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ABSTRACT

Large-scale pre-trained language models (PLM) have made impressive results in
a wide range of NLP tasks and it has been revealed that one of the key factors to
their success is the parameters of these models implicitly learn various types of
knowledge in the pre-training corpus. However, encoding knowledge implicitly
in the model parameters has two fundamental drawbacks. First, the knowledge is
neither editable nor scalable once the model is trained, which is especially prob-
lematic in that knowledge is consistently evolving. Second, it lacks interpretability
and prevents us from understanding what kind of knowledge PLM needs to solve
a certain task. In this paper, we introduce PlugLM, a pre-training model with
differentiable plug-in memory (DPM). The key intuition behind is to decouple
the knowledge storage from model parameters with an editable and scalable key-
value memory and leverage knowledge in an explainable manner by knowledge
retrieval in the DPM. We conduct extensive experiments under various settings to
justify this design choice. In domain adaptation setting, PlugLM could be easily
adapted to different domains with pluggable in-domain memory—obtaining 3.95
F1 improvements across four domains, without any in-domain training. PlugLM
could also keep absorbing new knowledge after pre-training is done by knowl-
edge updating operation in the DPM without re-training. Finally, we show that
by incorporating training samples into DPM with knowledge prompting, PlugLM
could further be improved by the instruction of in-task knowledge.

1 INTRODUCTION

Large-scale pre-trained language models (PLM) (Peters et al., 2018; Devlin et al., 2019; Radford
et al., 2018) have become a revolutionary breakthrough in NLP area. Optimized by carefully de-
signed self-supervised objectives on unlabeled corpus and fine-tuned on downstream tasks, PLMs
perform remarkably well in a wide range of NLP benchmarks. Recent studies (Warstadt et al., 2019;
Petroni et al., 2019) have revealed that one of the key factors to the success of PLMs is that the
parameters of these models implicitly learn various types of knowledge in the pre-training corpus.
Owing to these learned syntactic, semantic, factual and commonsense knowledge, PLMs show great
understanding, generalization and reasoning abilities (Rogers et al., 2020; Izacard et al., 2022) in
multiple downstream tasks.

Geva et al. (2021) pointed out that the knowledge of PLMs is implicitly encoded in the feed-forward
layers (FFN) of Transformer architecture. FFN layers can be viewed as key-value memories (Weston
et al., 2014; Sukhbaatar et al., 2015), where the first linear layer of FFN acts like a set of sparsely acti-
vated keys detecting input pattern and the second layer is the corresponding value where knowledge
is stored. And to aggressively capture more knowledge, larger PLMs are continuously proposed,
from 110M BERT (Devlin et al., 2019) to 530B MT-NLG (Smith et al., 2022), yet PLM has not
reached its upper bound (Qiu et al., 2020).

However, we still have a question: Is it the optimal way to encode knowledge implicitly for
PLMs? We argue that the implicit knowledge encoding approach has two fundamental drawbacks.
First, the learned knowledge is neither editable nor scalable once the model is trained. Nevertheless,
the world knowledge is actually infinite and evolving. We thus would never expect an ever-large
model to capture all the knowledge in its parameters and to be continuously re-trained to encode the
newly coming knowledge. Second, the current PLMs lack interpretability in the knowledge level.
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Figure 1: Overview of our approach. We equip PLM with a Differentiable Plug-in Memory (DPM)
by which PLM could store and leverage knowledge in an explainable manner.

Implicit knowledge encoding fails to provide provenance for model’s prediction and prevents us
from understanding what kind of knowledge does PLMs require when performing reasoning for a
certain task.

In this work, we propose a novel architecture of PLM, PlugLM, which decouples the knowledge
storage from Transformer architecture and explicitly leverages the knowledge in an explainable
manner. As shown in Figure 1, we balance the functionality of FFN layer with a differentiable plug-
in key-value memory (DPM), which is highly scalable and editable. Each slot of DPM is to encode
the knowledge of a specific document to a pair of key and value, and thus we can explicitly retrieve
relevant knowledge from DPM for each sample.

To justify the design choice of decoupling the knowledge from PLM, we conduct extensive empirical
evaluations under different settings. In domain adaptation setting, PlugLM could be easily adapted
to different domains with pluggable in-domain memory—obtaining averaged 3.95 F1 improvements
across four domains and up to 11.55 F1 improvement on CS-relevant ACL-ARC dataset, without
any in-domain training. PlugLM could also keep absorbing new knowledge after pre-training is done
by knowledge updating operation in the DPM, with an improvement of 4 F1 scores in LINNAEUS
NER dataset. Finally, we show that by incorporating training samples into DPM with knowledge
prompting, PlugLM could further be improved by the instruction of in-task knowledge.

2 LANGUAGE MODEL WITH DIFFERENTIABLE PLUG-IN MEMORY

2.1 PRELIMINARY

Feed-forward Layers Transformer (Vaswani et al., 2017), the backbone for all PLMs, is made
of stacked self-attention (Self-Attn) and feed-forward layers (FFN). While Self-Attn captures the
contextual interaction among inputs, the FFN process each input independently. Let x ∈ Rd1 be a
vector as input to FFN layer, we could formulate the FFN as follows:

FFN(x) = f(x ·K⊤) · V (1)

where K,V ∈ Rd2×d1 , f is an activation function such as RELU (Devlin et al., 2019).

Key-Value Memory Network The Key-Value Memory (KVMN) is based on the Memory Net-
work (Weston et al., 2014; Sukhbaatar et al., 2015). It corresponds to d2 key-value pairs (K,V ∈
Rd2×d1 ) and they are the generalization of the way knowledge is stored (e.g., context in Dia-
logue (Eric et al., 2017), documents in QA (Miller et al., 2016)). For an input x ∈ Rd1 , there
are two stages for KVMN. First, the lookup (addressing) stage would compute the matching degree
between x and each key of K. In the second stage, x would be transformed by the weighted sum of
V according to the distribution of the matching degree in the first stage. We can formally define it
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as:
MemoryNetwork(x) = Softmax(x ·K⊤) · V (2)

Comparing equation (1) and (2), we could find that the FFN is an unnormalized version of Memo-
ryNetwork. The keys in FFN are pattern detectors and would be activated only when certain patterns
occur in the input. This explains how FFN stores knowledge in a key-value manner (Geva et al.,
2021; Sukhbaatar et al., 2019).

