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Abstract

This paper proposes a novel approach to en-001
hance traditional quantum-inspired models. We002
introduce a Quantum-Inspired Sentence Rep-003
resentation model (QISR), which transforms004
word density matrices into representations of005
entire sentences, improving computational re-006
source efficiency. Compared with traditional007
quantum-inspired models, the QISR method008
works at the density matrix layer and has better009
effects on the overall model as the embedding010
dimension increases. Even the QPDN model011
with a word embedding of 768 dimensions only012
requires 1736MB. This optimization has po-013
tential benefits for the overall model architec-014
ture, particularly when dealing with large word015
embedding dimensions. Furthermore, this ap-016
proach reduces computing resource consump-017
tion while maintaining high computational ac-018
curacy, highlighting its potential benefits in pro-019
cessing complex language tasks. This research020
provides a novel approach to sentence repre-021
sentation in quantum-inspired language models022
and highlights the potential value of improved023
computational methods in a quantum-inspired024
context. Our research results are expected to025
provide modeling support and practical appli-026
cation guidance for future text processing en-027
deavors.028

1 Introduction029

In recent years, traditional quantum-inspired mod-030

els have primarily focused on the post-hoc inter-031

pretability and transparency(Lipton, 2018). Post-032

hoc interpretability refers to the ability of a model033

to explain how it worked after it has been executed,034

while transparency involves self-explanation dur-035

ing the model design phase.036

Meanwhile, to meet these needs for clarity037

and transparency, early quantum language models038

(QLM)(Sordoni et al., 2013) used density matrices039

to represent words, capturing word connections in040

text. Further advancements in this domain, such as041

the extension of quantum language models to the042

field of neural networks and the introduction of end- 043

to-end quantum language model (NNQLM)(Zhang 044

et al., 2018a). The NNQLM employs word embed- 045

dings for representation and introduces a density 046

matrix computation method for both word and sen- 047

tence representations. The CNM(Li et al., 2019) 048

model, in the process of converting words to word 049

embeddings, simulates the construction of quantum 050

states through phase embeddings and obtains com- 051

plex value representations of quantum states using 052

Euler’s formula. Additionally, the QINM(Jiang 053

et al., 2020) model enhances interpretability by ex- 054

tensively interacting with queries and documents 055

and using reduced density matrices to model quan- 056

tum interference between them, making the re- 057

trieval process somewhat more in line with human 058

cognition. In addition, there are also tensor net- 059

works that serve as a bridge between neural net- 060

works and quantum mechanics and have demon- 061

strated good interpretability in processing natural 062

language tasks(Zhang et al., 2018b, 2020a). 063

Furthermore, apart from the aforementioned 064

models, other significant multimodal models have 065

emerged. The QPM(Tomar et al., 2023) framework 066

includes a complex-valued multimodal representa- 067

tion encoder, a quantum-like fusion network, and 068

a quantum measurement mechanism designed for 069

joint detection of multimodal sarcasm and senti- 070

ment. In contrast, the QUIET(Liu et al., 2023) 071

framework is a quantum probability-based multi- 072

modal analysis framework specialized in process- 073

ing text, images, and audio data while considering 074

intermodal correlations to comprehensively ana- 075

lyze sentiment, irony, and emotion across multiple 076

data types. Furthermore, in the field of multimodal 077

analysis, there have emerged methods(Gkoumas 078

et al., 2021b,a; Li et al., 2021; Zhang et al., 2020b; 079

Liu et al., 2021) based on the concepts of quan- 080

tum entanglement and quantum interference. The 081

development of these methods has further accen- 082

tuated the importance of quantum-inspired models 083
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in multimodal data analysis, especially in terms of084

