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Abstract

Latent variables (LVs) play a crucial role in encoder–decoder models by enabling
effective data compression, prediction, and generation. Although their theoretical
properties, such as generalization, have been extensively studied in supervised
learning, similar analyses for unsupervised models such as variational autoen-
coders (VAEs) remain insufficiently explored. In this work, we extend information-
theoretic generalization analysis to vector-quantized (VQ) VAEs with discrete
latent spaces, introducing a novel data-dependent prior to rigorously analyze the
relationship among LVs, generalization, and data generation. We derive a novel
generalization error bound of the reconstruction loss of VQ-VAEs, which depends
solely on the complexity of LVs and the encoder, independent of the decoder.
Additionally, we provide the upper bound of the 2-Wasserstein distance between
the distributions of the true data and the generated data, explaining how the regu-
larization of the LVs contributes to the data generation performance.

1 Introduction

Encoder–decoder (ED) models have demonstrated remarkable performance [23] in (un)supervised
tasks such as classification [2, 4] and data generation [39, 70], compressing input data into latent
variables (LVs) via an encoder. The success of ED models hinges on how effectively the encoder can
represent essential features of the input in LVs, stimulating analyses of the relationship between LVs
and ED model performance, as well as developing algorithms designed to appropriately control LVs.

In supervised learning, the information bottleneck (IB) hypothesis [67, 60] has gained significant
attention for proposing that minimizing the mutual information (MI) between input data and LVs
enhances generalization by ensuring LVs retain the minimal information necessary for prediction.
This hypothesis has motivated numerous learning algorithms for deep neural networks and empirical
studies exploring their performance [66, 61, 56, 22, 1, 2]. Moreover, theoretical research about how
LVs contribute to generalization has been actively pursued [71, 28, 38, 72] within the IB hypothesis.
Recently, Sefidgaran et al. [57] has highlighted the limitations of these analyses, particularly in
terms of assumptions and the sample complexity represented by the MI. To address these limitations,
they proposed extending the supersample setting of information-theoretic (IT) analysis [63]. Their
approach induces a symmetric, data-dependent prior over LVs that facilitates rigorous analysis, which
successfully characterizes generalization performance using the Kullback–Leibler (KL) divergence
between the posterior distribution of the LVs and this prior. These results suggest that, by carefully
constructing the data-dependent prior distribution, we can obtain a decoder-independent bound,
which illustrates clearly how LVs contribute to the generalization for ED models in classification.
Their analysis has recently been extended to multi-view learning settings [58, 59].

LVs play a key role in deep generative models for unsupervised learning tasks such as data compres-
sion and generation. For example, variational autoencoders (VAEs) [39] are trained by optimizing an

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



objective function that includes the KL divergence of the posterior from the prior in the LV space as a
regularization term. Extended methods such as β-VAE [34] highlight the importance of appropriately
tuning the strength of KL regularization to improve LV representations. Additionally, methods like
vector-quantized VAEs (VQ-VAEs) [70], which discretize the latent space, have been developed to
address posterior collapse. Numerous empirical studies have also evaluated model performance based
on the MI, such as the IB hypothesis and rate-distortion theory [3, 9, 69, 12].

In contrast to supervised learning, theoretical insights into the relationship between the generalization
of ED models and LVs in unsupervised learning remain limited. Although Chérief-Abdellatif et al.
[13] has employed probably approximately correct (PAC) Bayes analysis [47, 6] to investigate the
generalization error defined in terms of reconstruction loss, they consider the posterior and prior
distributions over the encoder and decoder parameters. Similarly, Epstein & Meir [19] focused on
the complexity of encoder and decoder parameters to analyze the generalization capability. Therefore,
these studies lack the analysis of the relationship between LVs and generalization capability. Mbacke
et al. [46] attempted to address this problem by deriving PAC-Bayes bounds based on the KL
divergence within prior and posterior distributions over LVs; however, their analysis relies on the
impractical assumption that decoders are not trained, leaving significant challenges in achieving a
practical understanding of the role of LVs in generalization performance.

To address these challenges, we provide the first rigorous theoretical analysis of the relationship among
LVs, generalization, and data generation in ED models, with a focus on VQ-VAEs [70]. Motivated by
Sefidgaran et al. [57], we construct a data-dependent prior over LVs using the supersample setting
from IT analysis [63, 30, 32]. This approach yields a generalization error bound for the reconstruction
loss, characterized by the KL divergence between the prior and the posterior over LVs (Theorem 2).
Similar to Sefidgaran et al. [57], our bound remains independent of decoder complexity even when
the encoder and decoder are trained jointly, underscoring the critical role of designing the encoder
network for the generalization.

However, we observe that the bound based on the supersample setting does not necessarily converge
to 0 asymptotically with respect to the number of samples. To address this issue, we extend the super-
sample framework by introducing a novel data-dependent prior, called the permutation symmetric
prior distribution, which explicitly accounts for the inherent symmetries specific to unsupervised
learning tasks (Theorem 3). This formulation enables us to derive a generalization error bound that
asymptotically converges to 0 as the number of samples increases and is independent of the decoder.

Finally, we investigate the data generation capability of VQ-VAEs by deriving the upper bound on the
2-Wasserstein distance between the true data and the generated data distributions (Theorem 5). Our
analyses reveal that the generalization and data-generating capabilities of VQ-VAEs depend solely on
the parameters of the encoder and LVs, remaining entirely independent of the decoder.

2 Background

In this section, we introduce the VQ-VAE and define the reconstruction-based generalization error,
which forms the basis of our analysis (Sections 2.1 and 2.2). We then present the IT analysis using
supersamples (Section 2.3), highlighting its limitations in unsupervised settings (Section 2.4).

Notations: We use uppercase letters for random variables and lowercase letters for their realizations.
The distribution of X is denoted by p(X), and the conditional distribution of Y given X by p(Y |X).
Expectations are written as Ep(X) or EX . The MI and conditional MI (CMI) are denoted by I(X;Y )
and I(X;Y |Z), respectively. The KL divergence from p(X) to p(Y ) is written as KL(p(X)∥p(Y )).
For a ∈ N, we define [a] := {1, . . . , a}.

2.1 VQ-VAE and its stochastic extensions

Let X ⊂ Rd denote the data space, and assume an unknown data-generating distribution D. The
latent space is represented as Z ⊂ Rdz , where both X and Z are equipped with the Euclidean metric
∥ · ∥. The discrete latent space comprises K distinct points, collectively referred to as the codebook,
denoted by e = {ej}Kj=1 ∈ ZK , which are learned from the training data.

The VQ-VAE model consists of the encoder networkfϕ : X → Z and the decoder network gθ : Z →
X responsible for (i) data compression and (ii) reconstruction, where ϕ ∈ Φ ⊂ Rdϕ and θ ∈ Θ ⊂Rdθ
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denote the parameters of the encoder and decoder, respectively. In the compression phase, a data
point x is mapped to fϕ(x), and the discrete representation ej is selected from the codebook e. Then,
the posterior distribution of the discrete representation indexed by j is denoted as q(J = j|e, ϕ, x)
for all j = 1, . . . ,K. In the original VQ-VAE [70], the following deterministic posterior is used:

q(J = j|e, ϕ, x) =
{

1 for j = argmink∈[K] ∥fϕ(x)− ek∥,
0 otherwise,

(1)

where the distance between the encoder output and the codebook entries determines the posterior.
Recent extensions of VQ-VAE [82, 62, 55, 64] introduce a stochastic posterior defined by

q(J = j|e, ϕ, x) ∝ exp
(
−β∥fϕ(x)− ej∥2

)
, (2)

where a softmax is applied over codebook indices, and the temperature parameter β ∈ R+ controls
the level of stochasticity. The data is then reconstructed by passing the selected latent representation
eJ=j through the decoder, resulting in gθ(eJ=j). The fidelity of the reconstruction to the original
input is measured by the reconstruction loss, defined as l(x, gθ(eJ=j)), where l : X × X → R+.

2.2 Generalization error based on reconstruction loss

Hereafter, let the set of parameters be denoted as W := {e, ϕ, θ} ∈ W (:= ZK × Φ × Θ).
Given the training dataset S = (S1, . . . , Sn) ∈ Xn consisting of independently and identically
distributed (i.i.d.) data points sampled from the data distribution D, these parameters are learned
jointly using a randomized algorithm A : Xn →W that minimizes the reconstruction loss between a
data point x and a reconstructed data gθ(ej), i.e., l(x, gθ(ej)). Consequently, the learned parameters
e, ϕ, θ follow the conditional distribution q(e, ϕ, θ|S). For simplicity, we define the expected recon-
struction loss for an input x and w as l0 :W ×X → R, where l0(w, x) := Eq(J|e,ϕ,x)[l(x, gθ(eJ))].
In this study, we consider the squared distance as l. Accordingly, our objective is to minimize
l0(w, x) := Eq(J|e,ϕ,x)[∥x− gθ(eJ)∥2] over the training dataset x ∈ S. We introduce the following
assumption about the data space imposed on our analysis.

Assumption 1. There exists a positive constant ∆ such that supx,x′∈X ∥x− x′∥ < ∆1/2.

This assumption ensures that the reconstruction loss l(x, gθ(ej)) is bounded by ∆ for all x, ej , and θ.

Our goal is to theoretically characterize the relationship between generalization performance and LVs
in VQ-VAEs. To this end, we analyze the following generalization error:

gen(n,D) :=
∣∣∣ES,XEq(W |S)l0(W,X)− 1

n

n∑
m=1

l0(W,Sm)
∣∣∣, (3)

where the first term denotes the expected test reconstruction loss, and the second term is the empirical
training loss. Following the success of Sefidgaran et al. [57], we also consider analyzing Eq. (3)
under the IT analysis framework with the supersample (or ghost sample) setting [63, 30, 32].

2.3 Supersample settings for IT analysis

Now, we introduce the supersample setting for IT analysis. We begin by defining a supersample
X̃ ∈ Xn×2 as an n× 2 matrix containing 2n data points drawn i.i.d. from D. Each row m ∈ [n] of
this matrix, denoted X̃m, represents a pair of data points: (X̃m,0, X̃m,1). We then generate a random
binary vector U = (U1, . . . , Un) ∼ Uniform({0, 1}n), which is independent of X̃ . This index vector
U determines the training and test sets by selecting exactly one sample from each row. The training
dataset is formed as X̃U := (X̃m,Um)nm=1, and the test dataset is composed of the remaining sample
from each pair, X̃Ū := (X̃m,Ūm

)nm=1, where Ūm = 1− Um. After training a model W = A(X̃U ),
we define the loss matrix l0(W, X̃) by evaluating the loss l0(W, ·) on all 2n data points in the original
supersample matrix X̃ . This results in an n × 2 matrix of loss values. This distinction between
the n-point training set and the 2n-point loss evaluation matrix is a key concept for the subsequent
analysis. The IT analysis of Eq. (3) under the supersample setting gives the following result.
Theorem 1 (Hellström & Durisi [32]). Under Assumption 1 and the supersample setting, we have

gen(n,D) ≤ ∆

√
2I(l0(W, X̃);U |X̃)/n. (4)
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J̃e, ϕU
J̃e, ϕU

Figure 1: Graphical models illustrating different dependency structures for LVs. The left panel shows
the structure considered in the standard supersample setting (Theorem 1). The right panel depicts our
proposed structure tailored for unsupervised learning. See Appendix B.3 for further details.

The complete proof is provided in Appendix C. We refer to this bound as the basic IT-bound, as
it arises from the direct application of existing IT analysis [32] developed for supervised learning.
Unfortunately, we find that the basic IT-bound is insufficient to fully understand the role of LVs in
the generalization performance of VQ-VAE. The next section elaborates on this limitation.

2.4 Limitation of the direct application of IT analysis

The limitation of the basic IT-bound is that it does not offer a clear interpretation of how the LVs
contribute to the generalization performance independently of other random variables. Specifically,
let J̃ denote the random variable that follows the distribution q(J̃ |e, ϕ, X̃), which is defined by
applying q(J |e, ϕ, ·) elementwise to X̃ . With this definition, we can upper bound Eq. (4) as

I(l0(W, X̃);U |X̃) ≤ I(θ;U |X̃) + I(J̃ ;U |X̃, θ). (5)

See Appendix C.2 for the proof. This result implies that the generalization of VQ-VAE can be
bounded by the CMI related to the decoder parameter θ and the selected index J̃ . Note that selecting
J corresponds to selecting an LV eJ from the codebook. Therefore, the second term above illustrates
how LVs contribute to generalization. However, since conditioning on θ is taken, it does not allow
the independent analysis of eJ and θ. This dependence hinders a precise theoretical analysis of how
LVs affect generalization performance.

We can better understand this difficulty by considering how IT-based generalization analysis is
typically formulated: it is framed as the problem of inferring which samples were used for training,
given a random supersample index, U , that determines the shuffling of the dataset. The randomness
introduced by this shuffling is governed by the design of the prior, which plays a central role in
applying the Donsker–Varadhan inequality to derive an upper bound on the generalization error.
In the basic IT-bound (Theorem 1), shuffling via U leads to randomly altering the training dataset,
producing a bound that jointly depends on both model parameters and LVs, thereby entangling θ and
J . This illustrates that a straightforward extension of standard IT analysis is insufficient to isolate the
contribution of LVs to generalization, motivating the development of a new analytical framework.

3 Proposed IT analysis under supersamples and its limitations

In this section, we first present the results of our generalization analysis for VQ-VAE (Section 3.1).
We then offer a detailed interpretation of the resulting generalization error bound and discuss its
limitations (Section 3.2). All corresponding proofs are provided in Appendix D.

3.1 Our supersample setting and result

As discussed in Section 2.4, the naive application of the existing supersample setting in IT analysis is
insufficient to capture the role of LVs. To address this limitation, we introduce posterior and prior
distributions over J that explicitly encode the dependence between the supersample index U and the
LVs, on the basis of the approach of Sefidgaran et al. [57].

To this end, we define the following posterior distributions based on both X̃U and X̃Ū :
q(J|e, ϕ, X̃U ) :=

∏n
m=1 q(Jm|e, ϕ, X̃m,Um

) and q(J̄|e, ϕ, X̃Ū ) :=
∏n
m=1 q(J̄m|e, ϕ, X̃m,Ūm

). For
notational simplicity, we write QJ,U := q(J|e, ϕ, X̃U ). We then define the following joint distribution
to capture the dependence of the LVs on both X̃U and X̃Ū : QJ̃,U

:= q(J̄|e, ϕ, X̃Ū ) · q(J|e, ϕ, X̃U ).
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Figure 2: The behavior of the generalization gap on the MNIST dataset when increasing the number
of residual blocks to enlarge the decoder dimension dθ (K = 128, dz = 64). See Appendix G for
detailed experimental settings.

We consider two types of prior distribution to facilitate the analysis of VQ-VAEs: a data-independent
prior P and a data-dependent prior QJ̃ defined as

P :=

n∏
m=1

π(Jm|e, ϕ), and QJ̃
:= EUQJ̃,U = EUq(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ), (6)

where π(Jm|e, ϕ) denotes an arbitrary distribution over LVs that is independent of both X̃ and the
supersample index U . For the data-dependent prior, we adopt the supersample setting specifically
tailored to the LVs. The basis for introducing both types of prior is discussed following the main
theorem. Figure 1 illustrates the distinction in LV dependencies between the conventional supersample
setting (as used in Theorem 1) and our approach. The central idea is to apply supersample-based
shuffling to the LVs directly. Under these settings, the following is our main result.

Theorem 2. Under Assumption 1 and the supersample setting, we have

gen(n,D) ≤ 2∆

√
EX̃,UEq(e,ϕ|X̃U )(KL(QJ,U∥P) + KL(QJ̃,U∥QJ̃))

n
+

∆√
n
. (7)

The upper bound comprises two distinct complexity terms. The first, KL(QJ,U∥P), captures the
complexity of the LVs. The second, KL(QJ̃,U∥QJ̃), reflects the complexity of the LVs and the degree
of overfitting when learning parameters e and ϕ, as we will further discuss in Section 3.2.

Consistent with the findings of Sefidgaran et al. [57], our bound is independent of the decoder
gθ. This indicates that increasing the complexity of gθ has a limited effect on the generalization
performance. Our empirical results support this implication. Figure 2 shows that adding a single
ResBlock—introducing approximately 74, 000 additional parameters—has a negligible effect on the
generalization gap. Furthermore, Table 3 in Appendix G shows the corresponding training losses.
For larger sample sizes (n ≥ 1000), the training loss tends to decrease as the decoder becomes more
complex, confirming its enhanced ability to fit the training data. Critically, despite this improved
expressiveness, the generalization gap remains largely unaffected. This strongly suggests that the key
to improving generalization lies not in the decoder’s capacity, but in the complexity of the encoder
and the LVs. Further experiments across various datasets and decoder architectures in Appendix G
reinforce this observation.

We emphasize that our results do not imply that the decoder is unimportant. Although our gener-
alization bound is independent of decoder complexity, a sufficiently expressive decoder is still
required to fit the training data. Otherwise, the test loss may remain high since Test Loss ≤
Training Loss + Generalization Gap. Our analysis specifically focuses on bounding the general-
ization gap, under the implicit assumption that the decoder can adequately fit the training data. In
practice, this suggests that improving generalization in VQ-VAEs hinges more on careful encoder
design, since overly complex encoders can increase the KL divergence of the LVs. We discuss this
point further in Section 6.

Why two types of prior are required: Our proof reveals that isolating the LVs from the decoder
parameter and obtaining a decoder-independent generalization bound requires the prior to satisfy two
essential conditions: (A) it allows random shuffling without changing the LV distribution, and (B)

5



it supports a swap between training and test samples to assess overfitting. From this perspective,
the shuffling induced by U in the basic IT-bound (Theorem 1) satisfies condition (B) but violates
condition (A), as it changes the distribution of LVs. To address this issue, the proof of Theorem 2
decomposes the generalization gap into two components: the term associated with condition (A),
which is controlled using a data-independent prior P, and the term associated with condition (B),
which is controlled using a data-dependent prior QJ̃. By combining both priors, we can derive the
final upper bound in Eq. (7). For a detailed explanation, see Appendices B.3 and D.1.
Remark 1. When K = 1, VQ-VAEs map all input data to the same LV, effectively estimating the
low-dimensional mean of the data distribution. In this case, the generalization error should not
depend on the decoder. It is straightforward to show—without using our IT-based analysis—that
gen(n,D) = O(1/

√
n). Notably, our bound in Eq. (7) correctly reflects this behavior, as the square

root term vanishes when K = 1 (see Appendix C.3 for details).