2.2 OVERALL ARCHITECTURE

The overall architecture of our PlugLM is illustrated by Figure 1. Similar to BERT (Devlin et al.,
2019), the backbone of our model is a multi-layer bidirectional Transformer encoder (Vaswani et al.,
2017). Following the line of works that take the view of FFN as KVMN, PlugLM involves balancing
FFN with Plug-in Differential key-value Memory (DPM) and instead of storing all knowledge in the
model parameters, PlugLM uses a Knowledge Encoder (KnowEncθ, parameterize by θ) to transform
a specific document in the knowledge base to a key-value pair. Therefore, in PlugLM, for the basic
block of each layer, we can flexibly employ FFN to encode the intrinsic language understanding
knowledge or DPM to encode the external knowledge from a textual corpus.

DPM Construction In this paper, we view each knowledge d = {T1, T2, ..., T|d|} as consecutive
tokens from unlabeled corpora and the knowledge base is D = {d1, d2, ..., d|D|}. In the pre-training
phase, Wikipedia is chosen as the source of knowledge and in the domain adaptation setting, corpora
from other domains are treated as knowledge sources detailed in §3.1. For knowledge base sized of
|D|, we get dense vector representation for each knowledge dn from KnowEncθ and use separate
mapping function to project it to the key spaces and value spaces:

Kn = Wk · hn Vn = Wv · hn (3)
where hn is from KnowEncθ(dn). Wk and Wv are trainable parameters and the bias term is omitted
for brevity. We get K and V for DPM ⟨D,K,V⟩:

K = {K1,K2, ...,K|D|} V = {V1, V2, ..., V|D|} (4)

Knowledge Encoder KnowEncθ converts a sequence of tokens into dense representation which
is supposed to have the properties of alignment and uniformity (Wang & Isola, 2020). In this paper,
we choose the following function as our KnowEncθ. For a given knowledge dn:

hn = AttentivePooling(TokenEmbedding(dn) + PositionEmbedding(dn)) (5)

where AttentivePooling function (Xu et al., 2021) corresponds to a trainable pattern detector aggre-
gating information from a sequence of input. We give its pseudo-code in Appendix A.

Knowledge Retrieval For hidden states h ∈ Rl×d from Self-Attn, FFN would transform h with
unnormalized key-value memory as in Equation (1). Our key insight is that instead of retrieving im-
plicit knowledge from FFN, we conduct Maximum Inner Product Search (MIPS) to retrieve named
knowledge from ⟨D,K,V⟩ where each triple corresponds to one knowledge along with its key and
value representation. For h, we first get its sentence-level representation by an attentive pooling
function h′ = AttentivePooling(h), then we use h′ as the query vector for ⟨D,K,V⟩ to get Top-N
knowledge and corresponding values by MIPS:

Kh′ = Top-N(MIPS(h′,K)) Vh′ = {Vi if Ki in Kh′} Dh′ = {Di if Ki in Kh′} (6)
where Top-N also corresponds to the indexing operation. Dh′ is the explicit knowledge model used
to get the current prediction. By knowledge retrieval, we explore an interpretable way to incorporate
knowledge into the model and direct modification on D of DPM empowers the model with much
flexibility and scalability in various settings as discussed in §3.1 and §3.2.

Knowledge Attention For Top-N retrieved knowledge ⟨Dh′ ,Kh′ , Vh′⟩, we use knowledge atten-
tion to incorporate it:

KnowledgeAttention(h,Kh′ , Vh′) = Softmax(
hK⊤

h′√
d

)Vh′ (7)

O = LayerNorm(h+ KnowledgeAttention(h,Kh′ , Vh′)) (8)
For more fine-grained interaction, we also use a multi-head version as in Vaswani et al. (2017) and
d is the head dimension.
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2.3 TRAINING

There are two phases in our framework: pre-training and fine-tuning. In the pre-training phase,
to make the whole training process end-to-end trainable, we use asynchronous index refreshing to
optimize our model as done in Guu et al. (2020) and Cai et al. (2021). Concretely, we update the
indices of DPM every T steps. The MIPS results are based on the stale index while the scores of
selected Top-N results are recomputed using KnowEncθ which facilitates the gradient flow back
to the knowledge retriever and knowledge encoder. The training objective is Masked Language
Modeling (Devlin et al., 2019) where we randomly mask tokens in a sentence and ask our model
to predict it. More details about model architecture and pre-training are shown in Appendix B. In
the fine-tuning phase, the K and V of DPM are fixed, and we view it as an editable and scalable
knowledge lookup table.

3 EXPERIMENTS

In this paper, we mainly try to decouple the knowledge storage from PLM and leverage knowledge
in an explainable way. With decoupled knowledge ⟨D,K,V⟩, we conduct comprehensive experi-
ments with respect to the modification of D in different settings. First, in §3.1 we demonstrate the
advantage of PlugLM in domain adaptation by flexibly switching domain-specific DPM without
changing model parameters. Second, we show that PlugLM can adjust to evolving knowledge with
knowledge updating operation on ⟨D,K,V⟩ in §3.2. In §3.3, we show that with carefully designed
knowledge prompting, PlugLM could further improve its performance by enlarging the scope of
knowledge to include training samples as in-task knowledge.

3.1 PLUG-IN MEMORY FOR DOMAIN ADAPTATION

Learning robust and transferable representation has been the core of language model pre-
training (Peters et al., 2019). For the general-purposed PLM to generalize well on domain-specific
tasks, endowing the model with domain knowledge via in-domain training remains the go-to ap-
proach (Gururangan et al., 2020; Whang et al., 2020; Zhang et al., 2020). In this section, we mea-
sure the effectiveness of PlugLM for domain adaptation, in which we use a domain-specific DPM
to adapt the model, without any in-domain training. This is a challenging task for the current PLM
because sometimes it is computationally unaffordable to keep training the model (Smith et al., 2022)
and it can not guarantee the generalization across multiple domains due to catastrophic forgetting
problem (Kirkpatrick et al., 2017). We consider two adaptation settings: domain adaptive post-
training and in-domain pre-training. The former is conducted after PLM was trained on the general
domain and the latter trains a domain-specific PLM from scratch.

3.1.1 DOMAIN ADAPTIVE POST-TRAINING

Following Gururangan et al. (2020), we conduct experiments on four domains: BIOMED, CS,
NEWS and REVIEWS across eight domain-specific downstream tasks, in both low and high resource
settings. More details can be found in Appendix C. When fine-tuning on downstream classification
tasks, we pass the final layer [CLS] token representation to a task-specific feed-forward layer for
prediction following the standard practice in Devlin et al. (2019).

