
Graph Neural Networks Go Forward-Forward

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present the Graph Forward-Forward (GFF) algorithm, an extension of the1

Forward-Forward procedure to graphs, able to handle features distributed over a2

graph’s nodes. This allows training graph neural networks with forward passes only,3

without backpropagation. Our method is agnostic to the message-passing scheme,4

and provides a more biologically plausible learning scheme than backpropagation,5

while also carrying computational advantages. With GFF, graph neural networks6

are trained greedily layer by layer, using both positive and negative samples. We7

run experiments on 11 standard graph property prediction tasks, showing how8

GFF provides an effective alternative to backpropagation for training graph neural9

networks. This shows in particular that this procedure is remarkably efficient in10

spite of combining the per-layer training with the locality of the processing in a11

GNN.12

1 Introduction13

Backpropagation (BP, [3]) is the de facto standard algorithm for training neural networks and has14

been central to the success of deep learning. Despite its undeniable success, BP does have some15

drawbacks. For example, the BP algorithm uses the chain rule to compute gradients, which means16

that non-differentiable components cannot be included in neural networks, and its memory footprint17

is proportional to the total number of parameters in the model. Moreover, insufficient evidence to18

support that the BP algorithm could be a biological operation has motivated the investigation of19

neuromorphic methods for updating the parameters of neural networks [8, 20, 5]. The neuromorphic20

approach in deep learning is a growing trend that aims to relate deep learning methods to brain21

processes. The intent is to mimic the functioning of the human brain and the neurons that compose it.22

A major motivation behind the recent neurophormic development is the observation that the brain23

is highly capable and yet needs low energy compared to the computers needed to run and use large24

neural networks.25

Recent work by [11] challenges the dominance of the BP algorithm by proposing the forward-forward26

(FF) algorithm as an alternative for training neural networks. The FF algorithm is inspired by27

Boltzmann machines [10] and by contrastive learning methods such as [9] and constitutes a better28

candidate in terms of biological plausibility. Initial experiments show that the FF algorithm achieves29

strong performance on vision datasets like MNIST and CIFAR-10, and that it can be extended to30

dealing with sequences [11].31

Forward-forward algorithm. Instead of a forward and a backward pass, the FF algorithm performs32

a pair of forward passes to update the parameters of a network. The two passes run on two different33

datasets and have opposite objectives. The positive (negative) pass uses a positive (negative) dataset34

and adjusts, greedily layer by layer, the parameters of the neural network by maximizing (minimizing)35

a value, called the goodness. The FF algorithm is able to incorporate non-differentiable components36

between the layers and intends one day to enable the development of large power-efficient neural37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



networks. The FF algorithm is able to handle both the supervised and unsupervised learning38

paradigms. This promising algorithm, however, remains largely unexplored at the moment.39

Our main contribution is to improve and extend the FF algorithm to graph neural networks. We40

develop a recipe to calculate the goodness of any attributed graph and introduce the forward-forward41

algorithm on graph neural network (GFF). In the setting of graph property prediction, we show that42

GFF offers comparable performance to standard backpropagation on a range of different datasets43

from various domains. Additionally, we analyze different methods of computing the graph goodness,44

and of incorporating ground truth information in the message-passing framework. Finally, we provide45

statistics and discussions on the computational advantages of GFF. The code to reproduce our results46

will be made public upon publication.47

2 Related Work48

2.1 Graph Neural Networks49

A graph G is a pair (V,E) where V = {v1, ..., vn} is a set of nodes and E is a set of pairs of50

nodes (vi, vj) called edges. Graphs are ubiquitous in the real world and can be used to represent a51

large number of entities such as molecules, social networks, and maps. The abundance of problems52

related to graphs in numerous areas, including the natural and social sciences, has fuelled the53

development of methods to leverage the properties of graphs. Graph neural networks (GNNs, [17])54

have quickly become the standard for dealing with graph-structured data. This large family of models55

has already generated several impressive achievements [6, 4, 23, 21]. GNNs operate through an56

iterative procedure called message-passing (MP). The representation of each node is updated, in57

parallel, by computing a function that aggregates the neighboring nodes. This procedure is repeated58

multiple times, where each iteration is parametrized by a layer in the GNN. The more layers there are,59

the more informed the remote nodes are of each other. After several message-passing iterations, a60

pooling function can be applied to aggregate the node feature vectors, with the resulting vector being61