3.2 Further analyses of our bound and limitations on convergence

In this section, we further analyze the properties of the two KL divergence terms in Theorem 2 and
discuss their asymptotic behavior as the sample size n increases.

Regarding KL(QJ̃,U∥QJ̃)): We can derive the following upper bound:

EX̃,UEq(e,ϕ|X̃U )KL(QJ̃,U∥QJ̃) ≤ I(e, ϕ;U |X̃) + I(J̃;U |e, ϕ, X̃). (8)

Since X̃U = S, the data processing inequality implies that I(e, ϕ;U |X̃) ≤ I(e, ϕ;S). This quantity
captures how much information about the training data is retained in the encoder, thereby reflecting
the degree of overfitting of the encoder parameters. The term I(J̃;U |e, ϕ, X̃) can be viewed as a
regularization term for the LVs, analogous to the IB hypothesis; see Appendix D.6 for further details.

Next, we investigate whether each term in Eq. (8) exhibits asymptotic convergence as the sample size
n increases, which is a key requirement for a valid generalization error bound. We begin by analyzing
the asymptotic behavior of I(J̃;U |e, ϕ, X̃).
Lemma 1. Let the posterior distribution over J be deterministic as defined in Eq. (1), and we denote
the composition of this mapping with the encoder fϕ by f ′e,ϕ : X → [K]. If the function class to
which f ′e,ϕ belongs has a finite Natarajan dimension, then I(J̃;U |e, ϕ, X̃)/n = O(log n/n).

This result implies that if the encoder is appropriately regularized, the quantity I(J̃;U |e, ϕ, X̃)/n
converges asymptotically to zero. We also empirically evaluated this term in practical settings (see
Appendix G) and observed that it indeed decreases as the sample size n increases.

Next, the CMI term I(e, ϕ;U |X̃) has been extensively analyzed under the standard supersample
setting of IT analysis [63]. Prior works have established its asymptotic convergence through various
approaches, including algorithmic stability [63], analyses of specific optimization methods such as
stochastic gradient descent (SGD) [78] and stochastic gradient Langevin dynamics (SGLD) [20], and
complexity-based arguments using covering numbers [83], all showing that I(e, ϕ;U |X̃)/n → 0
as n→∞. In conclusion, the term EX̃,UEq(e,ϕ|X̃U)KL(QJ̃,U∥QJ̃))/n can be shown to converge
asymptotically under certain algorithmic conditions. For a detailed discussion, see Appendix D.8.

Regarding KL(QJ,U∥P): This term can be rewritten as KL(QJ,U∥P)/n =
1
n

∑n
m=1 KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ)), where the training data is selected via U , i.e.,

X̃U = S = (S1, . . . , Sn). This quantity corresponds to the empirical KL divergence, which also
appears in the analysis of Mbacke et al. [46], and reflects the complexity of the LVs. Such a term is
commonly used as the regularization term appearing in many VAE training procedures [39, 33, 64].

A key factor in minimizing KL(QJ,U∥P) is the choice of the prior P. In VQ-VAEs, a uniform distri-
bution is typically adopted [64]; however, is this choice optimal for minimizing the KL divergence?
The following lemma addresses this question.
Lemma 2. Assume that for any fixed training dataset S = (s1, . . . , sn) and any permuta-
tion τ , the posterior satisfies permutation invariance, i.e., q(e, ϕ, θ|S) = q(e, ϕ, θ|Sτ ), where
Sτ = (sτ1 , . . . , sτn). Then, the optimal prior that minimizes ESEq(e,ϕ|S)KL(QJ,U∥P) is

6



Figure 3: The behavior of the generalization gap and the two KL terms from Eq. (7) on the MNIST
dataset (K = 128, dz = 64). The three leftmost panels show the asymptotic behavior of the
generalization gap, the first KL term, and the second KL term as a function of sample size n. The two
rightmost panels show scatter plots correlating the generalization gap with the first KL term (fourth
panel) and the second KL term (fifth panel). In these plots, the color indicates the number of decoder
Residual Blocks (RB=2, 3, 4, or 5) and the marker shape indicates the sample size n. (Circle for
n = 250, Square for n = 1000, Diamond for n = 2000, and Triangle for n = 4000).

given by P∗ =
∏n
m=1 Eq(Sm|e,ϕ)q(Jm|e, ϕ, Sm). Moreover, under this prior, we obtain

ESEq(e,ϕ|S)KL(QJ,U∥P∗) =
∑
m I(Jm;Sm|e, ϕ).

This connection provides insight into the choice of prior distributions in practical implementations—
for instance, encouraging the use of mixture priors similar to the VampPrior [68] (see Appendix D.2
for further discussion). We also note that the assumption in Lemma 2, namely permutation invariance
of the posterior, is standard in the analysis of randomized algorithms [42], and is satisfied by
commonly used training methods such as SGD and SGLD [81].

Next, we present the asymptotic behavior of the empirical KL divergence term as follows:
Lemma 3. Suppose the assumptions in Lemma 1 hold. Then, even under the optimal prior P∗ given
in Lemma 2, we have ESEq(e,ϕ|S)KL(QJ,U∥P∗)/n = O(1).

This result indicates that asymptotic convergence cannot be achieved, even when using the optimal
prior P∗, which minimizes KL(QJ,U∥P), to regularize the complexity of the encoder. Our empirical
results provide validation for this theoretical finding. As shown in Figure 3 (left and middle panels),
the first KL term, KL(QJ,U∥P)/n, does not decrease as the sample size n increases, confirming the
behavior predicted by Lemma 3 (see Appendix G.4 for additional experimental results). Furthermore,
the right two panels of Figure 3 illustrate the relationship between these terms. The second KL
term exhibits a consistent positive correlation (r ≈ 0.46-0.60) with the generalization gap across all
tested decoder complexities. This suggests that the second KL term is the component that effectively
captures generalization behavior. Conversely, the non-converging first KL term, KL(QJ,U∥P)/n,
shows a negative correlation, indicating it does not track generalization performance. This experiment
empirically justifies our motivation to introduce the new permutation symmetric setting in Section 4
to eliminate this non-converging and poorly correlated term.

In the supervised learning context, it has similarly been observed that empirical KL terms analogous
to KL(QJ,U∥P)/n do not necessarily converge, even for models that generalize well [21, 57]. Our
findings are consistent with these results.
Remark 2. Even when the posterior of J is defined by Eq. (2), a comparable upper bound on the KL
regularization term can still be derived by analyzing the encoder’s complexity via metric entropy. For
further details, see Section 4.2 and Appendix E.4.

4 Proposed IT analysis under the new permutation symmetric setting

The observations presented in the previous section motivate the derivation of a generalization error
bound that avoids explicit dependence on KL(QJ,U∥P). We conjecture that the appearance of this
term in Theorem 2 arises from a fundamental limitation of the supersample setting, which necessitates
the use of a data-independent prior P (as defined in Eq. (6)) to satisfy the necessary conditions
(A) and (B) described in Section 3.1. To overcome this limitation, in this section, we introduce an
extension of the supersample framework—namely, a novel permutation symmetric setting. This new
setting enables the construction of a data-dependent prior that satisfies both conditions simultaneously,
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thereby yielding a generalization error bound that achieves asymptotic convergence. All the proofs of
this section are provided in Appendix E.

4.1 Permutation symmetric setting

To simultaneously satisfy the two conditions in Section 3.1, we propose randomly shuffling all 2n
data points in X̃ using a uniform distribution and taking their expectation as the data-dependent prior
distribution. By definition, this distribution is permutation-invariant, thereby satisfying conditions
(A) and (B), allowing us to obtain the improved bound.

Formally, let us denote a random permutation of [2n] as T = {T1, . . . , T2n}, where each permutation
appears with uniform probability, P (T) = 1/(2n)!. Given a supersample X̃ = (X̃1, . . . , X̃2n) ∈
X 2n, a set of 2n RVs drawn i.i.d. from D, we reorder the samples using T expressed as X̃T =
(X̃T1

, . . . , X̃T2n
). The first n samples (X̃T1

, . . . , X̃Tn
) are used for the test dataset and the remaining

n samples (X̃Tn+1
, . . . , X̃T2n

) are used for the training dataset. We further express T = {T0,T1},
and X̃T0

= (X̃T1
, . . . , X̃Tn

) and X̃T1
= (X̃Tn+1

, . . . , X̃T2n
) represent the test and training datasets,

respectively.

Given X̃ and T, we define the posterior distributions over the LVs of the test and train-
ing data, respectively, as q(J̄|e, ϕ, X̃T0

) :=
∏n
m=1 q(J̄m|e, ϕ, X̃Tm

), q(J|e, ϕ, X̃T1) :=∏n
m=1 q(Jm|e, ϕ, X̃Tn+m

). We then define the joint posterior distribution as QJ̃,T
:=

q(J̄|e, ϕ, X̃T0)q(J|e, ϕ, X̃T1).

Finally, we define our new data-dependent prior as

QJ̃
:= ETQJ̃,T = ETq(J̄|e, ϕ, X̃T0

)q(J|e, ϕ, X̃T1
). (9)

We refer to these settings as the permutation symmetric (supersample) setting. The following is
our main result.
Theorem 3. Under Assumptions 1 and the permutation symmetric setting, we have

gen(n,D) ≤ 3∆

√
EX̃,TEq(e,ϕ|X̃T1

)KL(QJ̃,T∥QJ̃)

n
+

∆√
n
.

Remark 3. Unlike the existing supersample setting, where {Um}s are independent, the elements of
T are dependent, which makes the analysis more complicated.

Explanation of Theorem 3: Similar to Theorem 2, this bound is independent of the decoder gθ.
The key difference is that the empirical KL term, KL(QJ,U∥P), is eliminated owing to our new
data-dependent prior distribution QJ̃. The proposed permutation satisfies both conditions (A) and
(B) in Section 3.1, eliminating the need for a data-independent prior P.

Next, we analyze the KL term in the bound. Similar to Eq. (8), we have

EX̃,TEq(e,ϕ|X̃T1
)KL(QJ̃,T∥QJ̃) ≤ I(e, ϕ;T|X̃) + I(J̃;T|e, ϕ, X̃).

Since X̃T1
corresponds to the training dataset S, I(e, ϕ;T|X̃) ≤ I(e, ϕ;S) holds. Then, we can

show that our generalization bound becomes

gen(n,D) ≤ 3∆

√
I(e, ϕ;S) + I(J̃;T|e, ϕ, X̃)

n
+

∆√
n
. (10)

Our bound consists of the complexity of LV (I(J̃;U |e, ϕ, X̃)) and the overfitting caused by learning
the encoder parameters (I(e, ϕ;S)) similar to Theorem 2. This implies the two key factors identified
in Theorem 2 of Kawaguchi et al. [38]: how much information the LV retains from the input data and
how much information from the training dataset is used to train the encoder.

As discussed in Section 3.2, when using a sufficiently regularized deterministic encoder, f ′e,ϕ : X →
[K], the CMI term satisfies I(J̃;U |e, ϕ, X̃)/n = O(log n/n); see Appendix D.7 for details. The
parameter overfitting term can be controlled by specifying the training algorithm, as discussed in
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Section 3.2. Under these conditions, the generalization bound decreases as n→∞, meaning that
Theorem 3 successfully characterizes generalization.

Comparison with Theorem 2: Although Theorem 3 shares a similar structure with Theorem 2, it
introduces a refined shuffling strategy with T, which resolves the issues of the supersample settings
as discussed in Section 3.2. This shuffling is based on the fact that the marginal distribution of the
dataset, which is invariant under permutation, can be expressed by the LV model. This new symmetry
allows defining a data-dependent prior that satisfies necessary conditions while preserving decoder
independence. On the other hand, the shuffling in Theorem 2 is based on the supersample setting and
suitable for supervised learning, where overfitting is measured by swapping test and training data
points. Practically, however, Theorem 2 relies on an n-dimensional variable, U (with independent
components), which facilitates CMI estimation and algorithm design. In contrast, Theorem 3 uses a
2n-dimensional variable, T (with dependent components), which is theoretically more preferable but
more difficult to estimate the CMI.

4.2 Generalization bound based on metric entropy

When using a softmax distribution in Eq. (2) for J , we show that the generalization bound is governed
by the metric entropy under the permutation symmetric setting. Consequently, it does not require
specifying a learning algorithm, which is required to discuss the convergence of Theorem 3 and
provides a uniform convergence bound that depends solely on the function class of the encoder.

LetF be the encoder function class equipped with the metric ∥·∥∞. Given xn := (x1, . . . , xn) ∈ Xn,
define the pseudo-metric dn on F as dn(f, g) := maxi∈[n] ∥f(xi) − g(xi)∥∞ for f, g ∈ F . The
δ-covering number of F with respect to dn is denoted as N (δ,F , xn), and we define N (δ,F , n) :=
supxn∈Xn N (δ,F , xn).

Theorem 4. Assume that there exists a positive constant ∆z such that supz,z′∈Z ∥z − z′∥ < ∆z .
Then, when using Eq. (2) and under the same setting as Theorem 3, for any δ ∈ (0, 1], we have

gen(n,D) ≤ 4∆
√

2βnδ∆z + 3∆

√
2 logN (δ,F , 2n)

n
+

∆√
n
.

We note that the parameter overfitting term does not appear in the bound. Since the encoder is
parameterized by ϕ ∈ Rdϕ , the metric entropy is O(dϕdz log(1/δ)) [74]. Setting δ = O(1/n) gives

gen(n,D) = O
(√

dϕdz log n/n
)

. This result suggests that regularizing the complexity of the
encoder improves generalization, whereas the complexity of the decoder has limited influence on the
generalization. See Appendix E.3 for the proof and further discussion.

5 IT analysis for data generation performance

Mbacke et al. [46] provided statistical guarantees for the generalization error and data generation
performance of VAEs, albeit under the strong assumption of an untrained decoder. Building on their
approach, we provide a theoretical guarantee for the data generation performance of VQ-VAEs from
an IT analysis perspective when both the encoder and decoder are trained jointly.

We first briefly summarize the data generation process in VQ-VAEs. After training, new data is
generated by sampling an index J from a prior distribution, π(J |e, ϕ), often chosen as a uniform
distribution [64], and using the decoder network gθ to reconstruct the corresponding latent representa-
tion eJ from the learned codebook e. Thus, the prior imposed on the latent representation is defined
as π(e = ej |e, ϕ) for all j = 1, . . . ,K, and the data distribution generated through this procedure
can be expressed as µ̂ := gθ#π(e|e, ϕ), where gθ#π denotes the pushforward of the distribution π
by the decoder network. See Appendix F for the formal definition.

The following is the result of our analysis on the data generation performance of VQ-VAEs.
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Theorem 5. Suppose that gθ is measurable for any θ, and Assumption 1 holds. Then, for any
data-independent prior π(J |e, ϕ) as defined in Eq. (6), we have ESEq(e,ϕ,θ|S)W 2

2 (D, µ̂) ≤ 2∆√
n
+

E
S

E
q(e,ϕ,θ|S)

[ 2
n

n∑
m=1

E
q(Jm|e,ϕ,Sm)

l(Sm, gθ(eJm)) + 4∆

√√√√ 2

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(J |e, ϕ))
]
,

whereW2(D, µ̂) is the 2-Wasserstein distance between the data distributionD and the generated-data
distribution µ̂.

The complete proof can be seen in Appendix F. The results indicate that the quality of approximating
D by µ̂ can be enhanced by minimizing the reconstruction loss and the KL regularization term on
LVs, which aligns with common training strategies for VQ-VAEs. Furthermore, this bound holds for
any prior that satisfies the conditions outlined in Theorem 2. Thus, designing a prior that reduces
this bound could lead to improved data generation accuracy. One potential approach is to use the
data-dependent prior defined in Eq. (9). Although this prior was originally designed to yield a tighter
generalization error upper bound, our experiments reveal that it also provides practical benefits for
the data generation task, consistently improving test performance over the baseline (see Table 4
in Appendix G). However, we do not claim this specific prior is optimal for minimizing the data
generation bound. We expect that our findings will stimulate further discussions on prior designs that
effectively improve the generalization performance and data generation capabilities of VQ-VAEs.

6 Conclusion and limitations

This work establishes decoder-independent generalization guarantees for VQ-VAEs. Across Theo-
rems 2 to 4, we show that the generalization gap is governed by the encoder parameters (e, ϕ) and the
induced LVs, while the decoder complexity (θ) plays a limited role. This central finding is empirically
supported by our extensive experiments (Appendix G.4).

Our theoretical analysis provides several actionable insights. The primary takeaway is that efforts to
improve generalization should prioritize the design and regularization of the encoder architecture
and LV complexity, rather than investing in an overly complex decoder. Furthermore, our work
provides the first formal justification for the widely used practice of KL-based regularization on
LVs (Theorems 2 and 5), confirming it functions as a valid regularizer for both generalization and
data generation. Finally, our framework highlights the importance of prior design. Our analysis,
in line with Sefidgaran et al. [57], shows how a data-dependent prior can improve performance.
Our experiments (Table 4) validate this, demonstrating that a learned prior, which approximates a
data-dependent prior, consistently outperforms the standard uniform prior in practice.

Limitation: Our findings have two main limitations, which point to important avenues for future
research. The first limitation is that the upper bound presented in Theorem 3 is challenging to compute
numerically, making it impractical as an evaluation metric at present (see Sections 3.2 and 4). This
difficulty stems from the CMI term in Eq. (10), where T is a 2n-dimensional dependent random
variable. Consequently, standard numerical evaluation methods for CMI cannot be directly applied.
Developing an alternative, computable bound is an essential next step. The second limitation is that
our analysis is currently justified only for VQ-VAEs, which are based on discrete LVs. Our proofs
rely on properties of discrete random variables (the codebook index J̃) and apply concentration
inequalities for each assignment. These proof techniques cannot be immediately applied to models
with continuous latent spaces, where such assignments are not available. While one may consider
forcibly discretizing a continuous latent space, the resulting discretization error is non-negligible and
would substantially affect the analysis. Extending our information-theoretic framework to continuous
settings is therefore a crucial and non-trivial step for future work.

