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ABSTRACT

Image editing using a pre-trained StyleGAN generator has emerged as a powerful
paradigm for facial editing, providing disentangled controls over age, expression,
illumination, etc. However, the approach cannot be directly adopted for video
manipulations. We hypothesize that the main missing ingredient is the lack of
fine-grained and disentangled control over face location, face pose, and local fa-
cial expressions. In this work, we demonstrate that such a fine-grained control is
indeed achievable using pre-trained StyleGAN by simultaneously working across
multiple (latent) spaces (i.e., positional, W+, and S spaces) and combining the
optimization results. Building on this, we introduce Video2StyleGAN that takes
a target image and driving video(s) to reenact the local and global locations and
expressions from the driving video in the identity of the target image. As a result,
we are able to generate high-quality videos at 10242 resolution without training on
video data. We evaluate the effectiveness of our method over multiple challenging
scenarios and demonstrate clear improvements in terms of LPIPS over alternative
approaches trained on video data (FOMM Siarohin et al. (2019), LIA Wang et al.
(2022), and TPS Zhao & Zhang (2022)) and comparable scores in terms of FID,
keypoint distance, and identity preservation.

1 INTRODUCTION

Generative modeling has seen tremendous progress in recent years, with multiple competing solu-
tions, including generative adversarial networks (GANs) (Karras et al., 2020a; 2021a), variational
autoencoders (VAEs) (Razavi et al., 2019), diffusion network (Ramesh et al., 2022), and auto-
regressive models (ARs) (Esser et al., 2021). In this paper, we focus on GANs and in particular,
the StyleGAN architecture that produces high-resolution output. This architecture has started a
wave of research exploring semantic image-editing frameworks (Shen et al., 2020; Patashnik et al.,
2021; Abdal et al., 2021c). These approaches first embed a given photograph into the latent space of
StyleGAN and then manipulate the image using latent space operations. Example editing operations
in the context of human faces are global parametric image edits to change the pose, age, gender, or
lighting, or style transfer operations to convert images to target cartoon styles. While these edits are
generally successful, it is still an open challenge to obtain fine-grained control over a given face,
e.g., face location in the image, head pose, and facial expression. While such fine-grained control is
beneficial but optional for editing single images, they are an essential building block for creating a
high-res video from a single image and other video editing applications.

We investigate the following questions: How can we embed a given video into the StyleGAN latent
space to obtain a meaningful and disentangled representation of the video in latent space? How can
we create a video from a single image, mainly by transferring pose and expression information from
other videos? It is somewhat surprising how difficult it is to embed fine-grained controls into Style-
GAN. Direct solutions are either over-regularized or under-regularized. Over-regularization leads
to the controls being ignored so that the given reference image hardly changes; under-regularization
leads to unnatural face deformations and identity loss. Our main idea is to make use of different
latent spaces to encode different types of information: positional code controls the location of the
face in the image (i.e., translation and rotation); W space controls global edits such as pose and
some types of motion; S space and generator weights control local and more detailed edits of facial
expressions. This hierarchical (code) structure allows the extraction of semantic information from
given driving videos and their transfer to a given photograph. See Fig. 1.
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Figure 1: Fine-grained control. We present Video2StyleGAN, a video editing framework capable
of generating videos from a single image.

We compare ours against multiple SOTA alternatives: FOMM Siarohin et al. (2019), LIA Wang
et al. (2022), and TPS Zhao & Zhang (2022). Other works (Alaluf et al., 2022; Tzaban et al., 2022)
use W and/or S spaces for video editing, but their task is different from ours. Our main contributions
are: (i) proposing a facial reenactment system that uses the pre-trained StyleGAN3 to transfer the
motion and local movements of a talking head. We generate temporally consistent high-res 10242

video editing without requiring additional training on videos while the competing works demonstrate
generation at 2562 resolution and are trained on videos.;(ii) providing insights into the W and the S
spaces to disentangle both local and global variations in a video (e.g., fine-grained control over eye,
nose, and mouth movements, in addition, to pose control) while preserving the identity of the target
person. We are the first to hierarchically combine (W+, S, Fourier features, and filter weights)
in a ‘non-trivial’ manner.; and (iii) directly extracting the local and global variations from multiple
videos to reenact a given image (e.g., modify local features like eyes, nose from one video, and other
global features like pose and rotation from another video). To the best of our knowledge, this is not
shown in any of the previous video editing works trained on videos, let alone a network only trained
on images.

