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Abstract

Recent studies show evidence for emergent001
cognitive abilities in Large Pre-trained Lan-002
guage Models (PLMs). The increasing cogni-003
tive alignment of these models has made them004
candidates for cognitive science theories. Prior005
research into the emergent cognitive abilities006
of PLMs has been path independent to model007
training, i.e. has only looked at the final model008
weights and not the intermediate steps. How-009
ever, building plausible models of human cog-010
nition using PLMs also requires aligning their011
performance during training to the developmen-012
tal trajectories of children’s thinking. Guided013
by psychometric tests of human intelligence,014
we choose four task categories to investigate015
the alignment of ten popular families of PLMs016
and evaluate each of their available intermedi-017
ate and final training steps: Numerical ability,018
Linguistic abilities, Conceptual understanding,019
and Fluid reasoning. We find a striking regular-020
ity: regardless of model size, the developmental021
trajectories of PLMs consistently exhibit a win-022
dow of maximal alignment to human cognitive023
development. Before that window, training ap-024
pears to endow “blank slate” models with the025
requisite structure to be poised to rapidly learn026
from experience. After that window, training027
appears to serve the engineering goal of reduc-028
ing loss but not the scientific goal of increasing029
alignment with human cognition.030

1 Introduction031

Large Pre-trained Language Models (PLMs) like032

Google’s Gemini (Team et al., 2023), Meta’s033

LLaMA 2 (Touvron et al., 2023), and OpenAI’s034

GPT 4 (OpenAI, 2023a) show human-level or even035

super-human performance on many cognitive per-036

formance tasks. This is true in domains such as037

mathematical reasoning (Shah et al., 2023; Ahn038

et al., 2024), language comprehension (Warstadt039

et al., 2020; Ye et al., 2023; Koubaa, 2023), concept040

understanding (Vemuri et al., 2024), and analogical041

reasoning (Webb et al., 2023; Hu et al., 2023), con-042

tributing to the hype of claims of reaching Artificial 043

General Intelligence (AGI). 044

Such claims deserve to be scrutinized. Human 045

intelligence is multi-faceted. Furthermore, there 046

is a massive disparity between the training data 047

scale of PLMs and humans. PLMs unintentionally 048

acquire human performance characteristics from 049

the corpora they are trained on, through residues 050

of the values, beliefs, and biases of the authors of 051

the texts (Pellert et al., 2024). We approach the hu- 052

man alignment of PLMs by grounding evaluation in 053

frameworks for psychometric intelligence. Psycho- 054

metric measures of intelligence include multiple 055

subtests spanning a range of abilities, including 056

mathematical thinking, language comprehension, 057

spatial thinking, fluid reasoning, and conceptual 058

understanding (Snow et al., 1984; Carroll, 1993; 059

Sternberg, 2000; McGrew, 2009; Haier, 2023). In 060

this work, we choose representative assessments 061

of different facets of human intelligence, modified 062

for the required textual modality, to evaluate the 063

cognitive alignment of PLMs. 064

A second goal of our work is to move beyond 065

cognitive alignment to also evaluate the develop- 066

mental alignment of PLMs. The claim that the 067

final model state of a PLM approximates adult per- 068

formance leaves open the question of the path by 069

which it arrived there. Ideally, the model’s per- 070

formance improvements over training also track 071

the progression of cognitive abilities over devel- 072

opment (Elman, 1996; Bengio et al., 2009). This 073

potential parallelism would be stronger evidence 074

for PLMs as cognitive science models. Researchers 075

are increasingly addressing this question by build- 076

ing PLMs trained on a developmentally plausible 077

corpus of child-directed speech, transcribed dia- 078

logue, and children’s literature (Huebner et al., 079

2021; Warstadt et al., 2023; Bhardwaj et al., 2024). 080

We ask the question of developmental alignment 081

in a theoretically important way: Is the cognitive 082

alignment of PLMs achieved in a path-independent 083
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Figure 1: A list of cognitive intelligence tasks under consideration.