Acknowledgments and Disclosure of Funding

We sincerely appreciate the anonymous reviewers for their insightful feedback. FF was supported by
JSPS KAKENHI Grant Number JP23K16948. FF was supported by JST, PRESTO Grant Number
JPMJPR22C8, Japan. MF was supported by KAKENHI Grant Number 25K21286, Japan.

10



References
[1] Achille, A. and Soatto, S. Information dropout: Learning optimal representations through

noisy computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12):
2897–2905, 2018. doi: 10.1109/TPAMI.2017.2784440.

[2] Achille, A. and Soatto, S. Emergence of invariance and disentanglement in deep representations.
In 2018 Information Theory and Applications Workshop (ITA), pp. 1–9, 2018. doi: 10.1109/
ITA.2018.8503149.

[3] Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., and Murphy, K. Fixing a broken
elbo. In International conference on machine learning, pp. 159–168. PMLR, 2018.

[4] Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep variational information bottleneck.
In International Conference on Learning Representations, 2017.

[5] Alon, N., Ben-David, S., Cesa-Bianchi, N., and Haussler, D. Scale-sensitive dimensions,
uniform convergence, and learnability. Journal of the ACM (JACM), 44(4):615–631, 1997.

[6] Alquier, P., Ridgway, J., and Chopin, N. On the properties of variational approximations of
Gibbs posteriors. Journal of Machine Learning Research, 17(236):1–41, 2016.

[7] Bartlett, P. L. and Maass, W. Vapnik-chervonenkis dimension of neural nets. The handbook of
brain theory and neural networks, pp. 1188–1192, 2003.

[8] Bendavid, S., Cesabianchi, N., Haussler, D., and Long, P. Characterizations of learnability
for classes of [0, ..., n)-valued functions. Journal of Computer and System Sciences, 50(1):
74–86, 1995. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1995.1008. URL https:
//www.sciencedirect.com/science/article/pii/S0022000085710082.

[9] Blau, Y. and Michaeli, T. Rethinking lossy compression: The rate-distortion-perception tradeoff.
In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.

[10] Blum, A. and Langford, J. Pac-mdl bounds. In Learning Theory and Kernel Machines:
16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,
Washington, DC, USA, August 24-27, 2003. Proceedings, pp. 344–357. Springer, 2003.

[11] Bolley, F. and Villani, C. Weighted csiszár-kullback-pinsker inequalities and applications to
transportation inequalities. Annales de la Faculté des Sciences de Toulouse, 14:331–352, 2005.
URL https://api.semanticscholar.org/CorpusID:18695658.

[12] Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. G. Deep generative modelling: A
comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
IEEE transactions on pattern analysis and machine intelligence, 44(11):7327–7347, 2021.

[13] Chérief-Abdellatif, B.-E., Shi, Y., Doucet, A., and Guedj, B. On pac-bayesian reconstruction
guarantees for vaes. In International conference on artificial intelligence and statistics, pp.
3066–3079. PMLR, 2022.

[14] Clarke, B. S. and Barron, A. R. Jeffreys’ prior is asymptotically least favorable under entropy
risk. Journal of Statistical Planning and Inference, 41:37–60, 1994.

[15] Cover, T. M. and Thomas, J. A. Elements of Information Theory. John Wiley & Sons, 2012.

[16] Daniely, A., Sabato, S., Ben-David, S., and Shalev-Shwartz, S. Multiclass learnability and the
erm principle. In Proceedings of the 24th Annual Conference on Learning Theory, pp. 207–232.
JMLR Workshop and Conference Proceedings, 2011.

[17] Dong, Y., Gong, T., Chen, H., Yu, S., and Li, C. Rethinking information-theoretic generalization:
Loss entropy induced pac bounds. In The Twelfth International Conference on Learning
Representations, 2024.

[18] Dubhashi, D. P. and Ranjan, D. Balls and bins: A study in negative dependence. BRICS Report
Series, 3(25), 1996.

11

https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://api.semanticscholar.org/CorpusID:18695658


[19] Epstein, B. and Meir, R. Generalization bounds for unsupervised and semi-supervised learning
with autoencoders. arXiv preprint arXiv:1902.01449, 2019.

[20] Futami, F. and Fujisawa, M. Time-independent information-theoretic generalization bounds for
SGLD. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=Ks0RSFNxPO.

[21] Geiger, B. C. and Koch, T. On the information dimension of stochastic processes. IEEE
Transactions on Information Theory, 65(10):6496–6518, 2019. doi: 10.1109/TIT.2019.2922186.

[22] Goldfeld, Z., Van Den Berg, E., Greenewald, K., Melnyk, I., Nguyen, N., Kingsbury, B.,
and Polyanskiy, Y. Estimating information flow in deep neural networks. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2299–2308. PMLR,
09–15 Jun 2019.

[23] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[24] Gottlieb, L.-A., Kontorovich, A., and Krauthgamer, R. Efficient classification for metric data.
IEEE Transactions on Information Theory, 60(9):5750–5759, 2014.

[25] Gray, R. M. Entropy and information theory. Springer Science & Business Media, 2011.

[26] Guermeur, Y. Lp-norm sauer–shelah lemma for margin multi-category classifiers. Journal of
Computer and System Sciences, 89:450–473, 2017. ISSN 0022-0000.

[27] Guermeur, Y. Combinatorial and structural results for gamma-psi-dimensions. arXiv preprint
arXiv:1809.07310, 2018.

[28] Hafez-Kolahi, H., Kasaei, S., and Soleymani-Baghshah, M. Sample complexity of classification
with compressed input. Neurocomputing, 415:286–294, 2020. ISSN 0925-2312.

[29] Haghifam, M., Rodríguez-Gálvez, B., Thobaben, R., Skoglund, M., Roy, D. M., and Dziugaite,
G. K. Limitations of information-theoretic generalization bounds for gradient descent methods
in stochastic convex optimization. In International Conference on Algorithmic Learning Theory,
pp. 663–706. PMLR, 2023.

[30] Harutyunyan, H., Raginsky, M., Steeg, G. V., and Galstyan, A. Information-theoretic generaliza-
tion bounds for black-box learning algorithms. In Advances in Neural Information Processing
Systems, pp. 24670–24682, 2021.

[31] Haussler, D. and Opper, M. Mutual information, metric entropy and cumulative relative entropy
risk. The Annals of Statistics, 25(6):2451–2492, 1997.

[32] Hellström, F. and Durisi, G. A new family of generalization bounds using samplewise evaluated
CMI. In Advances in Neural Information Processing Systems, 2022.

[33] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and
Lerchner, A. beta-vae: Learning basic visual concepts with a constrained variational framework.
In International conference on learning representations, 2017.

[34] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and
Lerchner, A. beta-VAE: Learning basic visual concepts with a constrained variational framework.
In International Conference on Learning Representations, 2017.

[35] Jang, E., Gu, S., and Poole, B. Categorical reparameterization with Gumbel-softmax. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

[36] Jin, Y. Upper bounds on the natarajan dimensions of some function classes. In 2023 IEEE
International Symposium on Information Theory (ISIT), pp. 1020–1025. IEEE, 2023.

[37] Joag-Dev, K. and Proschan, F. Negative association of random variables with applications. The
Annals of Statistics, pp. 286–295, 1983.

12

https://openreview.net/forum?id=Ks0RSFNxPO
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee


[38] Kawaguchi, K., Deng, Z., Ji, X., and Huang, J. How does information bottleneck help deep
learning? In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 16049–16096. PMLR, 23–29 Jul 2023.

[39] Kingma, D. P. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[40] Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating mutual information. Physical
Review E, 69:066138, 2004.

[41] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541–551, 1989.

[42] Li, J., Luo, X., and Qiao, M. On generalization error bounds of noisy gradient methods for
non-convex learning. In The Eighth International Conference on Learning Representations,
2020.

[43] Loftsgaarden, D. O. and Quesenberry, C. P. A Nonparametric Estimate of a Multivariate Density
Function. The Annals of Mathematical Statistics, 36(3):1049–1051, 1965.

[44] Lyu, Y., Liu, X., Song, M., Wang, X., Peng, Y., Zeng, T., and Jing, L. Recognizable information
bottleneck. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, pp. 4028–4036, 2023.

[45] Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete distribution: A continuous relaxation
of discrete random variables. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=S1jE5L5gl.

[46] Mbacke, S. D., Clerc, F., and Germain, P. Statistical guarantees for variational autoencoders
using pac-bayesian theory. Advances in Neural Information Processing Systems, 36, 2023.

[47] McAllester, D. A. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21,
2003.

[48] Mou, W., Wang, L., Zhai, X., and Zheng, K. Generalization bounds of SGLD for non-convex
learning: Two theoretical viewpoints. In Proceedings of the 31st Conference on Learning
Theory, volume 75, pp. 605–638, 2018.

[49] Negrea, J., Haghifam, M., Dziugaite, G. K., Khisti, A., and Roy, D. M. Information-theoretic
generalization bounds for SGLD via data-dependent estimates. In Advances in Neural Informa-
tion Processing Systems, volume 32, pp. 11015–11025, 2019.

[50] Neu, G., Dziugaite, G. K., Haghifam, M., and Roy, D. M. Information-theoretic generalization
bounds for stochastic gradient descent. In Conference on Learning Theory, pp. 3526–3545.
PMLR, 2021.

[51] Pensia, A., Jog, V., and Loh, P.-L. Generalization error bounds for noisy, iterative algorithms.
In 2018 IEEE International Symposium on Information Theory (ISIT), pp. 546–550, 2018.

[52] Pollard, D. Quantization and the method of k-means. IEEE Transactions on Information theory,
28(2):199–205, 2003.

[53] Rissanen, J. Universal coding, information, prediction, and estimation. IEEE Transactions on
Information Theory, 30(4):629–636, 2006.

[54] Ross, B. C. Mutual information between discrete and continuous data sets. PLOS ONE, 9(2):
1–101, 02 2014.

[55] Roy, A., Vaswani, A., Neelakantan, A., and Parmar, N. Theory and experiments on vector
quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

[56] Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B. D., and Cox, D. D.
On the information bottleneck theory of deep learning. Journal of Statistical Mechanics: Theory
and Experiment, 2019(12):124020, 2019.

13

https://openreview.net/forum?id=S1jE5L5gl


[57] Sefidgaran, M., Zaidi, A., and Krasnowski, P. Minimum description length and generalization
guarantees for representation learning. Advances in Neural Information Processing Systems, 36,
2023.

[58] Sefidgaran, M., Zaidi, A., and Krasnowski, P. Generalization guarantees for representation
learning via data-dependent gaussian mixture priors. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?
id=fGdF8Bq1FV.

[59] Sefidgaran, M., Zaidi, A., and Krasnowski, P. Generalization guarantees for multi-view repre-
sentation learning and application to regularization via gaussian product mixture prior. arXiv
preprint arXiv:2504.18455, 2025.

[60] Shamir, O., Sabato, S., and Tishby, N. Learning and generalization with the information
bottleneck. Theoretical Computer Science, 411(29):2696–2711, 2010. ISSN 0304-3975.
Algorithmic Learning Theory (ALT 2008).

[61] Shwartz-Ziv, R. and Tishby, N. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

[62] Sønderby, C. K., Poole, B., and Mnih, A. Continuous relaxation training of discrete latent
variable image models. In Beysian DeepLearning workshop, NIPS, volume 201, 2017.

[63] Steinke, T. and Zakynthinou, L. Reasoning About Generalization via Conditional Mutual
Information. In Proceedings of Thirty Third Conference on Learning Theory, volume 125, pp.
3437–3452, 2020.

[64] Takida, Y., Shibuya, T., Liao, W., Lai, C.-H., Ohmura, J., Uesaka, T., Murata, N., Takahashi, S.,
Kumakura, T., and Mitsufuji, Y. SQ-VAE: Variational Bayes on discrete representation with
self-annealed stochastic quantization. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20987–21012. PMLR,
17–23 Jul 2022.

[65] Telgarsky, M. J. and Dasgupta, S. Moment-based uniform deviation bounds for k-means and
friends. Advances in Neural Information Processing Systems, 26, 2013.

[66] Tishby, N. and Zaslavsky, N. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pp. 1–5. IEEE, 2015.

[67] Tishby, N., Pereira, F. C., and Bialek, W. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

[68] Tomczak, J. and Welling, M. Vae with a vampprior. In International conference on artificial
intelligence and statistics, pp. 1214–1223. PMLR, 2018.

[69] Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., and Lucic, M. On mutual infor-
mation maximization for representation learning. In International Conference on Learning
Representations, 2020.

[70] Van Den Oord, A., Vinyals, O., et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[71] Vera, M., Piantanida, P., and Vega, L. R. The role of the information bottleneck in representation
learning. In 2018 IEEE International Symposium on Information Theory (ISIT), pp. 1580–1584,
2018. doi: 10.1109/ISIT.2018.8437679.

[72] Vera, M., Rey Vega, L., and Piantanida, P. The role of mutual information in variational
classifiers. Machine Learning, 112(9):3105–3150, 2023.

[73] Vuong, L. T. Task-driven discrete representation learning. In Li, Y., Mandt, S., Agrawal, S., and
Khan, E. (eds.), Proceedings of The 28th International Conference on Artificial Intelligence and
Statistics, volume 258 of Proceedings of Machine Learning Research, pp. 5203–5211. PMLR,
03–05 May 2025.

14

https://openreview.net/forum?id=fGdF8Bq1FV
https://openreview.net/forum?id=fGdF8Bq1FV


[74] Wainwright, M. J. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge university press, 2019.

[75] Wainwright, M. J. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

[76] Wang, H., Huang, Y., Gao, R., and Calmon, F. Analyzing the generalization capability of SGLD
using properties of Gaussian channels. In Advances in Neural Information Processing Systems,
volume 34, pp. 24222–24234, 2021.

[77] Wang, H., Gao, R., and Calmon, F. P. Generalization bounds for noisy iterative algorithms
using properties of additive noise channels. Journal of Machine Learning Research, 24(26):
1–43, 2023.

[78] Wang, Z. and Mao, Y. On the generalization of models trained with SGD: Information-theoretic
bounds and implications. In The Tenth International Conference on Learning Representations,
2022.

[79] Wang, Z. and Mao, Y. Tighter information-theoretic generalization bounds from supersamples.
In Proceedings of the 40th International Conference on Machine Learning, volume 202, pp.
36111–36137, 2023.

[80] Wang, Z., Huang, S.-L., Kuruoglu, E. E., Sun, J., Chen, X., and Zheng, Y. PAC-bayes
information bottleneck. In International Conference on Learning Representations, 2022.

[81] Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on International Conference on Machine
Learning, pp. 681–688, 2011.

[82] Williams, W., Ringer, S., Ash, T., MacLeod, D., Dougherty, J., and Hughes, J. Hierarchical
quantized autoencoders. Advances in Neural Information Processing Systems, 33:4524–4535,
2020.

[83] Xu, A. and Raginsky, M. Information-theoretic analysis of generalization capability of learning
algorithms. In Advances in Neural Information Processing Systems, volume 30, pp. 2524–2533,
2017.

15



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and Section 1 match our theoretical and numerical
claims in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Assumptions for each theorem are explicitly shown. Following each theorem,
there is a discussion about the theorem’s limitations and implications. Additionally, Section 6
includes a discussion on the limitations of the entire paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .
Justification: Complete proofs of all theorems are provided in Appendices C and D. For the
reader’s convenience, the exact location of each proof is explicitly indicated alongside the
corresponding theorem in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The experimental setup for reproducing our results is detailed in Appendix G.
We submitted our source codes through OpenReview.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: We only used the popular benchmark datasets (such as MNIST and CIFAR-10)
that can be easily obtained. The experimental setup for reproducing our results is detailed in
Appendix G. We submitted our source codes through OpenReview.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: The experimental setup for reproducing our results is detailed in Appendix G.
We submitted our source codes through OpenReview.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] .
Justification: We reported the mean ± std. of the generalization gap and our bound values
for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We used NVIDIA GPUs with 32GB memory (NVIDIA DGX-1 with Tesla
V100 and DGX-2) in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: We confirmed that our paper does not have issues concerning the NeurIPS
Code of Ethics, although the primary emphasis of this paper is on theoretical analysis.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes] .

Justification: Although the primary focus of this paper is theoretical analysis, discussions on
the potential impacts of our research are presented in Sections 1 and 6.

Guidelines:

19

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The primary focus of this paper is theoretical analysis, and although it includes
experiments, their purpose is to numerically validate the theory. Therefore, the concerns
raised in the question do not apply.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We provide citations or reference URLs for all of the code, data, and models
used in our experiments (see Appendix G). We also declared the name of the licence is
CC-BY 4.0 in our submission page of OpenReview.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The primary focus of this paper is theoretical analysis, and although it includes
experiments, their purpose is to numerically validate the theory. Therefore, the concerns
raised in the question do not apply.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: We do not utilize such services, so the concerns raised in the question are not
applicable to us.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The primary focus of this paper is theoretical analysis, and it has been con-
firmed that the concerns raised in the question are not applicable.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: This paper does not rely on LLMs for any theoretical analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Notation used in the main paper

We summarize the notation we used in the main part of our paper.