2 RELATED WORK

State-of-the-art GANs. Recent improvements to the loss functions, architecture, and availability
of high-quality datasets Karras et al. (2021b) have improved the generation quality and diversity of
Generative adversarial Networks (GANs) (Goodfellow et al., 2014; Radford et al., 2015). Owing to
these developments, Karras et al. published a sequence of architectures (Karras et al., 2017; 2021b;
2020b;a; 2021a) leading to state-of-the-art results on high quality datasets like FFHQ Karras et al.
(2021b), AFHQ Choi et al. (2020), and LSUN objects Yu et al. (2015). The latent space learned by
these GANs has been explored to perform various tasks such as image editing (Shen et al., 2020;
Abdal et al., 2019; Patashnik et al., 2021; Abdal et al., 2021c) or unsupervised dense correspondence
computation (Peebles et al., 2021). While recent 3D GANs showed promise in generating high-
resolution multi-view-consistent images along with approximate 3D geometry (Chan et al., 2021;
Deng et al., 2021; Or-El et al., 2021), their quality still lags behind 2D GANs. In this work, we
build upon the state-of-the-art generator StyleGAN3 Karras et al. (2021a) that exhibits translation
and rotation invariance with respect to the generated image.

Image projection and editing using GANs. There are two building blocks required for GAN-
based image and video editing. First, one needs to project real images into the GAN’s latent space.
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In the StyleGAN domain, Image2StyleGAN Abdal et al. (2019) uses the extended W+ latent space
to project a real image into the StyleGAN latent space using optimization. Focusing on improving
the reconstruction-editing quality trade-off, methods like II2S Zhu et al. (2020b) and PIE Tewari
et al. (2020b) propose additional regularizers to ensure that the optimization converges to a high-
density region in the latent space. While other works (Zhu et al., 2020a; Richardson et al., 2020; Tov
et al., 2021; Alaluf et al., 2021a) use encoders and identity-preserving loss functions to maintain the
semantic meaning of the embedding. Recent works, PTI Roich et al. (2021) and HyperStyle Alaluf
et al. (2021b) modify the generator weights via an optimization process and hyper network, respec-
tively. Such methods improve the reconstruction quality of the projected images.

Second, latent codes need to be manipulated to achieve the desired edit. For the StyleGAN architec-
ture, InterFaceGAN Shen et al. (2020), GANSpace HÈarkÈonen et al. (2020), StyleFlow Abdal et al.
(2021c), and StyleRig Tewari et al. (2020a) propose linear and non-linear edits in the underlying
W and W+ spaces. StyleSpace Wu et al. (2020) argues that the S space of StyleGAN leads to
better edits. CLIP Radford et al. (2021) based image editing (Patashnik et al., 2021; Gal et al., 2021;
Abdal et al., 2021a) and domain transfer (Zhu et al., 2022; Chong & Forsyth, 2021) also study the
StyleGAN and CLIP latent spaces to apply StyleGAN based editing on diverse tasks. Motivated by
these successes in the image domain, we now explore applications in the video domain.

GAN-based video generation and editing. GAN based video generation and editing meth-
ods (Menapace et al., 2021; Munoz et al., 2020; Tulyakov et al., 2018; Wang et al., 2021; Yang
et al., 2023; Xu et al., 2022; Tzaban et al., 2022; Yao et al., 2021) have shown remarkable results
on 1282, 2562, and 5122 spatial resolutions. Owing to the higher resolution and disentangled latent
space of the StyleGAN, multiple works in this domain either use the pre-trained StyleGAN gener-
ator to construct a video generation framework (Fox et al., 2021; Alaluf et al., 2022; Tzaban et al.,
2022) or reformulate the problem by training additional modules on top of StyleGAN and using the
video data to train the networks (Skorokhodov et al., 2021; Wang et al., 2022; Tian et al., 2021; Ren
et al., 2021; Yin et al., 2022). Among them is StyleVideoGAN Fox et al. (2021), which is based on
the manipulation in W+ space of StyleGAN. Related to the pre-trained latent space based method,
other methods (Alaluf et al., 2022; Tzaban et al., 2022) analyze in the W and S spaces of StyleGAN
to edit an embedded video. These methods solve a different task than ours and instead focus on
editing an embedded video in different spaces of StyleGAN. Others like StyleGAN-V Skorokhodov
et al. (2021) and LIA Wang et al. (2022) retrain the modified StyleGAN architecture on videos. Note
that our method is a latent space based method on StyleGAN3 trained on images that do not require
additional video training. LIA is also trained on different datasets than ours and cannot control the
individual components of the generated image by deriving information from different videos. In
Sec. 4, we compare against the relevant works addressing the same problem as ours. Code for Fox
et al. (2021) was not available at the time of this submission.

3 METHOD

3.1 SETUP AND NOTATIONS

Given a reference image Iref and frames of a driving video D := {Dj}, our goal is to produce a
sequence of video frames V := {Vj} that enacts a talking head with the identity of Iref and pose
and expressions, both local and global, from the driving video D. Optionally, a co-driving video
CD := {CDj} may be provided as input. Given these inputs, we develop a framework to produce
a disentangled representation of a driving video, such that we can encode both its global and local
properties and control them separately to produce an output video V .