or path-dependent manner? Prior studies focusing084

on the cognitive alignment of PLMs have only es-085

tablished path independence: that models at the end086

of training approximate adult performance across087

a range of domains. Here, we also evaluate path088

dependence: Do the performance improvements of089

PLMs over training track the growth of these abili-090

ties in children over development (Holyoak et al.,091

1984)? We ask this question for models of different092

sizes and track their developmental alignment over093

millions and billions of training tokens. If path094

independence holds, this opens up applications that095

we detail in the conclusion.096

To summarize, our key contributions are as follows:097

• Cognitive Modelling using AI: We test the098

appropriateness of PLMs for cognitive model-099

ing by evaluating whether their performance100

profiles match those of humans.101

• Developmental trajectories in LLM pre-102

training and scaling: Previous studies have103

only evaluated the final training checkpoints104

of PLMs for their cognitive plausibility, and105

have neglected the question of developmental106

trajectories. Here, we also ask: Can PLMs be107

used to model human developmental trajecto-108

ries despite the training data scale mismatch109

between PLMs and humans?110

• Representative tasks: We choose represen-111

tative tasks of human-like psychometric intel-112

ligence tests in PLMs. These tasks evaluate113

numeric, linguistic, conceptual, and fluid intel-114

ligence. We propose these to be a prerequisite115

to using PLMs for cognitive modeling.116

2 Related work 117

2.1 Psychometric theories of intelligence 118

Previous intelligence assessments in AI have 119

looked at singular dimensions, such as numeric 120

abilities (Zhuang et al., 2023; Fang et al., 2024). 121

Rather than choose cognitive abilities in a piece- 122

meal fashion, we look to psychometric theories of 123

intelligence for guidance (Sternberg, 2000). These 124

theories distil performance on a large number of 125

subtests into a small number of latent factors. De- 126

spite popular attention to “general intelligence” and 127

the latent factor g, there is a long history of theo- 128

ries positing that intelligence is composed of multi- 129

ple domain-specific abilities. An important, early 130

domain-specific theory of intelligence, (Thurstone, 131

1938), included seven “primary abilities”. The 132

most widespread psychometric theory of intelli- 133

gence today, the Cattell-Horn-Carrol (CHC) theory 134

(Carroll, 1993; McGrew, 2009), includes among its 135

“broad” abilities quantitative knowledge, reading 136

and writing ability, fluid reasoning, and “compre- 137

hension” knowledge (a subcomponent of which is 138

conceptual understanding). We evaluate the cogni- 139

tive and developmental alignment of PLMs along 140

these four abilities. 141

2.2 Emergent cognitive abilities in Language 142

Models 143

Recently, the performance of language models has 144

improved as they have increased in size from mil- 145

lions to billions of parameters, trained on larger cor- 146

pora, and further tuned in novel ways (instruction 147

tuned, RLHF). This has led to researchers increas- 148

ingly advocating for the use of PLMs as cognitive 149

models (Piantadosi, 2023; Warstadt and Bowman, 150

2024). Increasing the number of parameters of the 151
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Table 1: Summary of assessments.

Cognitive Domain Task Source License
Numeric Abilities Magnitude Comparison Effects (Shah et al., 2023) (cc by 4.0)
Linguistic Abilities BLiMP (Warstadt et al., 2020) (cc by 4.0)
Concept Understanding Typicality Effects (Vemuri et al., 2024; Castro et al., 2021) (cc by 4.0)
Fluid reasoning Raven’s Progressive Matrices (Hu et al., 2023) (cc by 4.0)