Category Symbol Meaning

Data and model

n ∈ N The sample size
X ,Z A data and latent space
D An unknown data generating distribution
∆ ∈ R+ A radius of a data space
X ∈ X ⊂ Rd A data
S = {Si}ni=1 ∈ Xn A training dataset
e = {ej}Kj=1 ∈ ZK A codebook, where K is the size of a codebook
ϕ ∈ Φ ⊂ Rdϕ An encoder parameter
θ ∈ Θ ⊂ Rdθ A decoder parameter
W = {e, ϕ, θ} A set of model parameters
fϕ : X → Z An encoder network
gθ : Z → X A decoder network
q(J |e, ϕ,X) A posterior distribution over J given e, ϕ,X
β ∈ R+ A temperature parameter used in a softmax
N (δ,F , n) A δ-covering number with n input for the encoder function class F

Algorithm and loss functions

A : Xn →W A randomized algorithm
q(e, ϕ, θ|S) A randomized algorithm given S
l : X × X → R a reconstruction loss function
l0 :W ×X → R An expected loss function over J
gen(µ,D) The expected generalization error based on a reconstruction loss
W2(D, µ̂) The 2-Wasserstein distance between D and µ̂

Supersample setting

X̃ ∈ X 2n A supersample used in the IT analysis
X̃m The m-th row of X̃
U = (U1, . . . , Un) ∼ Uniform({0, 1}n) Random index used in the IT analysis
X̃U := (X̃m,Um

)nm=1 A training dataset in the supersample setting
X̃Ū := (X̃m,Ūm

)nm=1 A test dataset in the supersample setting, where Ūm = 1− Um
q(J|e, ϕ, X̃U ) :=

∏n
m=1 q(Jm|e, ϕ, X̃m,Um

) A joint distribution over index on the training dataset
q(J̄|e, ϕ, X̃Ū ) :=

∏n
m=1 q(J̄m|e, ϕ, X̃m,Ūm

) A joint distribution over index on the test dataset
QJ̃,U

:= q(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ) A joint posterior distribution over J
QJ̃

:= EUq(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ) A data-dependent prior distribution over J
π(J |e, ϕ) A data-independent prior distribution over J

Permutation symmetric setting

T = {T1, . . . , T2n} ∼ P (T) = 1/(2n)! A random permutation following a uniform distirubiton
X̃T = (X̃T1

, . . . , X̃T2n
) Randomly permuted supersamples

X̃T0 = (X̃T1 , . . . , X̃Tn) The test dataset
X̃T1 = (X̃Tn+1 , . . . , X̃T2n) The training dataset
q(J̄|e, ϕ, X̃T0

) =
∏n
m=1 q(J̄m|e, ϕ, X̃Tm

) A joint distribution over index on the test dataset
q(J|e, ϕ, X̃T1

) =
∏n
m=1 q(Jm|e, ϕ, X̃Tn+m

) A joint distribution over index on the training dataset
QJ̃,T = q(J̄|e, ϕ, X̃T0

)q(J|e, ϕ, X̃T1
) A joint posterior distribution over J

QJ̃ = E
T
q(J̄|e, ϕ, X̃T0

)q(J|e, ϕ, X̃T1
) A data-dependent prior distribution over J

B Additional discussion and related work

Here, we provide additional discussion and a comparison between our study and existing work.

B.1 Related work

Here we briefly introduce additional related existing work, especially about the IT analysis. In IT
analysis [83], the generalization error is evaluated on the basis of the MI between learned parameters
and training data. This approach is closely related to the PAC-Bayes theory and has been extended
through supersample settings [63] to exploit the symmetry between test and training data. This setting
has been applied to the study of generalization based on outputs of functions [30], losses [32, 79],
and hypothesis entropy [17]. The relationship between IT analysis and the IB hypothesis has been
discussed from numerical and algorithmic perspectives [80, 44]. More recently, Sefidgaran et al. [57]
theoretically studied latent variable models using IT analysis, demonstrating that generalization can
be characterized by the complexity of the encoder and latent variables without relying on decoder
information. They also developed a theoretical link among IT analysis, the IB hypothesis, and MDL
by using compression bounds [10].

There exist several analyses focusing on VQ-VAE and related architectures. Vuong [73] investigated
the supervised setting of vector-quantized models, whereas our analysis is purely unsupervised.
Beyond the supervised–unsupervised distinction, our work differs from theirs in several fundamental
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ways. First, they study a continuous and differentiable relaxation of the discrete latent-variable
model, making it more amenable to optimization analysis. Second, this relaxation allows their
framework to examine not only the generalization gap but also how the magnitude of the training
loss itself is influenced by the discrete representation. Finally, their generalization guarantees rely on
uniform convergence bounds, effectively reducing the problem to K-class clustering. In contrast, our
analysis is based on algorithm-dependent, information-theoretic bounds, following the line of work
by Sefidgaran et al. [57].

Classical quantization theory also provides useful insights. Pollard [52] and Telgarsky & Das-
gupta [65] established asymptotic consistency results for k-means clustering. Although their set-
ting—clustering without deep models—differs significantly from ours, the quantization procedure
they analyze is conceptually related to the discrete latent representations used in VQ-VAE. Impor-
tantly, Vuong [73] build their analysis upon these classical results. The main distinction is that the
latter works provide asymptotic guarantees specific to clustering, whereas our analysis provides
finite-sample, non-asymptotic guarantees for deep generative models. Nonetheless, the connection
highlights how classical quantization theory can inform the study of modern deep architectures,
and it suggests that such tools may prove valuable when extending our framework to analyze loss
minimization in addition to generalization.

B.2 Comparison with existing bounds

Here, we compare our bounds with those in existing work. Theorem 2 resembles the results of
Mbacke et al. [46] since both bounds include the empirical KL term in the upper bounds, and the
posterior distribution corresponds to the variational posterior distribution. The key difference is that
Mbacke et al. [46] assumed a fixed decoder, whereas our analysis incorporates the learning process
under the assumption of a discrete latent space and a squared reconstruction loss. Another distinction
is that their generalization bound does not become 0 as n → ∞ due to two reasons. One is the
presence of the empirical KL term, which we address in Theorem 3 using permutation symmetry. Our
technique can be regarded as developing the appropriate prior distribution in PAC-Bayes bound. The
second reason is the presence of the average distance 1

n

∑n
m=1 EX∥X − Sm∥ in the existing bound,

which is inherent to the data distribution and may not vanish as n→∞. Our use of the squared loss
in the analysis mitigates this problematic term, as detailed in Appendix D.1.

Our proof techniques are based on Sefidgaran et al. [57]. However, we could not directly apply
their methods, as the reconstruction loss reuses input data, unlike in classification settings. We
resolve this by combining the data regeneration technique used in the proof of Mbacke et al. [46].
Additionally, we introduced a new permutation symmetric setting, leading to a bound that controls
mutual information in Theorem 3. Our setting is closely related to the type-2 symmetry proposed
in Sefidgaran et al. [57], which involves random permutations selecting n indices from 2n with
a uniform distribution 1/

(
2n
n

)
, whereas our setting requires the consideration of the order of the

permutation index to evaluate the exponential moment (see Appendix E.1). Finally, we theoretically
studied the behavior of the CMI (Theorem 4) focusing on the complexity of the encoder, whereas
Sefidgaran et al. [57] provided the bounds based on the CMI without such discussion.

The existing analyses based on the IB hypothesis [71, 28, 38, 72] assumed that both the latent
variables and data are discrete, and their obtained bounds explicitly depend on the latent space size
or show exponential dependence on the MI. In contrast, we assume that only latent variables are
discrete and the resulting bound does not explicitly depend on the number of discrete states nor
exhibit exponential dependence on MI. Furthermore, our bound shows the dependency on dz not K,
which is the significant difference compared with existing bounds.

B.3 Discussion and comparison of our prior and posterior and existing work

Here, we explain how the prior distribution is used in our proof and why two prior distributions
are introduced in our bound. First, the IT analysis with supersample reformulates generalization
analysis as the problem of estimating which samples were used for training when data is randomly
shuffled based on U . If this estimation is difficult, our model generalizes well. In the basic IT analysis
(Theorem 1), such difficulty is measured by the CMI between U and the loss function l0.
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l0(W, X̃)e, ϕ, θU
J̃e, ϕU

Figure 4: Graphical models illustrating the different dependency structures of the random variables
considered in the basic IT analysis and in this study. The left figure represents the dependency
structure in the basic IT analysis, which simply evaluates the loss function in supervised learning
settings, whereas the right figure corresponds to our analysis in the unsupervised learning setting.

Of course, such shuffling is not performed in actual algorithms; it is introduced only for theoretical
analysis using the Donsker-Varadhan inequality [25], where such shuffling is defined by the prior and
posterior distributions dependent on U .

In basic IT analyses (Theorem 1) for supervised learning, by shuffling with U , we observe how the
loss l0(W, X̃) changes. Here, the goal is to estimate U from the observed losses. As depicted in
Figure 4, U and l0(W, X̃) depend on all parameters, including the decoder, resulting in a bound that
depends on all parameters.

Our goal is to eliminate the dependency between the decoder and latent variables (LVs). To achieve
this, we introduce a prior and posterior that establish the dependency as depicted in Figure 4. The key
idea is that by introducing a new dependency between U and LVs, we can directly shuffle U , leading
to a bound that isolates the role of LVs without involving the decoder. For additional discussions on
the necessary conditions for the prior, see Appendix D.2.

Finally, we show the additional explanation of Figure 1. The figure illustrates the difference between
the existing fCMI and our new CMI. The left figure illustrates the setting of existing fCMI where
J̃ follows the distribution in the setting of Eq. (5), see Appnexdix C.2 for the detail. Thus, in the
existing fCMI, J̃ and U are conditionally independent given e and ϕ and X̃ . On the other hand,
the right figure is our setting and there is an edge between U and J̃ directly, and thus J̃ and U are
conditionally independent given e and ϕ and X̃ , which results in the difference of existing fCMI and
our CMI. See Appendix D.5 and Appendix D.3 for the additional discussion about the fCMI.

C Proofs for Section 2 and additional discussion

C.1 Proof of Theorem 1

This is just the consequence of the existing eCMI bound [32]. We can confirm this as follows;

Note that the generalization error can be expressed as the supersample

gen(n,D)

=

∣∣∣∣∣ES,XEq(e,ϕ,θ|S)
(
Eq(J|e,ϕ,X)l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)l(Sm, gθ(eJm))
)∣∣∣∣∣

=

∣∣∣∣∣ Ẽ
X,U

E
q(e,ϕ,θ|XU )

( 1
n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)l(Xm,Ūm

, gθ(eJm))

− 1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )l((Xm,Um , gθ(eJm))
)∣∣∣∣∣.

Given that the loss is bounded by [0,∆], the integrated is a ∆-sub-Gaussian random variable. Thus,
from Hellström & Durisi [32], the generalization error bound that satisfies the σ2 sub Gaussianity

is bounded as
√

2σ2

n I(l(A(X̃U ), X̃);U |X̃), we obtain the result. Finally I(l0(W, X̃);U |X̃) ≤
I(W ;U |X̃) holds by the data processing inequality.
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C.2 Proof for Eq. (5) and additional discussion

Here we prove Eq. (5). It is important to note that this upper bound is characterized by the CMI
I(l0(W, X̃);U |X̃). This CMI depends on the decoder and encoder information, distinguishing
it from the results presented in our main Theorems 2 and 3, which do not require the decoder’s
information.

To clarify this distinction, let us introduce the necessary notation. Following the notation in Sec-
tion 3.1, we define Ỹ = gθ(eJ̃), where gθ(eJ̃) implies applying gθ(·) elementwise to eJ̃ . Under these
notations, we have the following relations:

I(l0(W, X̃);U |X̃) ≤ I(Ỹ ;U |X̃) ≤ I(θ;U |X̃) + I(eJ̃;U |X̃, θ),
where the first inequality is obtained by the data processing inequality (DPI) and the second inequality
is obtained by the chain rule of CMI and the DPI. This result demonstrates that the decoder information
cannot be eliminated from the basic IT bound, which clarifies the fundamental difference compared to
our result (Theorems 2 and 3). Moreover, since the decoder and encoder are learned simultaneously
using the same training data, they are not independent. This makes it unclear how the latent variables
and the encoder’s capacity affect generalization, as it is difficult to eliminate the decoder’s dependency
on them.

C.3 Additional discussion when K = 1

Another limitation of the basic IT-bound arises when considering K = 1 as a limiting setting. From
the definition of the squared loss, the generalization error is given by:

gen(n,D) ≤
√

Var[X]
E∥gθ(e)∥2

n
≤ ∆√

n
. (11)

The proof of this is described below. This upper bound is intuitive: for K = 1, the model effectively
ignores the input data and embeds all samples into the same latent variable, which can be interpreted
as a form of strong regularization. Consequently, the impact of overfitting due to training the decoder
network is relatively limited, and the generalization error can be seen, in a sense, as being comparable
to the inherent variability of the data itself.

The above observations motivate us to develop a more sophisticated generalization bound that
explicitly captures the role of representation.

Proof of Eq. (11). Since K = 1, we express e = {e}. By using the definition of the squared loss, we
have

gen(n,D) =
∣∣∣ESEq(e,ϕ,θ|S)

(
E[X]− 1

n

n∑
m=1

Sm

)
· gθ(e))

∣∣∣,
where we used the fact that the generated data always use e as a latent variable since e = {e} when
K = 1. Then by using the Cauchy-Schwartz inequality, we have

gen(n,D) ≤
√

Var[X]
E∥gθ(e)∥2

n
≤ ∆√

n
,

where we used the fact that the diameter of the instance space is bounded by ∆.

D Proofs for Section 3

In the proofs, we repeatedly use the following type of exponential moment inequality, which is often
used in the proof of McDiarmid’s inequality. A function f : Xn → R has the bounded differences
property if for some nonnegative constants c1, . . . , cn, the following holds for all i:

sup
x1,...,xn,x′

i∈X
|f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Assuming X1, . . . , Xn are independent random variables taking values in X , we have the following
lemma:
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Lemma 4 (Used in the proof of McDiarmid’s inequality). Given a function f with the bounded
differences property, for any t ∈ R, we have:

E
[
et(f(X1,...,Xn)−E[f(X1,...,Xn)])

]
≤ e t2

8

∑n
i=1 c

2
i .

D.1 Proof of Theorem 2

We express q(J̃|e, ϕ, X̃) = q(J̄,J|e, ϕ, X̃Ū , X̃U ) = q(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ). Hereinafter, we
simplify the notation by expressing X̃ as X . For simplification in the proof, we omit the absolute
operation for the generalization gap. The reverse bound can be proven in a similar manner. We first
express the generalization error of the reconstruction loss using the supersample as follows

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )l((Xm,Um
, gθ(ek))1k=Jm

=

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )∥Xm,Ūm

− gθ(ek)∥21k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )∥Xm,Um
− gθ(ek)∥21k=Jm , (12)

where the first term corresponds to the test loss and the second term corresponds to the training loss.

Recall the learning algorithm and posterior distribution:

e, ϕ, θ ∼ q(e, ϕ, θ|XU ),

Jm ∼ q(J|e, ϕ, Sm).

Here e = {e1, . . . , eK} is the codebook, and J and J = {J1, . . . , jn} represents the index chosen
from the codebook.

Conditioned on X and U , we then decompose Eq. (12) as follows

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(J̄m|e,ϕ,Xm,Ūm

)1k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

+

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

−
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm . (13)

We will separately upper bound these terms.

D.1.1 Bounding first and second terms

The decomposition of the generalization error, as shown in Eq. (13), allows us to bound the first and
second terms as follows.

We apply Donsker-Varadhan’s inequality between the following two distributions:

Q := P (U)q(e, ϕ, θ|XU )q(J̄,J|e, ϕ,XŪ , XU )

PS := P (U)q(e, ϕ, θ|XU ) E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′). (14)
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These correspond to the posterior and data-dependent prior distributions defined in Section 3.1.

Then, for any λ ∈ R+, we have
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))

(
Eq(J̄m|e,ϕ,Xm,Ūm

)1k=J̄m − Eq(Jm|e,ϕ,Xm,Um )1k=Jm

)
≤ 1

λ
KL(Q|PS) +

1

λ
logEPS

exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=J̄m − 1k=Jm

))
.

To simplify the notation, we express J̄ = J0, J̄m = Jm,0, J = J1, and Jm = Jm,1. Let U ′′ be a
random variable taking 0, 1 with a uniform distribution. Since PS is symmetric with respect to the
permutation of J0 and J1, we can bound the exponential moment as:

logEP (U)q(e,ϕ,θ|XU ) E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,0

− 1k=Jm,1

))
= logEP (U)q(e,ϕ,θ|XU )P (U ′′)n E

P (U′)
q(J0,J1|e,ϕ,XŪ′ ,XU′ )P (U ′′)N

exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′−1k=Jm,U′′

))
= logEP (U)q(e,ϕ,θ|XU ) E

P (U′)
q(J0,J1|e,ϕ,XŪ′ ,XU′ )EP (U ′′)n

exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′ − 1k=Jm,U′′

))
.

In the final line, we apply McDiarmid’s inequality since U ′′n are n i.i.d. random variables. To use
McDiarmid’s inequality in Lemma 4, we use the stability caused by replacing one of the elements of n
i.i.d. random variables. To estimate the coefficients of stability in Lemma 4, letU ′′n = (U ′′

1 , . . . , U
′′
N ),

then

sup
{U ′′

m}n
m=1,U

′′′
m′

∣∣∣∣∣λn
K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′

m
− 1k=Jm,U′′

m

)
(15)

− λ

n

K∑
k=1

n∑
m̸=m′

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′

m
− 1k=Jm,U′′

m

)

− λ

n

K∑
k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′′

m′
− 1k=Jm′,U′′′

m′

) ∣∣∣∣∣
= sup

{U ′′
m}n

m=1,U
′′′
m′

∣∣∣∣∣λn
K∑
k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′

m′
− 1k=Jm′,U′′

m′

)
− λ

n

K∑
k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′′

m′
− 1k=Jm′,U′′′

m′

) ∣∣∣∣∣ ≤ 2λ∆

n
.

Here, the maximum change caused by replacing one element of U ′′ is 2λ∆/n, thus, its log of the
exponential moment is bounded by (2λ∆/n)2/8× n = λ2∆2/2n. Thus from Lemma 4, we have

logEP (U)q(e,ϕ,θ|XU ) E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,0

−1k=Jm,1

))

≤ λ2∆2

2n
.