Let G be the pre-trained StyleGAN3 Karras et al. (2021a) generator. For the task of reenactment
of the talking head, using a single (identity) image (See Fig. 2), we consider both the W+ and S
spaces of StyleGAN3. Let w+ ∈ W+ and s ∈ S be the variables in the respective spaces for
any input image. We recall that activations in the S space are derived from the w+ codes using
s := A(w+), where A is an affine transformation layer in the StyleGAN3. In addition to these
two latent spaces, let the first layer of the StyleGAN3 G producing interpretable Fourier features
to be represented by Ff . To encode a given driving video into the latent space of StyleGAN3, we
project the individual frames of the video into the latent space. We use ReStyle Alaluf et al. (2021a)
to project the canonical frames of the video and the reference image (i.e., after the FFHQ-based
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Figure 2: Video2StyleGAN pipeline. Flow diagram of our Video2StyleGAN method. Each box
represents a local or global encoding and editing module used by our method. See Sec. 3 for details.

transformation) into the W+ space (w+ ∈ R
18×512) of StyleGAN3. Let the resulting reference

image be represented by Icref and wref be the corresponding w+ code. For the reference image, we

further optimize the generator using PTI Roich et al. (2021) to improve the reconstruction quality.

3.2 METHOD OVERVIEW

Fully controllable and fine-grained video generation typically comes with three challenges. We
first discuss these challenges and then propose the solution in Sec. 3.3. Key to our solution is a
novel hierarchical embedding method that allows operating across multiple latent spaces. First,
in Sec. 3.3.1, we define an algorithm to smoothly embed and transfer the transformations from
a driving/co-driving (D/CD) video to generated frames (V ). Second, to handle handle 3D pose
variations, our solution uses a masked W+ space with regularizers defined in Sec. 3.3.2. Third, we
define solutions in Sec. 3.3.3 and Sec. 3.3.4 to transfer local and global variations. In the following
subsection, we define our overall hierarchical video embedding method.

3.3 VIDEO2STYLEGAN METHOD

We now define and formulate the components (see Fig. 2) of our framework and describe how to
extend the method to handle controls from multiple videos. A regularized combination of these
components/building blocks comprises our final Video2StyleGAN method.

First, to account for the global translation in the talking head, we canonicalize the input video(s) by
estimating rotation and translation parameters of the driving or a co-driving video (D/CD) using
the Canonical Transformation (Sec. 3.3.1), and use the extracted transforms on the given image.
Optionally, we can omit these changes to stay faithful to the original parameters in a given image.

Second, to achieve identity-preserving 3D pose transformation, we perform pose changes via the
driving or co-driving video using pose transfer (Sec. 3.3.2). Again, we can omit such changes, i.e.,
use the pose of the given image without matching it to a driving frame.

Finally, we merge information from S space (Sec. 3.3.3) and W+ space (Sec. 3.3.4) analysis to
achieve fine-grained control over video generation. Specifically, we use the S space to control the
degree of local changes (eyes, nose, and mouth), and the W+ space to encode the residual motion
from the driving video D. There are two types of regularized sets of s activations that stem from
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our analysis in Sec. 3.3.3. These are the activations of the reference frame Icref i.e., spref ∈ Xs

(Sec. 3.3.3) and driving frame Dc
j i.e., spj ∈ Xsd. The local edits are given by:

slocal := αspref + βspj . (1)

For the W+ space, there are also two types of w+ codes; one wref (See Sec. 3.1), which encodes the
reference image, and another, obtained from Eq. 10 (Sec. 3.3.4), which extracts the residual motion
from D not captured by the S space. We identify the w+ code layers 3 − 7 (Modified Baseline) to
produce the best results when combined with the S space. Let Xorig := {x ∈ R

512} be the original
w+ encoding of the reference image Icref containing w+ codes of layers 3−7. Similarly, we denote

another set of w+ codes for these layers (Eq. 10) as Xw := {x ∈ R
512}. We first transform these

w+ codes to corresponding s activations.

Let Al be the affine function of layer l of G. We compute Xorigs :=
7⋃

i=3

Al(wl) and Xws :=

7⋃

i=3

Al(w
′

l) , where wl ∈Xorig and w′

l ∈Xw, respectively. These regularized spaces can be combined

to control the intensity of local and global variations. Based on s activation position in G, we can
combine as follows:

sfinal := slocal + γspbase, (2)

where spbase ∈ Xws, such that it matches the s activation position computed in set Xs. For other s
activations:

sfinal := ζsqref + (1− ζ)sqbase (3)

where sqref ∈ Xorigs and sqbase ∈ Xws. Note that α, β, γ, ζ can be controlled separately to produce

a desirable animation. For example, Eq. 2 can be used to enhance the motions in the eyes, nose, and
mouth, and Eq. 3 can be used to include additional motions in the head from D. Now we define
each component in detail.