We have the following baselines: WikiBERT uses the architecture of BERTbase (Devlin et al., 2019)
and is pre-trained on Wikipedia. To adapt WikiBERT to other domains, we use DAPT following the
training setting in Gururangan et al. (2019). REALM (Guu et al., 2020) and PlugLM are models
that have an dexternal knowledge base and can be simply adapted to other domains with a different
base. We have two variants for adaptation: DAA, short for Domain Adaptive Addition, appends do-
main knowledge to the knowledge base and DAR, Domain Adaptive Replacement, replaces general
knowledge with domain-specific knowledge.

We also include the results of ¬DAPT, ¬DAA and DACT. The former two use irrelevant domain
corpora for post-training and knowledge bank construction, which are used to test the robustness
of the adaptation method and rule out the factor that improvements might be attributed simply to
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Model BIOMED CS NEWS REVIEWS

CHEM. RCT† ACL. SCI. HYP. AG.† HP.† IMDB† Avg.
Gain

Avg.
Cost

WikiBERT 77.72 86.52 61.58 79.95 83.54 93.38 67.62 89.79 - -
+ DAPT 78.24 86.71 67.56 80.82 86.22 93.49 68.11 90.12 +1.40 47.7 h
¬ DAPT 75.82 86.11 62.11 78.42 80.12 93.31 68.11 89.54 -0.82 -
+ DACT 76.34 86.11 61.19 78.56 80.52 93.29 68.08 89.88 -0.77 -

REALM 78.28 85.12 62.07 78.41 84.12 92.58 67.06 90.56 - -
+ DAA 79.32 85.98 68.92 80.41 85.36 92.61 68.51 93.01 +1.98 6.3 h
¬ DAA 77.61 85.12 64.78 75.31 82.28 92.41 66.13 91.21 -0.41 -
+ DAR 80.56 85.32 70.12 81.16 86.58 93.01 67.42 92.16 +2.26 6.3 h

PlugLM 78.02 87.12 63.77 78.56 84.32 93.23 67.83 91.24 - -
+ DAA 82.56 88.13 72.51 83.00 88.16 94.11 69.28 92.56 +3.28 0.16 h
¬ DAA 77.98 86.13 64.78 78.13 84.18 92.99 67.56 90.88 -0.18 -
+ DAR 83.80 88.98 75.32 82.56 89.26 93.55 69.41 92.78 +3.95 0.16 h

Table 1: Performance of domain adaptive post-training. Each result is averaged with five different
random seeds. Reported results are test macro-F1, except for RCT and CHEMPROT, for which we
report micro-F1, following Beltagy et al. (2019). † denotes high-resource setting. The DAA and
DAR substantially outperforms existing DAPT and REALM-based methods with no additional in-
domain training. The best scores are in bold, and the second best scores are underlined.

exposure to more data1. For DACT, Domain Adaptive Continual Training, we sequentially post-
train WikiBERT in different domains in the hope that it can capture and store knowledge from
various domains in a lifelong learning manner (Rostami, 2021).

The results are shown in Table 1. The Avg.Cost is the cost for adaptation measured by hour. For
WikiBERT, it’s the time to post-train model in domain-specific corpus. For REALM and PlugLM,
it is the time to encode domain knowledge into the knowledge bank. We can observe: (1) In-
domain training helps model better generalize to tasks requiring domain knowledge while irrelevant
knowledge misleads the model and causes performance degradation. And by comparing ¬DAPT
and ¬DAA, it shows that models with external knowledge base (PlugLM and REALM) are more
robust when faced with noisy out-of-domain knowledge. (2) For the model that implicitly encodes
knowledge in the parameters, it fails to generalize across domains as the result of DACT indicates.
For example, in CS domain, we keep training model in NEWS domain after DAPT in CS domain and
fine-tune it on the CS downstream tasks. It performs on par with model that is never exposed to CS
domain (¬DAPT). While PlugLM could alleviate this catastrophic forgetting problem by implicitly
storing all kinds of knowledge in DPM and using it for the specific domain. (3) Direct modification
on external memory helps PlugLM efficiently and effectively adapt to different domains without in-
domain training. In 254 times less time compared with DAPT and in 40 times less time compared
with REALM, PlugLM significantly outperforms DAPT and REALM-based methods.

To give a more explainable illustration of how PlugLM works, in Figure 2, we present a visualization
for the distribution of actual retrieved knowledge for DAA, DAR and original PlugLM. We randomly
sample 50 samples from ACL-ARC test set and check what kind of knowledge does PlugLM use
to solve CS-specific tasks. A clear pattern here is that with more domain knowledge involved, the
model performs better (63.77, 72.51 and 75.32) and surprisingly, although pre-trained on the general
domain, the PlugLM has managed to learn what to retrieve when there are both general knowledge
and domain-specific knowledge in DPM shown in DAA visualization.

3.1.2 IN-DOMAIN PRE-TRAINING

In-domain pre-training is another line of works to train a domain-specific PLM from scratch like
BioBERT (Lee et al., 2019) and SciBERT (Beltagy et al., 2019) in the biomedical and scientific

1Following Gururangan et al. (2020), we use the following irrelevant domain mapping: for NEWS, we use
a CS LM; for REVIEWS, a BIOMED LM; for CS, a NEWS LM; for BIOMED, a REVIEWS LM.
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Figure 2: Knowledge retrieval visualization. Each column is one sample and the row is the index of
retrieved knowledge in DPM. Their corresponding F1 scores are 63.77, 72.51 and 75.32.

Question Answer Prediction Label

How much of
Jacksonville
is made up of
water?

According to the United States Census Bureau, the city has a total area
of 874.3 square miles (2,264 km2), making Jacksonville the largest city in
land area in the contiguous United States; of this, 86.66% (757.7 sq mi or
1,962 km2) is land and ; 13.34% (116.7 sq mi or 302 km2) is water.

Entailment Entailment

Knowledge

this article lists the 3, 143 states of america. the 50 states of “... by the united states census bureau...the
united states census bureau ( usc ##b ) , officially the bureau of the census...% white, 9. 3 % african
american, 0.3 % native american, 2.9 % asian, 0.1 % pacific islander, 0.2 % from other races, and 3.9 %
from two or more races. hispanic or latino of any race were 6.8 % of the population...