The first and second terms in Eq. (13) are upper bounded by

1

λ
EXKL(Q|PS) +

λ∆2

2n
. (16)
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D.1.2 Bounding third and fourth terms

Next, we upper bound the third and fourth terms in Eq. (13);
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

−
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm . (17)

We simplify the notation by expressing Eq(Jm|e,ϕ,Xm,Um )1k=Jm as Pk,m and use the square loss:

EX,U
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Pk,m−

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um , gθ(ek))Pk,m

= EX,U
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )

(
∥Xm,Ūm

∥2 − ∥Xm,Um
∥2
)
Pk,m

+ EX,U
K∑
k=1

2

n

n∑
m=1

Eq(e,ϕ,θ|XU )

(
Xm,Ūm

−Xm,Um

)
· gθ(ek)Pk,m

= EX,U
1

n

n∑
m=1

(
∥Xm,Ūm

∥2 − ∥Xm,Um
∥2
)
Eq(e,ϕ,θ|XU )

K∑
k=1

Pk,m

+ ES
2

n

n∑
m=1

(EXX − Sm) · Eq(e,ϕ,θ|S)
K∑
k=1

gθ(ek)Pk,m

= ES
2

n

n∑
m=1

(EXX − Sm) · Eq(e,ϕ,θ|S)
K∑
k=1

gθ(ek)Pk,m, (18)

where we express S = (X1,U1
, . . . , Xn,Un

) = (S1, . . . , Sn) as the training samples. In the last
inequality, we used

∑K
k=1 Pk,m = 1 and EX,U 1

n

∑n
m=1

(
∥Xm,Ūm

∥2 − ∥Xm,Um
∥2
)
= 0 since X

and U are i.i.d.

To evaluate the final line, we use the Donsker-Valadhan inequality between

Q := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ, Sm),

PS := q(e, ϕ, θ|S)
n∏

m=1

π(Jm|e, ϕ),

where π(Jm|e, ϕ) is the prior distribution, which never depends on the training data.

Then we have

ES
2

n

n∑
m=1

(EXX − Sm) · Eq(e,ϕ,θ|S)
K∑
k=1

gθ(ek)Pk,m

≤ ES
1

λ
KL(Q|PS) + ES

1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXS −Xm) · Eq(e,ϕ,θ|S)
K∑
k=1

gθ(ek)1k=Jm

)

≤ ES
1

λ
KL(Q|PS)

+ ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX − Sm) ·
K∑
k=1

gθ(ek)(1k=Jm − P ′′
k,m)

)

+ ESEPS

2

n

n∑
m=1

(EXX − Sm) ·
K∑
k=1

gθ(ek)P
′′
k,m, (19)
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where P ′′
k,m = Eq(Jm|ϕ,e)1k=Jm . Clearly, this does not depend on the index m, so we express

P ′′
k,m = P ′′

k . Then the last term becomes

ESEPS

1

n

n∑
m=1

(EXX − Sm) ·
K∑
k=1

gθ(ek)P
′′
k ≤ ESEPS

∥∥∥∥∥EXX − 1

n

n∑
m=1

Sm

∥∥∥∥∥ ∥
K∑
k=1

gθ(ek)P
′′
k ∥

≤ ES

∥∥∥∥∥EXX − 1

n

n∑
m=1

Sm

∥∥∥∥∥√∆
≤

√√√√∆Var

(
1

n

n∑
m=1

Sm

)

≤
√

∆
Var (X)

n

≤
√

∆

4n

√
∆ =

∆

2
√
n
, (20)

where we used the fact that the variance of random variables with bounded in (a, b] is upper bounded
by (b − a)2/4n (the extension to the d-dimensional random variable is straightforward) and thus,
Var (X) ≤ ∆/4. Then the exponential moment term becomes

ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX − Sm) ·
K∑
k=1

gθ(ek)(1k=Jm − P ′′
k,m)

)

= ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX − Sm) ·
K∑
k=1

gθ(ek)(1k=J − P ′′
k )

)
.

Here we use the McDiarmid’s inequality for n random variables J. Then we estimate the stability
coefficient similarly to Eq. (15), which is upper bounded by λ∆/n. Then from Lemma 4, the
exponential moment is bounded by (2λ∆/n)2/8 × n = λ∆2/2n Thus, the second term is upper
bounded by

1

λ
KL(Q|PS) +

λ∆2

2n
+

∆√
n
. (21)

By optimizing the first and second terms of Eqs. (16) and (21), we have

2∆

√
(EX̃,UEq(e,ϕ,θ|XU )KL(Q1∥Q2) + ESEq(e,ϕ,θ|S)KL(Q|PS))

n
+

∆√
n
,

where

Q1 := q(J̄,J|e, ϕ,XŪ , XU )

Q2 := E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′),

Q :=

n∏
m=1

q(Jm|e, ϕ, Sm),

PS :=

n∏
m=1

π(Jm|e, ϕ).

D.2 Necessarily conditions for the prior and the limitation of the existing supersample setting

Here, we further discuss the necessary conditions for the prior distribution to derive a meaningful
generalization bound. The proof strategy in Appendix D.1 clarifies this point: in the proof, we
decompose the generalization bound in Eq. (13) and separately upper bound the first two terms and
the latter two terms.
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For the first and second terms, the analysis follows standard generalization error techniques. When
using a prior and posterior distribution characterized by the shuffling of the supersample X̃ , such as
the index variable U , the shuffling must swap test and training data to enable generalization evaluation.
By ensuring this swap, we can properly assess overfitting.

For the third and fourth terms, after applying the Donsker-Valadhan lemma, it is crucial to ensure that
the probability P ′′

k,m does not depend on the sample index m to control the exponential moment in
Eq. (19). This requires satisfying P ′′

k,m = P ′′
k , meaning that the probability of assigning the m-th

data point to the k-th codebook must be independent of m. By definition, this condition holds when
the distribution of the latent variables remains invariant after shuffling.

From these observations, we conclude that the prior used for shuffling must: (A) Preserve the
distribution of the LVs to eliminate interdependencies between LVs and the decoder, and (B)
Swap test and training data points to evaluate overfitting, as discussed in Section 3.1.

Using the supersample ensures condition (B). For condition (A), we employ the prior distribution
π(Jm|e, ϕ), which removes sample index dependency and guarantees P ′′

k,m = P ′′
k . Consequently,

the empirical KL divergence in Theorem 2 arises from the third and fourth terms in Eq. (13), as
detailed in AppendixD.1.2.

Based on these findings, we propose the following type of prior distribution:

PS := q(e, ϕ, θ|S)
n∏

m=1

n∑
m′=1

1

N
q(Jm|e, ϕ, Sm′),

which provides an empirical approximation of the marginal distribution using available samples.
Since this distribution does not explicitly depend on the sample index, we can bound the exponential
moment similarly to the approach in Appendix D.1.2.

However, using the prior distribution in Eq. (14) to bound the third and fourth terms of Eq. (13) is
not feasible. The issue is that applying the Donsker-Valadhan lemma with Eq. (14) to these terms
does not yield a bound of order O(1/

√
n), as achieved in Eq. (20). This limitation arises because the

dependency on the sample index in Eq. (14) prevents us from leveraging the symmetry between the
test and training datasets via the supersample index U . As a result, the prior distribution’s symmetry
cannot be exploited to simplify the bounds for these terms.

D.3 Comparison with the fCMI

Here, we analyze the relationship between our CMI and existing forms of fCMI in more detail. As
highlighted in the main paper, a key distinction is that our CMI is conditioned on all model parameters,
whereas existing fCMI methods marginalize over these parameters.

To further explore this difference, we consider marginalizing over the encoder parameter, ϕ. In the
proof of Theorem 2, we perform this marginalization over ϕ in Eq. (12) and obtain

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )l((Xm,Um , gθ(ek))1k=Jm

=

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|θ,e,Xm,Ūm
)q(e,θ|XU )∥Xm,Ūm

− gθ(ek)∥21k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|θ,e,Xm,Um )q(e,θ|XU )∥Xm,Um
− gθ(ek)∥21k=Jm ,

and proceed with the proof in the same way. We apply the Donsker-Varadhan inequality between the
following distributions, instead of Eq. (14):

Q := P (U)P (U ′)q(e, θ|XU )q(J̄,J|, e, θ,XŪ , XU )

P := P (U)q(e, θ|XU )EP (U ′)q(J̄,J|e, θ,XŪ ′ , XU ′).
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This incorporates marginalization over ϕ in Eq. (14), resulting in the following KL divergence in the
upper bound:

EXKL(Q|P) = EX E
P (U)q(e,ϕ|XU )

KL(q(J̄,J|e, θ,XŪ , XU )|EP (U ′)q(J̄,J|e, θ,XŪ ′ , XU ′))

= I(J̄,J;U |e, θ,X).

Unlike Theorem 2, this CMI explicitly involves the decoder parameter θ. By marginalizing over ϕ,
decoder information is integrated into the upper bound, making Theorem 2 distinct from existing
fCMI bounds. In Appendix D.5, further discussion from the viewpoint of the difference of the
graphical model between our CMI and existing fCMI is given.

D.4 Proof of Lemma 2

We remark that the following relationship holds for m = 1 . . . , n by definition;

I(Jm;Sm|e, ϕ) = Eq(e,ϕ)Eq(Sm|e,ϕ)Eq(Jm|e,ϕ,Sm) log
q(Jm|e, ϕ, Sm)

Eq(Sm|e,ϕ)q(Jm|e, ϕ, Sm)
(22)

= ESEq(e,ϕ|S)Eq(Jm|e,ϕ,Sm) log
q(Jm|e, ϕ, Sm)

Eq(Sm|e,ϕ)q(Jm|e, ϕ, Sm)
.

Next, we show Eq(S1|e,ϕ)q(J1|e, ϕ, S1) = · · · = Eq(Sn|e,ϕ)q(Jn|e, ϕ, Sn) holds under the given
assumption. To prove this, it is suffice to show that q(S1|e, ϕ) = · · · = q(Sn|e, ϕ) holds. Under the
given assumption

q(e, ϕ|S1) = · · · = q(e, ϕ|Sn)

holds, see Li et al. [42] for the proof. Then for i ∈ [n], we have

q(e, ϕ|Si)p(Si) = q(Si|e, ϕ)p(e, ϕ)

and since all training data points are drawn i.i.d form D, we have

q(e, ϕ|Si)D = q(Si|e, ϕ)p(e, ϕ).

Then, for any j ̸= i ∈ [n], we also have

q(e, ϕ|Sj)D = q(Sj |e, ϕ)p(e, ϕ)

since q(e, ϕ|Sj) = q(e, ϕ|Si), we conclude that q(Si|e, ϕ) = q(Sj |e, ϕ). This implies
Eq(S1|e,ϕ)q(J1|e, ϕ, S1) = · · · = Eq(Sn|e,ϕ)q(Jn|e, ϕ, Sn) holds under the given assumption. So we
use the joint distribution these as P =

∏n
m=1 Eq(Sm|e,ϕ)q(Jm|e, ϕ, Sm). From Eq. (22), we have

ESEq(e,ϕ|S)KL(QJ,U∥P) = I(Jm;Sm|e, ϕ).

Finally, we show that above P minimizes the ESEq(e,ϕ|S)KL(QJ,U∥P). We consider the prior
P′ that satisfies the assumption of the Theorem 7, that is, prepare some distributions that satisfies
q(J1|e, ϕ) = · · · = q(Jn|e, ϕ) and define P′ :=

∏n
m=1 π(Jm|e, ϕ)

By the definition, we have that

ESEq(e,ϕ|S)KL(QJ,U∥P′) = I(Jm;Sm|e, ϕ) + ESEq(e,ϕ|S)KL(P∥P′).

Thus, when using P′ = P minimizes the empirical KL divergence.
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D.5 Proof of Eq. (8)

Here we discuss how we can upper bound of the complexity term of the obtained bound. From the
definition, we have the following relation;

EX,UEq(e,ϕ,θ|XU )KL(QJ̃,U∥QJ̃)

= EP (X)P (U)q(e,ϕ,θ|XU )q(J̄,J|e,ϕ,XŪ ,XU ) log
q(J̄,J|e, ϕ,XŪ , XU )

E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

= EP (X)P (U)q(e,ϕ|XU )q(J̄,J|e,ϕ,XŪ ,XU ) log
q(J̄,J|e, ϕ,XŪ , XU )

E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

= EP (X)P (e,ϕ|X)EP (U |e,ϕ,X)q(J̄,J|e,ϕ,X,U) log
q(J̄,J|e, ϕ,XŪ , XU )

E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

= EP (X)P (e,ϕ|X)EP (U |e,ϕ,X)q(J̄,J|e,ϕ,X,U) log
q(J̄,J|e, ϕ,XŪ , XU )

E
P (U ′|e,ϕ,X)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

+ EP (X)P (e,ϕ,|X)EP (U |e,ϕ,X)q(J̄,J|e,ϕ,X,U) log

E
P (U ′|e,ϕ,,X)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

= I(J̄,J;U |e, ϕ,X) + EP (X)P (e,ϕ|X)EP (U |e,ϕ,X)q(J̄,J|e,ϕ,X,U) log

E
P (U ′|e,ϕ,X)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′)

≤ I(J̄,J;U |e, ϕ,X) + EP (X)P (e,ϕ|X)EP (U |e,ϕ,X) log
P (U ′|e, ϕ,X)

P (U ′)

= I(J̄,J;U |e, ϕ,X) + EP (X)P (e,ϕ|X)EP (U |e,ϕ,X) log
P (e, ϕ|X,U ′)P (U ′|X)

EP (U ′′|X)P (e, ϕ|X,U ′′)P (U ′)

= I(J̄,J;U |e, ϕ,X) + EP (X)P (e,ϕ|X)EP (U |e,ϕ,X) log
P (e, ϕ|X,U ′)P (U ′)

EP (U ′′)P (e, ϕ|X,U ′′)P (U ′)

= I(J̄,J;U |e, ϕ,X) + I(e, ϕ;U |X),

where we used the data processing inequality of the KL divergence.

D.6 The role of I(J̃;U |e, ϕ, X̃)

The role of I(J̃;U |e, ϕ, X̃) is clarified through the following upper bound:

I(J̃;U |e, ϕ, X̃) ≤
n∑

m=1

I(eJ ; X̃m,Ūm
|e, ϕ)

+ ESEq(e,ϕ|S)KL(QJ,U∥P). (23)

The first term represents the information retained by the LVs from the training data in the IB
hypothesis, while the second term corresponds to the regularization based on the empirical KL
divergence discussed earlier.

Here we prove Eq. (23). We define π(J̄|e, ϕ) =
∏n
m=1 π(J̄m|e, ϕ), π(J|e, ϕ) =

∏n
m=1 π(Jm|e, ϕ),

and π(J̃|e, ϕ) = π(J̄,J|e, ϕ) = π(J̄|e, ϕ)π(J|e, ϕ) where each π(J̄m|e, ϕ) is the marginal distribu-
tion of π(Jm|e, ϕ,Xm).
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Then by the definition of the CMI, we have
I(J̃;U |e, ϕ, X̃)

= EX̃,UEq(e,ϕ|X̃U )KL(q(J̃|e, ϕ, X̃)∥EU ′q(J̄,J|e, ϕ, X̃Ū ′ , X̃U ′))

≤ EX̃,UEq(e,ϕ|X̃U )KL(q(J̃|e, ϕ, X̃)∥π(J̄,J|e, ϕ))

= EX̃,UEq(e,ϕ|X̃U )KL(q(J̄|e, ϕ, X̃Ū )∥π(J̄|e, ϕ)) + EX̃,UEq(e,ϕ|X̃U )KL(q(J|e, ϕ, X̃U )∥π(J|e, ϕ))

= EX̃,UEq(e,ϕ|X̃U )

n∑
m=1

KL(q(J̄m|e, ϕ, X̃m,Ūm
)∥π(J̄m|e, ϕ))

+ EX̃,UEq(e,ϕ|X̃U )

n∑
m=1

KL(q(Jm|e, ϕ, X̃m,Um)∥π(Jm|e, ϕ))

= nI(J ;X|e, ϕ) + ESEq(e,ϕ|S)
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ))

≤ nI(eJ ;X|e, ϕ) + ESEq(e,ϕ|S)
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ)).

D.7 Proof of Lemma 1 and 3 and additional discussion

Proof of Lemma 1. From the definition of the CMI, we have
I(J̄,J;U |e, ϕ,X) = H[J̃|e, ϕ,X]−H[J̃|U, e, ϕ,X] ≤ H[J̃|e, ϕ,X] ≤ H[J̃|X].

Here, we consider the case where fϕ : X → [K] represents a deterministic encoder that maps
input data to one of the K indices. This scenario can be viewed as a K-class classification problem,
allowing us to directly apply the results from Harutyunyan et al. [30]. They demonstrated that the
CMI for multi-class classification problems can be upper-bounded using the Natarajan dimension, a
combinatorial measure that generalizes the VC dimension to the multiclass setting.

Using this concept, we obtain the following characterization:

When employing a deterministic encoder network f ′ϕ : X → [K] that belongs to a class with finite
Natarajan dimension dK and assuming 2n > dK + 1, we derive the following bound:

I(J̃;U |e, ϕ, X̃) ≤ dK log

((
K

2

)
2en

dK

)
. (24)

The proof follows exactly as in Theorem 8 of Harutyunyan et al. [30].

Thus, by regularizing the capacity of the encoder model (via the Natarajan dimension), the CMI term
scales as O(log n), ensuring controlled generalization behavior. Examples of models that satisfy the
finite Natarajan dimension are shown in Jin [36] and Daniely et al. [16]. Also, see Bendavid et al. [8],
which shows that the VC dimension of the multiclass loss function characterizes the graph dimension,
and the graph dimension upper bounds the Natarajan dimension.

Proof of Lemma 3. Since we consider the setting of Lemma 2, we consider the case of
KL(QJ,U∥P) =

∑
m I(Jm;Sm|e, ϕ). Following the above setting of I(J̃;U |e, ϕ, X̃), that is,

f ′e,ϕ : X → [K] satisfies the Natarajan dimension dK > 1. Then for each m, we have
I(Jm;Sm|e, ϕ) = H[Jm|e, ϕ]−H[Jm|Sme, ϕ] = H[Jm|e, ϕ] ≤ logK ≤ (dK + 1) logK.

Thus KL(QJ,U∥P)/n =
∑
m I(Jm;Sm|e, ϕ)/n ≤ logK = O(1).

The difference between I(J̃;U |e, ϕ, X̃) and I(Jm;Sm|e, ϕ) lies in their conditioning. Since
I(J̃;U |e, ϕ, X̃) is conditioned on all 2n data points, it only depends on the combinatorial num-
ber of distinct index values. In contrast, I(Jm;Sm|e, ϕ) does not condition on the input data, making
regularization based solely on the Natarajan dimension insufficient to control complexity.