enhancing the interpretability and transparency of085

the models, thereby providing new perspectives for086

practical applications.087

These quantum-inspired models draw inspiration088

from quantum mechanics concepts like quantum089

interference and superposition, aiming to provide090

explanations for how they work after model exe-091

cution. They have been applied to various tasks,092

including information retrieval(Sordoni et al., 2013;093

Jiang et al., 2020), sentiment analysis (Zhang et al.,094

2019), and question-answer matching(Li et al.,095

2019), etc. In previous methods, words in text096

data are regarded as pure states, and sentences are097

regarded as mixed states formed by these words.098

At this time, we inevitably face a challenge: as099

the word dimension increases, building a density100

matrix will significantly increases time and com-101

putational cost. Therefore, we must rethink how102

to improve computational efficiency in quantum-103

inspired frameworks while ensuring interpretability104

and transparency of model outputs. This challenge105

formed the motivation for our research.106

In this paper, we first theoretically demonstrate107

the feasibility of representing sentences as mixed108

states directly in Hilbert space, and propose a new109

quantum-inspired sentence representation model110

(QISR) that aims to significantly improve the com-111

putational efficiency of existing models. By con-112

ducting experiments on different quantum-inspired113

models, we verify the significant improvements in114

time and memory efficiency of the QISR model on115

both CPU and GPU.116

The key innovations of this research include:117

1. Computational Efficiency: This study intro-118

duces a sentence-based density matrix ap-119

proach that changes the order of computation120

within a layer. This approach reduces floating-121

point operations (FLOPs) within the density122

matrix layer by approximately one-half and123

one-third in real-valued and complex-valued124

models, respectively. Furthermore, it effec-125

tively exploits the parallel computing prop-126

erties of matrices and hence significantly re-127

duces the computational time of the entire128

model. Please see table 3 for specific indica-129

tors.130

2. Memory reduction: In the construction of the131

density matrix layer, memory consumption is132

reduced by n times (n representing sentence133

length) by changing the calculation operations. 134

Overall, as the dimensionality of word embed- 135

dings increases, the memory savings become 136

more substantial. This reduction plays a cru- 137

cial role in alleviating the bottleneck of rising 138

computational costs in traditional quantum- 139

inspired models with large word embedding 140

sizes. 141

The rest of this paper is organized as follows. 142

Section 2 provides a brief overview of the founda- 143

tional knowledge related to QISR. Section 3 demon- 144

strates on the advantages of QISR in sentence rep- 145

resentation compared to word representation, along 146

with its theoretical explanation. In Section 4, we 147

conducted detailed experimental analysis. Finally, 148

Section 5 concludes this paper and discusses future 149

research directions. 150

2 Background 151

The quantum-inspired approach is an emerging re- 152

search direction in the field of natural language pro- 153

cessing, drawing on key concepts from quantum 154

mechanics. It enhances the post-hoc interpretabil- 155

ity and transparency of models while also offer- 156

ing the potential for improved performance in text 157

processing or multimodal tasks. This section will 158

briefly introduce fundamental theoretical concepts 159

relevant to our research. 160

2.1 Quantum Probability 161

Quantum probability theory is a generalized prob- 162

ability theory developed by John von Neumann 163

based on linear algebra, with the aim of providing 164

a mathematical foundation for quantum theory. In 165

quantum probability, quantum probability space is 166

defined within the complex Hilbert space H. In this 167

paper, Hilbert space refers to a finite-dimensional 168

inner product space, which is widely used in math- 169

ematical analysis and quantum mechanics. 170

2.2 Quantum Superposition 171

Quantum superposition is a fundamental concept in 172

quantum mechanics that describes the phenomenon 173

where a quantum system can exist in a superposi- 174

tion of multiple base states under certain conditions. 175

In classical physics, we usually think of objects 176

(such as particles) as having well-defined proper- 177

ties (such as their positions and velocities). How- 178

ever, in quantum physics, the states of particles are 179

inherently uncertain. In quantum mechanics, it is 180

possible to form a superposition state by linearly 181
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combining multiple base states. In a two dimen-182

