces the same final answer as GPT–4o. This procedure
yields SFT sets of 7.2K MATH, 4K AIME, 4K GPQA, and 5K BoardGameQA problems, and RL
sets of 4.8K, 1.5K, 1.5K, and 2K problems, respectively. Unless otherwise stated, all methods that we
train ourselves (GRPO, Plan-and-Solve, MLR, and all ablations in Table 3) use exactly the same data,
ensuring a fair comparison. Results for external baselines (Instruct, SimpleRL, DeepSeek-R1-Distill),
marked with an asterisk in Table 1, are copied from their official reports and may rely on different
training corpora; we include them as strong reference points.

Specially, in the SFT phase, we generate multiple high-quality trajectories for each problem by
sampling four solutions from DeepSeek-R1, yielding approximately 80K filtered trajectories in total.
Each accepted trajectory is then decomposed into step-by-step reasoning segments using DeepSeek-
V3 via in-context learning, with each step annotated by a step descriptor. Because DeepSeek-V3 has

3https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
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a maximum response length constraint, we pre-screen trajectories to ensure compliance, and process
the remaining long trajectories using GPT-4o. To enable multi-level reasoning, we further distill
each step into a concise high-level summary, again using DeepSeek-V3 with in-context learning.
All prompts used throughout this pipeline are provided in Section D. Figure 7 presents the resulting
trajectory length distributions across different reasoning levels and their corresponding summaries.

Summarization. The summarization module in MLR serves to distill essential information from the
evolving trajectory, allowing the planner to operate on concise, high-level representations rather than
being overwhelmed by unnecessary details. This becomes particularly important when trajectories
grow long (e.g., beyond 4k tokens). We implement summarization as an independent component that
is shared across different base models. Although we explored reusing either the low-level or high-level
policy for this task, we found that doing so interferes with their primary roles. In contrast, training
a separate lightweight model for summarization is both simpler and more reliable. Specifically,
we use Qwen2.5-0.5B-Instruct, optimized with AdamW using a cosine learning-rate schedule with
linear warmup and a peak learning rate of 1 × 10−5. The prompt template for summarization is
provided in Section D, and the summary length distribution is shown in Figure 7. Note that we only
apply full-parameter SFT to the summarization model. During the online Step-DPO procedure, this
summarizer remains frozen, which we found to be sufficient in practice and contributes to more stable
overall training.

Supervised fine-tuning. We first fine-tune the base LM on low-level trajectories and then freeze
it, attaching a parameter-efficient LoRA adapter for high-level planning. The intuition behind this
design is twofold. Low-level trajectories are long, fine-grained, and cognitively harder, so they benefit
from full-parameter capacity. In contrast, high-level trajectories are short and abstract, making them
well-suited to lightweight LoRA tuning while avoiding interference with the executor. This training
order also reduces covariate shift: the planner is learned on top of the well-trained executor it is
intended to guide. From an optimization perspective, LoRA benefits from a stronger backbone (after
low-level SFT) and avoids overfitting by learning only a small number of parameters on high-level
data. Operationally, the approach is efficient at deployment time because it requires only a single
base model plus a small LoRA adapter (less than 2% additional parameters).

Hyperparameters. We train each base model on 80K multi-level examples using AdamW with
the same cosine schedule and warmup strategy as Step-DPO. We use a batch size of 256, a peak
learning rate of 2 × 10−5, and truncate sequences to 8,192 tokens. Training is run for 3 epochs.
Unless otherwise noted, all models are trained with the AdamW optimizer using a cosine learning-
rate schedule with linear warmup (5% of total steps). For the base LM (low-level policy), we
use a peak learning rate of 2 × 10−5, while the high-level LoRA module (r = 16, α = 32,
target modules=[q proj, k proj, v proj, o proj], no bias) is trained with a higher rate of 1 × 10−4

(dropout=0.1) to allow faster adaptation. We additionally verified that adding MLP projections
(up proj, down proj, gate proj) yields only marginal gains while substantially increasing the number
of trainable parameters.

Ablation study. To further validate our design choices, we compare against two alternative training
strategies for the high-level policy, while keeping the low-level training unchanged. This is important
because low-level modeling requires full-parameter updates due to its longer and more complex
reasoning trajectories; LoRA is insufficient for this component. We consider:

(i) LoRA on the original (non-SFT) base model: We directly apply LoRA tuning on the unfined-tuned
Qwen-2.5-1.5B base model using only high-level trajectories.

• Base: Qwen-2.5-1.5B
• LoRA: r = 16, α = 32, target modules=[q proj, k proj, v proj, o proj], no bias.
• Optimization: AdamW with a cosine learning-rate schedule and linear warmup, a peak

learning rate of 1× 10−4 and a a LoRA dropout of 0.1.

(ii) Full-parameter SFT on high-level trajectories: We train a separate base model using full SFT on
only high-level trajectories.

• Base: Qwen-2.5-1.5B
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• Optimization: AdamW with a cosine learning-rate schedule and linear warmup, a peak
learning rate of 1× 10−5.

We evaluate both variants on MATH500 and AIME24. Table 2 summarizes the results. Our default
configuration (full SFT on low-level trajectories followed by LoRA tuning on high-level abstractions)
achieves the highest accuracy, particularly on the harder AIME tasks that require deeper multi-step
planning. We also observe that applying LoRA on top of the SFT-enhanced base model substantially
eases optimization and mitigates the overfitting issues that arise when fully fine-tuning a separate
base model using only high-level trajectories.

Monte Carlo rollout analysis We analyze Monte Carlo rollout behavior using R1-Distill-LLaMA-
8B and R1-Distill-Qwen-1.5B. Hidden CoTs are segmented into steps using \n\n. Estimation
accuracy measures the fraction of prefixes for which rollouts correctly determine whether the prefix
can still lead to a correct final solution.

For each partial trajectory, we assign a ground-truth survival label y ∈ {0, 1} using extensive Monte
Carlo lookahead with the base model: y = 1 if at least one rollout from the prefix reaches a correct
final answer (the prefix is survivable), and y = 0 otherwise.

Using the fast rollout model, we draw K continuations from each prefix and compute the estimated
survivability

ĝK =
1

K

K∑
k=1

1
(k)
correct.

We then predict a survival label

ŷK =

{
1, ĝK > 0,

0, otherwise.

A prediction is correct when ŷK = y. Estimated survival accuracy for a given K is the proportion of
prefixes where this prediction matches ground truth.

We present the results in Figure 6. R1-Distill-LLaMA-8B and R1-Distill-Qwen-1.5B exhibit highly
similar accuracy across prefix steps. As expected, runtime scales with model size: R1-Distill-LLaMA-
8B is substantially slower than R1-Distill-Qwen-1.5B. All measurements are obtained on a single
A100 GPU using vLLM.

Algorithm 1: Multi-Level Inference
1 Inputs: query q, high-level policy πθH ,

low-level policy πθL , summarizer πθS ;
2 Hyperparameter: max steps M ;
3 m← 1;
4 while m < M do
5 d(m) ∼ πθH (d | q, d(1:m−1), c′(1:m−1));
6 c(m) ∼ πθL(c | q, d

(1:m), c(1:m−1));
7 c′(m) ← πθS (d

(m), c(m));
8 if StopCriterion(d(m), c(m)) then
9 break;

10 m← m+ 1;
11 return (d(1:m), c(1:m));

Online Step-DPO. The reference model for KL
regularization in Step-DPO is the corresponding
SFT checkpoint. We perform 4 online training
rounds, with approximately 3K prompts per round,
as described in the main text. For each prompt,
we sample N = 4 candidate continuations using
temperature 0.7 and top-p = 0.9, and truncate con-
tinuations at 8,192 tokens to match the SFT con-
text length and keep attention computation within
our memory budget. Step-wise preference pairs
are constructed from these candidates and stored
in a replay buffer of size 50K; once the buffer is
full, older entries are discarded in FIFO order. We
optimize the policy with AdamW (learning rate
1×10−5, weight decay 0.1, β1 = 0.9, β2 = 0.95),
a global batch size of 256 preference pairs, gradi-
ent clipping with a maximum norm of 1.0, DPO
temperature β = 0.1, and KL coefficient λKL = 0.02. At each round, we perform one epoch of
updates over the current replay buffer. During optimization, we maintain a low-level policy (the
base LM) and a high-level policy (the LoRA adapter). For low-level preference pairs, we disable the
LoRA adapter and update only the base LM parameters; for high-level pairs, we freeze the base LM
and update only the LoRA parameters. Mini-batches of low- and high-level examples are interleaved
within each round, so that the executor and planner are optimized jointly while remaining modular.
To improve sample efficiency, we apply a dynamic dropout strategy that filters “easy” prefixes, i.e.,
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Algorithm 2: Online Step-DPO
1 Inputs: Low-level policy πθL , high-level policy πθH ; Reference models πL

ref, π
H
ref; Fast rollout policy

πroll; RL prompts DRL.
2 Hyperparams: rounds T , prompts per round N , sample steps per prompt Ms, rollout count K,

epochs E.

3 for t = 1 to T do
4 Sample prompts {qi}Ni=1 ⊂ DRL;
5 Initialize buffers D(t)

pref-L ← ∅, D
(t)
pref-H ← ∅;

6 foreach q do
7 (prefix(t)

H , prefix(t)
L )← GENERATEPREFIXES(π

(t)
θH

, π
(t)
θL

, q);
8 Randomly select a subset of stepsM (size Ms) for evaluation;
9 foreach m ∈M do

10 D(t,m)
pref-L ← COLLECTPAIR(π

(t)
θL

, prefix(t)
L [m]);

11 D(t,m)
pref-H ← COLLECTPAIR(π

(t)
θH

, prefix(t)
H [m]);

12 D(t)
pref-L ← D

(t)
pref-L ∪ D

(t,m)
pref-L ;

13 D(t)
pref-H ← D

(t)
pref-H ∪ D

(t,m)
pref-H ;

14 if t > 1 then
15 πL

ref ← π
(t−1)
θL

; πH
ref ← π

(t−1)
θH

;
16 for e = 1 to E do
17 STEPDPOUPDATE(π

(t)
θL

, πL
ref,D

(t)
pref-L);

18 STEPDPOUPDATE(π
(t)
θH

, πH
ref,D

(t)
pref-H);

19 return π
(T )
θL

, π
(T )
θH

;

prefixes for which all candidates induce the same utility; the dropout rate increases linearly from 0.1
to 0.9 over training. All experiments are conducted on 4× A100 GPUs (80GB) with bf16 precision.

Step-DPO update schemes. We compare the proposed update scheme against cheaper alternatives
under a matched online training budget (same number of prompts, candidates, and optimization steps).
In the planner-only variant, we freeze the SFT base LM and apply Step-DPO updates only to the
high-level LoRA adapter for all preference pairs, thereby testing whether adapting the planner alone is
sufficient once the executor has been trained. In a round-based variant, we first run Step-DPO for two
rounds updating only the low-level policy (LoRA disabled), and then for two rounds updating only
the high-level LoRA (base LM frozen), mirroring a coarse low-then-high schedule in the online phase.
Empirically, our joint modular scheme, which interleaves low-level and high-level updates while
restricting each preference type to its corresponding module, achieves the best overall performance
on MATH500 and AIME24, suggesting that simultaneously refining the executor and planner, while
keeping their parameter updates disentangled, is more effective than tuning either component in
isolation.

DPO baseline. To isolate the effect of step-wise supervision, we train a standard outcome-level
DPO baseline on the same online prompt pool and with the same rollout configuration as Step-DPO.
The reference model for KL regularization is the corresponding SFT checkpoint, and we run 4 online
training rounds with approximately 3K prompts per round. For each prompt, we sample N = 4
candidate continuations using temperature 0.7 and top-p = 0.9, truncating each continuation at 8,192
tokens to match the SFT context length. Preference pairs are constructed at the trajectory level: we
assign each candidate a scalar utility based on its final solution correctness and form DPO pairs from
these outcome-level utilities, ignoring intermediate prefixes. The resulting preference pairs are stored
in a replay buffer of size 50K with FIFO eviction, and we perform one epoch of DPO updates over
the buffer per round. We optimize a single policy (no hierarchical separation) with AdamW (learning
rate 1× 10−5, weight decay 0.1, β1 = 0.9, β2 = 0.95), using a global batch size of 256 preference
pairs, gradient clipping with a maximum norm of 1.0, DPO temperature β = 0.1, and KL coefficient
λKL = 0.02. All experiments are conducted on 4× A100 GPUs (80GB) with bf16 precision under
a matched online training budget to Step-DPO.
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Figure 13: Validation accuracy of Qwen2.5-1.5B SFT during GRPO training. For each question, we
sample 8 responses and calculate the overall average accuracy to ensure a stable evaluation.

GRPO baseline. To compare MLR with a standard single-policy preference-optimization method,
we train a GRPO baseline on the same prompt pool as Step-DPO. We first construct a single-policy
SFT checkpoint by fine-tuning Qwen-2.5-1.5B on the processed low-level trajectories in which all
step descriptors are removed from both inputs and targets, using the same optimizer, schedule, and
token budget as our low-level SFT. Starting from this checkpoint, we apply full-parameter GRPO,
keeping a frozen copy of the SFT model as the reference policy. We implement the baseline using the
Verl (Sheng et al., 2024) framework and vLLM (Kwon et al., 2023) as the rollout backend. The actor
and reference are both initialized from the same SFT checkpoint. For each prompt, we sample groups
of N = 4 candidate continuations with temperature 0.7 and top-p = 0.9, cap the maximum response
length at 4,096 tokens to respect GPU memory limits, and assign a rule-based outcome reward of
1 if the final answer is correct and 0 otherwise. We optimize the actor with AdamW (learning rate
5× 10−7, weight decay 0.1) under a KL-penalty objective with coefficient λKL = 0.02, using bf16
precision, gradient checkpointing, and FlashAttention (Dao, 2023) on 4× A100 GPUs (80GB). We
train for 4 epochs, using a global batch size of 32 (PPO mini-batch sizes 16, micro-batch sizes 2,
respectively), and evaluate every 100 steps on the held-out validation split, selecting the checkpoint
with the best validation Pass@1.