For the discussion of the stochastic encoder, see Appendix E.4, where we consider the metric entropy
of fϕ(·), which leads to a similar discussion.
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D.7.1 Additional discussion for the Natarajan dimension

Here, we briefly discuss the Natarajan dimension. First, it can be both upper and lower bounded by
the graph dimension, another common combinatorial measure for multi-class classification problems
(see Lemma 4 and Proposition 1 in Guermeur [27]).

The Natarajan dimension can also be upper bounded by the γ fat-shattering dimension of each class.
Specifically, given f ′e, ϕ : X → [K], let the k-th element of its output be denoted as fe, ϕ

′(k) for
k = 1, . . . ,K. If each f

′(k)
e,ϕ has a finite γ-shattering dimension, then the Natarajan dimension of

f ′e,ϕ can be bounded by the sum of the γ-shattering dimensions of its components, multiplied by a
constant coefficient (see Lemma 10 in Guermeur [27]).

Examples of fat-shattering dimension evaluations can be found in Bartlett & Maass [7], which
analyzes neural network models, and Gottlieb et al. [24], which examines the fat-shattering dimension
of Lipschitz function classes. If our encoder network satisfies these properties, its covering number
can be appropriately bounded.

D.8 Discussion about the overfitting term

Here, we discuss how the overfitting terms relate to different algorithms. First, from the data
processing inequality [15], we obtain

I(e, ϕ;U |X̃) ≤ I(e, ϕ;S),

where we express X̃U as the training dataset S. Since this expression does not include conditioning,
we refer to it as the parameter MI. Several existing studies have analyzed parameter MI under
commonly used algorithms.

Pensia et al. [51] first established the relationship between noisy iterative algorithms and parameter
MI. Subsequently, Wang et al. [76] and Wang et al. [77] investigated the parameter MI of the SGLD
algorithm from the perspective of noisy iterative algorithms, while Futami & Fujisawa [20] analyzed
it in the continuous-time limit. Neu et al. [50] was the first to examine parameter MI in SGD, with
Wang & Mao [78] later improving its dependency on the step size. Furthermore, Haghifam et al. [29]
provided formal limitations in the context of stochastic convex optimization.

In addition to these, in the Bayesian setting, where we assume that the training dataset is conditionally
i.i.d (see Clarke & Barron [14] for the formal settings), Clarke & Barron [14] (see also Rissanen
[53], Haussler & Opper [31]) clarified that the mutual information between learned parameter and
training dataset is described as follows: if w takes a value in a d-dimensional compact subset of Rd
and p(y|x;w) is smooth in w, then as n→∞, we have

I(W ;S) =
d

2
log

n

2πe
+ h(W ) + E log detJ + o(1),

where h(W ) is the differential entropy of W , and J is the Fisher information matrix of p(Y |X;W ).

Steinke & Zakynthinou [63] clarified that the CMI is upper bounded by the the stability. For example,
if the training algorithm satisfies

√
2ϵ-differentially private (DP) algorithm, then CMI is upper-

bounded by ϵn. So this ϵ is controlled by the DP algorithm. The Gibbs algorithm equipped with
[0, 1] bounded loss function, satisfies O(1/n)-DP, thus its CMI is controlled adequately. Steinke &
Zakynthinou [63] also clarified that if the algorithm is δ stable in total variation distance, then CMI is
upper bounded by δn. Li et al. [42] studied the total variation stability for the SGD, and Mou et al.
[48] studied such stability of the SGLD algorithm and its relation to the PAC-Bayesian bound. [49]
investigated the CMI of SGLD as the noisy iterative algorithm.

E Proofs for Section 4

E.1 Proof of Theorem 3

We define T = {T0,T1}, where X̃T0
= (X̃T1

, . . . , X̃Tn
) serves as the test dataset and X̃T1

=

(X̃Tn+1
, . . . , X̃T2n

) serves as the training dataset. We further express X̃T0
= (X̃T1

, . . . , X̃Tn
) =

(X̃T0,1
, . . . , X̃T0,n

) and X̃T1
= (X̃T1,1

, . . . , X̃T1,n
). To emphasize the dependence of the
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dataset on T, we write the posterior distribution as q(J̃|e, ϕ, X̃T) = q(J̄,J|e, ϕ, X̃T) =

q(J̄,J|e, ϕ, X̃T0 , X̃T1) = q(J̄|e, ϕ, X̃T0)q(J|e, ϕ, X̃T1).

Hereinafter, we express X̃ as X to simplify the notation. Under the permutation symmetric settings,
the generalization error can be expressed as

E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,ϕ,X)l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)l(Sm, gθ(eJm))

)

= EX,T
K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)l((XT0,m
, gθ(ek))1k=J̄m

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)l(XT1,m
, gθ(ek))1k=Jm

= EX,T
K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m − gθ(ek)∥21k=J̄m

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm .

We then decompose the loss as follows

gen(n,D) (25)

= EX,T
K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=J̄m

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=Jm

+ EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m − gθ(ek)∥21k=Jm

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm .

First, we upper bound the first two terms by applying the Donsker-Varadhan inequality. Consider the
joint distribution and the prior distribution, defined as follows:

Q := P (T)q(e, θ, ϕ|XT1
)q(J̄,J|e, ϕ,XT), (26)

P := P (T)q(e, θ, ϕ|XT1
) E
P (T′)

q(J̄,J|e, ϕ,XT′).

This corresponds to the posterior and data-dependent prior distributions defined in Section 4.1.

Then we then obtain

EX,T
K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XT1
)∥XT0,m

−gθ(ek)∥2
(
Eq(J̄m|e,ϕ,XT1,m

)1k=J̄m−Eq(Jm|e,ϕ,XT0,m
)1k=Jm

)
≤ EX

1

λ
KL(Q|P)+EX

1

λ
logEP exp

(
λ

n

K∑
k=1

n∑
m=1

∥XT0,m − gθ(ek)∥2
(
1k=J̄m−1k=Jm

))
. (27)
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Note that E
P (T′)

q(J̄,J|e, ϕ,XT′) is symmetric with respect to the permutation of T. Thus, we have

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=J̄m − 1k=Jm

))

= logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )P (T′′)

exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
− 1k=JT′′

1,m

))
= logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )

EP (T′′) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
− 1k=JT′′

1,m

))
.

To simplify the notation, we define T′′ = {T′′
0 ,T

′′
1} = {T′′

0,1, . . . ,T
′′
0,n,T

′′
1,1, . . . ,T

′′
1,n}. Note

that T′′
j,m for m = 1, . . . , n and j = 0, 1 are not independent of each other due to the permutation

that generates them. Therefore, we cannot directly apply standard concentration inequalities, as is
possible in the existing supersample setting.

To address this, we use the results from Joag-Dev & Proschan [37], which concern the negative
association of permutation variables. From Theorem 2.11 in Joag-Dev & Proschan [37], the distri-
bution P (T) satisfies negative association. Additionally, as discussed in Section 3.3 of Joag-Dev &
Proschan [37] and further in Proposition 4 and 5 of Dubhashi & Ranjan [18], we have that

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )

EP (T′′) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=JT′′

0,m
− 1k=JT′′

1,m

))
≤ logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )

E∏n
m=1

∏
j=0,1P (T′′

j,m) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=JT′′

0,m
−1k=JT′′

1,m

))
,

where P (T′′
j,m) is the marginal distribution, implying that T′′

j,m are now 2n independent random
variables. Intuitively, the results in Joag-Dev & Proschan [37] indicate that the elements of the
permutation index, which follow the permutation distribution, are negatively correlated. As a result,
the expectation of the marginal distribution is larger than that of the joint distribution.

Since {T′′
j,m} are independent, we can apply McDiarmid’s inequality, which leads to the results in

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )

exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=J̄m − 1k=Jm

))
≤ logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )

E∏n
m=1

∏
j=0,1P (T′′

j,m) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=JT′′

0,m
−1k=JT′′

1,m

))

≤ λ2∆2

n
. (28)

This is derived similarly to Eq. (15). Note that there are 2n variables so the calculation of the upper
bound is (∆λ/n)2/8× 2n = λ2∆2/4n.
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Next, we focus on the third and fourth terms in Eq. (25). Similarly to Eq. (18), we have

EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=Jm

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm

= EX,T
2

n

n∑
m=1

(
XT1,m

−XT0,m

)
· Eq(Jm|e,ϕ,XT1,m

)q(e,ϕ,θ|XT1
)

K∑
k=1

gθ(ek)1k=Jm

≤ EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m −XT0,m

)
·
K∑
k=1

gθ(ek)1k=Jm

)

≤ EX
1

λ
KL(Q|P)

+ EX
1

λ
logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )E∏n
m=1

∏
j=0,1P (T′′

j,m)

exp

(
2λ

n

n∑
m=1

(
XT1,m

−XT0,m

)
·
K∑
k=1

gθ(ek)1k=Jm

)
. (29)

We first evaluate the expectation of the exponential moment;

Ω := EP (T)q(e,θ,ϕ|XT1
)
2

n

n∑
m=1

(
XT1,m

−XT0,m

)
· E E

P (T′)
q(J̄,J|e,ϕ,XT′ )

K∑
k=1

gθ(ek)1k=Jm .(30)

Let us now focus on the expectation E
P (T′)

q(J̄,J|e, ϕ,XT′). Due to the permutation symmetry,

E E
P (T′)

q(J̄,J|e,ϕ,XT′ )

∑K
k=1 1k=Jm is the same for all m.

For instance, when n = 2, the possible permutations of T are T =
(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), . . . , resulting in 24 distinct patterns and thus

Pk,1 = E E
P (T′)

q(J̄,J|e,ϕ,XT′ )1k=J̄1 = E 1
4 q(J1|e,ϕ,X1)+

1
4 q(J1|e,ϕ,X2)+

1
4 q(J1|e,ϕ,X3)+

1
4 q(J1|e,ϕ,X4)1k=J1

Pk,2 = E E
P (T′)

q(J̄,J|e,ϕ,XT′ )1k=J̄2 = E 1
4 q(J2|e,ϕ,X1)+

1
4 q(J2|e,ϕ,X2)+

1
4 q(J2|e,ϕ,X3)+

1
4 q(J2|e,ϕ,X4)1k=J2

....
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Thus, all Pk,m does not depend on the index m. So we express E E
P (T′)

q(J̄,J|e,ϕ,XT′ )

∑K
k=1 1k=Jm as

Pk. Then Eq. (30) can be written as

EXEP (T)q(e,θ,ϕ|XT1
)

(
1

n

n∑
m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

)
·
K∑
k=1

gθ(ek)Pk

= EP (T)EX

(
1

n

n∑
m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

)
· q(e, θ, ϕ|XT1

)

K∑
k=1

gθ(ek)Pk

= EP (T)EXT1
EXT0

(
1

n

n∑
m=1

XT1,m −
1

n

n∑
m=1

XT0,m

)
· q(e, θ, ϕ|XT1)

K∑
k=1

gθ(ek)Pk

= EP (T)EXT1

(
1

n

n∑
m=1

XT1,m
− EXT0

1

n

n∑
m=1

XT0,m

)
· q(e, θ, ϕ|XT1

)

K∑
k=1

gθ(ek)Pk

= EP (T)EXT1

(
1

n

n∑
m=1

XT1,m
− EXX

)
· q(e, θ, ϕ|XT1

)

K∑
k=1

gθ(ek)Pk

≤ EP (T)EXT1
q(e,θ,ϕ|XT1

)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m − EXX

∥∥∥∥∥EP (T)EXT1
q(e,θ,ϕ|XT1

)

∥∥∥∥∥
K∑
k=1

gθ(ek)Pk

∥∥∥∥∥
∞

≤ EP (T)EXT1
q(e,θ,ϕ|XT1

)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− EXX

∥∥∥∥∥EP (T)EXT1
q(e,θ,ϕ|XT1

)

∥∥∥∥∥
K∑
k=1

gθ(ek)Pk

∥∥∥∥∥
∞

≤ EP (T)EXT1

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− EXX

∥∥∥∥∥√∆.
We bound the above exactly same ways as Eq. (20), that is, we can upper bound the above by the
variance of bounded random variable and thus, we have

EP (T)EXT1

∥∥∥∥∥ 1n
n∑

m=1

XT1,m − EXX

∥∥∥∥∥ ≤
√

∆

4n
.

Thus, we have

Ω = EXEP (T)q(e,θ,ϕ|XT1
)

(
2

n

n∑
m=1

XT1,m
− 2

n

n∑
m=1

XT0,m

)
·
K∑
k=1

gθ(ek)Pk ≤
∆√
n
,

Let us back to the evaluation of the exponential moment in Eq. (29), we will evaluate the following

EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m

−XT0,m

)
·
K∑
k=1

gθ(ek)1k=Jm − λΩ

)
+Ω.

(31)
We then evaluate this similarly to Eq. (28), which uses the negative association of the permuta-
tion distribution and McDiarmid’s inequality. The the exponential moment is upper bounded by
(2∆λ/n)2/8× 2n = λ2∆2/n We then obtain

EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm

− EX,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m − gθ(ek)∥21k=Jm

≤ EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m

−XT0,m

)
·
K∑
k=1

gθ(ek)1k=Jm−λΩ

)
+Ω

≤ EX
1

λ
KL(Q|P) +

λ∆2

n
+

∆√
n
. (32)
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In conclusion, from Eqs. (28) and (32) we have

gen(n,D) ≤ EX
2

λ
KL(Q|P) +

5λ∆2

4n
+

∆√
n
,

and optimizing the λ, we have

gen(n,D) ≤ 2∆

√
5EXKL(Q|P)

2n
+

∆√
n
.

We can slightly improve the coefficient of the first term in the above bound as follows. The above
proof follows the approach in Appendix D.1. We separately apply the Donsker-Valadhan lemma for
the first two terms and latter two terms in Eq. (25). However, since the posterior and prior distributions
used for the Donsker-Valadhan lemma are the same as shown in Eq. (26), we only need to use the
Donsker-Valadhan lemma once. This leads to an improved coefficient.

Specifically, the proof goes as follows; combining Eqs. (27) and (31), we have simultaneously treat
all terms in Eq. (25). By Donsker-Valadhan lemma, we have
gen(n,D)

≤ EX
1

λ
KL(Q|P) + EX

1

λ
logEP

exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=J̄m−1k=Jm

)
+

2λ

n

n∑
m=1

(
XT1,m −XT0,m

)
·
K∑
k=1

gθ(ek)1k=Jm − λΩ

)
+Ω.

From the negative association property, the exponential moment term can be upper-bounded as
logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )E∏n
m=1

∏
j=0,1P (T′′

j,m)

exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=JT′′

0,m
−1k=JT′′

1,m

)
+

2λ

n

n∑
m=1

(
XT1,m −XT0,m

)
·
K∑
k=1

gθ(ek)1k=JT′′
1,m
− λΩ

)
,

Since {T′′
j,m} are independent, we can apply McDiarmid’s inequality. The the exponential moment

is upper bounded by ((1 + 2)∆λ/n)2/8× 2n = 9λ2∆2/4n. Thus, we have

gen(n,D) ≤ EX
1

λ
KL(Q|P) + 9λ2∆2/4n+

∆√
n
.

By optimizing λ, we have

gen(n,D) ≤ 3∆

√
EXKL(Q|P)

n
+

∆√
n
.

E.2 Proof of Eq. (10) and discussion about the deterministic encoder

First, we can show
EX̃,TEq(e,ϕ|X̃T1

)KL(QJ̃,T∥QJ̃) ≤ I(e, ϕ;T|X̃) + I(J̃;T|e, ϕ, X̃).

exactly same way as Appendix D.6.

By the definition of the CMI, the CMI is expressed as the difference of entropy and conditional
entropy. Since J̃ is discrete, the entropy is always larger than 0. Thus, we have

I(J̃;T|e, ϕ, X̃) ≤ H[J̃|e, ϕ, X̃] ≤ H[J̃|X̃].

where H is the Shannon entropy. Note that the entropy is bounded by the growth function, i.e., the
maximum number of different ways in which a dataset of size 2n can be classified in K. And such
quantity is bounded in the proof of Theorem 8 of Harutyunyan et al. [30], thus

I(J̃;T|e, ϕ, X̃) ≤ dK log

((
K

2

)
2en

dK

)
.

holds similarly to Eq. (24).

Thus, by regularizing the capacity of the encoder model (via the Natarajan dimension), the CMI term
I(J̃;T|e, ϕ, X̃)/n scales as O(log n). See Appendix D.7 for the additional discussion.
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E.3 Proof of Theorem 4

To prove the theorem, we prove a more general result than Theorem 4, and then we apply that result
to the specific setting of Theorem 4. Therefore, we first derive such a general result.

E.3.1 Discretization in encoder function

Here, we present the results for a general stochastic encoder. For fixed ϕ and e, assume that for
all x ∈ X̃ , for any j ∈ [K], and for a fixed δ ∈ R+, the following holds: q(J = j|e, fϕ(x)) ≤
eh(δ)q(J = j|e, f̂(x))) with h : R+ → R+.

Theorem 6. Assume that there exists a positive constant ∆z such that supz,z′∈Z ∥z − z′∥ < ∆z .
Then, when using Eq. (2) and under the same setting as Theorem 3, for any δ ∈ (0, 1], we have

gen(n,D) ≤ 2∆
√
nh(δ) + 3∆

√
2 logN (δ,F , 2n)

n
+

∆√
n
.

We can show that Eq. (2) satisfies h(δ) = 8β∆zδ, see Appendix E.3.3 for this proof. Thus by
substituting this into the above Theorem, we obtain Theorem 4.

Proof. When analyzing the contribution of the encoder model to generalization, it is often necessary
to discretize the function or parameters of the encoder to control the CMI using the metric entropy of
the model. To achieve this, we consider a δ-cover f̂ of the function . In this derivation, we examine
both the supersample and permutation-invariant settings, highlighting that the supersample setting
fails to establish a uniform convergence bound.