Table 2: Example from QNLI dataset. The knowledge is filtered for brevity. For the full example
and more other examples please refer to Appendix F.

domain; FinBERT (Araci, 2019) in Financial domain and PatentBERT (Lee & Hsiang, 2019) for
patent classification tasks that require extensive domain knowledge.

We choose the biomedical domain and compare PlugLM with model in the architecture of
BERTbase, pre-trained on the general domain (i.e. WikiBERT) and pre-trained on the biomedical do-
main (i.e. PubmedBERT). The statistics of datasets and pre-training details are listed in Appendix D.
We test two fold ability of these PLMs. First, we test how they perform in biomed-relevant down-
stream tasks. Specifically, we conduct experiments on eight representative biomedical NER datasets
which aim at recognizing domain-specific proper nouns in the biomedical corpus. Then we test their
general language understanding ability in GLUE (Wang et al., 2018) and SQUAD (Rajpurkar et al.,
2016; 2018). For SQUAD and GLUE, the DPM is from Wikipedia; while for biomedical NER,
DPM is constructed from Pubmed (Canese & Weis, 2013).

The results are shown in Table 3. Both pre-trained on the Wikipedia, PlugLM outperforms Wik-
iBERT in 8/8 NER tasks with average 1.75 F1 scores by simply switching the knowledge domain
of DPM. PlugLM also gives comparable results with PubmedBERT in BC4CHEMD, JNLPBA and
LINNAEUS datasets. Although PubmedBERT works well for biomedical tasks, it shows less gen-
eral language understanding ability and underperforms WikiBERT and PlugLM in GLUE bench-
mark (Table 4) and SQUAD (Table 5), especially in low resource scenario (e.g. RTE, COLA and
MRPC datasets). With DPM, PlugLM shows great flexibility and performs well in both general
domain and biomedical domain. We show one concrete example from QNLI dataset in Table 2.

3.2 KNOWLEDGE UPDATE

Since the world is not fixed as a snapshot once the pre-training corpus is collected, the current PLM,
no matter how large it is, fails to adapt to this changing world. For colossal PLMs like GPT-3 and
MT-NLG, efficiently fine-tuning for downstream tasks remains an open challenge (Brown et al.,
2020; Smith et al., 2022), let alone re-training it on the newly coming knowledge.

In this section, we show that PlugLM can efficiently absorb new knowledge by updating the
⟨D,K,V⟩ without re-training. We consider the following two settings. (1) We only pre-train PlugLM

6



Under review as a conference paper at ICLR 2023

Type Dataset # Annotation WikiBERT PlugLM PubmedBERT

DISEASE NCBI-disease 6811 83.65 85.96 88.39
BC5CDR 12694 80.37 82.10 83.89

DRUG/CHEM. BC4CHEMD 79842 87.07 89.93 89.35
BC5CDR 15411 88.79 90.56 92.75

GENE/PROTEIN. B2CGM 20703 80.63 82.14 83.16
JNLPBA 35460 75.49 76.39 76.25

SPECIES LINNAEUS 4077 85.32 87.01 86.11
SPECIES-800 3708 68.54 69.73 71.32

Table 3: Performance of biomedical NER measured by F1 score. The PlugLM here is pre-trained
on the general domain while using PubMed as DPM when fine-tuning.

#Paras Avg.
Latency RTE COLA MRPC STS-B SST-2 QNLI QQP MNLI

-(m/mm)

PubmedBERT 110M ×1.00 61.17 50.06 84.56 85.73 88.64 90.11 88.78 82.14/82.56
WikiBERT 110M ×1.00 65.70 53.53 88.85 88.64 92.32 90.66 89.71 83.91/84.10
PlugLM 109M ×2.54 70.40 52.68 91.54 89.20 91.86 91.28 90.56 84.56/85.35

Table 4: GLUE results with PubmedBERT, WikiBERT and PlugInBERT. Matched/mistached ac-
curacies are reported to MNLI; F1 score is reported for MRPC; Spearman correlation is reported
for STS-B; Matthews correlation is reported for COLA; accuracy are reported for the other tasks.
Detailed latency of each model is shown in Appendix E

with limited data and gradually enlarge the DPM with unseen knowledge when fine-tuning. (2) We
pre-train PlugLM with full general-domain data and ask the model to perform domain adaptation in
DAR manner by gradually increasing domain knowledge in D.

Task QNLI QQP
# Training 108K 363K

Ori. 91.28 90.56
Concate. 91.28 90.12
Tagged. 91.37 90.76

Prompting. 91.58 91.47

Table 6: Performance of in-task
knowledge measured by Accuracy.

The result is shown in Figure 3. For the first setting,
we choose QA (SQUAD) and Sentiment Classification
tasks (SST-2) for validation. Both WikiBERT and PlugLM
are pre-trained with only 1/4 Wikipedia corpus. We have
the following observations: (1) PlugLM trained with lim-
ited data already outperforms WikiBERT in both tasks (0.39
EM in QA and 0.59 Accuracy in classification) which ver-
ifies the effectiveness of PlugLM in low-resource setting;
(2) A consistent pattern across two tasks is that PlugLM
could absorb new knowledge simply by adding more slots
in ⟨D,K,V⟩ without re-training.

For the second setting, Figure 3c also shows our model can
absorb new cross-domain knowledge under adaptation set-
ting. It achieves a higher F1 score on the LINNAEUS NER dataset with increasingly more biomed-
specific knowledge injected.

3.3 IN-TASK KNOWLEDGE

Inspired by Gururangan et al. (2020); Gu et al. (2018) and Wang et al. (2022), the training samples
can also be viewed as a kind of in-task knowledge and explicit fusion of nearest training sample
leads to significant gains on multiple NLG and NLU tasks.

In this section, we broaden the scope of knowledge by including the training samples in the DPM.
The knowledge from Wikipedia is a textual description from domain experts (e.g., “Machine learn-
ing (ML) is a field of inquiry devoted to understanding and building methods that ‘learn’, ...”) while
the training sample from a Question-answering NLI dataset is in the form of [Question, Answer,
Label]. Considering this surface form distribution shift, we have the following injection methods.
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PubmedBERT WikiBERT PlugLM
EM F1 EM F1 EM F1

SQUAD(v1) 76.68 84.56 81.32 88.68 82.19 89.44
SQUAD(v2) 68.44 71.12 72.64 75.89 73.76 76.90

Table 5: Squad results with PubmedBERT, WikiBERT and PlugLM and is measured by exact
match (EM) and F1 score.