We visualize the validation accuracy of Qwen2.5-1.5B SFT during GRPO training in Figure 13. For
each question, we sample 8 responses and report the average accuracy to obtain a stable estimate.
The evolution of the average response length during GRPO is shown in Figure 14, and the final
evaluation results are summarized in Table 1. Compared with our strategy, GRPO is less efficient for
long-horizon reasoning: outcome rewards are (i) sparse: for long trajectories, a single scalar signal
is often insufficient to localize errors; and (ii) computationally expensive: generating full rollouts
requires substantial memory and compute. When starting from fine-tuned models with long CoTs,
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Figure 14: The average response length of Qwen2.5-1.5B SFT on the training set during GRPO.
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these costs limit our ability to apply GRPO to larger base models. In contrast, our online Step-DPO
procedure is easier to implement and control, and provides a more practical alternative for finetuning
long-horizon reasoning policies.

Qwen-2.5-MATH-7B. We repeat the above protocol on a 7B model. We first obtain a single-policy
SFT checkpoint by fine-tuning Qwen-2.5-MATH-7B on the same processed low-level trajectories
(step descriptors removed from inputs and targets). Starting from this checkpoint, we run full-
parameter GRPO with a frozen copy of the SFT model as the reference. Training uses FSDP sharding,
bf16 precision, activation checkpointing, and FlashAttention on 8×A100 (80GB), with a global
batch size of 32 implemented as a micro-batch of 1 per GPU and 4 gradient-accumulation steps.
Rollouts are generated with vLLM: for each prompt we sample N=4 candidates (temperature 0.7,
top-p=0.9) and cap the maximum response length at 4,096 tokens. We optimize with AdamW
(learning rate 5 × 10−7, weight decay 0.1) under a KL penalty with coefficient λKL=0.02, and
evaluate every 100 steps, selecting the checkpoint with the best validation Pass@1.

Llama-3.1-8B. We follow the same procedure with Llama-3.1-8B. A single-policy SFT checkpoint is
first obtained on the same low-level trajectories, after which we apply full-parameter GRPO using
a frozen reference initialized from the SFT checkpoint. We train with FSDP, bf16, activation
checkpointing, and FlashAttention on 8×A100 (80GB), using a global batch size of 32 realized
as a micro-batch of 1 per GPU and 4 gradient-accumulation steps. Rollouts use vLLM with N=4
candidates per prompt (temperature 0.7, top-p=0.9) and a 4,096-token cap. The optimizer, KL
objective, evaluation cadence, and model selection criteria are identical to the 7B setting. For
additional memory headroom, the frozen reference is sharded; when necessary, we load the reference
in 8-bit for forward-only KL without changing any other hyperparameters.

Plan-and-Solve baseline. We compare against Plan-and-Solve (Wang et al., 2023a), which first
proposes a concise, global plan and then executes the solution conditioned on that plan. The
example prompt is given in Section D. For a fair comparison, we use the same backbone as our
method and fine-tune two LoRA heads on top of it: a planner (Problem → Plan) and an executor
(Problem+Plan → Solution). At inference we follow the standard two-pass Plan-and-Solve pipeline:
Pass-1 generates the plan; Pass-2 solves the problem conditioned on that plan.

Training data creation. Using the same training set as our method, we prompt a strong teacher
model (DeepSeek-V3.2) to produce corresponding trajectories. We filter trajectories by final-answer
correctness and basic format checks. We match the total number of accepted trajectories to our
method (80K) to ensure a fair comparison.

Training configuration. Unless otherwise noted, we freeze the backbone and train LoRA adapters
with identical hyperparameters for planner and executor.

• Backbone: Qwen-2.5-1.5B. LoRA: r = 16, α = 32, target modules=[q proj, k proj, v proj,
o proj], no bias. Optimization: AdamW, cosine decay with 3% warm-up, learning rate
1× 10−4.

• Backbone: Qwen-2.5-MATH-7B. Same LoRA configuration. Same optimization configura-
tion except for learning rate 5× 10−5.

• Backbone: Llama-3.1-8B. Same LoRA configuration. Same optimization configuration
except for learning rate 5× 10−5.

Results. Table 1 summarizes performance. Because Plan-and-Solve here is trained only with SFT,
we compare it against MLR (SFT-only). Across all three backbones, our method outperforms Plan-
and-Solve, with the largest margins on the harder benchmarks (AIME, GPQA). We observe that
Plan-and-Solve often implicitly assumes all subtasks succeed as initially planned; errors in early steps
can propagate, and the executor may partially deviate from the plan. In contrast, our approach learns
a better planner that can adapt its plans based on execution signals, enabling revisions rather than
committing to a fixed blueprint. This adaptive coupling between planner and executor yields more
stable long-horizon reasoning than prompting a plan upfront and executing it verbatim.

Evaluation. During evaluation, we use greedy decoding for both the base model and the instruction
fine-tuned model to produce more coherent and consistent CoTs. For all other baselines and our
method, we follow the decoding protocol in Guo et al. (2025), using sampling-based decoding
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with a temperature of 0.6 and a top-p value of 0.95 to generate 8 responses per prompt to reduce
variance and repetition. For MLR, we employ a single base LM for both levels and switch the
high-level LoRA adapter on or off depending on the generation stage (Algorithm 1). Specifically,
we enable the high-level LoRA adapter to produce step descriptors (planning), and then disable the
adapter to generate the corresponding low-level trajectories conditioned on these descriptors. The
maximum generation length for all models is set to 16,384 tokens. Performance is measured using
Pass@1 = 1

k

∑k
i=1 pi, where pi denotes the correctness of the i-th response. For AIME24, we also

report consensus accuracy over 32 samples, denoted as cons@32.

D ADDITIONAL RESULTS

Examples of MLR outputs. In this section, we present additional results to further demonstrate and
analyze the effectiveness of our method. We showcase representative output examples generated by
MLR across different datasets (Section D). Each sample consists of a two-level reasoning trajectory,
comprising shared reasoning steps annotated with both a step descriptor and corresponding step
content. In the high-level trajectory, the step descriptor is generated by the high-level module, while
the step content is produced by the compressor, which takes the low-level content as input and outputs
a concise abstraction. In the low-level trajectory, the step descriptor is provided by the high-level
module, and the step content is directly generated by the low-level base model.

Error analysis. To better understand the strengths and limitations of our framework, we conduct
detailed error analysis. To further enhance verification and error localization, we incorporate auxiliary
models (OpenAI’s o1 and o1-mini) to assist in identifying potential reasoning flaws. Specifically,
we first evaluate whether the auxiliary model can independently solve each task without access to
the ground-truth final answer or reference solution. If the auxiliary model successfully produces the
correct solution, we then use it to help analyze erroneous trajectories generated by our framework.
The error analysis provided by the auxiliary model is subsequently reviewed and confirmed by human
evaluators. Through this process, we identify several recurring error patterns: 1) High-level step
descriptor errors: redundant branching (multiple step descriptors that pursue the same subtask),
unclosed loops (steps are never marked as “complete,” leading to repeated revisitation), dead-end
retention (contradicted or unproductive exploratory branches are retained), copy-pasted fallback
(guessed answers are repeated verbatim under different step descriptors). 2) Low-level step content
errors: logical misapplication (misuse of domain-specific rules or principles), contradiction tolerance
(inconsistent constraints are not resolved), repetitive reasoning (redundant inference chains without
new contributions), failure to propagate known facts (previously inferred information is ignored in
later steps), looping filler (verbose or stalled reasoning with redundant rephrasing).

Parameter studies on rollout count In our online step-DPO, the rollout count K directly affects
the quality of the preference pairs. We first examine how K influences the reliability of the utility
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Figure 15: Effect of rollout count on the reliability of utility estimates. We compare utilities estimated by the
1.5B model under K rollouts to reference utilities by the 8B model using 16 rollouts for 100 sampled prefixes
from MATH500 and AIME24, respectively.
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estimates defined in Equation (6). To do so, we compare utilities estimated by the 1.5B model under
various K to reference utilities produced by the 8B model with 16 rollouts, using 100 sampled
prefixes from MATH500 and AIME24, respectively (Figure 15). As expected, larger K reduces
estimator variance but increases computational cost. To control this overhead, we apply a margin
threshold δ when selecting preference pairs which allows us to use smaller K while maintaining
reliability of the preference data. Next, we evaluate the agreement of selected preference pairs as a
function of K, defined as the fraction of pairs whose preference direction agrees with the base model
using 16 rollouts (Figure 8). For each K, we generate 100 preference pairs following Equation (7).
We then recompute the reference utilities of both options and check whether the chosen response has
higher reference utility than its alternative. Pairs that satisfy this condition are counted as agreed, and
we report the average agreement for each K. We consider both the 1.5B model and the 8B base model
as rollout policy. In practice, we use the base model as the rollout policy for AIME24 and GPQA.
Finally, we study model performance across training stages under different rollout counts (Figure 12).
Starting from the same SFT model, we generate the same number of preference pairs for each K
and all train for 4 epochs. We report performance on MATH500 and AIME24 throughout training.
Overall, our setting achieves comparable final accuracy while significantly reducing computational
cost.

Ablations on hierarchical levels To investigate the role of different levels, we conduct an ablation
study on the hierarchical structure. We consider two variants: (1) High-level only: the high-level
module directly predicts summaries without invoking the low-level module; (2) Low-level only:
the low-level module is required to predict both the high-level step descriptions and the detailed
reasoning without guidance from the high-level module. The evaluation protocol matches our main
setting, and the results are reported in Table 2. Our full method consistently outperforms both variants,
especially on the challenging AIME24 dataset. The high-level-only variant underperforms because
the planner lacks grounded execution learning, making direct summary prediction unreliable for
difficult reasoning tasks. We show an erroneous example in Section D. The low-level-only variant is
weaker because the absence of explicit high-level guidance causes the low-level module to drift and
accumulate errors as the trajectory grows longer. Overall, these results demonstrate that our two-level
design yields better performance on long-horizon reasoning tasks.

Long-horizon reasoning test. To further evaluate our method on long-horizon reasoning, we
simulate a multi-question setting by concatenating multiple problems into a single prompt. We
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Figure 16: Long-horizon reasoning response length on (a) MATH500, (b) AIME24, and (c) Mixture benchmarks
(MATH500, AIME24, GPQA, BoardGameQA). We simulate long-horizon reasoning by concatenating multiple
problems in the prompt and report average accuracy. Compared with R1-Distill models, which are prone to
getting lost in long trajectories and entering dead loops, MLR benefits from explicit planning and is able to solve
all problems more effectively.
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consider three configurations: (i) multiple problems from MATH500, (ii) multiple problems from
AIME24, and (iii) mixed batches drawn from MATH500, AIME24, GPQA, and BoardGameQA.
For each configuration, we randomly select 100 problems from the corresponding benchmarks and
treat their questions as a mini-batch. The batch size varies from 1 to 10; for each size, we present
all questions in the batch in one prompt and ask the LLM to solve them jointly. To mitigate cases
where the model gets stuck on a single problem, we explicitly instruct it to skip a question if it
cannot make progress. Prompt template can be found in Section D. For instruction-tuned models,
we use greedy decoding. For the other baselines, for every mini-batch we sample 8 responses with
temperature 0.6 and top p = 0.95, using a maximum context length of 32K tokens, to reduce variance
and then report accuracy averaged over the 100 problems. Note that all methods are trained only in
the single-question setting, so this constitutes a fully out-of-distribution evaluation. Figure 1 shows
the results: MLR consistently degrades more slowly than all baselines across datasets and base
models, highlighting the benefits of explicit planning for long-horizon reasoning. We further report
the corresponding length distributions for different scenarios in Figure 16.
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Example of Long-horizon Plan Failures (DeepSeek-R1-Distill-Llama-8B on MATH500)
Prompt:
What is the least positive integer multiple of 30 that can be written with only the digits 0 and 2?

Response:
<think>
Okay, so I need to find the smallest positive integer multiple of 30 that can be written using only the digits 0
and 2. Hmm, let me think about how to approach this.

First, I remember that a multiple of 30 must be divisible by both 3 and 10. So, let's break down what that
means.

Divisibility by 10: For a number to be divisible by 10, it must end with a 0. That makes sense because any
number ending in 0 is a multiple of 10. So, whatever number I come up with must end with a 0. That means
the last digit is fixed as 0.

Divisibility by 3: For a number to be divisible by 3, the sum of its digits must be a multiple of 3. Since the
number can only have digits 0 and 2, the sum of the digits will just be the number of 2s multiplied by 2. So,
the total sum is 2 times the number of 2s. This sum needs to be divisible by 3.

So, putting that together, I need a number that consists of one or more 2s followed by a 0. The number of 2s
should be such that the total sum (which is 2 times the number of 2s) is divisible by 3.

Let me formalize that. Let's say the number has 'n' number of 2s followed by a 0. So, the number would be
222...20, with 'n' 2s and ending with a 0.

The sum of the digits is 2n, and we need 2n to be a multiple of 3. So, 2n = 0 mod 3. Which means n must be a
multiple of 3 because 2 and 3 are coprime (they have no common divisors other than 1). So, n needs to be
divisible by 3.

Therefore, the smallest number of 2s needed is 3, right? Because 3 is the smallest positive integer divisible by
3.

So, if n = 3, the number would be 2220. Let me check that.

2220 is a multiple of 30? Let's see. 2220 divided by 30 is 74, which is an integer. So, yes, 2220 is a multiple
of 30.

But is it the smallest?

Wait, maybe I can find a smaller number with fewer digits? Let me think. The number must end with a 0, so
the last digit is fixed. The other digits can be 0 or 2. But if I try to make a smaller number, maybe with fewer
digits, but still only 0s and 2s.

Let me consider numbers of different lengths and see if they can satisfy the conditions.

Starting with the smallest possible number: 1 digit. It would have to be 0, but 0 is not positive. So, no good.

2 digits: The number would be 20. Is 20 a multiple of 30? 20 divided by 30 is less than 1, so no. Also, 20 is
not a multiple of 30.

3 digits: Let's see. The possible numbers are 200, 220, and 222.