First, we begin with the supersample setting. Given a supersample X̃ , we recall the definition of
the indices. In this theorem, we focus on the distribution of the index defined by the codebook e
and z ∈ Z , where z represents the output of the encoder fϕ(·). Thus, we express it as q(J |e, z).
Moreover, in this section, we use the notation q(e, ϕ, θ|X̃, U) = q(e, ϕ, θ|X̃U ). The joint distribution
is then given by:

Q′ :=P (X̃)P (U)q(e, ϕ, θ|X̃, U)q(J̃|e, f̃)p(f̃ |f , U)p(f |ϕ, X̃),

Q′
δ :=P (X̃)P (U)q(e, ϕ, θ|X̃, U)q(J̃|e, f̃)p(f̃ |̂f , U)p(f̂ |f)p(f |ϕ, X̃),

where q(J̃|e, f̃) represents the elementwise application of q(J |e, ·) to f̃ ∈ Z2n. And p(f |ϕ, X̃) is
the elementwise application of p(f |ϕ, ·) to X̃ , which simply computes the encoder output for each
sample in X̃ .

Then, in p(f̂ |f), the discretization process is performed using the δ-cover (thus, it is represented by
the Dirac mass). We express this as p(f̂ |f) = δ(f̂ , f̂ϕ), where f̂ϕ is the selected point from the δ-cover.
Then, for p(f̃ |̂f , U), we randomly shuffle f̂ ∈ R2n with U , formally defining f̂Ũ := (fU , fŪ ). Thus,
we write p(f̃ |̂f , U) = δ(f̃ , f̂Ũ ). Similarly, we define p(f̃ |f , U) = δ(f̃ , fŨ ).

This definition differs slightly from the posterior distribution in Eq. (14), where we first shuffle X̃
with U before passing it through the encoder. This simple modification allows us to derive the bound
based on metric entropy. When evaluating the generalization error bound, we are only concerned
with J̃ . By integrating out f̃ , ϕ, and f̂ , we focus on the following posterior distributions:

Q :=P (X̃)P (U)q(e, f , θ|X̃, U)p(J̃|e, fŨ ),
Qδ :=P (X̃)P (U)q(e, f , θ|X̃, U)p(J̃|e, f̂ϕ

Ũ
).
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To prove this lemma, we first replace the output of the encoder with that obtained using the δ-cover
of the encoder network. First note that the generalization error can be written as

gen(n,D) = Ep(X̃)P (U)

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,fϕ(Xm,Ūm
))q(e,ϕ,θ|XU )l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,fϕ(Xm,Um )))q(e,ϕ,θ|XU )l((Xm,Um
, gθ(ek))1k=Jm

= Ep(X̃)p(U)q(e,ϕ,θ|X,U)p(J̃|e,fŨ )

[
K∑
k=1

1

n

n∑
m=1

l(Xm,Ūm
, gθ(ek))1k=J̄m − l((Xm,Um

, gθ(ek))1k=Jm

]
.

We also define the generalization under the delta cover of original function, conditioned o

gen(n,D, δ) := Ep(X̃)p(U)q(e,ϕ,θ|X,U)

[ K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,̂f(Xm,Ūm
))l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,̂f(Xm,Um )))l((Xm,Um
, gθ(ek))1k=Jm

]
= Ep(X̃)p(U)q(e,ϕ,θ|X,U)p(J̃|e,f̂ϕ

Ũ
)

[
K∑
k=1

1

n

n∑
m=1

l(Xm,Ūm
, gθ(ek))1k=J̄m − l((Xm,Um

, gθ(ek))1k=Jm

]
.

For the latter purpose, we define

∆L :=

K∑
k=1

1

n

n∑
m=1

l(Xm,Ūm
, gθ(ek))1k=J̄m −

K∑
k=1

1

n

n∑
m=1

l((Xm,Um
, gθ(ek))1k=Jm .

To evaluate these gap, we apply the Donsker-Valadhan lemma between the two distributions QJ and
Qδ,J .
gen(n,D) (33)

≤ gen(n,D, δ) + E
U,X

Eq(e,ϕ,θ|XU )
1

λ
KL(Q∥Qδ) + E

U,X
Eq(e,ϕ,θ|XU )

1

λ
logEp(J̃|e,f̂ϕ

Ũ
) exp

(
λ∆L − Ep(J̃|e,f̂ϕ

Ũ
)λ∆L

)

≤ gen(n,D, δ) + 2nh(δ)

λ
+
λ∆2

2
,

where we evaluated the KL divergence as

KL(Q∥Qδ) = EQ log
Q

Qδ
≤ 2nK log eh(δ) = 2nh(δ).

The inequality is owing to the proper that for all x ∈ X̃ , for any j ∈ [K], and for a fixed δ ∈ R+,
q(J = j|e, fϕ(x)) ≤ eh(δ)q(J = j|e, f̂(x))) holds by assumption. We also evaluated the exponential
moment term by using the fact that −λ∆ ≤ λl(X, gθ(eJ)) − λ

n

∑n
m=1 l(Sm, gθ(eJm)) ≤ λ∆ to

upper bound the exponential moment.

This implies that the first term corresponds to the generalization bound when using the δ-cover of the
encoder network. We can bound this term similarly to Theorem 2,

gen(n,D, δ) ≤ 2∆

√
KL(Q′

δ∥P′
δ) + KL(Q′

δ∥P)

n
+

∆√
n
,

where we consider the following posterior and data-dependent, and data-independent prior distribu-
tions:

Q′
δ :=P (X̃)P (U)q(e, ϕ, θ|X̃, U)q(J̃|e, f̃)p(f̃ |̂f , U)p(f̂ |f)p(f |ϕ, X̃),

P′
δ :=P (X̃)P (U)q(e, ϕ, θ|X̃, U)p(J̃|e, f̃)EU ′p(f̃ |̂f , U ′)p(f̂ |f)p(f |ϕ, X̃),

P :=P (X̃)P (U)q(e, ϕ, θ|X̃, U)q(J̃|e, f̃)p(f̃ |̂f , U)π(f̂)p(f |ϕ, X̃),
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where π(f̂) is the data independent prior distribution over the δ-covering, such as the uniform
distribution.

Combining these, we have

gen(n,D) ≤ 2∆
√
nh(δ) + 2∆

√
KL(Q′

δ∥P′
δ) + KL(Q′

δ∥P)

n
+

∆√
n
.

As for the CMI term, we have

KL(Q′
δ∥P′

δ) ≤ 2 logN (δ,F , 2n). (34)

The proof of Eq. (34) is shown in below and this term can be bounded O(log n) under moderate
assumptions.

However, the second term KL(Q′
δ∥P), which corresponds to the empirical KL term, cannot be small

as discussed in Theorem 2. That is, under the settings of Lemma 2, the empirical KL behaves O(1),
which is undesirable behavior.

So we consider using the permutation symmetric setting. We can proceed the discretization almost
the same in the above super sample setting. IUnder this distribution, the generalization gap can again
upper bounded similar to Eq. (33). Then from Theorem 3, we have

gen(n,D) ≤ EX̃,T
K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,f̂(XT0,m
))q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=J̄m

− EX̃,T
K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,f̂(XT1,m
))q(e,ϕ,θ|XT1

)∥XT1,m − gθ(ek)∥21k=Jm + 2∆
√
nh(δ)

≤ 3∆

√
KL(Q′

δ∥P′
δ)

n
+

∆√
n
+ 2∆

√
nh(δ),

where

Q′
δ :=P (X̃)P (T)q(e, ϕ, θ|X̃,T)q(J̃|e, f̃)p(f̃ |̂f ,T)p(f̂ |f)p(f |ϕ, X̃),

P′
δ :=P (X̃)P (T)q(e, ϕ, θ|X̃,T)p(J̃|e, f̃)ET′p(f̃ |̂f ,T′)p(f̂ |f)p(f |ϕ, X̃),

We can show that

KL(Q′
δ∥P′

δ) ≤ 2 logN (δ,F , 2n). (35)

see Appendix E.3.2 for the proof. We can analyze the behavior of the upper bound of Eq. (35) in
Appendix E.4.

Thus, we have

gen(n,D) ≤ 3∆

√
2 logN (δ,F , 2n)

n
+

∆√
n
+ 2∆

√
nh(δ).

E.3.2 Proof of Eq. (34)

We consider the following posterior and data-dependent prior distributions

Q := P (X̃)P (U)q(e, ϕ, θ|X̃, U)p(J̃|e, f̃)p(f̃ |f , U)p(f |ϕ, X̃)

PS := P (X̃)P (U)q(e, ϕ, θ|X̃, U)p(J̃|e, f)Ep(U ′)p(f̃ |f , U ′)p(f |ϕ, X̃)
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When using the Donsker-Valadhan inequality, all calculation remains the same except for the KL
divergence term as described below

EQ log
Q

PS
= Ep(X̃)P (U)q(e,ϕ,θ|X̃,U)p(J̃|e,f̃)p(f̃ |f ,U)p(f |ϕ,X̃) log

p(f̃ |f , U)

Ep(U ′)p(f̃ |f , U ′)

= Ep(X̃)P (U)q(f |X,U)p(f̃ |f ,U) log
p(f̃ |f , U)

Ep(U ′)p(f̃ |f , U ′)

= Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
p(f̃ |f , U)

Ep(U ′)p(f̃ |f , U ′)

= Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
p(f̃ |f , U)

Ep(U ′|f ,X)p(f̃ |f , U ′)

+ Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
Ep(U ′|f ,X)p(f̃ |f , U ′)

Ep(U ′)p(f̃ |f , U ′)

= I(f̃ ;U |f , X) + Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
Ep(U ′|f ,X)p(f̃ |f , U ′)

Ep(U ′)p(f̃ |f , U ′)

≤ I(f̃ ;U |f , X) + Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
p(U ′|f , X)

p(U ′)

= I(f̃ ;U |f , X) + Ep(X̃)P (f |X)EP (U |f ,X)p(f̃ |f ,U) log
p(U ′|X)p(f |U ′, X)

Ep(U ′|X)p(f |U ′, X)p(U ′)

= I(f̃ ;U |f , X) + I(f ;U |X)

We can derive the similar arguments for Q′
δ and P′

δ , and we have

KL(Q′
δ∥P′

δ) ≤ I(f̃ ;U |f̂ , X) + I(f̂ ;U |X)

Note that we consider the CMI for the discrete variable, it is upper bounded by the entropy [15], and
we have

I(f̃ ;U |f̂ , X) ≤ H[f̃ |f̂ , X]−H[f̃ |U, f , X] ≤ H[f̃ |X] ≤ logN (δ,F , 2n).
and

I(f̂ ;U |X) ≤ H[f̂ |X]−H[f̂ |U,X] ≤ H[f̂ |X] ≤ logN (δ,F , 2n).

The first inequality follows from the fact that MI is defined as the difference between the entropy
and the conditional entropy, and the entropy of discrete variables is always non-negative. The
second inequality arises because J̄,J are outputs of a function evaluated at 2n points. Thus, we
considered the covering number at 2n points, defined as N (δ,F , n) := supx2n∈X 2n N (δ,F , x2n).
Since the entropy is bounded above by the logarithm of the maximum cardinality, we obtain the
second inequality.

E.3.3 Behavior of Eq. (2)

Finally, we show that Eq. (2) satisfies h(δ) = 8β∆zδ because
q(J = j|e, fϕ(x))
q(J = j|e, f̂(x))

=
e−β∥fϕ(x)−ej∥

2

e−β∥f̂(x)−ej∥
2
×
∑K
k=1 e

−β∥f̂(x)−ek∥2∑K
k=1 e

−β∥fϕ(x)−ek∥2

= e−β∥fϕ(x)−ej∥
2+β∥f̂(x)−ej∥2

×
∑K
k=1 e

β∥fϕ(x)−ek∥2∑K
k=1 e

β∥f̂(x)−ek∥2

≤ eβ(f̂(x)−fϕ(x))·(f̂(x)+fϕ(x))−2βej ·(f̂(x)−fϕ(x)) × sup
k∈[K]

e−β∥f̂(x)−ek∥
2+β∥fϕ(x)−ek∥2

≤ e4β∆zδ × e4β∆zδ.
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E.4 Discussion about the metric entropy for regularized model

Here we discuss the upper bound of metric entropy in our setting. Since the latent variable lies in
Rdz , the encoder network operates as fϕ : Rd → Rdz , making it a multivariate function.

Let us define a function class Fi : X → R for i = 1 . . . , dzand define F0 =
∏dz
i=1 F . Then by

definition, F ⊂ F0 holds. We define the covering number for each Fi; Given xn := (x1, . . . , xn) ∈
Xn, define the pseudo-metric d′n on Fi as d′n(f, g) := maxi∈[n] |f(xi)− g(xi)| for f, g ∈ Fi. The
δ-covering number of Fi with respect to d′n is denoted asN (δ,Fi, xn), and we defineN (δ,Fi, n) :=
supxn∈Xn N (δ,Fi, xn). Then by definition, the cardinality of F is smaller than F0, so we have

N (δ,F , n) ≤
dz∏
i=1

N (δ,Fi, n).

We can see a similar argument in Lemma 1 in Guermeur [26], which considers more general settings.

For simplicity, we assume that F ′ = F1 = · · · = Fdz holds. Then, we can rewrite Theorem 4 as
follows

gen(n,D) ≤ 4∆
√
2nβ∆zδ + 3∆

√
2dz logN (δ,F ′, 2n)

n
+

∆√
n
.

For example, assume that the encoder function, which has dϕ dimensional parameters, shows L0-
Lipschitz continuity (L0 > 0) with respect to parameter, then we can obtain logN (F , ∥ · ∥∞, δ) ≍
dϕ log

L0

δ [75]. Thus, by setting δ = O(1/(n)), we have that

gen(n,D) = O

(√
dϕdz log(n)

n

)

Instead of using the assumption of parametric function class, the metric entropy can be bounded
by the fat-shattering dimension of each function, as discussed in Lemma 3.5 of Alon et al. [5].
Examples of fat-shattering dimension evaluations can be found, for instance, in Bartlett & Maass [7],
which discusses neural network models, and Gottlieb et al. [24], which addresses the fat-shattering
dimension of Lipschitz function classes. If our encoder network adheres to these properties, we can
bound its covering number accordingly.

As discussed in Appendix D.7.1, when we use the deterministic decoder, we can use the Natarajan
dimension to quantify the complexity of the LVs and such Natarajan dimension can be bounded
by the fat-shattering dimension. Thus, it is essential to bound the fat-shattering dimension in both
deterministic and stochastic settings.

F Proof of Theorem 5

Before the proof, we define the Wasserstein distance. Given a metric d(·, ·) and probability distribu-
tions p and q on X , let Π(p, q) denote the set of all couplings of p and q. The 2-Wasserstein distance
is defined as:

W2(p, q) =

√
inf
ρ∈Π

∫
X×X

d(x, x′)2dρ(x, x′).

In this work, we use the Euclidean metric | · | as d(·, ·).
Next, we define the pushforward. Let π represent a distribution on Z , and let us assume that for any
θ ∈ Θ, the decoder gθ(·) : Z → X is measurable. The pushforward of the distribution π by the
decoder, denoted as gθ#π, defines a distribution on X as gθ#π(A) = π(g−1

θ (A)) for any measurable
set A ⊆ X .

Proof. Conditioned on the encoder parameter, codebook, and input X , selecting the index J corre-
sponds to selecting the latent representation eJ . Since the posterior over the index is q(J |e, ϕ,X), we
express the posterior imposed on the latent representation as q(e = ej |e, ϕ,X) for all j = 1, . . . ,K.
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Using this notation, we first define the distribution obtained by the training dataset as follows;
conditioned on e, ϕ, S, we have

µ̂S =
1

n

n∑
m=1

gθ#q(e|e, ϕ, Sm).

From the triangle inequality, we have
W2(D, µ̂) ≤W2(D, µ̂S) +W2(µ̂S , µ̂). (36)

We then have
W 2

2 (D, µ̂) ≤ 2W 2
2 (D, µ̂S) + 2W 2

2 (µ̂S , µ̂).

The first term of Eq. (36) is bounded as follows;

ESEq(e,ϕ,θ|S)W 2
2 (D, µ̂S) ≤ ESEq(e,ϕ,θ|S)EX

1

n

n∑
m=1

Eq(e|e,ϕ,Sm)∥X − gθ(e)∥2

= ESEq(e,ϕ,θ|S)EX
K∑
k=1

∥X − gθ(ek)∥2
1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)1k=Jm .(37)

The first inequality is obtained by the definition of the Wasserstein distance.

This term corresponds to the first term of Eq. (17), where X corresponds to the test data Xm,Ūm
.

Therefore, Eq. (37) can be upper-bounded by applying Eq. (21), which serves as the upper bound for
Eq. (17).

ESEq(e,ϕ,θ|S)W 2
2 (D, µ̂S) (38)

≤ ESEq(e,ϕ,θ|S)
1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)∥Sm − gθ(eJm)∥2 + 1

λ
KL(Q|P) +

λ∆2

2n
+

∆√
n
,

where

Q := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ, Sm), P := q(e, ϕ, θ|S)
n∏

m=1

π(Jm|e, ϕ).

Next, the second term of Eq. (36) is bounded as follows; we use the weighted CKP inequality
[11].From the particular case 2.5. in Bolley & Villani [11], we directly have

ESEq(e,ϕ,θ|S)W 2
2 (µ̂S , µ̂) ≤ ∆

√
2KL(µ̂S∥µ̂) ≤ ∆

√√√√2
1

n

n∑
m=1

KL(gθ#q(e|e, ϕ, Sm)∥gθ#π(e|e, ϕ))

(39)

≤ ∆

√√√√2
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ))

Combining Eqs. (38) and (39), we have

ESEq(e,ϕ,θ|S)W 2
2 (D, µ̂) ≤ 2ESEq(e,ϕ,θ|S)

1

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2

+
2

λ
KL(Q|P) +

λ∆2

n
+

2∆√
n
+ 2∆

√√√√2
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ)).

Then by optimizing λ, we have
ESEq(e,ϕ,θ|S)W 2

2 (D, µ̂)

≤ ESEq(e,ϕ,θ|S)
2

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2 + 4∆

√√√√2
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥π(Jm|e, ϕ)) +
2∆√
n
.
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G Experimental settings and additional experimental results

Our experiments were based on the Gaussian stochastically quantized VAE (SQ-VAE) model proposed
by Takida et al. [64], and were conducted by adapting the code from their GitHub 1to suit our
experimental configurations. Therefore, we first introduce the basics of (Gaussian) SQ-VAE in
Sections G.1 and G.2 and finally explain our experimental settings in Section G.3.