1/4 2/4 3/4 4/4
70.0

70.5

71.0

71.5
EM QA:Squad(V2)

PlugInBERT
BERT

(a) QA results.

1/4 2/4 3/4 4/4
90.5

91.0

91.5

Acc.
Classification:SST-2

PlugInBERT
BERT

(b) Classification results.

1M 5M 10M 13M
82.5
83.0
83.5
84.0
84.5
85.0
85.5
86.0
86.5
87.0

F1 NER:LINNAEUS

PlugInBERT

(c) NER in adaptation setting.

Figure 3: Knowledge update results in different tasks and settings.

(1) Concate. We directly concatenate each training sample as a long string in the form of “Q [SEP]
A [SEP] Label” and append this to DPM. (2) Tagged. To build the connection between model inputs
and DPM, we tag each training sample by prepending a special token ([Tagged]). (3) Knowledge
Prompting. Inspired by prompting method (Liu et al., 2021; Schick & Schütze, 2021), we transfer
in-task knowledge to knowledge in the form of Wikipedia by a natural language prompting. For
example, in QNLI dataset, we transform [Question, Answer, Label] with following prompting: “The
first sentence (doesn’t) entail(s) with the second. The first sentence is [Q] and the second is [A]”. We
choose moderate-sized QNLI and QQP tasks because in-task knowledge injection doesn’t apply to
low-resource setting in our preliminary experiments. The result is shown in Table 6. We can observe
that PlugLM has managed to learn from in-task knowledge and the surface-form of knowledge ac-
tually impact the model performance. Concatenation of training sample fails to inform PlugLM the
actual in-task knowledge (Zero retrieval in QNLI) and building connection between data and knowl-
edge by a special tagged token only gives minor improvements. Instead, a well-designed knowledge
prompting can actually help PlugLM learn task-specific knowledge.

3.4 TUNING PLUGLM

We investigate how key hyperparameters and architecture design affect the performance of PlugLM.
(1) Number of Retrieved Knowledge For PlugLM, we only use the sparsely activated Top-
N knowledge. Figure 4a shows the effects of different N in STS-B dataset and value of 5
proves to be optimal. (2) Layers equipped with DPM Considering that the upper layers
in PLM capture more semantic information and are more sensitive to the input pattern (Geva
et al., 2021), we equip the last encoder layer with DPM in PlugLM. Figure 4b shows that in-
creasing DPM-enhanced encoder layer gives minor improvements but brings much latency be-
cause of extra MIPS search. (3) FFN and DPM To further explore the relation between
FFN and DPM, we propose two model variants. First, we replace FFN in all encoder layers
with a shared DPM denoted as ALL-PlugLM. Then we fuse FFN and DPM by modifying the
model architecture from LayerNorm(h + KnowledgeAttention(h,Kh′ , Vh′)) to LayerNorm(h +
KnowledgeAttention(h,Kh′ , Vh′) + FFN(h)) and we name it Fuse-PlugLM. Take STS-B dataset
as an example (more results are shown in Appendix G), the Spearman correlation of WikiBERT,
ALL-PlugLM, PlugLM and Fuse-PlugLM are 88.64, 86.82, 89.20 and 89.10. We could find that
ALL-PlugLM, where there is no FFN, underperforms WikiBERT. And PlugLM performs compara-
bly with Fuse-PlugLM. We conjecture that FFN in different layers may play different roles, which
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Figure 4: Effect of number of retrieved knowledge and number of DPM-enhanced layers in STS-B.

is also reported in Geva et al. (2021). For the upper layer which captures more semantic knowl-
edge (Geva et al., 2021; Jawahar et al., 2019), DPM is a flexible substitution of FFN, but for more
shallow features, they are captured in the lower layer of Transformer. It inspires us as the future
work to inject more types of knowledge, from syntactic to factual, into the DPM and design a
hierarchical-structured DPM to adapt to the learning pattern of PLM.

4 RELATED WORK

Investigating FFN Feed-forward layers constitute two-thirds of a transformer model’s parameters
and have been an essential component to unveil modern PLMs (Geva et al., 2021; 2022). A surge
of works have investigated the knowledge captured by FFN (Dai et al., 2022a; Meng et al., 2022;
Geva et al., 2021; 2022; Jiang et al., 2020; Yao et al., 2022; Wallat et al., 2020). Based on the
view that FFN is essentially an unnormalized key-value memory network, Dai et al. (2022a) detects
knowledge neurons in FFN and edit specific factual knowledge without fine-tuning. Meng et al.
(2022) modifies FFN weights to update specific factual associations using Rank-One Model Editing.
Yao et al. (2022) injects knowledge into the FFN via BM25. Dai et al. (2022b) and (Lample et al.,
2019) enhance the model by expanding the size of FFN with extra trainable keys and values. One
main difference of our model is that the DPM is grounded: each key-value pair is associated with
one concrete knowledge rather than unnamed vectors.

Knowledge-Augmented Language Model There are two lines of works to equip PLM with
knowledge. The first is introduce additional Knowledge Graph (KG) and knowledge-based train-
ing signal (e.g., entity linking) into the language model pre-training, like ERNIE (Zhang et al.,
2019; Sun et al., 2019), KnowBERT (Peters et al., 2019) and KEPLER (Wang et al., 2021). Another
line of works adopt retrieval mechanism to incorporate knowledge, either symbolic (Verga et al.,
2021; Agarwal et al., 2021; Févry et al., 2020) or texual (Guu et al., 2020; Lewis et al., 2020b;
Borgeaud et al., 2022; Lewis et al., 2020a; Verga et al., 2021; de Jong et al., 2021). They formulate
the task as retrieve then predict process by using extra neural dense retriever (BERT) or sparse re-
triever (BM25) to find most relevant supporting knowledge and combine it with input using either
concatenation (Guu et al., 2020) or attention methods (de Jong et al., 2021; Wu et al., 2021; Févry
et al., 2020; Chen et al., 2022). One distinct difference of our work is that we do not try to equip the
model with additional knowledge to perform knowledge-intensive tasks, but we managed to decou-
ple the knowledge that would otherwise be stored in the parameters with an editable and scalable
DPM and leverage knowledge in an explainable manner.