200: 200 divided by 30 is approximately 6.666, not an integer. 220 divided by 30 is about 7.333, not integer.
222 divided by 30 is 7.4, which isn't integer either. So, none of these are multiples of 30.

4 digits: Let's list possible numbers. They end with 0, so the last digit is 0, and the first three digits are either 0
or 2.

Possible numbers: 2000, 2200, 2220, 2222, 2020, 2022, 2202, 2220, 2222, etc. Wait, but actually, the first
three digits can be any combination of 0s and 2s. So, all numbers of the form 2220, 2202, 2022, 0222, but
0222 is not a valid number since it starts with 0. So, the numbers are 2220, 2202, 2022.

Check each:
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2220: As before, 2220 / 30 = 74, which is integer. So, that's a multiple.

2202: 2202 / 30 is 73.4, which isn't integer.

2022: 2022 / 30 is 67.4, which isn't integer.

So, the only 4−digit number that works is 2220.

But earlier, with 3 digits, we had 2220 as well. Wait, so 2220 is a 4−digit number, but 3−digit numbers didn't
work. So, 2220 is the first one.

Wait, but hold on. Maybe there's a 3−digit number that's a multiple of 30, but I haven't considered all
possibilities. Let me check again.

Wait, 2220 is a 4−digit number, but what about a 3−digit number? 222 is 222. 222 divided by 30 is 7.4, which
isn't integer. 2220 is 74. So, maybe 2220 is the first one.

Wait, but hold on. Maybe a 3−digit number with two 2s and a 0. Let's see: 220, 202, 022. But 022 isn't a 3−
digit number, it's just 22. So, 220 is 220, which is 220 / 30 ˜= 7.333, not integer. 202 is 202 / 30 ˜= 6.733, also
not integer. So, no luck.

So, in the 3−digit numbers, there's no multiple of 30 that can be formed with 0s and 2s. So, moving on to 4−
digit numbers.

Wait, but 2220 is a 4−digit number, but is that the smallest? Wait, let me think. Is there a smaller number with
4 digits, but starting with 2, and having 2s and 0s, but not necessarily 3 2s? Wait, no, because if you have 2 2s,
then 220, 202, 022. None of these are divisible by 30.

So, the only 4−digit number is 2220, which is 2220. But wait, maybe a 5−digit number? No, 2220 is already a
4−digit number, which is smaller than a 5−digit number. So, 2220 is smaller.

But wait, hold on. Let me consider 2220. It's 2220, but is there a smaller number with 4 digits that can be
formed with 0s and 2s? Wait, 2220 is 2220. But what about 2220, 2202, 2022, etc. Wait, none of the other
permutations of 2s and 0s in 4 digits are multiples of 30. So, 2220 is the only one.

But wait, is 2220 the minimal? Because 2220 is a 4−digit number, but is there a 3−digit number that's a
multiple of 30? Wait, I don't think so, because 2220 is the first multiple of 30 with only 2s and 0s.

Wait, hold on. Let me think differently. Maybe instead of 2220, there's a smaller number.

Wait, 2220 is 2220, but if I can find a number with fewer digits, like 220, but 220 is not a multiple of 30. 220
divided by 30 is 7.333. Not integer.

Wait, 202: 202 / 30 is 6.733. Not integer. 200: 200 / 30 is 6.666. Not integer. 222: 222 / 30 is 7.4. Not integer.
So, none of these are multiples of 30.

Wait, so maybe 2220 is the first one. But 2220 is a 4−digit number. Is there a 3−digit number that can be
formed with 2s and 0s that is a multiple of 30? Let me think.

Wait, 2220 is the first one. So, 2220 is 2220. But 2220 is 2220, which is 2220. But if I can write a 3−digit
number with 2s and 0s that's a multiple of 30, that would be smaller than 2220.

Wait, 2220 is 4 digits, but 222 is 3 digits. But 222 is not a multiple of 30. So, no.

Wait, maybe 220 is 220, but that's 220, which is not a multiple of 30. 200 is 200, which is not a multiple of 30.
222 is 222, which is not a multiple of 30. So, yeah, no luck.

So, 2220 is the first one.

Wait, but hold on. Let me think again. If I can have a number that is 200...0, but with some 2s in between. But
the sum of digits must be a multiple of 3, so as we saw earlier, the number of 2s must be a multiple of 3.

So, with 3 2s, we get 2220, which is 2220. But is there a way to have 2s in other positions? Like 2020, 2002,
2022, etc. But as we saw, those are not multiples of 30.
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Wait, 2020: sum of digits is 2 + 0 + 2 + 0 = 4, which is not a multiple of 3, so it's not divisible by 3, hence not
divisible by 30. Similarly, 2002: 2 + 0 + 0 + 2 = 4, same thing. 2200: 2 + 2 + 0 + 0 = 4, same. 2220: 2 + 2 + 2
+ 0 = 6, which is a multiple of 3. So, 2220 is the first one.

So, perhaps 2220 is the minimal.

Wait, but hold on. Let me check if 2220 is indeed the minimal. Maybe a number with 4 digits but starting with
2, and with other digits as 2s and 0s, but the number of 2s is more than 3? But no, because 2220 is the first
one where the number of 2s is 3, which is the minimal multiple of 3.

Wait, but maybe 2220 is the minimal, but is there a smaller number? Let me think.

Wait, 2220 is 2220, which is a 4−digit number. Is there a 3−digit number with 2s and 0s that is a multiple of
30? As we saw, 2220 is the first one. So, 2220 is the minimal.

Wait, but hold on. Maybe I can have a number like 2200, which is 2200, but the sum is 4, which isn't a
multiple of 3. So, not divisible by 3. So, no.

Wait, 2202: sum is 2 + 2 + 0 + 2 = 6, which is a multiple of 3, but 2202 divided by 30 is 73.4, which isn't
integer. So, not a multiple.

Similarly, 2022: sum is 2 + 0 + 2 + 2 = 6, which is a multiple of 3, but 2022 / 30 is 67.4, not integer. So, no.

2002: sum is 4, not multiple of 3.

2220: sum is 6, which is multiple of 3, and 2220 / 30 is 74, which is integer. So, that works.

Therefore, 2220 is the minimal number.

Wait, but hold on. Let me think if there's a smaller number.

Wait, 2220 is 2220, which is a 4−digit number. Is there a 3−digit number that can be formed with 2s and 0s,
which is a multiple of 30? As we saw, 2220 is the first one, so no, there's no smaller number.

Wait, but hold on again. Let me think about 2220. Is it the minimal, or is there a smaller number with 4 digits
but starting with 2, and having 2s and 0s, but arranged in a different way?

Wait, for example, 2020: sum is 4, which is not multiple of 3, so not divisible by 3. 2002: same. 2200: same.
So, no.

So, 2220 is the minimal.

Wait, but hold on, let me think of another approach. Maybe think of numbers in base 10, with digits only 0
and 2, and divisible by 30.

So, the number must end with 0, and the sum of digits must be a multiple of 3.

So, as we saw, the number must have a number of 2s equal to 3, 6, 9, etc.

Therefore, the minimal number is 2220, which is 3 digits.

Wait, 2220 is 4 digits. So, 2220 is 2220, which is 4 digits, and it's the first one.

But wait, 2220 is a 4−digit number. Is there a 3−digit number? 2220 is 2220, which is 2220. But 222 is 3
digits, but 222 is not a multiple of 30.

Wait, so 2220 is the minimal.

Wait, but I just thought of another way. Maybe if we can have a number with a 0 at the end, and two 2s, but
also have another 2 somewhere in the middle. But the sum of digits must be a multiple of 3, so 2 + 2 + 0 = 4,
which isn't a multiple of 3. So, that's not good. So, 2220 is the minimal.

Wait, but 2220 is a 4−digit number, but 2220 is 2220, which is 2220, which is 2220. Hmm, but 2220 is the
minimal.
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Wait, hold on, but is 2220 the minimal? Let me think of 20220, but that's a 5−digit number, which is larger
than 2220, so not helpful.

Wait, so 2220 is 2220, which is 4 digits, and it's the minimal.

Wait, but hold on, maybe 20220 is a 5−digit number, but 2220 is smaller.

Wait, so 2220 is 2220, which is 4 digits, and it's smaller than 20220.

Therefore, 2220 is the minimal.

Wait, but now, hold on, another thought. Maybe a number with 2220 is 2220, but is there a number with 2220
in a different arrangement? For example, 20220 is a 5−digit number, but 2220 is 4 digits, so 2220 is smaller.

Therefore, 2220 is the minimal.

Wait, but let me just confirm once again. 2220 is 2220, which is 2220. Let me see if any number with fewer
digits can be formed.

Wait, 2220 is 4 digits. 222 is 3 digits, but 222 is not a multiple of 30. 2220 is 4 digits, and it's a multiple of 30.

Wait, so 2220 is the minimal.

Wait, but wait, 20220 is a 5−digit number, which is 20220, which is 20220. But 2220 is smaller.

Wait, but hold on, 2220 is a 4−digit number, which is 2220, so 2220 is smaller than 20220, which is a 5−digit
number.

Therefore, 2220 is the minimal.

Wait, but I just thought of another approach. Maybe think of the number as starting with 2, followed by 2s and
0s.

So, for example, 2220, 2202, 2022, 2002, 2220, etc. But as we saw, only 2220 is a multiple of 30.

Wait, but 2220 is a 4−digit number, which is 2220. 2220 is 2220, which is 2220, so it's a 4−digit number.

Wait, but let me think of the number 2220. Is that the minimal?

Wait, 2220 is 2220, which is 2220. So, 2220 is a multiple of 30, but is there a smaller number?

Wait, 2220 is 2220, which is 2220, which is 2220, which is 2220.

Wait, but 2220 is 2220, which is 2220, so is that the minimal? Or is there a number with fewer digits?

Wait, 2220 is 4 digits. 222 is 3 digits. 222 is not a multiple of 30. So, 2220 is the minimal.

Wait, but wait, another idea: 2220 is 2220, which is 2220, which is 2220, which is 2220.

Wait, but if I can have a number with 2s and 0s, but with leading 2s and trailing 0s, but in between, perhaps 2s
can be placed in different positions.

Wait, but as we saw, the sum of digits must be a multiple of 3, so the number of 2s must be a multiple of 3.

Therefore, the minimal number is 2220, which is 2220.

Wait, so 2220 is 4 digits, and it's the minimal. So, 2220 is the answer.

Wait, but wait, I just thought of something else. What if the number is 20220? That's 5 digits, but it's 20220,
which is 20220. 2220 is 2220, which is smaller. So, 2220 is smaller.

Wait, but 2220 is 2220, which is a 4−digit number. 20220 is 20220, which is a 5−digit number, so 2220 is
smaller.
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Therefore, 2220 is the minimal.

Wait, but I'm confused because 2220 is 2220, which is 2220. So, that's a 4−digit number, and it's the minimal.

Wait, but hold on, let me just confirm if 2220 is indeed the minimal.

Wait, 2220 is 2220, which is 2220. Let me check if 2220 is a multiple of 30. 2220 divided by 30 is 74, which
is an integer. So, yes, it is.

So, 2220 is the minimal.

Wait, but hold on, 2220 is 2220, which is 2220, which is a 4−digit number.

But, is there a smaller number?

Wait, 2220 is 2220, which is 2220. But, 2220 is 2220, which is 2220. So, it's 2220, which is 2220. So, 2220 is
the minimal.

Wait, but wait, 2220 is 2220, which is 2220, which is a 4−digit number. So, 2220 is 2220, which is 2220.

Wait, so that's the minimal.

Wait, but wait, hold on, 2220 is 2220, which is 2220, which is 2220. So, it's 2220.

Wait, so is 2220 the minimal.

Wait, but hold on, another thought. Let me think of numbers with 2s and 0s, but in different positions, but the
sum of digits must be a multiple of 3.

So, 2220 is 2220, which is 2220, sum is 6, which is a multiple of 3.

Wait, but if I have a number like 20220, which is 5 digits, sum is 6, which is multiple of 3, but 20220 is 20220,
which is larger than 2220.

So, 2220 is the minimal.

Wait, but hold on, another idea. Maybe 20220 is 20220, which is 20220, which is a 5−digit number, which is
20220, which is larger than 2220, which is 4−digit.

So, 2220 is smaller.

Wait, so 2220 is the minimal.

Wait, but, wait, let me think of the number 2220. It's 2220, which is 2220, which is 2220. So, 2220 is a 4−
digit number.

But, 2220 is 2220, which is 2220, so that's 2220.

Wait, so, yeah, 2220 is the minimal.

Wait, but, hold on, I just thought of another number. Let's say 2220 is 2220, which is 2220. But, 2220 is 2220,
which is 2220. So, is there a smaller number?

Wait, 2220 is 2220, which is 2220, which is 2220, which is 2220. So, 2220 is 2220, which is 2220. So, 2220
is 2220, which is 2220.

Wait, so, that's the minimal.

Wait, so, conclusion: 2220 is the minimal.

Wait, but hold on, I just thought of something else. Maybe a number like 2220 is 2220, but 2220 is 2220,
which is 2220, which is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220, which is 2220.
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Wait, so, 2220 is 2220, which is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220.

Wait, so, that's 2220, which is 2220, which is 2220.

Wait, but, hold on, let me think again.

Wait, 2220 is 2220, which is 2220, which is 2220.

Wait, but 2220 is 2220, which is 2220.

Wait, so, yeah, 2220 is 2220, which is 2220.

Wait, so, 2220 is 2220, which is 2220.

Wait, so, that's 2220, which is 2220.

Wait, so, yeah, 2220 is 2220.

...

Data Augmentation Prompt
Prompt:
A planet with a mass equivalent to that of two Earths is orbiting in a circular orbit around a star with a mass
three times that of the Sun, at a distance of two AU. On which of the following celestial objects does the
gravitational force of the planet exceed the centrifugal force (i.e., the gravitational force of the planet
dominates)?

a) An object with a 0.002 Earth masses located at 0.012 AU distance from the planet
b) An object with a 0.006 Earth masses located at 0.014 AU distance from the planet
c) An object with a 0.001 Earth masses located at 0.019 AU distance from the planet
d) An object with a 0.003 Earth masses located at 0.021 AU distance from the planet

Generate a new graduate−level physics questions similar in difficulty and style to this GPQA item, but with
different physical setup and different correct answer. Please provide correct answers within \boxed{} and
explanations as well.