used to make the final prediction.62

2.2 The Forward-Forward algorithm63

Positive and negative datasets. The FF algorithms requires encoding the label information in the64

data points. In [11], the one-hot encoded label is inserted in a corner of the image that contains no65

information. The correct label encoding is added to an image to form a positive sample. An incorrect66

label encoding is added to an image to form a negative sample. There is, of course, only one possible67

positive dataset. There can, however, be more than one negative dataset.68

Goodness Function. One of the building blocks of the FF algorithm is the goodness function. This69

function is needed to update the parameters of the neural network. In [11], the goodness of a layer is70

the sum of the squared activities. The advantage of this definition is that it is simple and requires71

little computation. For example, the goodness function using squared activations is more efficient72

than the free energy function in the Boltzmann machines and has simple derivatives.73

2.3 Contrastive Learning74

The idea of contrastive learning is to learn by contrasting data that are similar and dissimilar [2].75

This is often achieved by augmenting a dataset to create a similar, but slightly different, dataset. In76

computer vision, this augmentation can be done by transforming the images (cropping, rotating, and77

recoloring). This principle has been successfully adapted to GNNs in instances such as GraphCL78

[22] and MolCLR [19]. These methods require finding a method to compare two representations79

(vectors). In the FF algorithm, contrastive learning is applied by using positive and negative datasets80

described above. The advantage of FF-based algorithms is that it is not required to compare the81

(vector) representations, but only the (scalar) goodness values.82

3 Method83

This section describes the GFF recipe in detail. Our work focuses on the task of graph property84

prediction. The initial datasets are composed of multiple graphs that each belong to a label.85

2



In the standard FF algorithm, the different labels are represented by a one-hot encoding scheme. In86

[11] and subsequent works, the label encodings are inserted as replacements for the first few pixels87

(which contain no information, of course) of the input images. In order to include label information88

in a graph, we develop and test two approaches. One consists in appending the one-hot encoded label89

to each node representation in the input graphs. This encoding scheme is displayed in Appendix B90

(Figure 4). A second approach, which is more graph-specific and which requires no data redundancy,91

is to endow input graphs with an additional virtual node carrying all information about the label. A92

virtual node is a node added to the graph and connected in some ways to the rest of the nodes. This93

encoding scheme is described in Figure 3. Note that the virtual node is connected bidirectionally to94

every other node in the graph. In order to allow the network to treat the virtual node as a separate95

entity, we use separate weight matrices for the message passing along the virtual node edges.96

In order to generate negative samples for training with GFF, we simply encode the input graph with97

an incorrect label. Since the only difference between positive and negative data is the label, GFF98

should learn to ignore all features of the graph that do not correlate with the label.99

Notation. Let n be the number of nodes in the input graph and suppose that this number remains100

the same throughout the layers of the network. Let d be the dimension of the activation vectors.101

Let A(i) =
(
a
(i)
1 , . . . ,a

(i)
n

)
be the activation matrix that contains the activation vectors a

(i)
j =102 (

a
(i)
j1 , . . . , a

(i)
jd

)
of all the nodes of the i-th layer.103

3.1 Goodness of a Graph104

Learning on graphs using FF requires defining the goodness function for an attributed graph. This is105

the function that allows computing the layer-wise loss. Intuitively, the network is trained so that the106

goodness for positive samples is high (or higher than a threshold), while the goodness for negative107

samples is minimized. Moreover, the goodness should be computed in such a way that all information108

about it is discarded before passing the activations to the next layer. More information about how109

the goodness is used for training and inference is provided in Sections 3.3 and 3.4. One of the110

main differences with the approach proposed in [11] is that, when dealing with graphs, we carry a111

separate feature vector for each node, and not a single vector representing the whole sample. Since112

the goodness comes in the form of a single scalar for the whole graph, we need to find a way to113

aggregate these vectors. The aggregation function can be any permutation-invariant function of the114

set of node representations. Then, the mean of the elements of the resulting vector represents the115

goodness.116

The goodness g(i) of the i-th layer, when we use sum-pooling as an aggregation function, is defined117

such that118

g(i) =
1

d

d∑
k=1

n∑
j=1

(
a
(i)
jk

)2

. (1)