sional system, its base states can be represented by183

|0⟩ and |1⟩. Therefore, the superposition state of a184

quantum system can be expressed as follows:185

|ψ⟩ = α|0⟩+ β|1⟩ (1)186

where |ψ⟩ represents the quantum state, and α and187

β are complex amplitudes (complex numbers). |0⟩188

and |1⟩ are orthogonal base vectors in a two dimen-189

sional Hilbert space, representing the two possible190

states of a quantum bit.191

2.3 Quantum Mixed State192

Quantum mixed states describe that a quantum sys-193

tem under certain conditions can be composed of194

a mixture of different pure states, where each pure195

state is determined by its associated probability196

weight. The mixed state of a quantum system can197

be represented as follows:198

ρ =
∑
i

pi|ψi⟩⟨ψi| (2)199

where ρ represents the quantum mixed state, pi rep-200

resents the probability of each pure state |ψi⟩, ex-201

pressed as weights. This method allows us to prob-202

abilistically describe multiple possible pure states203

and their statistical mixtures, contrasting with the204

deterministic nature of individual pure states |ψi⟩.205

2.4 Measurement206

Quantum systems can be in mixed or pure states.207

A mixed state represents a statistical mixture of208

multiple quantum states and is described by the209

density matrix, which is a positive semidefinite ma-210

trix and Hermitian matrix. In contrast, a pure state211

can be described by a state vector even if it is super-212

posed. In order to observe the properties or state213

information of this system within the state space, it214

involves a set of operators called measurement op-215

erators {Mi}. When a measurement is performed,216

the system will collapse to a specific state corre-217

sponding to the measurement result with a certain218

probability:219

|ψ⟩ → Mi|ψ⟩√
⟨ψ|M †

iMi|ψ⟩
(3)220

where |ψ⟩ represents the initial state of the system,221

Mi is one of the measurement operators in the set,222

M †
i is its adjoint operator, and pi = ⟨ψ|M †

iMi|ψ⟩223

is the probability of obtaining the measurement224

result i.225

3 Sentence Representation 226

3.1 Word-Based Density Matrices 227

Representation 228

Inspired by quantum theory, existing quantum- 229

inspired models that construct density matrices 230

word-based embeddings all utilize the concept of 231

quantum mixed states as shown in Figure 1-a, 232

which is the most direct process for constructing 233

density matrices based on the quantum mixed state, 234

specifically as depicted in Formula 2. Even mod- 235

els like CNM and QPDN(Wang et al., 2019), as 236

shown in Figure 2-a, begin by obtaining quantum 237

states through amplitude-phase relationships and 238

Euler’s formula before constructing the density ma- 239

trix. These models can be broadly viewed as trans- 240

forming word embeddings into the form of density 241

matrices. 242

3.2 Sentence-Based Density Matrices 243

Representation 244

Compared to traditional Convolutional Neural Net- 245

works (CNN) (LeCun et al., 1989) and Long Short- 246

Term Memory networks (LSTM) (Shi et al., 2015) 247

and their derivative models, our approach offers 248

greater directness and clarity in terms of inter- 249

pretability and transparency. However, this process 250

from words to sentences using density matrices 251

requires a large amount of computing resources, 252

resulting in high computational costs. Therefore, 253

we explored whether efficiency could be improved 254

by directly constructing sentence-based density ma- 255

trices. Our QISR model demonstrates the potential 256

of this method, as illustrated in Figures 1-b and 2- 257

b, utilizing matrix properties in quantum-inspired 258

models to accelerate processing speed and reduce 259

computational resource usage. In subsequent sec- 260

tions, we will mathematically demonstrate the theo- 261

retical equivalence of the sentence-based and word- 262

based density matrix approaches. 263

3.3 Justification and Comparative Analysis 264

3.3.1 Algorithm Equivalence Proof 265

In this section, we will conduct a theoretical anal- 266

ysis to compare classical quantum-inspired archi- 267

tectures, such as those shown in Figure 1-a. We 268

will theoretically evaluate the computational costs 269

of transforming word-based density matrices into 270

sentence-based density matrices. 271

Consider a sentence consisting of n words, 272

denoted as {w1, w2, . . . , wn}. For each word 273

wi, its corresponding embedding is a vector in 274
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Figure 1: In the figure, the symbol ⊗ in Figure a represents the self outer product of vectors operation, and in
Figure b represents the matrix multiplication operation. ⊕ represents the summation operation. Figure a shows
the construction of a classical quantum-inspired model based on the density matrix, primarily using word-based
embeddings to encode inputs, as shown in Formula 2. Figure b shows the process of the QISR model using sentence
embeddings to build a density matrix in the classical quantum-inspired model.

a d-dimensional space, represented as ei =275

{ei1, ei2, . . . , eid}, where each eij represents the276

jth component of the embedding vector for the277

ith word and corresponding weight coefficients p,278

where
∑n

i=1 pi = 1.279

First, we start with the word-based density ma-280

trix, we need to perform a density matrix operation281

on this sentence, i.e., Equation 2. This initially282

involves the outer product operation of word em-283

beddings.284

|wi⟩⟨wi| =


ei1 · ei1 . . . ei1 · eid
ei2 · ei1 . . . ei2 · eid

...
. . .