Response:
Here is a new graduate−level physics problem modeled in a similar style and complexity as the original
GPQA item:

−−−

**Question:**

A moon with a mass of 0.3 Earth masses is orbiting a gas giant of 5 Jupiter masses at a circular orbital radius
of 0.015 AU. The gas giant itself is orbiting a star of 2.5 solar masses at a distance of 5 AU in a nearly circular
orbit. On which of the following small objects located near the moon does the gravitational force due to the
moon exceed the tidal/centrifugal force exerted by the planet−star system (i.e., the object is within the moon's
gravitational dominance, or its Hill sphere)?

a) An object with a 0.0005 Earth masses located 0.0009 AU from the moon
b) An object with a 0.001 Earth masses located 0.0012 AU from the moon
c) An object with a 0.0003 Earth masses located 0.0016 AU from the moon
d) An object with a 0.0008 Earth masses located 0.0020 AU from the moon

−−−

**Correct Answer:**
a

−−−
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**Explanation:**

To determine whether the gravitational force of the moon dominates over the tidal force of the planet−star
system, we compare the object's distance from the moon to the **Hill radius** of the moon.

The Hill radius ( R H ) of the moon in orbit around the gas giant is approximately:

[
R H = a \left( \frac{m {\text{moon}}}{3 M {\text{planet}}} \right)ˆ{1/3}
]

Where:

* ( a = 0.015 , \text{AU} ) (moon's distance from the planet),
* ( m {\text{moon}} = 0.3 M \oplus = 0.3 \times 3 \times 10ˆ{−6}M \odot = 9 \times 10ˆ{−7}M \odot )
,
* ( M {\text{planet}} = 5 M J = 5 \times 0.001 M \odot = 0.005 M \odot ).

[
R H = 0.015 \left( \frac{9 \times 10ˆ{−7}}{3 \times 0.005} \right)ˆ{1/3} = 0.015 \left( \frac{9 \times
10ˆ{−7}}{0.015} \right)ˆ{1/3}
]

[
= 0.015 \left(6 \times 10ˆ{−5} \right)ˆ{1/3} \approx 0.015 \times 0.039 = 5.85 \times 10ˆ{−4} , \text{AU
}
]

So the Hill radius is roughly:

[
R H \approx 0.000585 , \text{AU}
]

Any object located significantly **within** this Hill radius is gravitationally bound to the moon.

**Analysis of options:**

* a) 0.0009 AU −> slightly *outside* the Hill sphere, but close. Check force ratio.
* b) 0.0012 AU −> further out, gravity weaker.
* c) 0.0016 AU −> clearly outside.
* d) 0.0020 AU −> definitely outside.

But wait! Option a) is **outside** the Hill radius. Is this a problem?

Actually, note that **I must have made a miscalculation in Hill radius**. Let's double−check with clearer
units.

−−−

Let's use:

[
R H = a \left( \frac{m}{3M} \right)ˆ{1/3}
]

Let's convert all to Earth masses.

* ( m {\text{moon}} = 0.3 M \oplus )
* ( M {\text{planet}} = 5 M J = 5 \times 317.8 M \oplus = 1589 M \oplus )

[
R H = 0.015 \left( \frac{0.3}{3 \times 1589} \right)ˆ{1/3} = 0.015 \left( \frac{0.3}{4767} \right)ˆ{1/3}
]
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[
= 0.015 \left(6.29 \times 10ˆ{−5} \right)ˆ{1/3} \approx 0.015 \times 0.0397 = 5.96 \times 10ˆ{−4} , \text{
AU}
]

Yes, similar result: Hill radius ≈ 0.0006 AU.

So **only objects within ˜0.0006 AU are gravitationally bound to the moon**.

Thus:

* a) 0.0009 AU −> **outside** −> not gravitationally dominated by moon
* b) 0.0012 AU −> more outside
* c) 0.0016 AU −> even more outside
* d) 0.0020 AU −> most outside

So this suggests **none of them** is within the Hill sphere.

But the question instead asks: On which object does the moon's gravitational force exceed the centrifugal
force − which doesn't require strictly within Hill radius, but instead compares:

[
F g = \frac{G m {\text{moon}} m o}{rˆ2}, \quad F c = m o r \omegaˆ2 = m o r \left( \frac{vˆ2}{rˆ2} \
right)
]

Instead, we can check whether:

[
\frac{G m {\text{moon}}}{rˆ2} > r \omegaˆ2
]

or compare acceleration toward moon vs centrifugal acceleration in planet's frame.

But using Hill sphere is a solid approximation of where gravitational dominance lies. So any object within ≈
0.0006 AU is bound to the moon.

That makes none of the options clearly inside − but we can **adjust option a)** to say:

**Corrected option a):**
a) An object with 0.0005 Earth masses located at **0.0005 AU** from the moon

Then:

[
0.0005 < 0.0006 \Rightarrow \text{within Hill sphere}
]

Thus, **moon dominates gravitationally**.

−−−

**Final Answer: a **

Let me know if you'd like more questions like this or ones involving different physics principles (e.g., general
relativity, electromagnetism, quantum).

Trajectory Segmentation Prompt
Break down a reasoning process into well−defined stages using the following structure for each stage:
`###### stage description ######` *detailed reasoning* `########################`

**Task Details:**
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1. **Input:** A problem and the reasoning process to solve it.
2. **Output:** The reasoning process segmented into different stages, each encapsulated by a descriptive tag.
3. **Important:** You should only segment the process and add stage description WITHOUT changing the
reasoning process.

**Input Example:**
*Problem:*
What is the area, in square units, of a triangle with vertices at \( A(1, 1), B(6, 1), C(3, 7) \)?

*Reasoning:*
Let's explore how to find the area of a triangle with vertices at \( A(1, 1) \), \( B(6, 1) \), and \( C(3, 7) \).

First, we'll consider using the formula for the area of a triangle given its vertices \( A(x 1, y 1) \), \( B(x 2,
y 2) \), and \( C(x 3, y 3) \). The formula is:
\[
\text{Area} = \frac{1}{2} |x 1(y 2−y 3) + x 2(y 3−y 1) + x 3(y 1−y 2)|
\]

Now, let's substitute the coordinates of the vertices into this formula. For our triangle, \( A(1, 1) \), \( B(6, 1)
\), and \( C(3, 7) \), the expression becomes:
\[
\text{Area} = \frac{1}{2} |1(1−7) + 6(7−1) + 3(1−1)|
\]

Let's pause and calculate each term carefully.

The first term is \( 1(1−7) \), which simplifies to \( 1 \times (−6) = −6 \).

The second term is \( 6(7−1) \), which simplifies to \( 6 \times 6 = 36 \).

The third term is \( 3(1−1) \), which simplifies to \( 3 \times 0 = 0 \).

Putting it all together, we have:
\[
\text{Area} = \frac{1}{2} |−6 + 36 + 0|
\]

Now, we compute the expression inside the absolute value:
\[
−6 + 36 + 0 = 30
\]

Therefore, the area becomes:
\[
\text{Area} = \frac{1}{2} \times 30 = 15
\]

Let's take a moment to review and ensure all calculations are correct. The process checks out, and everything
seems consistent with the method. So, the area of the triangle is \(\boxed{15}\) square units.

**Output Example:**
###### Understanding the problem ######
Let's explore how to find the area of a triangle with vertices at \( A(1, 1) \), \( B(6, 1) \), and \( C(3, 7) \).
########################

###### Recall the formula ######
First, we'll consider using the formula for the area of a triangle given its vertices \( A(x 1, y 1) \), \( B(x 2,
y 2) \), and \( C(x 3, y 3) \). The formula is:
\[
\text{Area} = \frac{1}{2} |x 1(y 2−y 3) + x 2(y 3−y 1) + x 3(y 1−y 2)|
\]
########################

###### Substitute the coordinates ######
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Now, let's substitute the coordinates of the vertices into this formula. For our triangle, \( A(1, 1) \), \( B(6, 1)
\), and \( C(3, 7) \), the expression becomes:
\[
\text{Area} = \frac{1}{2} |1(1−7) + 6(7−1) + 3(1−1)|
\]
########################

###### Perform the calculations ######
Let's pause and calculate each term carefully.

The first term is \( 1(1−7) \), which simplifies to \( 1 \times (−6) = −6 \).

The second term is \( 6(7−1) \), which simplifies to \( 6 \times 6 = 36 \).

The third term is \( 3(1−1) \), which simplifies to \( 3 \times 0 = 0 \).
########################

###### Calculate the final result ######
Putting it all together, we have:
\[
\text{Area} = \frac{1}{2} |−6 + 36 + 0|
\]

Now, we compute the expression inside the absolute value:
\[
−6 + 36 + 0 = 30
\]

Therefore, the area becomes:
\[
\text{Area} = \frac{1}{2} \times 30 = 15
\]
########################

###### Review the result ######
Let's take a moment to review and ensure all calculations are correct. The process checks out, and everything
seems consistent with the method. So, the area of the triangle is \(\boxed{15}\) square units.
########################

Important: You should only segment the process and add stage description WITHOUT changing the reasoning
process.

MLR High-level Prompt Template
You are a high−level planner that controls a multi−step reasoning process.

Given a problem and the previous completed stages in the format `###### stage description ######` *
summary* `########################`, generate the next stage descrition as a concise subgoal.

{Problem}

{Previous stages}

MLR Low-level Prompt Template
You are a reasoning module for math, science, and logic problems.

Given a problem, the previously completed stages, and the current stage description in the format `######
stage description ######` *detailed reasoning* `########################`, produce the detailed
reasoning for the current stage.

{Problem}
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{Previous stages}

{Current stage description}

Stage Summarization Prompt Template
You are a summarization module for math, science, and logic problems.

Given the stage description, summarize the key conclusion by extracting the essential results achieved so far.
Try to be as concise as possible while preserving necessary information.

{Stage description}

{Detailed reasoning}

MLR Output (high-level) - MATH500
Problem:
The set of points (x, y, z) that satisfy 2x = 3y = −z is a line.
The set of points (x, y, z) that satisfy 6x = −y = −4z is another line.
Find the angle between these lines, in degrees.

Solution:
###### Understanding the problem ######
The angle between two lines in 3D space is determined by the angle between their direction vectors.
First step: find the direction vectors for each line.
########################

###### Finding direction vectors ######
Direction vector of the first line is (3, 2, −6).
########################

###### Finding the second direction vector ######
Direction vector is (2, −12, −3).
No further simplification possible.
Direction vector u is (2, −12, −3).
########################

###### Calculating the angle using the dot product formula ######
Direction vectors: (3, 2, −6) and (2, −12, −3).
Dot product: 3*2 + 2*(−12) + (−6)*(−3) = 6 −24 + 18 = 0.
Since the dot product is zero, the vectors are perpendicular.
Therefore, the angle between the lines is 90 degrees.
########################

###### Verifying the result using another method ######
− Both lines pass through the origin and intersect there.
− Their direction vectors are perpendicular (dot product is zero).
− Therefore, the angle between the two lines is 90 degrees.
########################

###### Extract the final answer ######

Thus, the final answer is 90◦ .
########################

MLR Output (low-level) - MATH500
Problem:
The set of points (x, y, z) that satisfy 2x = 3y = −z is a line.
The set of points (x, y, z) that satisfy 6x = −y = −4z is another line.
Find the angle between these lines, in degrees.
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Solution:
###### Understanding the problem ######
Okay, so I need to find the angle between two lines in 3D space. The lines are given by the equations 2x = 3y
= −z and 6x = −y = −4z. Hmm, let me recall how to approach this. I think the angle between two lines is
determined by the angle between their direction vectors. So first, I need to find the direction vectors of each
line.
########################

###### Finding direction vectors ######
Starting with the first line: 2x = 3y = −z. Let me parse this equation. It's saying that 2x, 3y, and −z are all
equal to each other. Let me denote this common value as some parameter, say t. So, 2x = t, 3y = t, −z = t.
Then, solving for x, y, z in terms of t:

x = t/2, y = t/3, z = −t.

So the parametric equations for the first line are:

x = (1/2)t,

y = (1/3)t,

z = −t.

Therefore, the direction vector of the first line is given by the coefficients of t, which is (1/2, 1/3, −1). But to
make it easier, maybe I can multiply by 6 to eliminate the denominators. Multiplying each component by 6
gives (3, 2, −6). So the direction vector is (3, 2, −6). Let me check that: starting from 2x = 3y = −z, if I set t =
6x, then 3y = 6x => y = 2x, and −z = 6x => z = −6x. So the direction vector is (x, y, z) = (x, 2x, −6x), which
is in the direction of (1, 2, −6). Wait, but earlier I got (3, 2, −6). Hmm, maybe I made a mistake there. Let me
clarify.

If 2x = 3y = −z, then let me set 2x = k. Then 3y = k => y = k/3, and −z = k => z = −k. So x = k/2, y = k/3, z
= −k. So the direction vector is (k/2, k/3, −k). To make this a direction vector, we can take k = 6 (the least
common multiple of denominators 2 and 3). Then x = 3, y = 2, z = −6. So the direction vector is (3, 2, −6). So
that's correct. Okay, so direction vector v is (3, 2, −6).
########################

###### Finding the second direction vector ######
Now the second line: 6x = −y = −4z. Similarly, let's set 6x = m. Then −y = m => y = −m, and −4z = m => z
= −m/4. So x = m/6, y = −m, z = −m/4. Therefore, the direction vector is (m/6, −m, −m/4). Again, to eliminate
denominators, multiply by 12 (the least common multiple of 6 and 4). Then x = 2, y = −12, z = −3. So the
direction vector is (2, −12, −3). Alternatively, simplifying further, we can factor out a common factor. Let's
see, 2, −12, −3. The greatest common divisor is 1, so maybe that's the simplest form. Alternatively, we can
divide by 1, so the direction vector is (2, −12, −3). Alternatively, maybe we can write it as (2, −12, −3) or
simplify by dividing by a common factor. Let's check: 2 and −12 have a common factor of 2, but −3 doesn't.
So maybe (2, −12, −3) is the simplest. Alternatively, if we factor out a 1, it's still the same. So direction vector
u is (2, −12, −3).
########################

###### Calculating the angle using the dot product formula ######
Now, to find the angle between the two lines, we need the angle between their direction vectors v and u. The
formula for the angle θ between two vectors is:

cos θ = (v · u)/(||v||||u||)

So first, let's compute the dot product of v and u. v is (3, 2, −6), u is (2, −12, −3).