G.1 Overview of SQ-VAE

The SQ-VAE is a generative model that, similar to VQ-VAE, employs a learnable codebook e =
{ek}Kk=1 ∈ ZK . The objective of SQ-VAE is to learn the stochastic decoder x ∼ pθ(x|Zq)
using latent variables Zq to generate samples belonging to the data distribution pdata(x), where
pθ(x|Zq) = N (gθ(Zq), σ

2I), N (m,σI) is the Gaussian distribution with mean and equal variance
parameter {m, σ2I}, σ2 ∈ R+, and I is the identity matrix. Here, Zq is sampled from a prior
distribution P (Zq) over the discrete latent space edz .

In the main training process of SQ-VAE, we assume P (Zq) to be an i.i.d. uniform distribution,
identical to VQ-VAE, meaning each codebook element is selected with equal probability (P (zq,i =
bk) = 1/K for k ∈ [K]). Subsequently, a second training stage is conducted to learn P (Zq).
Since computing the posterior pθ(Zq|x) exactly is intractable, we utilize an approximate posterior
distribution qϕ(Zq|x) instead.

At the encoding process, directly mapping from x to the discrete Zq is challenging due to the discrete
nature of Zq . To overcome this issue, Takida et al. [64] proposed to construct a stochastic encoder by
introducing the following two processes:

• Stochastic Dequantization Process: The transformation function from Zq to the auxiliary
continuous variable, Z, denoted as pψ(Z|Zq), where ψ is its parameters.

• Stochastic Quantization Process: The transformation from Z to Zq is given by
P̂ϕ(Zq|Z) ∝ pϕ(Z|Zq)P (Zq) obtained via Bayes’ theorem, which is represented as the
categorical distribution q(J |e, ϕ, x) through the softmax function as in Eq. (2).

We can obtain Ẑq from a deterministic encoder fϕ(x), where we expect that Ẑq is close to Zq.
Therefore, we can similarly define the dequantization process of Ẑq as Z|Ẑq ∼ pψ(Z|Ẑq). By
combining this process with the stochastic quantization process, we can establish the following
stochastic encoding process from x to Zq: Eqω(Z|x)[P̂ϕ(Zq|Z)], where ω := {ϕ, ψ} and qω(Z|x) :=
pψ(Z|fϕ(x)).
According to these facts, we can derive the following evidence lower bound (ELBO) for SQ-VAE:

−LSQ(x; θ, ω, e) (40)

:= Eqω(Z|x),P̂ϕ(Zq|Z)

[
log

pθ(x|Zq)pϕ(Z|Zq)
qω(Z|x)

]
︸ ︷︷ ︸

=KL(Q∥P)

+Eqω(Z|x)H(P̂ϕ(Zq|Z)) + (Const.),

where H(P̂ϕ(Zq|Z)) is the entropy of P̂ϕ(Zq|Z).
From the above, the optimization problem of SQ-VAE is minimizing Epdata(x)[LSQ(x; θ, ω, e)]
w.r.t. {θ, ω, e}. This approach eliminates the need for heuristic techniques traditionally required, such
as stop-gradient, exponential moving average (EMA), and codebook reset [82].

Moreover, the categorical posterior distribution P̂ϕ(Zq|Z) = q(J |e, ϕ, x) can be approximated using
the Gumbel–Softmax relaxation [35, 45], where the Gumbel–Softmax function is defined as, for all k
(1 ≤ k ≤ K),

exp(−β∥fϕ(x)− ek∥2 +Gk)/τ)∑K
j=1 exp(−β∥fϕ(x)− ej∥2 +Gj)/τ)

,

1https://github.com/sony/sqvae/tree/main/vision
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Table 1: Experimental settings on MNIST.
Experimental setup for MNIST experiments

Model Gaussian stochastically quantized VAE (SQ-VAE) [64]
Network archtecture ConvResNets with three convolutional layers, two transpose convolutional layers, and one ResBlocks.
The size of a codebook (K) and the dimension of the latent space dz K = {16, 32, 64, 128}; dz = 64
Optimizer Adam with 0.001 initial learning rate
Batch size 32
Num. of training/validation samples [250, 1000, 2000, 4000]
Num. of epochs 200
Num. of samples for CMI estimation 3
Num. of samplings for U 5

Table 2: Experimental settings on CIFAR10.
Experimental setup for CIFAR10 experiments

Model Gaussian stochastically quantized VAE (SQ-VAE) [64]
Network architecture ConvResNets with three convolutional layers, two transpose convolutional layers, and one ResBlocks.
The size of a codebook (K) and the dimension of the latent space dz K = {16, 32, 64, 128}; dz = 64
Optimizer Adam with 0.001 initial learning rate
Batch size 32
Num. of training/validation samples [1000, 5000, 10000, 20000]
Num. of epochs 200
Num. of samples for CMI estimation 3
Num. of samplings for U 5

where Gk is an i.i.d. sample from the Gumbel distribution and τ is the temperature parameter that is
deferent from β in Eq. (2). This allows the application of the reparameterization trick from VAEs
during backpropagation, enabling efficient gradient computation and model training.

G.2 Gaussian SQ-VAE

Gaussian SQ-VAE assumes that the dequantization process pψ(Z|Zq) follows a Gaussian distribution.
In this paper, we set the following Gaussian distribution: pψ(Zi|Zq) = N (Zq,i, σ

2
ψI), where σ2

ψ ∈
R+. Then, the stochastic decoder and the stochastic dequantization process in SQ-VAE can be written
as pθ(x|Zq) = N (gθ(Zq), σ

2I) and pψ(Zi|Ẑq) = N (Ẑq,i, σ
2
ψI).

G.3 Details of experimental settings

Dataset: We used the MNIST dataset [41], which is 28 × 28 gray scale images with 10 classes.
We prepared the subset dataset with {1000, 2000, 4000, 8000} samples from the default training
dataset (60000 samples). Then, we split it as the training and the validation datasets following the
supersample setting as in Section 2.3.

Model architecture and training procedure: We adopted the ConvResNets with the architecture
provided by Google DeepMind 2. We summarize the details of this model in Table 1.

Regarding the training procedure, we adopted the settings in Takida et al. [64] as follows. We used
the Adam optimizer with 0.001 initial learning rate. The learning rate was halved every 3 epochs if
the validation loss is not improving. We trained the model 200 epochs with 32 mini-batch size. As
for the annealing schedule for the temperature parameter of the Gumbel-softmax sampling, we set
τ = exp(10−5 · t) as in Jang et al. [35], where t is the global training step size.

GPU environment: We used NVIDIA GPUs with 32GB memory (NVIDIA DGX-1 with Tesla
V100 and DGX-2) in our experiments.

Mutual information estimation: To estimate the mutual information I(J̃;U |e, ϕ, X̃) in Eq. (7),
we developed a plug-in estimator for it, which is computed using estimators for the prob-
ability density of J̃ and X̃ , as well as their joint probability density, employing k-nearest-
neighbor-based density estimation [43]. The estimation strategy is incorporated into the
sklearn.feature_selection.mutual_info_classif function 3. We set k = 3 fol-
lowing the default setting of this function and Kraskov et al. [40], Ross [54].

2https://github.com/deepmind/sonnet/blob/v2/examples/vqvae_example.
ipynb

3https://scikit-learn.org/stable/modules/generated/sklearn.feature_
selection.mutual_info_classif.html
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Figure 5: Behavior of the generalization gap and the empirical KL term (KL(QJ,U∥P)/n) on the
CIFAR-10 dataset (K = 128, dz = 64). The top row shows their asymptotic behavior as a function of
sample size n. The bottom row shows their behavior as the decoder complexity (number of residual
blocks) is increased (for n = 20000).

G.4 Additional Experimental Results

Here, we summarize our additional experimental results. These experiments are organized to
empirically support the three central claims of our paper, which we present in sequence: (1) the
decoder-independent nature of the generalization gap, (2) a detailed analysis of the two KL terms in
Theorem 2, and (3) the practical utility of our theoretical framework.

G.4.1 Validation of Decoder-Independence (Theorems 2, 3, & 4)

A central claim of our paper is that the generalization gap is independent of the decoder gθ. We
validate this claim across various settings.

First, Figure 5 shows the results on the CIFAR-10 dataset, which is more complex than MNIST. These
results support our implication: increasing the complexity of gθ by adding a ResBlock (introducing
approximately 74,000 parameters) has a negligible effect on the generalization gap.

Second, to provide a complete picture for Figure 2 in the main text, we provide its corresponding
training losses in Table 3. The table confirms that for larger datasets (n ≥ 1000), a more expressive
decoder (i.e., with more residual blocks) tends to achieve a lower training loss. This observation,
when viewed alongside the stable generalization gap in Figure 2, strongly reinforces our central claim:
the decoder’s capacity to fit the training data is not the primary driver of generalization performance.

Third, we compare the behavior of stochastic (SQ-VAE, Theorem 4) and deterministic (VQ-VAE,
Theorems 2 & 3) encoders. The results in Figure 6 show two key findings:

• SQ-VAE (Stochastic): As shown in the two left panels, the generalization gap is independent
of the decoder complexity (leftmost) and instead depends on the latent dimension dz (second
from left). This is perfectly consistent with Theorem 4, which is independent of the learning
algorithm q(w|S) and fully eliminates the decoder’s influence.

• VQ-VAE (Deterministic): As shown in the two right panels, the gap is also largely
independent of the decoder (second from right) and dependent on dz (rightmost), supporting
Theorems 2 & 3. However, we observe a slight tendency for the gap to increase in the
moderate complexity range (e.g., 2 to 6 ResBlocks). This does not contradict our theory.
Our bounds (which depend on q(w|S)) state that the upper bound is decoder-independent,
implying that while increasing complexity substantially does not worsen the gap, a poorly
learned q(w|S) in the moderate range can still affect generalization under that bound.

Overall, these findings suggest that the influence of decoder complexity depends on whether the latent
variable mechanism is stochastic or deterministic, which is an important direction for future work.

49



Table 3: Training loss corresponding to the generalization gap experiments in Figure 2 (top row). As
decoder complexity (number of Residual Blocks, RB) increases, the training loss tends to decrease
for larger sample sizes (n ≥ 1000), confirming that a more expressive decoder can better fit the
training data.

n RB=2 RB=3 RB=4 RB=5
250 6.4851± 0.2642 7.0816± 0.2817 7.6026± 0.2786 7.4940± 0.7172
1000 3.4664± 0.0293 3.4869± 0.1286 3.3180± 0.0398 3.2609± 0.0905
2000 2.6391± 0.0177 2.5114± 0.0130 2.4645± 0.0778 2.3915± 0.1214
4000 2.1102± 0.0478 1.9466± 0.0152 1.9223± 0.0115 1.9001± 0.0475

2 3 4 5 6 7 8

Decoder ResBlocks

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Ge
n 

Ga
p

SQ-VAE: Gap vs Decoder Blocks
FashionMNIST (n=60000)
EMNIST (n=112800)
CIFAR10 (n=50000)
MNIST (n=60000)

20 40 60 80 100 120

Latent Dimension (dz)

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

SQ-VAE: Gap vs Latent Dim (dz)

MNIST (n=60000)
FashionMNIST (n=60000)
EMNIST (n=112800)
CIFAR10 (n=50000)

10 20 30 40 50 60

Decoder ResBlocks
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VQ-VAE: Gap vs Decoder Blocks

FashionMNIST (n=60000)
EMNIST (n=112800)
CIFAR10 (n=50000)
MNIST (n=60000)

0 100 200 300 400 500

Latent Dimension (dz)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
VQ-VAE: Gap vs Latent Dim (dz)

FashionMNIST (n=60000)
EMNIST (n=112800)
CIFAR10 (n=50000)
MNIST (n=60000)

Figure 6: Behavior of the generalization gap when increasing the number of residual blocks of the
decoder network and the latent dimension dz in SQ-VAE (stochastic, left two panels) and VQ-VAE
(deterministic, right two panels) models.

G.4.2 Analysis of the KL Divergence Terms (Theorem 2)

Theorem 2 presents a bound comprising two KL terms. We now empirically analyze the behavior of
both terms.

Figure 7 shows the behavior of these terms on the MNIST dataset. As shown in the top row (left
and middle panels), the first KL term (KL(QJ,U∥P)/n) does not decrease monotonically with n,
consistent with our theoretical claim in Lemma 3. In contrast, the generalization gap (top left) and
the second KL term (CMI term, top right) both decrease steadily as n increases. This suggests that
the second KL term, not the first, correctly captures the generalization behavior. The bottom row also
shows that both KL terms increase with the codebook size K, confirming our theoretical predictions.

To make this relationship explicit, we plot the correlation between the generalization gap and each
KL term in Figure 3. The results on MNIST are clear: the second KL term (right panel) exhibits
a consistent positive correlation (r ≈ 0.46-0.60) with the generalization gap across all decoder
complexities. Conversely, the first KL term (left panel) shows a negative correlation, as its value does
not decrease with n while the generalization gap does.

We further validate this finding on the more complex CIFAR-10 dataset in Figure 8. The trends
observed in MNIST are not only confirmed but are even more pronounced. The asymptotic behavior
(left three panels) again shows that both the generalization gap and the second KL term decrease with
n, while the first KL term does not. Most importantly, the correlation plots (right two panels) provide
definitive evidence. The second KL term exhibits an extremely strong and consistent positive
correlation (r > 0.92) with the generalization gap. In stark contrast, the first KL term shows a
strong negative correlation (r < −0.58).

This provides robust empirical evidence that the second term in Eq. (7) (the CMI term) is the
component that correctly characterizes generalization behavior.

G.4.3 Practical Utility of the Data-Dependent Prior

In addition to validating our theoretical bounds, we also investigated the practical utility of our
framework by implementing a data-dependent prior following the approach of Sefidgaran et al. [57].

Sefidgaran et al. [57] proposed the Lossless Category-Dependent Variational Information Bottleneck
(CDVIB), which is directly motivated by their theoretical results that bound the generalization error of
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Figure 7: Behavior of the generalization gap and the two KL terms from Eq. (7) on the MNIST dataset
(K = 128, dz = 64). (Top row) Asymptotic behavior as a function of sample size n. (Bottom row)
Behavior as a function of codebook size K (for n = 2000).

Figure 8: The behavior of the generalization gap and the two KL terms from Eq. (7) on the CIFAR
dataset (K = 128, dz = 64).The three leftmost panels show the asymptotic behavior of the gener-
alization gap, the first KL term, and the second KL term as a function of sample size n. The two
rightmost panels show scatter plots correlating the generalization gap with the first KL term (fourth
panel) and the second KL term (fifth panel). In these plots, the color indicates the number of decoder
Residual Blocks (RB=2, 3, 4, or 5) and the marker shape indicates the sample size n. (Circle for
n = 1000, Square for n = 5000, Diamond for n = 10000, and Triangle for n = 20000).

encoder–decoder representation learning models. Their analysis demonstrates that the generalization
error depends solely on the encoder and latent variables, rather than on the decoder. Consequently,
unlike the standard VIB that employs a data-independent prior (e.g., N (0, I)), their bound suggests
that data-dependent priors—which capture the structure and “simplicity” of the encoder—can tighten
theoretical guarantees and improve generalization.

Building upon this insight, the Lossless CDVIB framework introduces a data-dependent Gaussian
prior. To implement such a prior, the mean and variance of each prior component are updated at every
training iteration t using an exponential moving average of the corresponding batch statistics. This
moving average enables the prior to gradually align with the encoder’s latent representation, ensuring
that the KL regularization term consistently tracks the geometry of the encoder. This adaptive
alignment mitigates the mismatch between the encoder’s latent distribution and the fixed isotropic
prior used in standard VIB. Furthermore, since the “ghost” dataset assumed in the theoretical analysis
is unavailable during training, the moving average empirically mimics this expectation by aggregating

51



Table 4: Reconstruction error comparison between the baseline SQ-VAE (without a data-dependent
prior) and our proposed method (with a data-dependent prior) on test dataset. Our method demon-
strates consistently lower test loss across all benchmark datasets, validating the practical benefits of
our theoretical framework.

Dataset SQVAE (baseline) Proposed method
CIFAR10 10.75± 0.10 10.68± 0.04
Fashion-MNIST 1.37± 0.02 1.32± 0.05
MNIST 3.23± 0.04 2.99± 0.04

statistics across past mini-batches. In this sense, the moving prior reproduces the averaging effect of
the ghost dataset, providing a practical realization of the theoretical setup.

Motivated by these concepts, we introduce a similar data-dependent prior into the ELBO objective in
Eq. (40). Specifically, we replace the entropy regularization term in Eq. (40) as follows:

1

N

N∑
n=1

Exn

[
H(P̂ϕ(Zq|Z))

]
−→ (1− β) 1

N

N∑
n=1

Exn

[
H(P̂ϕ(Zq|Z))

]
+ βKLCDVIB, (41)

where KLCDVIB is defined as follows. Recall that the entropy term is expressed as

1

N

N∑
n=1

Exn

[
H(P̂ϕ(Zq|Z))

]
=

1

N

N∑
n=1

K∑
k=1

qn,k log qn,k,

where qn,k denotes the simplified form of EP̂ϕ(Zq|Z) for the data point xn. We then define the
proposed regularizer as

KLCDVIB =
1

N

N∑
n=1

K∑
k=1

qn,k log
qn,k
πk

,

where the denominator πk represents the moving average of the empirical statistics:

p̂k =
1

N

N∑
n=1

qn,k,

and the data-dependent prior π is updated as

π ← (1− α)π + α p̂, π ← π∑K
j=1 πj

, α ∈ (0, 1).

In practice, the empirical statistics are computed over each mini-batch. We employ a mixture of
data-independent and data-dependent priors as the regularization term in Eq. (41). Empirically, we
observe that this mixture stabilizes training, while setting β too close to 1 often leads to suboptimal
performance.

We evaluated the test reconstruction loss in terms of MSE following the experimental protocol of
Takida et al. [64]. For all experiments, we fixed α = 0.9 and β = 0.5. The numerical results are
reported in Table 4. Here, the MSE represents the total pixel-wise reconstruction loss per image,
rather than the per-pixel average. To ensure statistical robustness, we repeated each experiment
with ten different random seeds, and report the mean and variance of the MSE across these 10
independent trials. We observed that incorporating the data-dependent prior consistently improves
MSE performance across all settings.
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