...
eid · ei1 . . . eid · eid

 (4)285

where wi refers to the i-th (1 ≤ i ≤ n) word in the286

sentence.287

Next, we proceed with the remaining operations288

in Formula 2, multiplying the current |wi⟩⟨wi| by289

a coefficient pi, and finally summing them up.290

n∑
i=1

pi|wi⟩⟨wi| =


ψ11 ψ12 . . . ψ1d
ψ21 ψ22 . . . ψ2d

...
...

. . .
...

ψd1 ψd2 . . . ψdd

 (5)291

where ψij (1 ≤ i, j ≤ d) represents a value in the292

density matrix of a sentence composed of n words,293

given by
∑n

k=1 pkekiekj .294

As we commence the construction of the sen-295

tence density matrix, it is important to note that296

our approach differs slightly from the word-based297

construction method. We begin by performing the298

multiplication of word embeddings with their re- 299

spective weight coefficients, denoted as 300

word_emb = qi|wi⟩ (6) 301

where qi represents the weight coefficients of indi- 302

vidual words prior to constructing sentence embed- 303

dings, and qi =
√
pi with the constraint

∑n
i=1 q

2
i = 304

1. 305

Next, we convert the embedding representation 306

of each word into matrix form, where the embed- 307

ding vector of each word becomes a row in the 308

matrix. This process creates a sentence embedding 309

of dimension (n * d), denoted as 310

s_e =


q1e11 q1e12 . . . q1e1d
q2e21 q2e22 . . . q2e2d

...
...

. . .
...

qnen1 qnen2 . . . qnend

 (7) 311

Next, we will perform a matmul product opera- 312

tion on sentence embedding, denoted as 313

s_e⊤ · s_e =


Ψ11 Ψ12 . . . Ψ1d

Ψ21 Ψ22 . . . Ψ2d
...

...
. . .

...
Ψd1 Ψd2 . . . Ψdd

 (8) 314

where Ψij is defined as
∑n

k=1 q
2
kekiekj . 315

From Equation 6, it can be derived that Ψij is 316

also defined as
∑n

k=1 pkvkivkj . Therefore, we ar- 317

rive at a conclusion that the results obtained from 318

the density matrices constructed from words and 319

from sentences are consistent. 320
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Figure 2: Figure a shows the construction of the density matrix in complex-valued quantum-inspired models,
inspired by Euler’s formula. Figure b shows the use of QISR in the complex-valued quantum-inspired model to
construct the density matrix.