Dot product = (3)(2) + (2)(−12) + (−6)(−3) = 6 −24 + 18 = 6 −24 is −18, −18 +18 is 0. Wait, the dot product is
zero? That would mean the vectors are perpendicular, so the angle between them is 90 degrees. But that
seems surprising. Let me double−check the calculations.

v · u = (3)(2) + (2)(−12) + (−6)(−3) = 6 −24 + 18.
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6 −24 is −18, −18 +18 is 0. Yep, that's correct. So the dot product is indeed zero, which implies that the
vectors are orthogonal. Therefore, the angle between them is 90 degrees. Hmm, so is that the answer? 90
degrees? That seems straightforward, but let me confirm once again.

Alternatively, maybe I made a mistake in determining the direction vectors. Let me check the direction
vectors again.

First line: 2x = 3y = −z. Let me parametrize it differently. Let's set 2x = k. Then 3y = k => y = k/3, and −z =
k => z = −k. So x = k/2, y = k/3, z = −k. So direction vector is (k/2, k/3, −k). To eliminate fractions, multiply
by 6: (3, 2, −6). Correct.

Second line: 6x = −y = −4z. Let's set 6x = m. Then −y = m => y = −m, and −4z = m => z = −m/4. So x = m
/6, y = −m, z = −m/4. Direction vector is (m/6, −m, −m/4). Multiply by 12: (2, −12, −3). Correct.

So direction vectors are (3, 2, −6) and (2, −12, −3). Their dot product is 3*2 + 2*(−12) + (−6)*(−3) = 6 −24 +
18 = 0. So yes, they are perpendicular. Therefore, the angle between the lines is 90 degrees.
########################

###### Verifying the result using another method ######
But wait, just to be thorough, maybe I should check if the lines are indeed skew lines or intersecting lines. If
they intersect, then the angle between them is still defined as the angle between their direction vectors. If they
are skew lines, the angle is still the same. So regardless, the angle between them is determined by their
direction vectors.

Alternatively, maybe I can check if the lines are coplanar or not, but since they are in 3D space, unless they
are parallel or intersecting, they are skew. But since their direction vectors are not scalar multiples, they are
not parallel, so they are skew lines. But the angle between them is still the angle between their direction
vectors.

Alternatively, maybe the problem is designed such that the angle is 90 degrees, but let me verify once more.

Alternatively, maybe I can check with another method. Let me compute the cross product of the direction
vectors to find the sine of the angle, but since the dot product is zero, the angle must be 90 degrees.

Alternatively, if the dot product is zero, the vectors are perpendicular, so the angle is 90 degrees.

Alternatively, maybe the problem is designed to have a right angle, but I need to confirm.

Alternatively, maybe I made a mistake in the direction vectors. Let me check again.

First line: 2x = 3y = −z. Let me take a point on the line. Let me choose x=0. Then 3y = −z. Let me set y=0,
then z=0. So the point (0,0,0) is on the line. Then, direction vector is (1/2, 1/3, −1) as found earlier. So
direction vector is (1/2, 1/3, −1). So if I take t=1, the point is (1/2, 1/3, −1). So direction vector is (1/2, 1/3,
−1). Multiplying by 6 gives (3, 2, −6). Correct.

Second line: 6x = −y = −4z. Let me take x=0. Then −y = −4z => y = 4z. Let me set z=0, then y=0. So the
point (0,0,0) is on this line as well. Wait, both lines pass through the origin? Then they intersect at the origin.
But if they intersect, then they are coplanar, but in 3D space, two lines that intersect are coplanar, but the
angle between them is still determined by their direction vectors. However, if they intersect, the angle
between them is the angle between their direction vectors, which is 90 degrees. So even if they intersect, the
angle between them is 90 degrees. So that's consistent.

But wait, if both lines pass through the origin, and they intersect at the origin, but their direction vectors are
perpendicular, then the angle between them is 90 degrees. So that's correct.

Alternatively, maybe I can check with another point. Let's take a point on the first line. For example, take x=1.
Then 2*1=3y => y=3/2, and −z=3*1 => z=−3. So the point (1, 3/2, −3). Similarly, take x=1 on the second
line. Then 6*1=−y => y=−6, and −4z= −6 => z=1.5. So the point (1, −6, 1.5). Now, check if these two points
are connected by a line that is perpendicular to both direction vectors. But maybe that's overcomplicating.
Since the direction vectors are perpendicular, the angle is 90 degrees.

Alternatively, maybe I can check the angle using another formula. The angle between two lines is given by
the angle between their direction vectors. Since the dot product is zero, the angle is 90 degrees. So I think that'
s correct.
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Therefore, the angle between the two lines is 90 degrees.
########################

###### Extract the final answer ######

Thus, the final answer is 90◦ .
########################

MLR Output (high-level) - AIME24
Problem:
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c = 300 and
a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000.

Solution:
###### Understanding the problem ######
Triples (a, b, c) of nonnegative integers must satisfy:
− a+ b+ c = 300

− a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000

The sum a2b+ a2c+ b2a+ b2c+ c2a+ c2b can be rewritten as a2(b+ c) + b2(a+ c) + c2(a+ b).
########################

###### Verifying the algebraic manipulation ######
Factoring terms:
− a2b+ a2c = a2(b+ c)

− b2a+ b2c = b2(a+ c)

− c2a+ c2b = c2(a+ b)

So, the expression simplifies to a2(b+ c) + b2(a+ c) + c2(a+ b).
########################

###### Substituting the sum constraint ######
Expression after substitution:
a2(300− a) + b2(300− b) + c2(300− c)
########################

###### Setting up the main equation ######
Main equation:
a2(300− a) + b2(300− b) + c2(300− c) = 6, 000, 000
########################

###### Expanding and simplifying the equation ######
Expanded expression:
300(a2 + b2 + c2)− (a3 + b3 + c3) = 6, 000, 000
This relates to the sum a+ b+ c = 300.
########################

###### Expressing in terms of symmetric sums ######
S1 = a + b + c = 300
S2 = ab + bc + ca
S3 = abc

a2 + b2 + c2 = S12 − 2S2

a3 + b3 + c3 = S13 − 3S1S2 + 3S3

Substituting into the equation:
300(S12 − 2S2)− (S13 − 3S1S2 + 3S3) = 6, 000, 000
########################

###### Plugging in the known value and simplifying ######
First term: 27, 000, 000− 600S2
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Second term: −27, 000, 000 + 900S2− 3S3
Combine: 27, 000, 000− 600S2− 27, 000, 000 + 900S2− 3S3 = 6, 000, 000
Simplify: 300S2− 3S3 = 6, 000, 000
Divide by 3: 100S2− S3 = 2, 000, 000
########################

###### Analyzing the new equation and possible values ######
Equation: 100S2 − S3 = 2, 000, 000
Given: S1 = a+ b+ c = 300, S2 = ab+ bc+ ca, S3 = abc
Need: Integer solutions for nonnegative a, b, c with a+ b+ c = 300 and 100S2 − S3 = 2, 000, 000.
Approach: Consider cases with symmetry (e.g., two variables equal or all equal) to find possible solutions.
########################

###### Checking the case where all variables are equal ######
If a = b = c = 100, then a+ b+ c = 300, S2 = 30, 000, S3 = 1, 000, 000, and 100S2 − S3 = 2, 000, 000,
which satisfies the condition.
So, (100, 100, 100) is a solution, and since all are equal, there is only one such triple.
########################

###### Checking the case where two variables are equal ######
Case: a = b ̸= c
c = 300 − 2a

S2 = −3aˆ2 + 600a
S3 = aˆ2(300 − 2a)

Equation:
aˆ3 − 300aˆ2 + 30,000a − 1,000,000 = 0
Factor: (a − 100)ˆ3 = 0⇒ a = 100 is the only solution.

Conclusion: The only solution in this case is a = b = c = 100; no other solutions when two variables are equal.
########################

###### Considering the case where all variables are distinct ######
All variables distinct:
Given S1 = 300, 100S2 − S3 = 2, 000, 000, and S3 = 100S2 − 2, 000, 000.
Since S3 = abc ≥ 0, S2 ≥ 20, 000.
Maximum S2 = 30, 000, minimum S2 = 0.
So, for all variables distinct, S2 must be between 20,000 and 30,000, and S3 = 100S2 − 2, 000, 000.
The original equation reduces to 300S2 − 3S3 = 6, 000, 000, confirming the earlier result.
########################

###### Factoring the equation for further simplification ######
Given 100S2 − S3 = 2,000,000 and S1 = 300,
S3 = 100S2 − 2,000,000, and S3 = abc, so
abc = 100(ab + bc + ca) − 2,000,000.

Rearranged and factored,
(a − 100)(b − 100)(c − 100) = 0.
########################

###### Interpreting the factored equation and finding solutions ######
At least one of a, b, or c must be 100.
The other two variables sum to 200 (since a + b + c = 300).
All nonnegative integer triples (a, b, c) where one is 100 and the other two sum to 200 are solutions.
This condition is equivalent to the original equation, so all such triples satisfy both equations.
########################

###### Counting the number of valid triples ######
Case 1: a = 100⇒ 201 triples
Case 2: b = 100⇒ 201 triples
Case 3: c = 100⇒ 201 triples
Triple (100,100,100) is counted 3 times (once in each case).
Using inclusion−exclusion:
Total triples = 3×201 − 3 + 1 = 601.
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########################

###### Verifying the counting with a small example ######
Listed all possible triples: (1,0,2), (1,1,1), (1,2,0), (0,1,2), (2,1,0), (0,2,1), (2,0,1) − total of 7 triples.

Using inclusion−exclusion: 3× 3− 3× 1 + 1 = 9− 3 + 1 = 7.

Conclusion: The formula works for this small example.
########################

###### Extract the final answer ######
Thus, the final answer is 601 .
########################

MLR Output (low-level) - AIME24
Problem:
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c = 300 and
a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6, 000, 000.

Solution:
###### Understanding the problem ######
Okay, so the user is trying to solve a problem involving finding triples (a, b, c) of nonnegative integers that
satisfy two conditions: a + b + c = 300 and aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b = 6,000,000. They started
by considering factoring the expression and noticed that it can be rewritten as aˆ2(b + c) + bˆ2(a + c) + cˆ2(a +
b).
########################

###### Verifying the algebraic manipulation ######
First, I need to verify if their initial approach is correct. Let's check the expression:

Original expression: aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b

Factoring terms:

aˆ2b + aˆ2c = aˆ2(b + c)
bˆ2a + bˆ2c = bˆ2(a + c)
cˆ2a + cˆ2b = cˆ2(a + b)
So yes, the expression simplifies to aˆ2(b + c) + bˆ2(a + c) + cˆ2(a + b). That's a good start.
########################

###### Substituting the sum constraint ######
Next, since a + b + c = 300, we can substitute (b + c) with (300 − a), similarly for the others. Let's apply that
substitution:

Expression becomes: aˆ2(300 − a) + bˆ2(300 − b) + cˆ2(300 − c)
########################

###### Setting up the main equation ######
So the equation is: aˆ2(300 − a) + bˆ2(300 − b) + cˆ2(300 − c) = 6,000,000
########################

###### Expanding and simplifying the equation ######
Now, the user might need to find a way to relate this to the sum a+ b+ c = 300. Perhaps expanding the
terms or looking for symmetry could help. Let's consider expanding each term:

For each variable x (where x is a, b, or c), the term xˆ2(300 − x) = 300xˆ2 − xˆ3. So the entire expression
becomes:

300(aˆ2 + bˆ2 + cˆ2) − (aˆ3 + bˆ3 + cˆ3) = 6,000,000

So we have:
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300(aˆ2 + bˆ2 + cˆ2) − (aˆ3 + bˆ3 + cˆ3) = 6,000,000
########################

###### Expressing in terms of symmetric sums ######
Now, we also know that a + b + c = 300. Let's denote S1 = a + b + c = 300, S2 = ab + bc + ca, and S3 = abc.
We can express aˆ2 + bˆ2 + cˆ2 in terms of S1 and S2:

aˆ2 + bˆ2 + cˆ2 = (a + b + c)ˆ2 − 2(ab + bc + ca) = S1ˆ2 − 2S2

Similarly, the sum of cubes can be expressed using the identity:

aˆ3 + bˆ3 + cˆ3 = (a + b + c)ˆ3 − 3(a + b + c)(ab + bc + ca) + 3abc = S1ˆ3 − 3S1S2 + 3S3

Substituting these into the equation:

300(S1ˆ2 − 2S2) − (S1ˆ3 − 3S1S2 + 3S3) = 6,000,000
########################

###### Plugging in the known value and simplifying ######
Plugging in S1 = 300:

300(300ˆ2 − 2S2) − (300ˆ3 − 900S2 + 3S3) = 6,000,000

Let's compute each term step by step:

First term: 300*(300ˆ2 − 2S2) = 300*(90,000 − 2S2) = 27,000,000 − 600S2

Second term: −(300ˆ3 − 900S2 + 3S3) = −27,000,000 + 900S2 − 3S3

Combining both terms:

27,000,000 − 600S2 −27,000,000 + 900S2 − 3S3 = 6,000,000

Simplify:

(27,000,000 −27,000,000) + (−600S2 + 900S2) −3S3 = 6,000,000

Which simplifies to:

300S2− 3S3 = 6, 000, 000

Divide both sides by 3:

100S2 − S3 = 2,000,000
########################

###### Analyzing the new equation and possible values ######
So now we have an equation involving S2 and S3: 100S2 − S3 = 2,000,000

But we also know that S1 = 300, S2 = ab + bc + ca, and S3 = abc. So we need another relation between S2
and S3. However, with three variables and two equations (S1, S2, S3), we might need to find possible integer
solutions.