models has given rise to Emergent Abilities that can-152

not be predicted by extrapolating from the perfor-153

mance of smaller models (Wei et al., 2022a). Emer-154

gent abilities have been observed in a variety of155

task types such as multi-task language understand-156

ing (Hendrycks et al., 2021), grounded conceptual157

mapping (Patel and Pavlick, 2022), and truthfulness158

(Lin et al., 2021). In recent works, Hoffmann et al.159

(2022); Biderman et al. (2023) show the benefits160

of training a model for more tokens on problem-161

solving (Wei et al., 2022b), common-sense reason-162

ing (Sakaguchi et al., 2021), arithmetic abilities163

(Biderman et al., 2023), and linguistic performance164

(Paperno et al., 2016). Although the presence of165

emergent abilities extends to cognitive science do-166

mains (Wei et al., 2022b; Goertzel, 2023; Hagen-167

dorff, 2023), prior studies have been piecemeal in168

their approach and have failed to (1) consider mul-169

tiple cognitive abilities as specified by theories of170

psychometric intelligence and (2) move beyond171

cognitive alignment to also evaluate the develop-172

mental alignment of PLMs over training.173

2.3 Pre-trained language model use in174

developmental modeling175

Recently, researchers have begun advocating for176

the use of PLMs for modeling cognitive develop-177

ment in children (Kosoy et al., 2023; Salewski et al.,178

2024). For example, Portelance et al. (2023) and179

Bhardwaj et al. (2024) suggest the use of language180

models to predict the age of acquisition of words in181

children. Researchers have also proposed studying182

second language acquisition and bilingualism by183

mapping pre-training steps in PLMs to understand184

the rate of language development (Evanson et al.,185

2023; Marian, 2023; Sharma et al., 2024). We in-186

vestigate the assumption that the performance of an187

intermediate training checkpoint of PLMs maps to188

the age of child development by looking at the ac-189

quisition of human-like psychometric intelligence.190

3 A suite of psychometric intelligence191

tasks192

We assemble a suite of cognitively plausible assess-193

ments that benchmark PLMs across four abilities of194

psychometric intelligence. Table 1 summarizes the 195

tasks along with the licensing details for public use. 196

The details of each assessment and their respective 197

operationalization are given below. 1 198

3.1 Numeric abilities 199

Figure 2: Mental Number Line: Organization of magni-
tude representations in a logarithmically scaled manner.

The question of how humans understand sym- 200

bolic numbers has been investigated by cognitive 201

scientists for more than half a century. These stud- 202

ies show that people map number symbols to a 203

mental number line (MNL, Figure 2) with a log- 204

compressed psychophysical scale (Moyer and Lan- 205

dauer, 1967a). 206

Prior research on the numerical abilities of 207

PLMs has focused on improving performance on 208

application-driven tasks that require numerical 209

skills in the context of arithmetic equations and 210

word problems (Burns et al., 2021; Amini et al., 211

2019; Yuan et al., 2023), exact facts (Lin et al., 212

2020), and measurement estimation (Zhang et al., 213

2020). However, these tasks fail to directly impli- 214

cate the key cognitive construct underlying human 215

numerical understanding, the recruitment of a com- 216

pressed MNL. 217

In a recent study, Shah et al. (2023) found ev- 218

idence for a human-like MNL in various PLMs. 219

They show that despite lacking explicit neural cir- 220

cuitry to represent numbers, through experience 221

(i.e., vast amounts of training data), PLMs show 222

human-like performance profiles and learn human- 223

like representations for numerical concepts. 224

We follow Shah et al. (2023) and look for the 225

two behavioral signatures of a compressed number 226

line representation, the distance effect and the ratio 227

1We will add all tasks to a publically available unified lan-
guage model testing framework, titled lm-evaluation-harness
(Gao et al., 2023), to support the evaluation of future models
on psychometric intelligence assessments.
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effect. In humans, these are defined as:228