3.3.2 Memory Cost Comparison321

In this section, we focus on comparative analysis322

of the differences in memory costs between the two323

methods. For the word-based density matrix con-324

struction process, Equation 5 shows that under the325

assumption that the density operator representation326

of each word requires computation, the minimum327

storage space for effectively expressing word-based328

density matrix information is n · d · d. Conversely,329

in the case of QISR construction, as shown in Equa-330

tions 7 and 8, the minimum storage requirement331

is between d2 and n · d. In actual scenarios where332

n is usually less than d, the actual storage space333

required converges to d2.334

This represents that during the model training335

process, when constructing the density matrix us-336

ing the QISR approach, the reduction in memory337

overhead can be up to a factor of "sentence length".338

The reduction in memory overhead is especially339

important when word embedding dimensions are340

large, as it reduces the need for memory resources.341

This not only enhances computational efficiency342

but also enables the model to better handle vari-343

ous text processing tasks. This optimization holds344

significant importance for improving performance 345

and reducing costs. 346

3.3.3 Computational Cost Comparison 347

In this section, we conduct a detailed analysis of the 348

computational costs involved in constructing real- 349

valued and complex-valued density matrices. The 350

key metrics for this analysis are FLOPs and par- 351

allelization efficiency. It is important to note that 352

the computational processes for both real-valued 353

and complex-valued density matrix construction 354

are similar. 355

First, we compare different models in terms of 356

FLOPs. In traditional quantum-inspired models, 357

the real-valued model requires 2n · d · d FLOPs 358

(Figure 1-a), while the complex-valued model con- 359

sumes 6n · d · d FLOPs for complex embedding 360

operations (Figure 2-a). 361

Then, we assess the QISR-based models. Dif- 362

fering from traditional approaches, each word is 363

multiplied by weight coefficients before construct- 364

ing the density matrix for the whole sentence. In 365

the QISR framework, the real-valued version needs 366

n ·d+n ·d ·d FLOPs (Figure 1-b), and the complex- 367
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valued version requires 4n · d · d+ 2n · d FLOPs368

(Figure 2-b).369

Overall, in the real-valued model, the FLOPs for370

constructing the density matrix layer in the QISR371

method are approximately 1/2− 1/(2d) of the tra-372

ditional method, especially when d is large, approx-373

imating to half of the traditional method. In the374

complex-valued model, the FLOPs for the QISR375

method are roughly 2/3+1/(3d) of the traditional376

method, approximating to two-thirds for large val-377

ues of d.378

Finally, we conducted a thorough analysis of the379

parallelization performance of both real-valued and380

complex-valued models on GPUs. To ensure com-381

parability of FLOPs between the two approaches,382

the impact of weight coefficients was removed. The383

experiment utilized a range of parameters from Ta-384

ble 1, focusing on evaluating how the dimensions of385

word embeddings affect parallelization efficiency.386

During the 1000 iterations test for both models, we387

meticulously recorded the computational time re-388

quired for each iteration. As shown in Table 2, our

Setting Value
lr 0.005
epoch 50
batch size 64
measurements 20
length 64
slide 16
seed 0
run times Take the maximum of 6
cpu i5-10505
gpu V100 16G

Table 1: Model hyperparameters and device model.

389
study compares the time consumption of traditional390

(non-parallel) methods with that of QISR (parallel)391

methods in processing word embeddings across392

various dimensions. The research results indicate393

that the parallel processing method using QISR sig-394

nificantly reduces the calculation time compared to395

traditional methods, particularly when processing396

high-dimensional data. This observation suggests397

that quantum-inspired models utilizing QISR can398

process high-dimensional word embedding tasks399

more quickly, thus improving overall efficiency.400

4 Experiments 401

4.1 Experimental Design and Evaluation 402

Metrics 403

This study aims to optimize density matrix-based 404

quantum-inspired models to reduce computational 405

and memory overhead. The experiment was con- 406

ducted in two stages. In the first stage, by applying 407

the QISR method with various word embedding 408

dimensionalities, we use the running time of CPU 409

and GPU and the memory consumption of GPU 410

as indicators to evaluate the processing time and 411

memory overhead. Subsequent, in the second stage, 412

we first analyze the differences brought about by 413

the QISR method, and then compare the accuracy 414

performance of the model before and after applying 415

QISR on the real task data set to test whether the 416

QISR optimization may have a negative impact on 417

the model performance. In conclusion, our experi- 418

ments not only test whether QISR optimization can 419

significantly reduce the time and space complexity 420

of the model, but also whether QISR optimiza- 421

tion can at least not reduce the performance of the 422

model. 423

Dim Real(ms) Complex(ms)
100 1.998 8.542
100-QISR 0.035 0.141
200 6.636 36.054
200-QISR 0.035 0.261
500 24.778 198.201
500-QISR 0.036 2.698

Table 2: Computational time efficiency of complex
versus real quantum-inspired models with and without
QISR optimization is compared.