Notice that more than one goodness function is possible, but the one above shines by virtue of being119

uncomplicated, and we find that it works well in practice. To summarize, the computation of the120

goodness is based on the following recipe:121

1. Normalized activity vectors of all the nodes and the adjacency matrix are fed to the message-122

passing algorithm. This produces updated activity vectors. A nonlinear activation function123

is applied.124

2. The activity vectors are squared.125

3. The squared activity vectors are aggregated with a pooling function. This produces an126

aggregated vector.127

4. The mean of the aggregated activity vector is computed and represents the goodness of the128

graph.129

3.2 Architecture130

Our framework can potentially be applied to any GNN. The layers can be convolutional or even131

attentional. In our experiments, the layers employed are convolutional layers found in the popular132

3



graph layer 1
sample
(positive or negative)

normalisation

update of
the parameters

graph layer L

Goodness

ReLU

Local loss
update of
the parameters

Goodness

ReLU

Local loss

message passing

Figure 1: The architecture of an FFGNN. The layers are updated in a greedy manner. Each layer
performs the MP procedure on each node (illustrated by the multiple graphs in each layer).

graph convolutional networks (GCN, [13]). The main feat of GCNs is to extend the convolution133

operator to non-Euclidean data in the form of graphs. In GCNs, for every node in the input graph,134

neighbor representations are aggregated with a position-invariant function. A linear transformation is135

applied to the resulting, aggregated vector, and the nodes are then updated with the new contextual136

representation. Specifically, the node-level update is described by the following equation:137

x′
i = Θ⊤

∑
j∈N (v)∪{i}

xj

ci,j
, (2)

where xj is the vector representation of node i, N (i) is the set of neighbors of node i, Θ is the weight138

matrix for the layer, ci,j is a normalization constant for the edges between node i and j, and x′
i is the139

updated node representation.140

In the GFF algorithm, the activity vectors are normalized before being passed to the next layer. This141

is performed in order to avoid the information used to compute the goodness in the previous layer142

influencing the goodness in the next one. In this paper, the norm used is the length of the vector.143

Remember that a(i)j =
(
a
(i)
j1 , a

(i)
j2 , . . . , a

(i)
jd

)
is the activity vector of the j-th node of the i-th layer.144

The norm is defined such that145 ∥∥∥a(i)j

∥∥∥ =

√(
a
(i)
j1

)2

+
(
a
(i)
j2

)2

+ · · ·+
(
a
(i)
jd

)2

. (3)

This norm has the advantage of being simple, but one could of course try other types of layer146

normalization.147

3.3 Loss and Training148

One of the main differences between a GFF-based GNN and a standard GNN is that the parameters149

of the former are updated layer by layer, instead of after going through all the layers. In other words,150

only one layer is being trained at each time. In this sense, the GFF algorithm can be said to be greedy151

or local layer-wise. Note that there is no predictive loss function. The objective is to maintain the152

goodness above a threshold if the data is positive and below this threshold if the data is negative. The153

idea is to minimize or maximize (depending if positive or negative) the local loss function of the layer.154

Let T be a threshold. For positive samples, the local loss function of the i-th layer is defined such that155

Li = log
(
1 + exp

(
−g(i) + T

))
. (4)

For negative samples,156

Li = log
(
1 + exp

(
g(i) − T

))
. (5)

4



The update can then be directed by the derivative of the local loss function. Note that this requires157

computing derivatives, but not applying the chain rule through all the layers. This is the reason that158

non-differentiable components can be added between the layers. This could allow, for example,159

symbolic components [1, 14]. Once the parameters of a layer are totally updated, it is the turn of the160

next layer to follow the same procedure. The activity vectors of the previous layer are passed to the161

next layer. The entire architecture can be visualized in Figure 1.162

This greedy approach using a local loss function should result in the GFF algorithm being more163

memory efficient during training since we need to compute much fewer gradients and we don’t need164

to keep the activations in memory for the backward pass. We elaborate more on this in Section165

5. The optimization problem also gets simpler, given that each layer is solving a smaller task in a166

lower-dimensional parameter space.167

3.4 Inference168

The prediction phase in GFF is done in a quite different manner than in backprop-GNNs since there169

is no predictive loss function. Let us suppose that the goal is to classify some graph G. Let C be the170

number of possible labels. The idea is to first create the label graph Gci for each label ci. The label171

graph Gci is created by appending the label encoding of the label ci to all the nodes of the graph G.172

Let DC be the augmented dataset containing the C label graphs. The next step is to compute the173

label goodness of each graph in the set DC . The label goodness gci of the label graph Gci is the sum174

of the goodness of all the layers of the FGNN that received Gci in input. Let L be the number of175

layers of the FGNN.

graph layer 2

for each among

graph layer L

,

Step 1:

Step 2:

that maximisesreturn among

Figure 2: The prediction is done in two steps. Step 1: the label goodness is computed for each label.
Step 2: the label selected is the label that has the highest label goodness.