3.3.1 CANONICAL TRANSFORMATION

This building block solves the first challenge: given a sequence of positions of the talking head
from a driving video D/CD, how could one transfer this information smoothly to a reference image
Icref to produce a sequence? We exploit the translation and rotation invariance property of the

StyleGAN3 architecture to encode the rotation and translation of the talking head. We recall that the
Fourier features of StyleGAN3 Karras et al. (2021a) can be transformed to produce an equivalent
effect on the output image. We define a tuple (tx, ty, r), where tx and ty are the horizontal and
vertical translation parameters, and r is the rotation angle. First, in order to determine the translation
and rotation changes from the canonical positions present in FFHQ Karras et al. (2019), we use
a state-of-the-art landmark detector ageitgey (2018) on each frame of the video to determine the
frame-specific (tx, ty, r) parameters. For each frame, we compute a vector connecting the average
of the positions of the eye landmarks and the mouth landmarks. We use them to compute the relative
angle between the canonical vertical vector and the current face orientation that we use to encode
the rotation of the head. Let el and er be the eye landmarks (left and right, resp.) and ml be the
mouth landmarks predicted by the landmark detector Ld. Then,

e⃗ := 0.5(E(el) + E(er)) and v⃗ := E(ml)− e⃗

and
r := dcos(u⃗, v⃗), (4)

where E denotes average, dcos is the cosine similarity function, and u⃗ is the up vector. Similarly, as
per the FFHQ transformation, the translation parameters are given by,

t⃗ := e⃗− e⃗′, (5)

where e⃗′ is the midpoint of the canonical FFHQ transformed image, and t⃗ is a column vector rep-
resenting tx and ty . The transformations on the Fourier features Ff to produce the desired rotation
and translation effects on a given image are given by,

F ′

f (tx, ty, r) := Ff (τ(tx, ty, r)) (6)

where τ represents the transformation (see Fig. 5 in Supplementary Materials).
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Figure 3: Comparison with the baseline. In each sub-figure, the first column shows the driving
frames, the second column shows the co-driving frames, the third column shows the results of the
baseline method, and the last column shows our results. Please see the supplementary video.

3.3.2 GLOBAL POSE ENCODING

Consistent with previous works Abdal et al. (2021c), we first use the first two layers StyleGAN to
transfer the pose. We observe that applying this change stretches the face area and the eyes, however,
the mouth and nose positions remain unchanged making the output face unrealistic. While a less
constrained approach of transferring the first eight layers makes a plausible pose change at the cost
of identity loss (see supplementary video).

We now propose our optimization setup to match the pose information. Specifically, we set up an
objective to optimize for the pose (i.e., yaw, pitch, and roll) of a given image to match the pose
of the driving video. We consider optimizing two objectives on a masked W+ space of the Style-
GAN3, i.e., pose matching and identity preservation. For pose matching, we use a pose regression
model cunjian (2019) which, given a valid frame of video, outputs yaw, pitch, and roll. To ensure
identity preservation, we apply an additional L1 regularization to the masked W+ space to restrict
the optimized latent to the initial latent code. We apply our optimization on the first 8 layers. An-
other challenge is to perform this optimization on real images embedded using PTI Roich et al.
(2021). In this case, optimizing the latent code directly creates severe artifacts. Hence we apply this
optimization to a more semantically meaningful original generator latent space and then transfer the
PTI-trained generator weights on top for the details. We found that this technique works best in the
projected real images case (see Supplementary video). The final optimization is given by:

wp
ref := argmin

w1:8

ref

Lmse(Pr(G(wref )), Pr(Dj))
︸ ︷︷ ︸

pose matching

+L1(wref , w
p
ref )

︸ ︷︷ ︸

identity preservation

,
(7)

where wref is the w code for Icref and w1:8
ref is the masked w+ code for the first eight layers of Style-

GAN3, Lmse represents the MSE loss, and Pr is the output of the pose regression model cunjian
(2019).

In Fig. 6 (Supplementary Materials), we show the results of the pose matching from a random frame
in the driving video. The figure shows different results of pose changes made to the reference images
under a given pose scenario in the driving video.
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Figure 4: Fine-grained local control. Local information transfer without the global changes
like pose. In each sub-figure, the top row represents driving frames and the bottom row shows a
reference image and local edits.

3.3.3 LOCAL FACIAL FEATURE ENCODING

In order to automatically identify the feature maps and the corresponding s ∈ S parameters respon-
sible for affecting the motion of the semantic regions. Note that we do not use gradient maps Wu
et al. (2020) in our analysis and apply a more fine-grained approach on activation maps based on re-
sults of the previous works Abdal et al. (2021b). Essentially, we match the activations in these layers
with semantic segmentation regions obtained using a segmentation network. We use a semantic part
segmentation network, BiSeNet Yu et al. (2018), trained on the CELEBA-HQ Karras et al. (2017)
dataset, to determine such layers. First, given a set of images and their feature maps extracted from
the StyleGAN3, we first compute the segmentation map of the image using BiSeNet. Second, we
compute the normalized maps using min−max normalization per feature channel of the feature
maps. Third, to match the spatial size of these masks, we upsample these masks to match the spatial
size of the target mask using bilinear interpolation. In order to convert these normalized features into
hard masks, we threshold these maps to be binary. Finally, we compute the IOU scores of the three
semantic components derived from the set of images by comparing them with these binary masks.