4.2 Datasets 424

The experiments of this study mainly focus on text 425

classification tasks. Text classification was cho- 426

sen because it is relatively simple and can clearly 427

demonstrate how to improve computational effi- 428

ciency without sacrificing performance metrics. 429

The classification dataset used in the experiment is 430

as follows. 431

The Stanford Sentiment Treebank(Socher 432

et al., 2013). SST is released by Stanford Uni- 433

versity and is mainly used for sentiment classifica- 434

tion of movie reviews. The dataset is divided into 435

two parts: SST-2 (Binary Classification) and SST-5 436

(Five-Level Classification). SST-2 contains 11,855 437

movie reviews, divided into 8,544 training samples, 438
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Model Ori Ori+QISR
c-t(ms) g(MB) g-t(ms) c-t(ms) g(MB) g-t(ms)

NNQLM-I
50 11.12 194 0.10 0.35 154 0.10
200 205 798 5.30 4.00 172 0.10
300 381 1602 11.86 7.34 194 0.11
768 - - - 34.88 338 0.23

NNQLM-II
50 23.13 402 0.30 14.03 390 0.24
200 335 1006 17.19 199 772 9.03
300 816 1808 69.40 510 1280 29.53
768 - - - 3506 12456 387

QPDN
50 76.82 428 4.65 5.28 192 1.04
200 1306 4612 52.22 38.93 330 1.05
300 3158 10236 130 76.82 468 1.25
768 - - - 419 1736 12.92

CNM
50 731 2606 30.91 58.87 406 2.35
200 1152 OOM - 714 3652 21.78
300 2861 OOM - 1804 8104 51.32
768 - - - 9121 OOM -

Table 3: "Ori" represents the classification form of the original model. "Ori-QISR" represents the classification
model of original using QISR. “c-t” and “g-t” represent the time required to conduct the experiment on CPU and
GPU respectively, while “g” represents the memory consumption of GPU. The "-" indicates that no experimental
statistics are performed because the memory is OOM.

1,101 development samples, and 2,210 test sam-439

ples; SST-5 contains 6,920 training samples, 872440

development samples, and 1,821 test samples.441

Movie Reviews(Pang and Lee, 2005). MR is442

a dataset designed for sentiment analysis experi-443

ments, comprising annotated movie review docu-444

ments with overall sentiment orientation and sub-445

jective states, along with the sentiment orientation446

and subjective states of individual sentences.447

The Corpus of Linguistic Acceptabil-448

ity(Warstadt et al., 2018). CoLA is a dataset449

comprises 10,657 sentences from 23 linguistics450

publications, annotated for acceptability by origi-451

nal authors. The public release has 9,594 sentences452

in training and development sets, excluding 1,063453

for a held-out test set.454

It’s worth noting that while quantum-inspired455

models are suitable for various tasks, the focus456

of this experiment is on demonstrating their ap-457

plication in text classification, which may not be458

advantageous for some models like CNM.459

4.3 Baselines and Parameter Scale460

We used well-known quantum-inspired models461

based on density matrices, including NNQLM-I,462

NNQLM-II, QPDN, and CNM. Our experimental463

parameters, as shown in Table 1, were initialized464

with 50-dimensional, 200-dimensional, and 300-465

dimensional GloVe vectors. Subsequently, in the 466

QISR model, we employed 768-dimensional word 467

embeddings to simulate the computational cost of 468

using BERT(Devlin et al., 2018) as word embed- 469

dings. 470

4.4 Experiment Results 471

4.4.1 Performance Evaluation 472

Table 3 shows the experimental results under four 473

different word embedding dimensions. In partic- 474

ular, to simulate BERT, we conduct experiments 475

using 768-dimensional word embeddings alone in 476

the QISR method. According to the analysis in 477

Section 3, the QISR method can reduce memory 478

overhead (n times) in the density matrix construc- 479

tion stage. However, in addition to the density 480

matrix layer, several other modules are included 481

in the quantum inspired model. Therefore, the ef- 482

fect of this memory overhead reduction will vary 483

in different models. For example, in the NNQLM-I 484

model, when the word vector dimension is 200, the 485

QISR method can be used to reduce parameters 486

by 4 times. When the dimension is increased to 487

300, the reduction can be up to 8 times. However, 488

since the NNQLM-II model uses convolution in 489

its module, its QISR acceleration effect is not as 490

obvious as the NNQLM-I model. 491

Overall, the QISR method shows excellent per- 492
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Data Seed MAE MSE
10 1.3956e-06 3.6820e-12
100 1.4382e-06 3.9215e-12
200 1.6851e-06 5.4577e-12