176

More formally, the label goodness gci is defined such that177

gci =

L∑
i=2

g(i). (6)

Note that, similar to [11], the goodness of the first layer is not used in the prediction. This leads to178

better empirical results. The prediction is then accomplished by computing the label goodness of179

each of the label graph in the set DC and then choosing the label that possesses the highest label180

goodness. More formally, the returned label c⋆ is selected such that181

c⋆ = argmax
ci

gci . (7)

For an illustration of the prediction scheme, see Figure 2. This type of prediction is interesting since182

the goodness of the other labels can also provide information. However, from a computational point183

of view, it can become difficult if the number of labels is very large. The adaptation of this kind of184

prediction scheme to a regression setting could be of value and is the subject of future work.185

5



4 Experiments186

We run multiple experiments on 11 datasets for graph property prediction. We compare the perfor-187

mances of GNNs trained with backpropagation with GNNs trained using GFF. We then perform188

several ablations to better understand and evaluate the building blocks of our method such as the189

pooling function, the goodness computation, and the label encoding. For datasets where the graph190

doesn’t have node features, we assign the one-hot encoded node degree as the initial feature for each191

node.192

All experiments are implemented in Pytorch/Pytorch Geometric [7, 16] on 1 NVIDIA 3090 GPU.193

4.1 Datasets194

The datasets used in this paper are mainly obtained from the TUDatasets collection [15]. The datasets195

range from relatively small ones such as Peking_1 to larger ones such as Yeast and cover molecules196

(BZR, COX2, MUTAG, SN12C, SW-620H, Yeast), bioinformatics (PROTEINS, Peking_1),197

computer vision (MSRC_9) and social networks (COLLAB, IMDB-Binary). For more information198

on the datasets, see Table 6 in Appendix A.199

4.2 Architecture and Training Details200

In our experiments, all models contain 3 GCN layers with 128 hidden units per layer. We train the201

models for 200 epochs with a batch size of 128, using the Adam optimizer [12] with learning rate202

10−3. We report the mean and the standard deviation over 5 different random seeds.203

4.3 Results204

Dataset GCN FF-GCN
PROTEINS 0.60± 0.02 0.62± 0.10
IMDB-Binary 0.70± 0.05 0.63± 0.08
BZR 0.92± 0.03 0.89± 0.05
COX2 0.82± 0.04 0.78± 0.08
MUTAG 0.71± 0.04 0.71± 0.04
SN12C 0.96± 0.00 0.95± 0.00
SW-620H 0.95± 0.00 0.94± 0.00
Yeast 0.88± 0.00 0.88± 0.00
Peking_1 0.67± 0.11 0.59± 0.06
COLLAB 0.79± 0.01 0.68± 0.02
MSRC_9 0.91± 0.04 0.82± 0.09

Table 1: Comparison of the GCN (BP) and the
FF-GCN (GFF). The results are in terms of test ac-
curacy and have been obtained on 5 random seeds.

Dataset Speedup
PROTEINS 22
IMDB-Binary 18
BZR 35
COX2 22
MUTAG 61
SN12C 2.5
SW-620H 2.7
Yeast 2.6
Peking_1 42
COLLAB 2.9
MSRC_9 28

Table 2: Comparison of training speed between
backpropation and FF. The speedup value repre-
sents the factor by which the GFF algorithm is
faster to train than the GCN for the same number
of epochs.