Let SegNet be the semantic part segmentation network (e.g., BiSeNet), Mfg be the semantic
component in consideration, Mbg be other semantic components including background given by
SegNet(Icref ). Let Cl be the feature map at layer l of StyleGAN3 after applying the min−max
normalization, upsampling, and binarization to the map, to produce,

IOU+ := IOU(Mfg, SegNet(Cl)) and

IOU− := IOU(Mbg, SegNet(Cl)). (8)

Based on both the positive IOU+ (eye, nose, and mouth) and negative IOU−(background and
components excluding the given semantic part) IOU -s, we select a subset of these maps (Xm :=

{x ∈ R
1024

2

}) and the corresponding s parameters (Xs := {x ∈ R}) based on thresholding to be
our local model for the manipulation of the semantic parts. Thus,

Cl ∈ Xm, if IOU+ ≥ tfg and IOU− ≥ tbg (9)

where tfg and tbg are the thresholds. Note that Xs ⊂ S. In Fig. 7 (Supplementary Materials), we
show some examples of the extracted feature maps in Xm focusing on only a specific semantic part
of the face.

3.3.4 RESIDUAL MOTION ENCODING

Finally, in our experiments, we found that it is sufficient to simply encode the above global and
local components to perform realistic video editing using the StyleGAN3 generator. We further
observe that even though the w+ code of the projected driving video can encode non-semantic com-
ponents, which cannot be directly used for video editing, it carries other important information that
is lost when shifting to the S space analysis described above. Hence, the w+ code, despite having
some undesirable effects, captures some additional semantics essential for making the motion of the
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face consistent with the driving video. It is able to encode non-local effects such as stretching and
squeezing of the cheek during movements in the mouth, eye regions, and chin. Only a local analysis
cannot capture such coupling between the (semantic) parts. Specifically, in Fig. 3, we compute the
difference vectors in the consecutive frames of the driving video and apply these transformations to
the given latent representing a given image. Thus,

wbase := wp
ref + (wj−1 − wj) (10)

where wj−1 is the w+ code corresponding to Dj−1 and wj is the w+ code corresponding to Dj of
the driving video. Note that in Sec. 3.3, we resort to a constrained W+ space to apply these edits
and avoid the non-semantic artifacts.

To show the artifacts and the loss of the person’s identity using such a naive technique for video
editing see the supplementary video. Since the previous methods (Abdal et al., 2019; Alaluf et al.,
2022; Tzaban et al., 2022) use such editing in their video processing frameworks, we regard this as
a baseline for our method (see Fig. 3 for a comparison).

4 RESULTS

4.1 METRICS

We use four metrics to evaluate the keypoints, identity preservation, and the quality of the frames in
the resulting video. We also check the consistency of these metrics on the resulting videos (Sec. 4.4)
by encoding a reverse driving video. These metrics are: Keypoint distance (∆K), Identity dis-
tance (ID), LPIPS (LP ), and Fréchet Inception Distance. A description of these metrics is
provided in the supplementary materials.

4.2 BASELINE

As mentioned in Sec. 3.3.4, we resort to Eq. 10 as a method to make consecutive edits to the w+
code of the embedded video which forms our baseline. Note that this method is widely used by
GAN-based image editing methods like InterfaceGAN Shen et al. (2020) and GANSpace HÈarkÈonen
et al. (2020). More specifically, current video editing works Alaluf et al. (2022); Tzaban et al. (2022)
use the videos embedded in the W+ space and/or weights of the generator Roich et al. (2021) to
do editing. We apply the same approach to modify a single image and generate a video using the
driving and the co-driving frames. In Fig. 3, the third column in each sub-figure shows the result of
the baseline method on two different identities.

4.3 QUALITATIVE COMPARISON

In order to visualize the quality of the resulting video, in Fig. 1, we show the results of our
Video2StyleGAN method on different identities. Note that here we first match the pose of the given
identity image to a driving frame and then we apply the local and global edits including the rota-
tion and translation derived from a co-driving video. Notice the quality of the identity preservation
across different editing scenarios. To compare our method with the baseline, in Fig. 3, we show the
results of the editing and transformations. For embedding a real image, we use the Restyle method
to produce an embedding and further optimize the generator using PTI Roich et al. (2021) by ini-
tializing with the computed Restyle embedding. Notice that the baseline approach tends to change
different features like skin color and produces noticeable artifacts. In comparison, our method is
able to preserve the identity of the person and successfully transfer the edits from the driving and
the co-driving video. In order to show that our method works when the pose of the reference image
does not match the driving frame, in Fig. 4, we show the transfer of the local information from the
driving frames to a reference image. Notice the quality of edits and identity preservation in these
cases. Please refer to the supplementary video.

4.4 QUANTITATIVE COMPARISON

In order to compute the metrics on the generated frames of our method, baseline method and other
alternative techniques: FOMM Siarohin et al. (2019), LIA Wang et al. (2022), and TPS Zhao &
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Table 1: Perceptual and identity evaluation. The best score is in bold and the second best is
underlined.