• Distance effect (refer to Figure 1A - top):229

The greater the distance |x− y| between two230

numbers x and y, the faster they are compared,231

i.e., the greater (or lesser) number is identified232

(Moyer and Landauer, 1967b).233

• Ratio effect (refer to Figure 1A - bottom):234

The time to compare two numbers x and y is235

a decreasing function of the ratio of the larger236

number over the smaller number max(x,y)
min(x,y)237

(Halberda et al., 2008).238

These effects can be mapped to language models239

by adopting the following linking hypothesis:240

the greater the cosine similarity of two number241

representations in a PLM, the longer it takes242

to discriminate them, i.e., to judge which one243

is greater (or lesser). While we focus on the244

Distance and Ratio effect, the results for all the245

effects investigated by Shah et al. (2023) are in246

Appendix B.1.247

248

Operationalization: We used the same proto-249

col as Shah et al. (2023). For each effect, we250

test the three formats of number representations251

of PLMs (mixed-case number words, lower-case252

number words, and digits). We present the R2 val-253

ues for the Distance and Ratio effects, which are254

averaged across each input representation. The R2255

values for the distance effect in PLMs are obtained256

by fitting a linear function predicting the cosine257

similarity of x and y from their distance |x − y|.258

R2 values for the ratio effect in PLMs are obtained259

by fitting a negative exponential function predict-260

ing the normalized cosine similarity of x and y261

from their ratio max(x,y)
min(x,y) . Note: This task requires262

access to the latent representations of models.263

3.2 Linguistic abilities264

Language (or verbal) ability is a central component265

of human cognition and cognitive neuroscience266

(Hagoort, 2019). At the dawn of the cognitive rev-267

olution, it was conceptualized as a largely innate268

ability, and language acquisition was understood as269

requiring relatively little learning from experience270

(Fodor, 1985; Chomsky, 2014). More recently, cog-271

nitive developmentalists have shown that infants272

can learn language through exposure to the statisti-273

cal regularities of the linguistic environment (Saf-274

fran et al., 1996; Siegelman, 2020). These findings275

have been modeled using multi-layer perceptrons276

(Elman, 1996) and, more recently, PLMs (Lake and 277

Murphy, 2023). 278

We use BLiMP: The Benchmark of Linguistic 279

Minimal Pairs for English (Warstadt et al., 2020) to 280

evaluate the linguistic abilities of each PLM under 281

consideration. BLiMP consists of 67 datasets of 282

1000 pairs of minimally different sentences which 283

vary in acceptability and span 12 phenomena at 284

three levels of language: morphology, syntax, and 285

semantics. The 12 phenomena are described in 286

Appendix B.2. Each pair consists of one accept- 287

able sentence and one unacceptable sentence which 288

otherwise differ minimally. BLiMP evaluates the 289

models by measuring if they assign a higher proba- 290

bility to the acceptable vs. unacceptable sentence 291

of each pair. Figure 1B shows two examples of 292

minimal pairs. 293

Operationalization: We use the LM-eval- 294

harness (Gao et al., 2023) benchmarking suite to 295

test our models on the BLiMP tasks. We evaluate 296

if a model assigns a higher sequential probability 297

to the acceptable sentence. Note: This requires 298

models that can generate probabilities of tokens. 299

3.3 Concept understanding 300

On encountering a new stimulus, humans catego- 301

rize it – assign it to a known concept – in order to 302

make inferences about its unobservable properties 303

(Murphy, 2002). A striking finding is that not all 304

members of a category are equal (Rosch, 1975). 305

Rather, some members (e.g., pigeon) are more typ- 306

ical of a category (e.g., Bird) than other members 307

(e.g., ostrich). This phenomenon, known as the 308

Typicality Effect, is a central feature of human cate- 309

gorization (Lakoff, 2008). 310

Typicality gradients in humans can be measured 311

using the production task, where participants are 312

given a category label (e.g., Bird) and asked to 313

list as many members of the category as they can 314

in a limited time (Battig and Montague, 1969; 315

Van Overschelde et al., 2004; Castro et al., 2021). 316

The typicality of an item is defined as the propor- 317

tion of participants who produce it. 318

Language models have shown some evidence of 319

human-like typicality gradients. Heyman and Hey- 320

man (2019) used word2vec embeddings to predict 321

the category typicality norms released by De Deyne 322

et al. (2008). More recent work by Misra et al. 323

(2021) and Bhatia and Richie (2022) has looked at 324

correlations of PLMs like BERT, RoBERTa, and 325

GPT-2 to the Rosch (1975) typicality norms for 326
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ten categories. Vemuri et al. (2024) performed the327