205

Table 1 shows the comparison between GCNs trained with backpropagation and a GCNs adapted and206

trained with GFF. We find that the two networks perform very similarly in almost all cases. In one207

instance, we find that GFF outperforms the backpropagation alternative. Not that in this table for GFF208

we only show the use of sum-pooling to compute the goodness (see Section 3). However, for some209

datasets, we get even better results with mean pooling, which we show in the ablations (Section 4.4).210

In Table 2, we report the difference in training speed between training with backpropagation and with211

FF. Note that we only compare the amount of time it takes to perform the same number of epochs212

on the datasets, and not the time it takes for the models to converge. For small datasets we observe213

speedups of more than an order of magnitude. For larger datasets, the time spent moving data in and214

out of the memory takes a significant portion of the training time, and the relative speedup of FF215

6



Dataset Concat Virtual

PROTEINS 0.62± 0.10 0.61± 0.05
COLLAB 0.68± 0.02 0.52± 0.01

Table 3: Results for ablation on the label encoding method. Test accuracy is shown. The concatenation
method outperforms the virtual node approach.

compared to backpropagation decreases. Nonetheless, on all datasets, FF requires at most half as216

long to perform the same number of training steps as backpropgation.217

4.4 Ablations218

Virtual node. As explained in Section 3, we test another method for encoding the label in the219

samples, based on virtual nodes. Each input graph is endowed with an virtual node that is connected220

bidirectionally to every other node. The virtual node features are initialized with a fixed embedding221

of the ground truth label for the graph. Additionally, we need the network to treat the virtual node222

as a separate entity, and thus learn to propagate its message separately. To this purpose, we use a223

Relational GCN layer (RGCN, [18]), which has separate weights for different edge categories. In224

our case, the virtual node edges are assigned different categories than standard edges. Finally, the225

goodness is computed by only considering the activities of the virtual node after message-passing.226

Conceptually, the virtual node approach has the advantage that it avoids duplicating the data, while227

also being more interpretable. Table 3 shows the results of the ablation on the PROTEINS and228

COLLAB datasets. We find that the node feature concatenation method still works better and more229

consistently. Additionally, we experimentally find that pairing an RGCN with our GFF loss causes230

the training to be quite unstable and prone to reaching infinite values in the exponential.231

Computation of the Goodness. One of the key components of training with the FF algorithm is232

the notion of goodness of a (sample, label) pair. At each graph layer, there are multiple reasonable233

ways of computing the goodness. One can first square the representation component-wise and then234

sum over both the node and feature dimensions (Eq. 1). Alternatively, one can first sum over the node235

dimension to build one vector for the whole graph, square it component-wise, and finally sum it,236

ĝ(i) =
1

d

d∑
k=1

 n∑
j=1

a
(i)
jk

2

. (8)

In our experiments we computed the goodness values using Eq. 1. Table 4 shows how the choice the237

goodness computation influences performance on MSRC_9, IMDB-BINARY, BZR and COX2.238

Dataset square-pool-mean pool-square-mean

MSRC_9 0.90± 0.05 0.80± 0.08
IMDB-BINARY 0.59± 0.06 0.50± 0.06
BZR 0.78± 0.02 0.77± 0.10
COX2 0.81± 0.05 0.77± 0.09

Table 4: Comparison of the different ways of
computing the goodness. Eq. 1 corresponds
to the column “square-pool-mean” and Eq.
8 correspond to the column “pool-square-
mean”.

Dataset additive mean

MSRC_9 0.90± 0.05 0.87± 0.07
IMDB-BINARY 0.59± 0.06 0.61± 0.07
BZR 0.78± 0.02 0.84± 0.07
COX2 0.81± 0.05 0.77± 0.06

Table 5: Comparison of additive-pooling and
mean-pooling when computing the goodness.
Note that mean-pooling and additive pooling
are not equivalent as the graphs in the dataset
might have a different number of nodes.

Mean vs. Additive Pooling. As discussed in the previous paragraph, one way or another a pooling239

step over the nodes of the graph has to be applied when computing the goodness. In our experiments,240

we used additive pooling. In this section, we compare how changing the pooling to mean-pooling241

influences performance. We didn’t observe a statistically significant difference between these two242

pooling methods, the numerical results are given in Table 5. Note that additional pooling operations243

7



that we didn’t investigate (for instance max-pooling) can also be used as alternative ways of computing244

the goodness.245

5 Discussion246

5.1 Memory Footprint247

The memory footprint of training a graph neural network with GFF can be significantly lower that the248

backpropagation alternative. When using backpropagation, all of the activations have to be kept in249

memory to allow the propagation of the gradients during the backward pass. This results in memory250

consumption increasing as we add more layers to the network. For very large networks, this can251

occupy a very large amount of memory, making it impossible to train the model on a single GPU and252

requiring complex engineering to train in a distributed way. When training networks with FF, only a253

single layer is trained at a time, and thus only a subset of the activations need to be kept in memory.254