Method LP f LP r IDf IDr

Baseline 0.423 0.408 0.58 0.54
FOMM Siarohin et al. (2019) 0.502 0.486 0.27 0.29

LIA Wang et al. (2022) 0.474 0.461 0.25 0.25
TPS Zhao & Zhang (2022) 0.482 0.467 0.27 0.28
Fox et. al Fox et al. (2021) - - - -

Ours 0.265 0.223 0.31 0.30

Table 2: Keypoint distance and FID evaluation. The best score is in bold and the second best is
underlined.

Method ∆Kf (1e−3) ∆Kr(1e−3) FID

Baseline 7.15 6.20 28.84
FOMM Siarohin et al. (2019) 5.03 4.30 13.37

LIA Wang et al. (2022) 4.83 4.21 8.33
TPS Zhao & Zhang (2022) 4.94 4.21 13.83
Fox et. al Fox et al. (2021) - - -

Ours 4.91 5.18 12.91

Zhang (2022), we use 5 identities (10242) to produce videos of 114 frames using MEAD Wang
et al. (2020) dataset. To test the consistency of the methods, in addition to computing the edits in
the forward direction, we reverse the driving video and compute the edits using this reverse driving
video. A consistent method should produce similar edits starting from a reference image, such that
the identity, keypoints, and quality of the edits are preserved.

First, in Table 1, we compute the two metrics LP , and ID using both the driving as well as the
reverse driving video. With our generated videos supporting 10242 resolution and other techniques
producing videos at 2562, note that the LP score is lower in our case for both scenarios. Our identity
scores are comparable to other techniques and beat the baseline by a larger margin.

Second, in Table 2, the Keypoint Distance (∆K) of our method beats the baseline method in both
scenarios showing that our method is both better at matching the keypoints as well as consistent
across the driving video direction. While we do not expect to beat other methods in this metric as
these methods are themselves keypoint based and our method does not need such data. Still, our
method reaches very near to the scores of other methods.

Finally, to compute the quality and consistency of the edits, we measure the FID score between
the frames produced by a driving video and its reverse version. The table shows that our results
are comparable to the alternate techniques. This indicates that our method can produce consistent
quality images across different identities and driving video scenarios similar to alternate techniques.
Interestingly, we are second best when it comes to keypoint distance and FID.

5 CONCLUSIONS

We introduced a framework for fine-grained control for manipulating a single image using the Style-
GAN3 generator. In particular, the framework is useful to edit a single image given a driving video
without needing the video data for training. This problem is very challenging because existing
methods either strongly overfit or underfit the driving video. We proposed a hierarchical embedding
method to encode the video into the StyleGAN3 latent space. We proposed a non-trivial combi-
nation of regularized W+, S, and Fourier Feature Ff spaces to achieve fine-grained control over

video generation. Contrary to the previous works we can generate videos at 10242 (versus 2562),
and our method can control different components of the video separately including supporting mul-
tiple driving video inputs not seen in the previous works. Our experiments yield qualitative results
in the accompanying video and quantitative results using four different metrics to demonstrate clear
improvements in LPIPS scores against the state-of-the-art methods and comparable results in other
metrics.
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A MORE ON CANONICAL TRANSFORMATION

The transformations Alaluf et al. (2022) discussed in the main paper are not smooth across the
frames. Hence, to smoothen out the anomalies, we apply a convolution operation to this sequence
of parameters across the time domain. Empirically, we found a mean filter with a kernel size of 3 or

Figure 5: Canonical transformation. Given a driving video (left) with rotation and translation
of a driving frame, our framework can transfer this information to a new reference image. Top row:
reference images. Bottom row: transformed images.
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Figure 6: Editing global pose and expressions. Given a reference image and a driving frame,
we match the pose and expressions. Each row shows an identity (reference image) and edits corre-
sponding to the top row (driving frame).

higher to produce a smooth consistent video after the transformations are applied. Note that these
parameters can be derived from co-driving video CD, and applied to a given image without affecting
the identity. For example, we could apply the steps mentioned in Sec. 3.3 from a first driving video
and apply the rotation and translation effects from a co-driving video CD.

B MORE ON GLOBAL POSE ENCODING

To solve the challenge of producing identity-preserving pose changes consistent with the driving
video, we resort to analysis in the latent space of StyleGAN3. Particularly, in the context of Style-
GAN, pose changes are largely associated with adding new details Ð stretching, squeezing, and
transforming the eyes and mouth views to a target position. For this reason, we use the W+ space
of StyleGAN3 to encode such global information. Based on the semantic understanding of the latent
space by previous works Abdal et al. (2021c), we restrict encoding the pose information in the first

Figure 7: Extracting local facial features. A given image and some normalized feature maps
extracted by the Local Facial Feature Encoding of our framework (see Eq. 9). The top row shows
maps focusing on the eyes, the middle row shows maps focusing on the nose, and the bottom row
shows images focusing on the mouth areas. We restrict latent space optimization to discovered
channels responsible for the corresponding edits.
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8 (out of 16) layers of the StyleGAN3 latent space which preserves both the identity and the later
style layers changing global styles.