Alternatively, perhaps we can consider that a, b, c are nonnegative integers summing to 300, and we need to
find the number of triples such that 100S2 − S3 = 2,000,000.

This seems complicated. Maybe there's a symmetry or specific values that satisfy this equation. Let's consider
possible cases where two variables are equal, or all three are equal.
########################

###### Checking the case where all variables are equal ######
First, check if all three are equal: a = b = c. Then a + b + c = 3a = 300⇒ a = 100. So (100, 100, 100). Let's
check if this satisfies the second equation.

Compute S2 = ab + bc + ca = 3*100*100 = 30,000
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S3 = 100ˆ3 = 1,000,000

Then 100S2 − S3 = 100*30,000 − 1,000,000 = 3,000,000 − 1,000,000 = 2,000,000. Hey, that works! So (100,
100, 100) is a solution. But the problem asks for the number of triples, so this is one solution.

But there might be others. Let's check if permutations of this count, but since all are equal, there's only one
such triple.
########################

###### Checking the case where two variables are equal ######
Now, consider cases where two variables are equal. Let's say a = b ̸= c. Then a + a + c = 300⇒ 2a + c = 300
⇒ c = 300 − 2a.

Now, compute S2 and S3:

S2 = aˆ2 + 2ac = aˆ2 + 2a(300 − 2a) = aˆ2 + 600a − 4aˆ2 = −3aˆ2 + 600a

S3 = aˆ2c = aˆ2(300 − 2a)

Now plug into 100S2 − S3 = 2,000,000:

100*(−3aˆ2 + 600a) − aˆ2(300 − 2a) = 2,000,000

Compute each term:

100*(−3aˆ2 + 600a) = −300aˆ2 + 60,000a

Subtract aˆ2(300 − 2a) = −300aˆ2 + 2aˆ3

So total equation:

−300aˆ2 + 60,000a − 300aˆ2 + 2aˆ3 = 2,000,000

Combine like terms:

2aˆ3 − 600aˆ2 + 60,000a − 2,000,000 = 0

Divide both sides by 2:

aˆ3 − 300aˆ2 + 30,000a − 1,000,000 = 0

Now, we need to solve this cubic equation for integer a, where a must be a nonnegative integer such that c =
300 − 2a ≥ 0⇒ a ≤ 150.

Let's try possible integer roots. Possible rational roots are factors of 1,000,000 divided by factors of 1 (leading
coefficient). So possible roots are divisors of 1,000,000. Let's test a = 100:

100ˆ3 − 300*100ˆ2 + 30,000*100 − 1,000,000 = 1,000,000 − 3,000,000 + 3,000,000 − 1,000,000 = 0. So a =
100 is a root. That corresponds to the case where a = b = 100, c = 100, which we already considered.

Factor out (a − 100):

Using polynomial division or synthetic division:

Divide aˆ3 − 300aˆ2 + 30,000a − 1,000,000 by (a − 100).

Using synthetic division:

100 | 1 −300 30,000 −1,000,000

100 −20,000 1,000,000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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1 −200 10,000 0
So the cubic factors as (a − 100)(aˆ2 − 200a + 10,000)

Now solve aˆ2 − 200a + 10,000 = 0

Discriminant D = 40,000 − 40,000 = 0. So a = (200)/2 = 100. Thus, the cubic factors as (a − 100)ˆ3. So the
only solution is a = 100. Therefore, in the case where two variables are equal, the only solution is when all
three are equal. So no other solutions in this case.
########################

###### Considering the case where all variables are distinct ######
Next, consider the case where all three variables are distinct. Let's see if there are any solutions where a, b, c
are different.

This might be more complex. Let's think if there's a way to parameterize the variables or use Vieta's formulas.
Since we have S1 = 300, S2, and S3 related by 100S2 − S3 = 2,000,000, perhaps we can express S3 in terms
of S2: S3 = 100S2 − 2,000,000.

But we also know that for nonnegative integers a, b, c, S3 = abc must be nonnegative. So 100S2 − 2,000,000
≥ 0⇒ S2 ≥ 20,000.

But S2 = ab + bc + ca. Given that a + b + c = 300, what's the maximum and minimum possible S2?

The maximum S2 occurs when two variables are as large as possible. For example, if one variable is 0, then
S2 = ab where a + b = 300, which is maximized when a = b = 150, giving S2 = 150*150 = 22,500. If all
variables are equal, S2 = 3*100*100 = 30,000. Wait, but if a = b = c = 100, then S2 = 3*100*100 = 30,000.
Wait, but earlier when we considered two variables equal, S2 was −3aˆ2 + 600a, which for a=100 gives S2
=30,000. So S2 can range depending on the distribution.

Wait, actually, S2 can be calculated as (a + b + c)ˆ2 − (aˆ2 + bˆ2 + cˆ2)/2, but maybe it's better to think in
terms of maximizing/minimizing S2 given a + b + c = 300.

The maximum of S2 occurs when two variables are as large as possible, which would be when one variable is
0, and the other two sum to 300. Then S2 = (150)(150) = 22,500. Wait, but earlier when all three are equal, S2
= 3*100*100 = 30,000, which is larger. So actually, the maximum S2 occurs when all variables are equal.
Because S2 = ab + bc + ca is maximized when the variables are equal, by the inequality that ab + bc + ca ≤ (a
+ b + c)ˆ2 / 3, which for a + b + c = 300 gives S2 ≤ 300ˆ2 / 3 = 30,000, achieved when a = b = c = 100.

Similarly, the minimum S2 occurs when one variable is 300 and the others are 0, giving S2 = 0. So S2 ranges
from 0 to 30,000.

But in our case, S2 must be at least 20,000 because S3 = 100S2 − 2,000,000 ≥ 0⇒ S2 ≥ 20,000. So S2 is
between 20,000 and 30,000.

But how does this help us? We need to find triples (a, b, c) such that S2 is between 20,000 and 30,000, and S3
= 100S2 − 2,000,000. Additionally, since a, b, c are nonnegative integers summing to 300, we can model this
as solving for a, b, c with these constraints.

Alternatively, perhaps there's a substitution or another identity that can be used. Let's revisit the original
equation:

aˆ2b + aˆ2c + bˆ2a + bˆ2c + cˆ2a + cˆ2b = 6,000,000

Notice that this can be written as ab(a + b) + bc(b + c) + ca(c + a). Wait, but that's similar to the earlier
expression. Alternatively, factor differently:

= ab(a + b) + bc(b + c) + ca(c + a)

But since a + b + c = 300, we can write a + b = 300 − c, etc. So:

= ab(300 − c) + bc(300 − a) + ca(300 − b)

Which expands to:

300ab − abc + 300bc − abc + 300ca − abc
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= 300(ab + bc + ca) − 3abc

So the equation becomes:

300S2 − 3S3 = 6,000,000

Which simplifies to 100S2 − S3 = 2,000,000, which matches what we had earlier.
########################

###### Factoring the equation for further simplification ######
So we have 100S2 − S3 = 2,000,000, and S1 = 300. So S3 = 100S2 − 2,000,000.

But S3 = abc, so abc = 100(ab + bc + ca) − 2,000,000.

This seems like a complicated equation to solve for integers a, b, c ≥ 0 with a + b + c = 300.

But perhaps there's a way to parameterize this. Let's consider that abc = 100(ab + bc + ca) − 2,000,000.

Rearranging:

abc − 100ab − 100bc − 100ca = −2,000,000

Add 10000(a + b + c) to both sides:

abc − 100ab − 100bc − 100ca + 10000(a + b + c) = −2,000,000 + 10000*300

Compute the right−hand side:

−2,000,000 + 3,000,000 = 1,000,000

Now, the left−hand side can be factored:

abc − 100ab − 100bc − 100ca + 10000a + 10000b + 10000c

Factor terms:

= abc + (−100ab −100bc −100ca) + 10000(a + b + c)

Notice that this resembles (a − 100)(b − 100)(c − 100) expanded. Let's check:

Expand (a − 100)(b − 100)(c − 100):

= abc − 100ab − 100ac − 100bc + 10,000a + 10,000b + 10,000c − 1,000,000

Compare to our left−hand side:

Left−hand side after adding 10000(a + b + c):

abc −100ab −100bc −100ca + 10,000a + 10,000b + 10,000c

So the difference between this and the expanded (a −100)(b −100)(c −100) is the constant term −1,000,000.
Therefore:

(a − 100)(b − 100)(c − 100) = abc −100ab −100ac −100bc +10,000a +10,000b +10,000c −1,000,000

But our left−hand side is:

abc −100ab −100bc −100ca +10,000a +10,000b +10,000c = (a −100)(b −100)(c −100) + 1,000,000

Therefore, the equation becomes:

(a −100)(b −100)(c −100) + 1,000,000 = 1,000,000

So:
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(a −100)(b −100)(c −100) = 0
########################

###### Interpreting the factored equation and finding solutions ######
Ah! This simplifies things. Therefore (a − 100)(b − 100)(c − 100) must be zero. Which means at least one of
the factors must be zero. Therefore, at least one of a, b, c must be equal to 100.

So the solutions are all triples (a, b, c) where at least one of a, b, or c is 100, and the other two variables sum
to 200 (since a + b + c = 300).

Therefore, the problem reduces to finding all nonnegative integer triples (a, b, c) such that one of them is 100,
and the other two sum to 200. However, we also need to ensure that the original equation holds, but since we
derived that this condition is equivalent to the original equation, all such triples will satisfy both equations.
########################

###### Counting the number of valid triples ######
Now, let's count the number of such triples.

Case 1: a = 100. Then b + c = 200. The number of nonnegative integer solutions for (b, c) is 201 (from b=0 to
b=200). However, since triples are ordered, each solution here corresponds to a unique triple (100, b, c).

Case 2: b = 100. Similarly, a + c = 200. Number of solutions: 201.

Case 3: c = 100. Similarly, a + b = 200. Number of solutions: 201.

However, we have to subtract the overlaps where two variables are 100. For example, if a = 100 and b = 100,
then c = 100, which is counted in all three cases. There are three such overlapping triples: (100,100,100),
(100,100,100), etc., but since it's the same triple, it's only counted once in each case. Wait, actually, when we
count the three cases, the triple (100,100,100) is included in all three cases. So total overlaps are:

Each triple where two variables are 100 is counted in two cases. For example, (100,100,100) is counted in all
three cases. Wait, no, if a = 100, b = 100, then c = 100, so it's counted once in each case. Wait, no, when a =
100, b can be 100, which gives c = 100. Similarly for the other cases. So the triple (100,100,100) is counted
three times in total (once in each case). Similarly, any triple where exactly two variables are 100 would be
counted twice. Wait, but if two variables are 100, say a = 100 and b = 100, then c = 100, which is the same as
all three being 100. So there are no triples where exactly two variables are 100 because that forces the third to
also be 100. Therefore, the only overlap is the triple (100,100,100), which is counted three times.

Therefore, using inclusion−exclusion:

Total triples = 3*201 − 3*1 + 1*1 = 603 − 3 + 1 = 601.
########################

###### Verifying the counting with a small example ######
But let's check with a small example. Suppose we have variables summing to 3 instead of 300, and we want to
count triples where one variable is 1. Then:

Case 1: a=1, b + c =2⇒ (1,0,2), (1,1,1), (1,2,0)

Case 2: b=1, a + c =2⇒ (0,1,2), (1,1,1), (2,1,0)

Case 3: c=1, a + b =2⇒ (0,2,1), (1,1,1), (2,0,1)

Total listed triples: (1,0,2), (1,1,1), (1,2,0), (0,1,2), (2,1,0), (0,2,1), (2,0,1). That's 7 triples. Using inclusion−
exclusion:

3*3 − 3*1 + 1 = 9 − 3 + 1 = 7. Correct. So the formula works.
########################

###### Extract the final answer ######
Thus, the final answer is 601 .
########################
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MLR Output (high-level) - GPQA (Diamond)
Problem:
Q: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one is treated with sodium hydride, followed by
benzyl bromide, forming product 1. 1 is treated with p−toluenesulfonyl hydrazide in the presence of a
catalytic amount of HCl, forming product 2. 2 is treated at low temperature with n−butyllithium, followed by
aqueous ammonium chloride, forming product 3. 3 is stirred with Pd/C under a hydrogen atmosphere,
forming product 4. What is the structure of product 4?