For deep networks, the difference in memory requirements can be significant. Provided that GFF255

scales, it would be possible to train very deep networks on very large graphs, such as social networks256

or protein complexes, with a fraction of the memory needed by backpropagation.257

5.2 GFF and Top-down Effects258

One weakness of GFF with respect to backpropagation, as outlined in [11], lies in the lack of top-down259

information flow. In practice, what is learned in later layers cannot affect what is learned in earlier260

layers. This is a limitation for GNNs trained with GFF, where long-range dependencies captured in261

later layers cannot inform the parameter updates of the initial layers. An initial recipe was proposed262

in [11]. Nonetheless, the graph structure of our data might allow augmenting the input with additional263

connections, that still allow capturing long-range context, despite missing top-down propagation. The264

investigation of this question is left for future work.265

5.3 Generating Negative Data266

Negative samples are fundamental to the functioning of the FF-based algorithms. As of now, the main267

method of coming up with negative samples has been to assign the wrong label to existing samples.268

However, this seems somehow limiting. Drawing from the contrastive learning literature, it might be269

possible to generate negative samples by modifying the underlying graph. This might for example270

help GFF focus on the longer-range correlations that have been shown to be vital for some GNN271

applications.272

6 Conclusion273

We introduced the Graph Forward-Forward algorithm, which extends the Forward-Forward algorithm274

to graph neural networks. The empirical findings in Section 4 demonstrate that our method is a viable275

alternative to backpropagation for GNNs. Despite some limitations, GFF carries several advantages as276

it’s more biologically plausible and computationally more efficient in certain settings. Comprehensive277

analysis of the building blocks of our method further clarifies the inner workings of the models.278

This is quite encouraging and we hope and expect that it opens the doors for further research in this279

direction.280

7 Future work.281

In light of the novelty of the FF algorithm and the fact that this paper is the first one to extend the FF282

algorithm to graphs, there are, of course, many open problems and exciting possible directions to283

take in the future.284

Goodness and local loss functions. A good question is how to choose the goodness function and285

the local loss function. In this paper, the squared activity vectors are added to each other, but it could286

be interesting to explore other aggregation methods. There are multiple options and it would not be287

8



Representations
of the vertices

Positive sample:

Negative sample:

virtual node

Figure 3: The same sample found in Figure 4, but transformed using a virtual node into a positive
sample and two negative samples. On the left (positive sample): the correct label encoding has been
added to the representation vectors of the nodes. On the right (negative sample): the incorrect label
encoding has been added to the representation vectors of the nodes.

too surprising if it turned out that the choice of the goodness function and the local loss function288

depends on the specific application.289

Extension to other graph tasks. This paper focuses on the supervised learning paradigm and290

more precisely on the graph property prediction task. The FF algorithm, and by extension the GFF291

algorithm, could also be used in an unsupervised setting. The unsupervised paradigm, however, raises292

some challenges in terms of how to create the negative datasets. In the supervised learning paradigm,293

nevertheless, the method could be extended to handle graph regression. The main issue here is how to294

define the negative dataset and how to perform the prediction, considering that the number of classes295

is no longer finite. Node and edge-level tasks are also a natural extension of the method. We leave it296

for future work.297

References298

[1] d’Avila Garcez Artur, R. Besold Tarek, de Raedt Luc, Földiak Peter, Hitzler Pascal, Icard299

Thomas, Kühnberger Kai-Uwe, C. Lamb Luis, Miikkulainen Risto, and L. Silver Daniel. Neural-300

symbolic learning and reasoning: Contributions and challenges. In Knowledge Representation301

and Reasoning: Integrating Symbolic and Neural Approaches: Papers from the 2015 AAAI302

Spring Symposium, 2015.303

[2] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton. Big304

self-supervised models are strong semi-supervised learners. In Hugo Larochelle, Marc’Aurelio305

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural306

Information Processing Systems 33: Annual Conference on Neural Information Processing307

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.308

[3] Ronald J. Williams David E. Rumelhart, Geoffrey E. Hinton. Learning representations by back-309

propagating errors. Nature, pages 533–536, 1986.310

[4] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,311

Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie312

Williamson, Demis Hassabis, and Pushmeet Kohli. Advancing mathematics by guiding human313

intuition with ai. Nature, 600:70–74, 12 2021.314

[5] Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit315

assignment problem without a backward pass. In Proceedings of the 39th International Confer-316