5 CONCLUSION

In this paper, we propose a novel knowledge encoding mechanism for PLMs, which decouples the
learned knowledge during pre-training from the FFN parameters of the PLMs. This enables the
knowledge encoding of PLM more flexible and interpretable. Extensive results verify the flexibility
and scalability of our PlugLM in various settings including domain adaptation, knowledge updating
and in-task knowledge learning. Future work would involve an efficient PlugLM for practical usage.
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A ATTENTIVE POOLING

Listing 1: Attentive Pooling

1 i m p o r t t o r c h
2 i m p o r t t o r c h . nn as nn
3

4 c l a s s A t t e n t i v e P o o l e r ( nn . Module ) :
5 d e f i n i t ( s e l f , d model ) :
6 s u p e r ( ) . i n i t ( )
7 s e l f . a t t f c 1 = nn . L i n e a r ( d model , d model )
8 s e l f . a t t f c 2 = nn . L i n e a r ( d model , 1 )
9 d e f f o r w a r d ( s e l f , x , a t t n m a s k = None ) :

10 bz = x . shape [ 0 ]
11 e = s e l f . a t t f c 1 ( x )
12 e = nn . Tanh ( ) ( e )
13 a l p h a = s e l f . a t t f c 2 ( e )
14 a l p h a = t o r c h . exp ( a l p h a )
15 i f a t t n m a s k i s n o t None :
16 a l p h a = a l p h a * a t t n m a s k . unsqueeze ( 2 )
17 a l p h a = a l p h a / ( t o r c h . sum ( a lpha , dim =1 , keepdim=True )
18 + 1e −8)
19 x = t o r c h .bmm( x . permute ( 0 , 2 , 1 ) , a l p h a )
20 x = t o r c h . r e s h a p e ( x , ( bz , −1) )
21 r e t u r n x
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B PLUGLM PRETRAINING DETAILS

Hyperparameter Assignment

vocab size 30522

num layers with DPM top-1

top-N 5

number of layers 12

attention head 12

mlm masking static

mlm masking rate 0.15

ffn size 3072

max knowledge length 288

Uncased True

memory size 14802866

batch size 64

gradient accumulation steps 128

max train steps 8000

optimizer FusedLAMBAMP

learning rate 1e-4

index refreshing step 200

learning rate scheduler PolyWarmUpScheduler

Warmup proportion 0.2843

weight decay 0.01

Table 7: Hyperparameters for PlugLM pretraining.

16



Under review as a conference paper at ICLR 2023

C DATA FOR DOMAIN ADAPTIVE POST-TRAINING

The detailed statistics of domain corpora for post-training is listed in the Table 8 and downstream
tasks in Table 9.

Domain Pretraining Corpus # Tokens Size

BIOMED 1.24M papers from S2ORC (Lo et al., 2020) 2.67B 12GB
CS 5.07M papers from S2ORC (Lo et al., 2020) 4.3B 18GB
NEWS 11.90M articles from REALNEWS Zellers et al. (2019) 6.66B 39GB
REVIEWS 24.75M AMAZON reviews (He & McAuley, 2016) 2.11B 11GB

Table 8: List of the domain-specific unlabeled datasets.

Domain Task Label Type Train (Lab.) Dev. Test Classes

BIOMED
CHEMPROT relation classification 4169 2427 3469 13
†RCT abstract sent. roles 18040 30212 30135 5

CS ACL-ARC citation intent 1688 114 139 6
SCIERC relation classification 3219 455 974 7

NEWS
HYPERPARTISAN partisanship 515 65 65 2
†AGNEWS topic 115000 5000 7600 4

REVIEWS
†HELPFULNESS review helpfulness 115251 5000 25000 2
†IMDB review sentiment 20000 5000 25000 2

Table 9: Specifications of the various target task datasets. † indicates high-resource settings.
Sources: CHEMPROT Kringelum et al. (2016), RCT Dernoncourt & Lee (2017), ACL-ARC Ju-
rgens et al. (2018), SCIERC Luan et al. (2018), HYPERPARTISAN Kiesel et al. (2019), AGNEWS
Zhang et al. (2015), HELPFULNESS McAuley et al. (2015), IMDB Maas et al. (2011).

D DETAILS FOR WIKIPEDIA AND PUBMED

Dataset Domain Source Size

Wikipedia General https://dumps.wikimedia.org 14.35GB
PubMed Biomedical https://github.com/naver/biobert-pretrained 28.12GB

Table 10: List of the PubMed and Wikipedia.
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Hyperparameter Assignment

vocab size 30522

Uncased True

number of Layers 12

attention Head 12

ffn Size 3072

mlm masking static

batch size 64

gradient accumulation steps 128

max train steps 8000

optimizer FusedLAMBAMP

learning rate 6e-3

index refreshing step 200

learning rate scheduler PolyWarmUpScheduler

Warmup proportion 0.2843

weight decay 0.01

Table 11: Hyperparameters for WikiBERT and PubmedBERT pretraining.

E LATENCY

RTE COLA MRPC STS-B SST-2 QNLI QQP MNLI-(m/mm)
Size 0.27K 1.04K 0.41K 1.5K 0.87K 5.47K 40.43K 9.82K/9.83K

WikiBERT 1.01 1.98 1.33 2.43 1.75 7.01 52.32 15.03/15.02
PlugLM 1.73 4.41 2.22 5.94 3.86 20.01 141.15 34.60/34.58

Table 12: Testing Latency of WikiBERT and PlugLM measured by seconds. All experiments are
computed in the same computational device with same batch size. The CPU is AMD EPYC 7K62
48-Core Processor. GPU is A100-SXM4. Driver Version is 450.156.00. CUDA Version is 11.1.
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F CASE STUDY

Question Answer Prediction Label

How much of
Jacksonville
is made up of
water?

According to the United States Census Bureau, the city has a total area
of 874.3 square miles (2,264 km2), making Jacksonville the largest city in
land area in the contiguous United States; of this, 86.66% (757.7 sq mi or
1,962 km2) is land and ; 13.34% (116.7 sq mi or 302 km2) is water.