C MORE ON LOCAL FACIAL FEATURE ENCODING

The challenge is to encode the local information of the semantic parts, namely eyes, mouth, and
nose, which are responsible for local changes in a talking head driving video. Note that we consider
that the expression changes result in coupled variations across these semantic regions. We encode
such local variations using our analysis in the S space of the StyleGAN3 architecture. First, for the
disentangled nature of the S space in StyleGAN3 please refer to the supplementary video showing
the local properties of S space, which can be edited. Just for demonstration, we manually change
the S parameter of a given channel of a given layer of StyleGAN3 to observe the desired effect on
the final image.

D LIMITATIONS

Although our method produces fine-grained video editing, there are some limitations of the method
that stem from the nature of the StyleGAN architecture. First, our algorithm currently only considers
face models. Being able to handle complete human bodies would require further extensions. Second,
since there is a projection step involved in the reconstruction of a reference frame, the projection may
be poorly able to model some non-semantic components like a head scarf, nose ring, etc. Third, due
to the distribution of the FFHQ dataset, under large motion and extreme pose change conditions,
the results might break. In future work, we would like to further explore and improve video editing
by combining our analysis with other generative models, such as auto-regressive transformers and
diffusion. We also propose text-driven video editing as a possible direction for future work.

E METRICS

1. Keypoint distance (∆K): To measure the target edits made to the resulting video, we use
the mean of L2 distance between the keypoints of the consecutive frames of the driving
video and the resulting video. The keypoint detector cunjian (2019) predicts 68 keypoints
given an image. We average the errors for these 68 keypoints.

2. Identity distance (ID): We use a state-of-the-art Face recognition model ageitgey (2018)
to compute the facial embeddings of the given reference image and the frames of the re-
sulting video. We compute the L2 norm of these embeddings and take an average across
all frames of the video.

3. LPIPS (LP ): LPIPS Zhang et al. (2018) is used to compute the perceptual distance be-
tween the two images. We use this loss to compute the similarity of the frames of the
generated video to the original frame.

4. Fréchet Inception Distance (FID): FID Heusel et al. (2017) is used to measure the distance
between a given distribution of images to a generated one. In the context of video editing,
we use FID as a metric that computes the quality and consistency of the edits made to the
given reference frames. This measures how much the distribution of the resulting frames
changes under different edits (e.g., by reversing the driving video).

F TRAINING AND IMPLEMENTATION DETAILS

We use an Nvidia A100 GPU for the experiments. We use the R-Config model of StyleGAN3
for inference. Starting from a pose in the reference frame, pose encoding takes under 1 minute to
converge. We set the yaw, pitch, and roll loss weights to 2 and the identity preservation loss weight
to 0.04. As a default setting, we set α = −1, β = 1, γ = 1, and ζ = 0.5. Given the driving video,
our method generates at the speed of ∼1.5 frames/sec at 10242 resolution.
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Figure 8: Ours vs StyleHEAT. We show the results of identity preservation using our method
versus the StyleHEAT method. Notice that our method preserves the identity of the person better
and at the same time preserves the details like teeth, high-frequency details on the skin, hair, etc.

G ETHICAL CONCERNS AND BROADER IMPACT

While the work highlights the advantages of StyleGAN-based imagery for facial reenactment sys-
tems with applications in video processing/video conferencing, there are some ethical concerns that
need to be checked. Particularly, such systems like DeepFakes can be misused when applied in
sensitive situations or can be used to propagate misinformation. We advise caution against using
the system with the intent to harm a person’s autonomy, dignity, and privacy. We would encourage
researchers to build systems for detecting such cases and mitigating the risks of misinformation.

H VISUAL COMPARISON WITH STATE-OF-THE-ART METHODS

In Fig. 10 and Fig. 11, we show the stills from the videos generated by the baseline, FOMM Siarohin
et al. (2019), LIA Wang et al. (2022), TPS Zhao & Zhang (2022) and our method. The reference
images are shown in Fig. 12 for assessing identity preservation of different methods. Notice that our
videos are generated at a higher (10242) resolution with better or similar motion/expression transfer
quality as other methods. Also notice the quality of the preservation of high-quality details like teeth,
hair, etc. These features are poorly represented by other methods. Zoom in to see the high-quality
details of our method. See Fig. 13 and Fig. 14 for inspection.