9



ence on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages317

4937–4955. PMLR, 17–23 Jul 2022.318

[6] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc319

Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang320

Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic. ETA prediction321

with graph neural networks in google maps. In Gianluca Demartini, Guido Zuccon, J. Shane322

Culpepper, Zi Huang, and Hanghang Tong, editors, CIKM ’21: The 30th ACM International323

Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia,324

November 1 - 5, 2021, pages 3767–3776. ACM, 2021.325

[7] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.326

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.327

[8] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International Journal328

of Neural Systems, 19(04):295–308, 2009. PMID: 19731402.329

[9] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation330

principle for unnormalized statistical models. In Proceedings of the Thirteenth International331

Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine332

Learning Research, pages 297–304. PMLR, 2010.333

[10] G. E. Hinton and T. Sejnowski. Learning and relearning in boltzmann machines. In Parallel334

distributed processing: Explorations in the microstructure of cognition, pages 282–317–. MIT335

Press, Cambridge, MA, 1986.336

[11] Geoffrey E. Hinton. The forward-forward algorithm: Some preliminary investigations. 2022.337

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua338

Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,339

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.340

[13] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional341

networks. In International Conference on Learning Representations, 2017.342

[14] Luís C. Lamb, Artur S. d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar,343

and Moshe Y. Vardi. Graph neural networks meet neural-symbolic computing: A survey and344

perspective. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint345

Conference on Artificial Intelligence, IJCAI 2020, pages 4877–4884. ijcai.org, 2020.346

[15] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion347

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,348

abs/2007.08663, 2020.349

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,350

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas351

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,352

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,353

high-performance deep learning library. In Advances in Neural Information Processing Systems354

32, pages 8024–8035. 2019.355

[17] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.356

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.357

[18] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and358

Max Welling. Modeling relational data with graph convolutional networks, 2017.359

[19] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive360

learning of representations via graph neural networks. Nat. Mach. Intell., 4(3):279–287, 2022.361

[20] James C.R. Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.362

Trends in Cognitive Sciences, 23(3):235–250, 2019.363

10



[21] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A364

comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and365

Learning Systems, 32(1):4–24, 2021.366

[22] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph367

contrastive learning with augmentations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia368

Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information369

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,370

NeurIPS 2020, December 6-12, 2020, virtual, 2020.371

[23] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng372

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and373

applications. AI Open, 1:57–81, 2020.374

A Dataset information375

Figure 4 show summary statics and information about the datasets used.376

Dataset # of graphs # of labels avg # of nodes avg # of edges num feat. (node) avg degree
PROTEINS 1113 2 39.06 72.82 4 7

IMDB-Binary 1000 2 19.77 96.53 501 8
BZR 405 2 35.75 38.36 53 4

COX2 467 2 41.22 43.45 53 4
MUTAG 188 2 17.93 19.79 7 4
SN12C 40004 2 26.08 28.11 65 –

SW-620H 40532 2 46.62 48.65 66 –
Yeast 79601 2 21.64 22.84 74 2

Peking_1 85 2 39.31 77.35 190 7
COLLAB 5000 3 74.49 2457.78 501 263
MSRC_9 221 8 40.58 97.94 10 9

Table 6: Information and summary statistics for the various datasets used in this paper.

11



B Graph representation and Label Encoding377

Label encoding:

Representations
of the vertices

Graph input:

Representations of the vertices

Positive sample:

Negative samples:

Figure 4: On the top: A graph input and the associated label encoding. The graph is composed of
three nodes each having a representation vector. The same sample is transformed into a positive
sample and two negative samples. On the bottom-left (positive sample): the correct label encoding
has been added to the representation vectors of the nodes. On the bottom-right (negative sample): the
incorrect label encoding has been added to the representation vectors of the nodes.

12


	Introduction
	Related Work
	Graph Neural Networks
	The Forward-Forward algorithm
	Contrastive Learning

	Method
	Goodness of a Graph
	Architecture
	Loss and Training
	Inference

	Experiments
	Datasets
	Architecture and Training Details
	Results
	Ablations

	Discussion
	Memory Footprint
	GFF and Top-down Effects
	Generating Negative Data

	Conclusion
	Future work.
	Dataset information
	Graph representation and Label Encoding