Entailment Entailment

Knowledge

(1) this article lists the 3, 143 states of america. the 50 states of the united states are divided into 3, 007 ”
counties ”, political and geographic subdivisions of a state ; 236 other local governments and geographic
places are also first - order administrative divisions of their respective state / district / territory, but are
called by different names. the latter are referred to collectively as ” county equivalents ” by the united
states census bureau. the 236 county equivalents include 100 equivalents in the territories ( such as those
in puerto rico ) outside the 50 states and the district of columbia. the large majority of counties and
equivalents were organized by 1970. since that time, most creations, boundary changes and dissolutions
have occurred in alaska and virginia. among the 50 states, 44 are partitioned entirely into counties, with
no county equivalents. louisiana is instead divided into 64 equivalent parishes.
(2) the united states census bureau ( usc ##b ) , officially the bureau of the census , is a principal agency
of the u . s . federal statistical system , responsible for producing data about the american people and
economy . the census bureau is part of the u . s . department of commerce and its director is appointed
by the president of the united states . the census bureau ’ s primary mission is conducting the u . s .
census every ten years , which all ##oca ##tes the seats of the u . s . house of representatives to the states
based on their population . [ 1 ] the bureau ’ s various census ##es and surveys help all ##oca ##te over $
67 ##5 billion in federal funds every year and it assists states , local communities , and businesses make
informed decisions . [ 2 ] [ 3 ] [ 4 ] the information provided by the census informs decisions on where
to build and maintain schools , hospitals , transportation infrastructure , and police and fire departments
(3) the crestview – fort walton beach – destin, florida, metropolitan statistical area, as defined by the
united states census bureau, is a metropolitan area consisting of two counties in northwest florida, an-
chored by the cities of crestview, florida, and fort walton beach, florida. as of the 2010 census, the
msa had a population of 235, 865, and a 2012 population estimate of 247, 665. the metropolitan area
is a part of the ” northwest corridor ” which includes the pensacola metropolitan area and the panama
city metropolitan area. demographics. as of the census of 2010, there were 235, 865 people, 95, 892
households, and 63, 964 families residing within the msa. the racial makeup of the msa was 81. 1 %
white, 9. 3 % african american, 0. 3 % native american, 2. 9 % asian, 0. 1 % pacific islander, 0. 2 %
from other races, and 3. 9 % from two or more races. hispanic or latino of any race were 6. 8 % of the
population. according to the 2010 american community survey 1 - year
(4) analog to digital conversions were achieved through steinberg, and in some cases mytek, converters.
the album was recorded and mixed exclusively with steinberg cubase digital audio workstations on
microsoft windows operating systems with waves ssl and abbey road tg12413 plugins. it was revealed
that neither brahm nor marc know how to operate autotune, so it was not used. the songs were often
performed to a click track, but there was no ” snapping the drums to a grid ”, which is a popular
computerized technique to ensure that drums are in perfect time while simultaneously sucking the life
out of an otherwise real performance. production. ” tears of the enchanted mainframe ” was produced
and engineered by taylor and kaducak. backmasking is used on the track ” superusurper ” during an
interlude that features a reversed reading of a passage from the george orwell novel nineteen eighty
four. the album was mastered by geoff pesche and alex wharton at abbey road studios in london. title
and artwork. ” tears of the enchanted mainframe ”
(5) the zafarnama (, lit. ” book of victory ” ) is a biography of timur written by the historian nizam ad -
din shami. it served as the basis for a later and better - known ” zafarnama ” by sharaf ad - din ali yazdi.
one translation by felix tauer was published in prague in 1937.

Table 13: Example from QNLI dataset.
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Input Prediction Label
Various approaches for computing semantic relatedness of words or con-
cepts have been proposed , e.g. dictionary-based ( Lesk , 1986 ) , ontology-
based ( Wu and Palmer , 1994 ; Leacock and Chodorow , 1998 ) ,
information-based ( Resnik , 1995 ; Jiang and Conrath , 1997 ) or distri-
butional ( Weeds and Weir , 2005 ).

Background Background

Knowledge

(1) instrumentation and control engineering ( ice ) is a branch of engineering that studies the measure-
ment and control of process variables, and the design and implementation of systems that incorporate
them. process variables include pressure, temperature, humidity, flow, ph, force and speed. ice com-
bines two branches of engineering. instrumentation engineering is the science of the measurement and
control of process variables within a production or manufacturing area. meanwhile, control engineer-
ing, also called control systems engineering, is the engineering discipline that applies control theory to
design systems with desired behaviors. control engineers are responsible for the research, design, and
development of control devices and systems, typically in manufacturing facilities and process plants.
control methods employ sensors to measure the output variable of the device and provide feedback to
the controller so that it can make corrections toward desired performance. automatic control manages
a device without the need of human inputs for correction, such as cruise control for regulating a car’s
speed. control systems engineering activities are multi - disciplinary in nature. they focus on the im-
plementation of control systems, mainly derived by mathematical modeling. because instrumentation
and control play a significant role in gathering information from a system and changing its parameters,
they are a key part of control loops. as profession. high demand for engineering professionals is found
in fields associated with process automation. specializations include industrial instrumentation, system
dynamics, process control, and control systems. additionally, technological knowledge, particularly in
computer systems, is essential to the job of
(2) instrumentation is the art and science of measurement and control. instrumentation may also refer
to:
(3) the scientific and technological innovation ability of colleges and universities, and strengthening
the evaluation research of the scientific and technological innovation ability and efficiency of colleges
and universities, can we better promote the scientific and technological innovation ability of colleges
and universities. universities the evaluation of scientific and technological innovation ability in colleges
and universities is a complex system engineering, and the understanding of its connotation is the most
important problem to be considered in the comprehensive evaluation. by consulting the data, it is found
that the previous researches are mainly focused on the following three aspects : 1. from the perspective
of innovative resource demand and innovative achievements, the scientific and technological innovation
in colleges and universities is regarded as an organic whole composed of various elements. in the whole
innovation system, colleges and universities undertake the functions and tasks of knowledge production
and dissemination, technological innovation and transformation as well as personnel training. accord-
ing to the relationship between innovation elements, the scientific and technological innovation ability
of colleges and universities is divided into basic strength of scientific and technological innovation,
scientific and technological innovation input ability, knowledge innovation ability, technological inno-
vation ability, scientific and technological innovation output ability. science and technology innovation
achievement transformation ability, talent innovation ability. 2. from the perspective of innovation pro-
cess, the ability of scientific and technological innovation in colleges and universities is embodied in the
process of knowledge creation, knowledge dissemination, transformation and diffusion of technological
inventions. it also includes the technological, economic and managerial abilities that the university re-
lies on
(4) automation engineering has two different meanings : automation engineer. automation engineers
are experts who have the knowledge and ability to design, create, develop and manage machines and
systems, for example, factory automation, process automation and
(5) this learning methodology is called blended learning. blended learning can also incorporate machine
learning and other such technologies to implement adaptive learning.

Table 14: Example from ACL-ARC dataset.
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Input Prediction Label

Although there are other discussions of the paragraph as a central element of dis-
course ( e.g. Chafe 1979 , Halliday and Hasan 1976 , Longacre 1979 , Haberlandt
et al. 1980 ) , all of them share a certain limitation in their formal techniques for
analyzing paragraph structure .