Choices:
A. (((3−isopropylcyclohexyl)methoxy)methyl)benzene
B. (3−isopropylcyclohexyl)methanol
C. N'−(3−(hydroxymethyl)−5−isopropylcyclohexyl)−4−methylbenzenesulfonohydrazide
D. 3−((benzyloxy)methyl)−1−butyl−5−isopropylcyclohexan−1−ol

Solution:
###### Understanding the problem and outlining the approach ######
Need to determine the structure of product 4 in the reaction sequence.
Approach: break down each step carefully to understand how product 4 is formed.
########################

###### Interpreting the starting material's structure ######
The starting material is 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one.
− The cyclohexanone ring has a hydroxymethyl group at position 3.
− At position 5, there is a prop−1−en−2−yl group, which is CH2=C(CH3)− (a methyl group attached to a
double bond).
− The structure is a cyclohexanone ring with these two substituents at positions 3 and 5.
########################

###### Analyzing the first reaction: NaH and benzyl bromide ######
NaH deprotonates the hydroxymethyl group to form an alkoxide, which then reacts with benzyl bromide to
form a benzyl ether. Product 1 is 3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one, where the
hydroxymethyl group is converted to a benzyloxymethyl group.
########################

###### Analyzing the second reaction: p−toluenesulfonyl hydrazide and HCl ######
Product 1 reacts with p−toluenesulfonyl hydrazide (TsNHNH2) and catalytic HCl to form a tosylhydrazone.
The ketone group (cyclohexanone) reacts with the hydrazide, losing water and forming a hydrazone. Product
2 is the tosylhydrazone of the ketone, with all other substituents (including prop−1−en−2−yl) unchanged. The
structure is N'−(3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexylidene)−4−
methylbenzenesulfonohydrazide.
########################

###### Analyzing the third reaction: n−butyllithium and aqueous ammonium Product 2 is treated with n−
butyllithium and aqueous ammonium chloride (Shapiro reaction), converting the ketone−derived hydrazone
into an alkene. The cyclohexanone ring becomes a cyclohexene ring with a double bond between C1 and C2.
Product 3 is a cyclohexene with a benzyloxymethyl group at C3 and an isopropenyl group at C5.
########################

###### Analyzing the fourth reaction: hydrogenation with Pd/C and H2 ######
− Hydrogenation with Pd/C and H 2 saturates all double bonds.
− The cyclohexene ring becomes a cyclohexane ring.
− The isopropenyl group (CH 2=C(CH 3)−) is reduced to an isopropyl group (CH 2CH(CH 3)−).
− Product 4: cyclohexane ring with a benzyloxymethyl group at C3 and an isopropyl group at C5.
− The ring is fully saturated; no other changes occur.
########################

###### Recapping the sequence and mapping substituent positions ######
Starting material: cyclohexan−1−one
Position 3: hydroxymethyl→ benzyloxymethyl (after NaH/benzyl bromide)
Position 1: ketone→ tosylhydrazone→ double bond (after Shapiro reaction)
Ring: cyclohexene (double bond between 1 and 2)
Position 5: prop−1−en−2−yl (CH2=C(CH3)−)
Final product: 3−(benzyloxymethyl)−5−isopropylcyclohexane
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########################

###### Evaluating the effect of hydrogenolysis on the benzyl ether ######
The benzyloxymethyl group should remain after hydrogenation with Pd/C, as benzyl ethers are generally
stable under these conditions. Therefore, product 4 should have a benzyloxymethyl group at position 3 and
isopropyl at position 5 on cyclohexane. None of the options match this structure.
########################

###### Re−examining the possibility of benzyl ether cleavage under hydrogenation ######
− Ketone is at position 1 on the cyclohexane ring.
− Substituents at positions 3 (benzyloxymethyl) and 5 (isopropyl) are two positions apart.
− After Shapiro elimination, double bond forms between positions 1 and 2.
− Hydrogenation restores the single bond; substituents remain at positions 3 and 5.
− In product 4, cyclohexane ring has benzyloxymethyl at position 3 and isopropyl at position 5.
− This arrangement does not match any of the answer choices.
########################

###### Considering the effect of hydrogenolysis on the benzyl ether group ######
Step 1: alkylation to benzyloxymethyl−correct.
Step 2: tosylhydrazone formation at ketone−correct.
Step 3: Shapiro reaction forms alkene between positions 1 and 2−correct.
Step 4: hydrogenation saturates both the 1−2 alkene and isopropenyl group to isopropyl.
Final product: 3−(benzyloxymethyl)−5−isopropylcyclohexane.
None of the options exactly match this structure.
########################

###### Realizing benzyl ether cleavage under hydrogenation conditions ######
Starting material: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one.
− Tosylhydrazone forms at position 1 (the ketone).
− Elimination forms an alkene between positions 1 and 2.
− Substituents at 3 (hydroxymethyl) and 5 (prop−1−en−2−yl) remain.
− Hydrogenation reduces the double bond (1,2) and the prop−1−en−2−yl group at 5.
− Final product: cyclohexane ring with substituents at 3 (hydroxymethyl) and 5 (isopropyl).
− Question: how to name this compound.
########################

###### Applying IUPAC nomenclature and lowest locant rule ######
After renumbering to give the substituents the lowest possible numbers, the hydroxymethyl group is at
position 1 and the isopropyl at position 3. The correct IUPAC name is 1−(hydroxymethyl)−3−
isopropylcyclohexane, also named as (3−isopropylcyclohexyl)methanol. Therefore, option B is correct.
########################

###### Final conclusion and answer selection ######
Numbering changes to give the lowest possible numbers, repositioning the substituents as 1 and 3 instead of 3
and 5.
Correct answer is B.
########################

###### Extract the final answer ######
Thus, the final answer is B .
########################

MLR Output (low-level) - GPQA (Diamond)
Problem:
Q: 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one is treated with sodium hydride, followed by
benzyl bromide, forming product 1. 1 is treated with p−toluenesulfonyl hydrazide in the presence of a
catalytic amount of HCl, forming product 2. 2 is treated at low temperature with n−butyllithium, followed by
aqueous ammonium chloride, forming product 3. 3 is stirred with Pd/C under a hydrogen atmosphere,
forming product 4. What is the structure of product 4?

Choices:
A. (((3−isopropylcyclohexyl)methoxy)methyl)benzene
B. (3−isopropylcyclohexyl)methanol
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C. N'−(3−(hydroxymethyl)−5−isopropylcyclohexyl)−4−methylbenzenesulfonohydrazide
D. 3−((benzyloxy)methyl)−1−butyl−5−isopropylcyclohexan−1−ol

Solution:
###### Understanding the problem and outlining the approach ######
Okay, so I need to figure out the structure of product 4 in this reaction sequence. Let me start by breaking
down each step carefully.
########################

###### Interpreting the starting material's structure ######
First, the starting material is 3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. Let's draw that out.
The cyclohexanone ring has a hydroxymethyl group at position 3 and a prop−1−en−2−yl group (which is an
allyl group attached at the middle carbon, so it's actually a methyl group attached to a double bond, right? So
like CH2−C(CH2)− maybe? Wait, prop−1−en−2−yl would be CH2=C(CH3)−, right? So the substituent is a
methyl group attached to a double bond. So the cyclohexanone ring has that at position 5 and the
hydroxymethyl at position 3.
########################

###### Analyzing the first reaction: NaH and benzyl bromide ######
Then, the first step is treatment with sodium hydride, followed by benzyl bromide. Sodium hydride is a strong
base, so maybe it deprotonates something. The hydroxymethyl group has an −OH. Deprotonating that would
give an alkoxide, which is a good nucleophile. Then benzyl bromide would act as an alkylating agent. So the
benzyl group (Bn) would be attached to the oxygen, making a benzyl ether. So product 1 would be 3−(
benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. That makes sense because the hydroxymethyl
becomes benzyloxymethyl after alkylation.
########################

###### Analyzing the second reaction: p−toluenesulfonyl hydrazide and HCl ######
Next, product 1 is treated with p−toluenesulfonyl hydrazide (TsNHNH2) with catalytic HCl. That's typically
used to form a tosylhydrazone. The ketone group (cyclohexanone) would react with the hydrazide. The
mechanism is that the ketone attacks the hydrazide, losing water and forming a hydrazone. So product 2
would be the tosylhydrazone of the ketone. So the cyclohexanone becomes a cyclohexylidene group linked to
the tosylhydrazide. So structure would be N'−(3−(benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexylidene)
−4−methylbenzenesulfonohydrazide. Wait, but maybe the prop−1−en−2−yl is still present? The reaction is
only on the ketone, so the other substituents remain.
########################

###### Analyzing the third reaction: n−butyllithium and aqueous ammonium chloride (Shapiro reaction)
######
Third step: product 2 is treated with n−butyllithium at low temperature, then aqueous ammonium chloride.
This sounds like the Shapiro reaction. The Shapiro reaction uses tosylhydrazones treated with a strong base
like n−BuLi to form alkenes via elimination. The mechanism involves deprotonation and elimination of the
tosylhydrazide group, forming a double bond. So the cyclohexanone ring, which had the hydrazone, would
become a cyclohexene ring? Wait, but the starting material already has an allyl group (prop−1−en−2−yl). Wait
, maybe the Shapiro reaction here is converting the ketone−derived hydrazone into an alkene. But the original
ketone is at position 1 (cyclohexan−1−one). So after Shapiro, that would form a double bond between C1 and
C2? So the cyclohexanone becomes cyclohexene with the substituents. So product 3 would be 3−(
benzyloxymethyl)−5−(prop−1−en−2−yl)cyclohexene, but the position of the double bond would be between
C1 and C2? Wait, maybe I need to think about regiochemistry here. The Shapiro reaction typically gives less
substituted alkenes because it's a concerted elimination. But in the cyclohexane ring, the original ketone is at
position 1. So when eliminating, the hydrazone is at C1, and the adjacent hydrogen is at C2. So elimination
would form a double bond between C1 and C2. But the ring already has substituents at C3 (benzyloxymethyl)
and C5 (prop−1−en−2−yl). So after elimination, the ring becomes a cyclohexene with double bond between
C1 and C2. So product 3 is 1,2−cyclohexenyl with substituents at C3 and C5. But the prop−1−en−2−yl is
another substituent. Wait, but maybe the prop−1−en−2−yl is an isopropenyl group (CH2=C(CH3)−). So
product 3 would have a cyclohexene ring (double bond between 1 and 2), a benzyloxymethyl group at 3, and
an isopropenyl group at 5. Then, when treated with n−BuLi, but after that, aqueous ammonium chloride. Wait,
the Shapiro reaction usually forms alkenes via deprotonation and elimination. But maybe in this case, after
forming the hydrazone, treatment with n−BuLi leads to deprotonation and elimination of the tosylhydrazide,
giving the alkene. So product 3 would be the cyclohexene derivative with those substituents.
########################

###### Analyzing the fourth reaction: hydrogenation with Pd/C and H2 ######
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Then, product 3 is stirred with Pd/C under hydrogen. Hydrogenation. So any double bonds would be
hydrogenated. The cyclohexene ring's double bond (from the Shapiro reaction) would be hydrogenated to a
single bond. Also, the prop−1−en−2−yl group (isopropenyl, CH2=C(CH3)−, so that's a vinyl group with a
methyl substituent on the double bond) would be hydrogenated, making it a prop−2−yl group (isopropyl
group). Wait, prop−1−en−2−yl is CH2=C(CH3)−, so hydrogenation would make CH2CH(CH3). So the
isopropenyl becomes isopropyl. Also, the cyclohexene from the Shapiro reaction (double bond between 1 and
2) would become cyclohexane again. So product 4 would have a cyclohexane ring with substituents: at C3,
benzyloxymethyl; at C5, isopropyl. But wait, after hydrogenation, the ring is fully saturated. Also, the
hydroxymethyl group at 3 is now a benzyloxymethyl. But after hydrogenation, is there any other change?
########################

###### Recapping the sequence and mapping substituent positions ######
Wait, let's recap: Starting material: cyclohexan−1−one (so position 1 is the ketone). Substituents: at 3,
hydroxymethyl; at 5, prop−1−en−2−yl (CH2=C(CH3)−). Step 1: deprotonate hydroxymethyl's OH with NaH,
then benzyl bromide gives benzyloxymethyl at position 3. Step 2: form tosylhydrazone at the ketone (position
1). So now, the hydrazone is at position 1. Step 3: Shapiro reaction (n−BuLi) eliminates the tosylhydrazide,
forming a double bond between position 1 and 2. So the ring becomes cyclohexene (positions 1 and 2 double
bond). So now, the substituents are at 3 (benzyloxymethyl), 5 (CH2=C(CH3)−), and the ring has a double
bond between 1 and 2. Step 4: hydrogenation with Pd/C and H2. The double bonds in the molecule (both the
cyclohexene ring's 1,2−double bond and the prop−1−en−2−yl group's double bond) would be hydrogenated.
So the cyclohexene becomes cyclohexane (single bond between 1 and 2), and the prop−1−en−2−yl becomes
isopropyl (CH(CH3)2). So the substituent at position 5 becomes isopropyl. So product 4 would be 3−(
benzyloxymethyl)−5−isopropylcyclohexane. Wait, but cyclohexane is a six−membered ring. The substituents
are at positions 3 and 5. But then, after hydrogenation, the ring is fully saturated. Also, the hydroxymethyl
was at 3, which became benzyloxymethyl. But after hydrogenation, is there any other change?
########################

###### Evaluating the effect of hydrogenolysis on the benzyl ether ######
Wait, but in the final hydrogenation step, maybe the benzyloxymethyl group is hydrogenated? But benzyl
ethers are generally stable under hydrogenation unless there's a catalyst that cleaves ethers. But Pd/C usually
doesn't cleave ethers. So the benzyloxymethyl should remain. So product 4 should have a benzyloxymethyl
group at position 3 and isopropyl at position 5 on cyclohexane. But none of the options have that.
########################

###### Re−examining the possibility of benzyl ether cleavage under hydrogenation ######
Wait, maybe I messed up the numbering. Let me try to visualize the cyclohexane ring. Let's imagine the
ketone at position 1. Then positions 2, 3, 4, 5, 6 go around the ring. So if the ketone is at position 1, then
substituents at 3 and 5 would be two positions apart. After elimination (Shapiro), the double bond is between
1 and 2. Then hydrogenation would bring back the single bond. So the substituents at 3 and 5 are in the same
positions. So in product 4, the cyclohexane ring has a benzyloxymethyl group at position 3 and an isopropyl
group at position 5. But the answer choices don't have that.
########################

###### Considering the effect of hydrogenolysis on the benzyl ether group ######
Wait, but let me double−check the steps again. Maybe I made a mistake. Step 1: alkylation of hydroxymethyl
to benzyloxymethyl. Correct. Step 2: formation of tosylhydrazone at the ketone. Correct. Step 3: Shapiro
reaction with n−BuLi. The Shapiro reaction involves deprotonation adjacent to the hydrazone, leading to
elimination of the tosylhydrazide and formation of an alkene. So the ketone (position 1) becomes a double
bond between positions 1 and 2. Step 4: hydrogenation of the alkene (positions 1−2) and the isopropenyl
group (position 5) to isopropyl. So product 4 would have a cyclohexane ring with substituents: at position 3,
benzyloxymethyl; at position 5, isopropyl. So the structure is 3−(benzyloxymethyl)−5−isopropylcyclohexane.
But looking at the options, none of them exactly match.
########################

###### Realizing benzyl ether cleavage under hydrogenation conditions ######
Wait, maybe I messed up the positions during the Shapiro reaction. Let's think again. The starting material is
3−(hydroxymethyl)−5−(prop−1−en−2−yl)cyclohexan−1−one. When we form the tosylhydrazone at position 1
(the ketone), then eliminate to form the alkene between positions 1 and 2. Now, the ring has a double bond
between 1 and 2. The substituents at 3 and 5 are still in their original positions. Then, hydrogenation reduces
the double bond between 1 and 2 and the prop−1−en−2−yl group at 5. So after hydrogenation, the ring is
cyclohexane with substituents at 3 (hydroxymethyl) and 5 (isopropyl). But how is this named?
########################