most comprehensive study of the alignment of con-328

cept understanding in the latent representations of329

PLMs. We expand upon their task setup to evalu-330

ate human-like concept understanding in the PLMs331

that are the focus here.332

Operationalization: For each model, we cal-333

culate the representativeness of a member to its334

category in three possible ways:335

• Closeness judgment problem: Calculate the336

cosine similarity between the obtained latent337

representations for the member and the cate-338

gory. This requires models where the latent339

representations are readily available.340

• Surprisal values: For each member in a cate-341

gory, the probability of the sequence a "mem-342

ber" (eg. pigeon) is a "category" (eg. bird).343

This method requires access to the probability344

of each token in a sequence.345

• Prompting: Prompt the models with the fol-346

lowing design: Guidelines, Query, and Op-347

tions. The Guideline highlights the task of348

re-ranking the members given in the Options349

based on appropriateness with the Query. The350

Query consists of the in-filling task: A is a351

[category name]. The Options are each of the352

possible members of the category. Given the353

complexity of the prompting, usable outputs354

are only obtained from models that are larger355

than 30 billion parameters.356

For the two in-filling problems (i.e., based on357

surprisal values and prompting), we also evaluate358

models on zero to three exemplars as context. The359

details of the experiments on these different exem-360

plar contexts are given in Appendix B.3.361

3.4 Fluid reasoning362

Humans can logically parse information and detect363

patterns in novel stimuli without having to rely364

on prior experiences or learned information. This365

ability is called Fluid Reasoning (Cattell, 1963).366

We focus on the dominant measure of fluid rea-367

soning, the Ravens Progressive Matrices (RPM)368

test (Raven, 2003). An example Ravens-like prob-369

lem is given in Figures 1D and 3. An RPM item370

consists of a 3x3 matrix of cells with one empty cell.371

Participants must induce the underlying, abstract372

patterns that hold across the rows and columns of373

the matrix, and apply these to infer the image in the374

empty cell from a given set of options. These im-375

ages vary in visual attributes like shape and color,376

along with more abstract qualities. The RPM is the 377

standard measure of fluid reasoning (Snow et al., 378

1984) and is highly correlated with analogical rea- 379

son (Goswami, 1986; Webb et al., 2023). 380

(type, size, color)

row 1: (0, 0.8, 0.8), (5, 0.6, 0.5), (3, 0.4, 0.3)
row 2: (0, 0.6, 0.3), (5, 0.4, 0.8), (3, 0.8, 0.5)
row 3: (0, 0.4, 0.5), (5, 0.8, 0.3),   (?, ?, ?)   .       

Figure 3: Example adaptation of visual RPM problems
to the textual format. Each image is decomposed into
tuples of (type, size, color). Type indicates the shape of
the image.

Given the visual nature of the RPM, previous 381

work by Hu et al. (2021, 2023) and Webb et al. 382

(2023) mapped the Raven-10000 dataset to a tex- 383

tual format to facilitate the testing of PLMs. The 384

mapping involves reformulating visual elements 385

into text-based numerical tuples to form the I- 386

Raven dataset, representing attributes like shape, 387

size, and color textually, as illustrated in Figure 3. 388

We use their approach with a focus on the “Cen- 389

ter Single Alignment” sub-task, which features a 390

single shape per matrix cell. We differ from their 391

work by evaluating a broader set of models. 392

Operationalization: We determine the model’s 393

preferred answer for a problem by comparing the 394

surprisal values of the whole sequence (instruction, 395

question, candidate tuple) for each of the candidate 396

options, i.e. the probability of each completed digit 397

representation of a matrix. For the example given 398

in Figure 3, this would be checking the probability 399

of this sequence (summation of token probabilities) 400

with the correct answer (3, 0.6, 0.8) to the other 401

candidates. A comprehensive list of the prompts 402

used in this paper is given in Appendix B.4. 403

4 Models under consideration 404

We evaluate a wide range of language model fami- 405

lies, shown in Table 2. These models are selected 406

based on the following criteria: 407

Public availability: Open-source models allow 408

us to perform a thorough analysis by accessing 409

the latent representation and the token probability 410

during generation. We follow Holt et al. (2024) 411

while choosing PLMs. Although most models in 412

this study are publicly available and open-source, 413

we use three state-of-art commercial PLMs that are 414
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Table 2: List of language model families under consideration with their statistics.