CompareOrContrast CompareOrContrast

Knowledge

(1) automation engineering has two different meanings : automation engineer. automation engineers are experts
who have the knowledge and ability to design, create, develop and manage machines and systems, for example,
factory automation, process automation and warehouse automation. scope. automation engineering is the integra-
tion of standard engineering fields. automatic control of various control system for operating various systems or
machines to reduce human efforts & amp ; time to increase accuracy. automation engineers design and service
electromechanical devices and systems to high - speed robotics and programmable logic controllers ( plcs ). work
and career after graduation. graduates can work for both government and private sector entities such as industrial
production, companies that create and use automation systems, for example paper industry, automotive industry,
food and agricultural industry, water treatment, and oil & amp ; gas sector such as refineries, power plants. job
description. automation engineers can design, program, simulate and test automated machinery and processes,
and usually are employed in industries such as the energy sector in plants, car manufacturing facilities or food
processing plants and robots. automation engineers are responsible for creating detailed design specifications and
other documents, developing automation based on specific requirements for the process involved, and conforming
to international standards like iec - 61508, local standards, and other process specific guidelines and specifications,
simulate, test and commission electronic equipment for automation.
(2) abstract. manipulator is a powerful tool which can help people to carry out the safe operation, production au-
tomation and improve the productivity of labor. based on the summary of the situation of research and development
of manipulator, this article analyzes the functions of parts moving manipulator and carries out mechatronic design
of parts moving manipulator according to the practical project items of parts moving manipulator of enterprises.
on the basis of the analysis of the performance requirement and the operating characteristics of parts moving ma-
nipulator, this article analyses and designs the whole schemes for the mechanical structure, driving system, driving
mode and the software and hardware control system of manipulator, and in which, the form of mechanical structure
of cylindrical coordinate system is determined to be adopted in the design of manipulator, the driving scheme of
pneumatic transmission is adopted, and the system control is carried out by plc. on this basis, this article analyses
the kinematics and dynamics of parts moving manipulator and summarizes the relationship between displacement,
speed, acceleration and joint angle. with the progress of science and technology and the development of social
economy, the application area of manipulator has been becoming wider and wide. the manipulator can be found
everywhere in human society. the application of manipulator has been extended to the civilian application fields
such
(3) in working environments with large manipulators, accidental collisions can cause severe personal injuries and
can seriously damage manipulators, necessitating the development of an emergency stop algorithm to prevent such
occurrences. in this paper, we propose an emergency stop system for the efficient and safe operation of a manipula-
tor by applying an intelligent emergency stop algorithm. our proposed intelligent algorithm considers the direction
of motion of the manipulator. in addition, using a new regression method, the algorithm includes a decision step
that determines whether a detected object is a collision - causing obstacle or a part of the manipulator. we apply our
emergency stop system to a two - link manipulator and assess the performance of our intelligent emergency stop
algorithm as compared with other models. increasing the safety of robots, especially industrial manipulators, is just
as important as improving their performance. a collision between a manipulator and a person, for example, may
cause severe personal injury as well as damage to the machinery. thus, it is necessary to develop an algorithm that
can detect collisions before they occur and make the manipulator stop before damage is done. various emergency
stop or obstacle avoidance algorithms for robots, particularly those utilizing distance - measuring sensors [ 1 ] [ 2 ]
[ 3 ] [ 4 ] or vision sensors have been reported [ 5 ] [ 6 ] [ 7 ] [ 8 ] and those algorithms using each
(4) the reliability of kinematic trajectory of manipulators describes the ability that manipulators keep kinematic
accurate. it is an important parameter to evaluate the performance of manipulators. the kinematic accuracy of
manipulators can be improved when piezoelectricity material are used as a transducer to suppress the vibration of
flexible manipulators. first, a 3 degree - of - freedom parallel manipulator system and its dynamic equations are
introduced. the theory and experiment of a vibration suppression system are then presented. the calculation method
of both error and reliability of kinematic trajectory of manipulator is further implemented. finally, the reliability of
kinematic accuracy are calculated and analyzed for the 3 degree - of - freedom parallel manipulator with or without
vibration suppressing control. the results show that the reliability of kinematic accuracy is improved using vibration
suppressing control. the reliability of kinematic accuracy of manipulators is an important indicator to evaluate the
accuracy of manipulator motion [ 1 ]. in manipulators, light weight linkages are employed to achieve high speed
and acceleration motions for better performance. however, the light weight linkage will result in inherent structural
vibration, and the structural vibration leads to inaccurate kinematic trajectory of manipulators. different methods
have been proposed to reduce the vibration of the flexible link
(5) abstract - economic dispatch and frequency regulation are typically viewed as fundamentally different problems
in power systems and, hence, are typically studied separately. in this paper, we frame and study a joint problem
that co - optimizes both slow timescale economic dispatch resources and fast timescale frequency regulation re-
sources. we show how the joint problem can be decomposed without loss of optimality into slow and fast timescale
subproblems that have appealing interpretations as the economic dispatch and frequency regulation problems, re-
spectively. we solve the fast timescale subproblem using a distributed frequency control algorithm that preserves
network stability during transients. we solve the slow timescale subproblem using an efficient market mechanism
that coordinates with the fast timescale subproblem. we investigate the performance of our approach on the ieee 24
- bus reliability test system. abstract - economic dispatch and frequency regulation are typically viewed as funda-
mentally different problems in power systems and, hence, are typically studied separately. in this paper, we frame
and study a joint problem that co - optimizes both slow timescale economic dispatch resources and fast timescale
frequency regulation resources. we show how the joint problem can be decomposed without loss of optimality into
slow and fast timescale subproblems that have appealing interpretations as the economic dispatch and frequency
regulation problems, respectively. we solve the fast timescale subproblem

Table 15: Example from ACL-ARC dataset.

21



Under review as a conference paper at ICLR 2023

G MORE EXPERIMENTS FOR TUNING PLUGLM

WikiBERT ALL-PlugLM Fuse-PlugLM PlugLM
STS-B 88.64 86.82 89.20 89.10

MRPC 88.85 87.42 91.27 91.54

QNLI 90.66 88.19 91.36 91.28

Table 16: Experimental Results as in Section 3.4 on STS-b, MRPC and QNLI. The evaluation
metrics are Spearman correlation, F1 score and Accuracy respectively.
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