I COMPARISON WITH STYLEHEAT YIN ET AL. (2022)

StyleHEAT Yin et al. (2022) and Pirenderer Ren et al. (2021) are methods trained on videos and they
use 3DMM parameter regressors in their frameworks. Both are StyleGAN2-based methods. We al-
ready compare with a StyleGAN2-based method, LIA Wang et al. (2022), in the main paper. Here,
we show additional identity preservation and detail preserving results of our method versus Style-
HEAT (StyleGAN2-based) in Figure 8. Quantitatively, in Table 3, we show our method’s LPIPS
score and identity preservation score versus StyleHEAT. Additionally, we also compute expression
transfer performance serengil (2023) and self-reconstruction results. Self-reconstruction of a video

Table 3: Comparison with StyleHEAT. Lp: LPIPS score, Id: Identity Score, Ee: Expression
conf. error, Ep: Expression preference, SR: Self Reconstruction

Method Lp ↓ Id ↓ Ee ↓ Ep ↑
Ours 0.27 0.31 0.55 0.54

StyleHEAT 0.51 0.52 0.60 0.46

Ours (SR) 0.38 0.29 0.50 0.53
StyleHEAT (SR) 0.49 0.87 0.58 0.47
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using our method depends on the PTI reconstruction (upper bound) of the first frame in a driving
video. We show the results of self-reconstruction on 200 frames on 2 identities in Table 3. Note
that our results are better. The Pirenderer method is worse than StyleHEAT (Table 2, row 4 in the
StyleHEAT paper). Video results are shown on the supplementary webpage.

J DIFFERENCE TO VIDEO2STYLEGAN: ENCODING VIDEO IN LATENT

SPACE FOR MANIPULATION YU ET AL. (2022)

Video2StyleGAN Yu et al. (2022), on arXiv, is different from ours. It is a concurrent work, similar
to Stitch-in-time Tzaban et al. (2022) and Third Time’s a Charm Alaluf et al. (2022), that deals with
video editing on existing video and not face-reenactment. The method uses facial landmarks and a
3D face mesh on videos. Their code is not available to the best of our knowledge.

K TEMPORAL METRIC FVD.

In Table 4, we qualitatively compare against MRAA Siarohin et al. (2021) and FOMM. Ours per-
forms a bit worse than MRAA but does not require any video-specific training. Additionally, we
also computed the ID metric for MRAA: 0.41 vs Ours: 0.31 (lower the better) which again shows
that our method produces a better trade-off between reconstruction quality and motion transfer.

Table 4: FVD (1e3) comparison with other methods.
Baseline FOMM LIA TPS MRAA Ours

Trained on videos N/A 1.34 1.28 1.21 1.08 N/A
Not trained on videos 1.79 N/A N/A N/A N/A 1.15

L ABLATION: QUANTITATIVE

In Table 5 we ablate our design choices along multiple axes. Our full method achieves a good
balance between image details, temporal smoothness, and identity preservation.

Table 5: Ablation. LF : Local Facial Feature Encoding

FVD (1e3) ∆Kf (1e−3) ID
Baseline 1.79 7.15 0.58

LF 1.17 5.11 0.26
Baseline + LF 1.38 5.58 0.43

Ours 1.15 4.91 0.31

M COMPARISON AGAINST MRAA SIAROHIN ET AL. (2021)

We provide additional quantitative (Table 4) and qualitative results in Figure 9). Ours produces
higher fidelity videos with better identity preservation.

Figure 9: Ours vs MRAA.
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N USER STUDY

We conducted a user study with 28 subjects, comparing ours with the methods mentioned in the main
paper. Consistent with our experiments in the paper, on average, our Reconstruction/Identity preser-
vation was preferred 62.55% of the time, and motion/expressions (comparable to other methods)
53.05% of the time.

O VIDEO RESULTS

In order to show the video results, we attach a static web page with the video results of our method.
We show the ablation of the components used in our framework. Notice that adding each component
improves the quality of video encoding and transfer. Also, notice that each of the building blocks
can be separately controlled, unlike the previous works. To show the quality of face reenactment
achieved by our method and compare it with the baseline, FOMM Siarohin et al. (2019), LIA Wang
et al. (2022), and TPS Zhao & Zhang (2022) methods, we also show the comparison videos in the
supplementary web-page.
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Figure 10: Comparison with state-of-the-art methods. Comparison of our method with the
baseline, FOMM Siarohin et al. (2019), LIA Wang et al. (2022), and TPS Zhao & Zhang (2022).
Notice the blurry results in other methods with poor high-frequency details e.g. teeth, hair etc. Our
method preserves the details of the reference image (Fig. 12). Zoom in for details.
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Figure 11: Comparison with state-of-the-art methods. Comparison of our method with the
baseline, FOMM Siarohin et al. (2019), LIA Wang et al. (2022), and TPS Zhao & Zhang (2022).
Notice the blurry results in other methods with poor high-frequency details e.g. teeth, hair etc. Our
method preserves the details of the reference image (Fig. 12). Zoom in for details.

Figure 12: Reference images. Reference images used in the video shown in Fig 10 and Fig. 11.
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Figure 13: Visual quality. Zoomed-in version of images shown in Fig. 10 (fourth row).
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Figure 14: Visual quality. Zoomed-in version of images shown in Fig. 10 (sixth row).
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