Models Source Latent rep. Token prob. Multiple sizes Intermediate checkpoints Known training order
Amber (Liu et al., 2023) ✓ ✓ ✗ ✓ ✓

Falcon (Almazrouei et al., 2023) ✓ ✓ ✗ ✗ ✗

Starling (Zhu et al., 2023) ✓ ✓ ✗ ✗ ✗

Llama-2 (Touvron et al., 2023) ✓ ✓ ✓ ✗ ✗

Mistral (Jiang et al., 2023) ✓ ✓ ✗ ✗ ✗

Qwen (Bai et al., 2023) ✓ ✓ ✓ ✗ ✗

Pythia (Biderman et al., 2023) ✓ ✓ ✓ ✓ ✓

Gemini (Team et al., 2023) ✗ ✗ ✗ ✗ ✗

GPT-3.5-Turbo (OpenAI, 2023b) ✗ ✓ ✗ ✗ ✗

GPT 4 (OpenAI, 2023a) ✗ ✓ ✗ ✗ ✗

Table 3: Performance of Pre-trained Language Models on the tasks. Distance Effect: Averaged R2 values of
different LLMs when fitting a linear function on the cosine-similarity vs. distance plot. Ratio Effect: Averaged
R2 values of different LLMs when fitting a negative exponential function on the cosine-similarity vs. ratio plot.
Note: Each value is averaged across all three input types and all model layers to produce one generalizable score.
Latent Rep: Average Spearman’s Correlation when using the cosine similarity and latent representation-based
approach (Note: * refers to the prompting approaches for select models which are gated by APIs and not the latent
representation-based approach), Zero-Shot: Average Spearman’s Correlation when using the zero-shot surprisal
values, BLiMP: The Benchmark of Linguistic Minimal Pairs for English, RPM: Raven’s Progressive Matrices

Numeric Abilities Linguistic Abilities Conceptual Understanding Fluid reasoning
Model Distance Ratio BLiMP Latent Rep. Zero Shot RPM

Effect (R2) Effect (R2) (Acc.) (Average Spearman’s Correlation) (Acc.)
Amber-7B 0.913 0.591 0.794 0.083 0.250 0.654
Falcon-7B 0.928 0.838 0.817 -0.116 0.180 0.730
Starling-LM-7B-alpha 0.522 0.187 0.827 -0.003 0.258 0.730
Llama-2-7B 0.670 0.614 0.818 -0.065 0.238 0.752
Llama-2-13B 0.672 0.263 0.793 0.076 0.247 0.756
Mistral-7B 0.641 0.233 0.829 -0.025 0.245 0.756
Mistral-7B-Instruct 0.637 0.543 0.834 0.033 0.255 0.674
Qwen-0.5B 0.833 0.553 0.785 0.072 0.282 0.684
Qwen-1.8B 0.878 0.301 0.792 0.114 0.235 0.746
Qwen-4B 0.881 0.264 0.730 0.001 0.246 0.770
Qwen-7B 0.858 0.616 0.789 0.006 0.229 0.766
Qwen-14B 0.783 0.507 0.792 -0.140 0.249 0.776
Pythia-70M 0.829 0.429 0.723 0.005 0.211 0.194
Pythia-160M 0.947 0.665 0.749 0.067 0.260 0.448
Pythia-410M 0.926 0.679 0.815 0.126 0.284 0.608
Pythia-1B 0.944 0.702 0.806 0.090 0.280 0.674
Pythia-1.4B 0.933 0.764 0.819 0.074 0.283 0.730
Pythia-2.8B 0.961 0.723 0.827 0.221 0.273 0.760
Pythia-6.9B 0.909 0.713 0.809 0.105 0.280 0.716
Pythia-12B 0.846 0.595 0.829 0.184 0.291 0.756
Gemini NA NA NA 0.311 * NA NA
GPT-3.5-Turbo NA NA 0.825 0.242 * 0.231 0.792
GPT-4 NA NA 0.849 0.559 * 0.428 0.822