###### Applying IUPAC nomenclature and lowest locant rule ######
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Alternatively, maybe the numbering changes when the ketone is removed. Originally, the ketone is at position
1. After converting it to CH2 via hydrogenation, maybe the numbering starts from the hydroxymethyl group
as position 1. In IUPAC nomenclature, the numbering is done to give the substituents the lowest possible
numbers. So if the hydroxymethyl is at position 1 and the isopropyl at position 3, that would be lower than if
they were at 3 and 5. So the new numbering would be: 1: hydroxymethyl (original 3) 2: CH2 (original 4) 3:
isopropyl (original 5) 4: CH2 (original 6) 5: CH2 (original 1) 6: CH2 (original 2) Wait, this might not be
accurate. Let me think of the cyclohexane as a chair. If the original positions are 1 (top), 2, 3, 4 (bottom), 5, 6.
After removing the ketone (position 1 becomes CH2), and having substituents at 3 and 5. If we renumber to
give the lowest numbers, we need to choose a direction where the substituents are at lower positions. If we
start numbering from the hydroxymethyl (original 3) as position 1, then the isopropyl is at original 5, which
would be position 3 in the new numbering (since it's two positions away in the ring). This gives substituents at
positions 1 and 3, which is lower than 3 and 5. Therefore, the correct IUPAC name would be 1−(
hydroxymethyl)−3−isopropylcyclohexane, which is named as (3−isopropylcyclohexyl)methanol. Because the
methanol group (hydroxymethyl) is considered as the substituent at position 1, and the isopropyl at position 3.
Thus, option B is correct.
########################

###### Final conclusion and answer selection ######
Ah, so the key here is that the numbering changes to give the lowest possible numbers, which would
reposition the substituents as 1 and 3 instead of 3 and 5. Therefore, the correct answer is B.
########################

###### Extract the final answer ######
Thus, the final answer is B .
########################

MLR Output (high-level) - BoardGameQA (Hard)
Problem:
A few players are playing a boardgame. The current state of the game is as follows. The dachshund has a
football with a radius of 15 inches. And the rules of the game are as follows. Rule1: If the dachshund has a
football that fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for the worm. Rule2:
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly. Based
on the game state and the rules and preferences, does the stork dance with the butterfly?

Solution:
###### Recap the problem and rules ######
The dachshund has a football with a radius of 15 inches.
The football fits in a 36.6 x 33.1 x 40.7 inches box.
########################

###### Identify the key condition to check ######
Key condition: If the dachshund's football fits in the box, Rule 1 applies (dachshund brings oil tank),
triggering Rule 2 (stork can't dance).
If the football doesn't fit, Rule 1 doesn't apply (no oil tank), so Rule 2 might not be triggered, allowing the
stork to dance.
########################

###### Analyze the football's dimensions and assumptions ######
The football has a radius of 15 inches.
Assuming it is a sphere, the diameter is 30 inches.
The problem uses ``radius'', so the football is treated as a sphere.
########################

###### Compare the football's size to the box ######
Diameter of football: 30 inches.
Box dimensions: 36.6 x 33.1 x 40.7 inches.
30 < 36.6 (length), 30 < 33.1 (width), 30 < 40.7 (height).
The football fits in the box in all dimensions.
########################

###### Apply Rule 1 based on the fit ######
Diameter (30 inches) is less than all box dimensions, so the football fits.
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By Rule 1, the dachshund brings an oil tank for the worm.
########################

###### Apply Rule 2 and conclude ######
Applying Rule 2: since at least one animal (the dachshund) brings an oil tank, the stork does not dance with
the butterfly.
########################

###### Extract the final answer ######
Thus, the final answer is disproved .
########################

MLR Output (low-level) - BoardGameQA (Hard)
Problem:
A few players are playing a boardgame. The current state of the game is as follows. The dachshund has a
football with a radius of 15 inches. And the rules of the game are as follows. Rule1: If the dachshund has a
football that fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for the worm. Rule2:
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly. Based
on the game state and the rules and preferences, does the stork dance with the butterfly?

Solution:
###### Recap the problem and rules ######
Okay, let's try to figure out whether the stork dances with the butterfly based on the given rules and the current
game state.

First, let's recap the information provided. The dachshund has a football with a radius of 15 inches. The rules
are:

If the dachshund's football fits in a 36.6 x 33.1 x 40.7 inches box, then the dachshund brings an oil tank for
the worm.
If at least one animal brings an oil tank for the worm, then the stork does not dance with the butterfly.
The question is whether the stork dances with the butterfly. To determine that, we need to check if any animal
(in this case, possibly the dachshund) brings an oil tank for the worm. If they do, then by Rule 2, the stork
won't dance. If not, then maybe the stork does dance.
########################

###### Identify the key condition to check ######
So, the key here is whether the dachshund's football fits into the specified box. If it does, then Rule 1 applies,
and the dachshund brings the oil tank, which triggers Rule 2, preventing the stork from dancing. If the football
doesn't fit, then Rule 1 doesn't apply, so the dachshund doesn't bring the oil tank, and Rule 2 might not be
triggered, allowing the stork to dance.
########################

###### Analyze the football's dimensions and assumptions ######
Now, let's focus on the football's dimensions. The football has a radius of 15 inches. Wait, a football is
typically an elongated shape, like a prolate spheroid, but maybe in this game, it's considered a sphere? The
problem mentions a radius, which is a term used for spheres. If it's a sphere with radius 15 inches, then the
diameter would be 30 inches (since diameter is twice the radius). However, if it's an American football shape,
the dimensions would be different. But since the problem specifies a radius, I think we can assume it's a
sphere here.
########################

###### Compare the football's size to the box ######
So, diameter of the football is 30 inches. Now, the box has dimensions 36.6 x 33.1 x 40.7 inches. To fit the
sphere inside the box, the sphere must fit in all three dimensions. That is, the diameter of the sphere must be
less than or equal to each of the box's dimensions.

Checking each dimension:

Length: 36.6 inches. The diameter is 30, which is less than 36.6. So okay.
Width: 33.1 inches. 30 is less than 33.1. Okay.
Height: 40.7 inches. 30 is less than 40.7. Okay.
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########################

###### Apply Rule 1 based on the fit ######
Since the diameter (30 inches) is less than all the box's dimensions, the football should fit inside the box.
Therefore, according to Rule 1, the dachshund brings an oil tank for the worm.
########################

###### Apply Rule 2 and conclude ######
Then, applying Rule 2: since at least one animal (the dachshund) brings an oil tank, the stork does not dance
with the butterfly.

Therefore, the answer is that the stork does not dance with the butterfly.
########################

###### Extract the final answer ######
Thus, the final answer is disproved .
########################

Long-horizon Reasoning Test Prompt Template
You are given multiple problems:

{Problem 1}

{Problem 2}

...

{Problem N}

Solve these problems in order. Please reason step by step for each problem, and at the end provide **all final
answers in a single JSON list**, where each answer is wrapped in `\boxed{}`. If you cannot solve a problem
, write `\boxed{N/A}` for that entry.

Output format:
```json
['\\boxed{answer1}', '\\boxed{answer2}', ..., '\\boxed{answerN}']
```

MLR (high-level only) Output
Problem:
Define
p =

∑∞
k=1

1
k2 and q =

∑∞
k=1

1
k3 . Find a way to write∑∞

j=1

∑∞
k=1

1
(j+k)3

in terms of p and q.

Solution:
###### Understanding the problem ######
The goal is to express
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}
\]
in terms of \( p \) and \( q \). The current stage involves understanding the problem and identifying the key
components to work with.
########################

###### Recall the definitions of \( p \) and \( q \ ######
\( p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \) and \( q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \) are defined as
the sums of the reciprocals of squares and cubes, respectively.
########################
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###### Identify the desired expression ######
The desired expression is:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}
\]
This is the sum of the reciprocals of the fourth powers of the sums of \( j \) and \( k \), from \( j = 1 \) to \(
j = \infty \) and from \( k = 1 \) to \( k = \infty \).
########################

###### Consider symmetry and possible simplifications ######
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The symmetry between \(j\) and \(k\)
suggests potential simplifications or transformations. The current stage is focusing on identifying the key
components and considering symmetry to simplify the expression.
########################

###### Attempt to express the sum in terms of \( p \) and \( q \ ######
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The current stage is attempting to express this
sum in terms of \( p \) and \( q \), which are defined as \(\sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(\sum
{k=1}ˆ\infty \frac{1}{kˆ3}\), respectively. The goal is to find a relationship between these sums and the
given expression.
########################

###### Recall known results for symmetric sums ######
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The goal is to express this sum in terms of \(p
\) and \(q\), where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{k
ˆ3}\). The current stage is exploring known results for symmetric sums and potential simplifications.
########################

###### Attempt to simplify using known results ######
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) involves summing the
reciprocals of the fourth powers of the sums of \(j\) and \(k\). The current stage is attempting to simplify
this expression using known results for symmetric sums, focusing on possible relationships with \(p\) and \(
q\).
########################

###### Consider using known results for symmetric sums ######
The expression \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) is being considered in terms of
\(p\) and \(q\), where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{k
ˆ3}\). The goal is to find a relationship between \(p\) and \(q\) and the given sum.
########################

###### Recall the identity for the sum of reciprocals of squares ######
The identity for the sum of reciprocals of squares is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ2} = p
\]
where \( p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \).
########################

###### Recall the identity for the sum of reciprocals of cubes ######
The identity for the sum of reciprocals of cubes is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ3} = q
\]
where \( q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \).
########################

###### Recall the identity for the sum of reciprocals of fourth powers ######
The identity for the sum of reciprocals of fourth powers is:
\[
\sum {k=1}ˆ\infty \frac{1}{kˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
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where \( p = \sum {k=1}ˆ\infty \frac{1}{kˆ2} \) and \( q = \sum {k=1}ˆ\infty \frac{1}{kˆ3} \).
########################

###### Apply the identity to the given sum ######
The given sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(
p\) and \(q\) using the identity:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
########################

###### Verify the result with a specific example ######
The given sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(
p\) and \(q\) using the identity:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

###### Alternative approach using generating functions ######
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

###### Review the result for potential simplifications ######
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).
########################

###### Finalize the answer ######
The sum \(\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4}\) can be expressed in terms of \(p\)
and \(q\) as:
\[
\sum {j=1}ˆ\infty \sum {k=1}ˆ\infty \frac{1}{(j+k)ˆ4} = \frac{p}{2} + \frac{1}{4}q
\]
where \(p = \sum {k=1}ˆ\infty \frac{1}{kˆ2}\) and \(q = \sum {k=1}ˆ\infty \frac{1}{kˆ3}\).

Thus, the final answer is
1

2
p+

1

4
q .

########################

Plan-and-Solve Prompt
Q: Let x, y and z be positive real numbers that satisfy the following system of equations:

log2

(
x
yz

)
= 1

2

log2
(

y
xz

)
= 1

3

log2

(
z
xy

)
= 1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers. Find m+ n.

A: Let's first understand the problem, extract relevant variables and their corresponding numerals, and
make a complete plan. Then, let's carry out the plan, calculate intermediate variables (pay attention
to correct numerical calculation and commonsense), solve the problem step by step, and show the
answer.
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Output:
Given:

log2

(
x
yz

)
= 1

2

log2
(

y
xz

)
= 1

3

log2

(
z
xy

)
= 1

4

The value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers.

Plan:
1. Convert each logarithmic equation to its exponential form.
2. Use properties of exponents and logarithms to simplify the expressions.
3. Combine like terms and solve for the values of x, y, and z.
4. Substitute these values into the expression

∣∣log2(x4y3z2)
∣∣.

5. Simplify this expression to find
∣∣log2(x4y3z2)

∣∣.
6. Express it as a fraction m

n
with m and n being relatively prime.

7. Find m+ n.

Calculation:

#### Step 1: Convert each logarithmic equation to its exponential form

From the given equations, we have:
x = 21/2yz

y = 21/3xz

z = 21/4xy

#### Step 2: Use properties of exponents and logarithms to simplify the expressions

We can rewrite each equation using the property of exponents:
x =
√
2yz

y = 3
√
2xz

z = 4
√
2xy

#### Step 3: Solve for the values of x, y, and z

Multiply all three equations together:
(
√
2yz)( 3

√
2xz)( 4

√
2xy) = (

√
2)( 3
√
2)( 4
√
2)xyz2

This simplifies to:
x2y2z2 =

√
2( 3
√
2)( 4
√
2)

Since (
√
2)( 3
√
2)( 4
√
2) = 2(1/2+1/3+1/4) = 2(6+4+3)/12 = 213/12, we get:

x2y2z2 = 213/12

Taking the square root on both sides:
xyz = 213/24

Now, substitute back to find individual values:
x =
√
2yz

y = 3
√
2xz

z = 4
√
2xy

#### Step 4: Substitute these values into the expression
∣∣log2(x4y3z2)

∣∣
Substitute x =

√
2yz into x4y3z2:

x4y3z2 = (
√
2yz)4(yz)3(z)2 = 22(y4z4)y3z2 = 4(y4z4)y3z2 = 4(y7z6)

So,
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∣∣x4y3z2
∣∣ = 4(y7z6)

Using the earlier result xyz = 213/24, we know:

y7z6 =
(

213/24

x

)7

·
(

213/24

y

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Simplifying further:

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

=
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Finally:∣∣x4y3z2
∣∣ = 4(y7z6) = 4

(
213/24√

2yz

)7

·
(

213/24

3√2xz

)6

= 4
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

= 4
(

213/24√
2yz

)7

·
(

213/24

3√2xz

)6

Therefore:∣∣log2(x4y3z2)
∣∣ = log2(4) = 2

Thus:∣∣log2(x4y3z2)
∣∣ = 2

1

### Answer:
m = 2, n = 1
m+ n = 2 + 1 = 3

The final answer is 3 .
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