Table 4: The loss difference between the original model
and the QISR model when the input parameters (n, d)
are (64, 50)

formance in quantum-inspired models. Not only493

does it effectively reduce the computational cost,494

but it also enables the QISR model to increase the495

dimension of word embedding, thereby surpass-496

ing the limitations of the traditional bag-of-word497

model and laying the foundation for future integra-498

tion with pre-trained models. As shown in Table 3,499

even using 768-dimensional word embedding, our500

QISR still only requires about 1736MB of memory501

on QPDN, which can maximize the potential of502

quantum-inspired models on limited resources.503

Since some models cannot run properly when504

the word embedding is 300 dimensions, we only505

conduct experiments on 50-dimensional and 200-506

dimensional word embeddings in the following ex-507

periments.508

4.4.2 Accuracy Loss Analysis509

To compare the accuracy loss, this study initially510

explores the differences caused by two methods.511

Specifically, we selected the density matrix layers512

shown in Figures 2-a and 2-b and conducted com-513

parative experiments using different random seeds.514

In Section 3.3, we theoretically demonstrated the515

equivalence of these two methods. However, dur-516

ing practical computation, we observed that the517

summation operation in Formula 5 leads to more518

significant precision loss compared to Formula 7.519

Specifically, in the experiments, it was noted that520

the mantissa part of the model was set to zero, re-521

sulting in a decrease in precision, with the mean522

absolute error (MAE) reaching the level of 10−6,523

as detailed in Table 4. Our proposed QISR method524

exhibited higher precision in constructing mixed525

states, thoroughly demonstrating the overall effec-526

tiveness of our model.527

Subsequently, we investigated whether applying528

the QISR method would adversely affect the over-529

all model, as detailed in Table 5. When process-530

ing different tasks, the model performance showed531

minor variations. Specifically, for the relatively532

simple task SST-2, the model accuracy seemed un-533

affected by the use of different methods. However,534

Model Dim Task Acc. Task Mcc
SST2 SST5 MR CoLA

NNQLM-I
50 71.29 35.65 66.53 4.53
200 73.97 37.19 67.53 0

NNQLM-I+QISR
50 72.93 36.29 65.73 4.8
200 73.86 37.71 68.63 0

NNQLM-II
50 72.69 35.97 74.13 9.51
200 71.31 36.28 72.59 8.17

NNQLM-II+QISR
50 72.16 37.54 74.74 10.59
200 71.49 36.25 73.09 9.80

QPDN
50 83.96 43.36 81.99 14.08
200 83.80 43.97 81.49 15.72

QPDN+QISR
50 84.24 43.57 82.09 14.72
200 83.96 44.66 81.79 16.37

CNM
50 78.14 38.77 76.13 5.97
200 77.75 37.78 74.74 0.89

CNM+QISR
50 78.13 39.23 76.19 8.16
200 77.38 37.96 75.03 0.92

TextCNN
50 78.86 40.90 79.39 16.37
200 82.53 43.57 82.59 21.16

Table 5: Accuracy comparison of QISR and non-QISR
models using four different models and different dimen-
sions. And added TextCNN(Kim, 2014) under the same
hyperparameters.

for the more complex SST-5 and CoLA tasks, the 535

QISR method performed slightly better than the 536

non-QISR method, indicating a certain degree of 537

performance enhancement. This result confirms 538

the performance improvement of the QISR method 539

in handling challenging tasks and its advantages in 540

evaluation metrics. 541

5 Discussions 542

In this study, we introduce a quantum-inspired 543

sentence representation model (QISR) that signifi- 544

cantly reduces processing time and memory over- 545

head, addressing the limitations of conventional 546

quantum-inspired models with high-dimensional 547

data. The research highlights the potential of 548

quantum-inspired approaches in natural language 549

processing and offers new avenues for efficient lan- 550

guage processing in resource-constrained settings. 551

However, as shown in Table 5, current quantum- 552

inspired models, including QISR, have certain lim- 553

itations in specific tasks. Future work aims to over- 554

come these limitations and enhance the model’s 555

performance across various dimensions, anticipat- 556

ing that this study will spur further research and 557

applications of quantum-inspired models in natural 558

language processing. The focus will be on refin- 559

ing the QISR model’s accuracy and optimization 560

to improve its interpretability for diverse natural 561

language processing tasks. 562
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