gated behind API calls; GPT-3.5-Turbo (pointing to415

gpt-3.5-turbo-0613 on the OpenAI platform), GPT-416

4 (pointing to gpt-4-1106 on the OpenAI platform),417

and Gemini (also referred to as Gemini-1-Pro at the418

time of writing). The GPT-x model APIs provide419

token probabilities of the response, allowing us to420

calculate surprisal, while Gemini does not.421

Availability of multiple sizes: The availability of422

model sizes for the same architecture and training423

paradigms allows us to evaluate the emergent cog-424

nitive abilities of the models. We have multiple425

sizes available for the LLama-2, Qwen, and the426

Pythia family of models.427

Availability of intermediate training checkpoints: 428

This allows us to evaluate the effects of pre-training 429

on the model outputs. Together, the availability 430

of multiple model sizes and intermediate training 431

checkpoints allow us to best evaluate the develop- 432

mental alignment of PLMs. Amber and Pythia’s 433

family of models have available intermediate train- 434

ing checkpoints. While Amber has 360 interme- 435

diate checkpoints, the checkpoints are at 4 Billion 436

tokens each and are not at the required granularity. 437

Pythia Family of models: Pythia (Biderman 438

et al., 2023) is one of the first open-source projects 439

with the goal of scientific and transparent model 440
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development. It has 8 model sizes ranging from 70441

Million to 12 Billion parameters, with each model442

trained on 286 Billion tokens. The models in the443

suite are equivalent (in size) to popular decoder444

architectures like GPT-Neo-(125M, 1.3B, 2.7B)445

and OPT-(125M, 350M, 1.3B, 2.7B, 6.7B), but446

with the added benefits of training on a known447

de-duplicated corpus (Gao et al., 2020), using the448

same training order for each model size, and having449

154 intermediate checkpoints to study the learning450

trajectories of PLMs. Thus, the Pythia suite of451

models is ideal for studying the psychometric and452

developmental alignment of PLMs to humans.453

All open-source models are obtained from Hug-454

gingface (Wolf et al., 2020), while the gated mod-455

els are obtained from their respective platforms456

through API calls. For each model in the Pythia457

suite, the following intermediate checkpoints are458

available: [1, 2, 4, 8, ... 512; 1000, 2000, 3000 ...459

143000 (exponential increase in checkpoint number460

until the 512th checkpoint and subsequent progres-461

sion of 1000 steps until the last checkpoint)], with462

each checkpoint representing 2 Million tokens seen.463

Overall, we test 1232 intermediate checkpoints of464

the Pythia suite of models across all the tasks.465

5 Cognitive and developmental alignment466

of PLMs467

The suite of tasks enables comprehensive evalua-468

tion of a variety of PLMs on their cognitive align-469

ment to humans across four domains of psychome-470

tric intelligence: numeric abilities, linguistic abil-471

ities, concept understanding, and fluid reasoning.472

Table 3 highlights the key results of this evaluation.473

For the evaluation of conceptual understanding in474

PLMs, we only report the results for the zero-shot475

surprisal values and latent representations. This is476

because we see similar results for zero-shot and477

few-shot surprisal value-based methods (see com-478

prehensive results in Appendix B.3).479

The cognitive alignment of PLMs on psychomet-480

rics assessments is summarized below:481

• Numeric abilities: All PLMs show a human-482

like distance effect but weakly show a human-483

like ratio effect. We do not observe any no-484

table changes in alignment with model scaling,485

indicating the need for the evaluation of future486

models on this task.487

• Linguistic abilities: The accuracy of the PLMs488

on the BLiMP linguistic acceptability tasks489

improves upon increasing the number of pa- 490

rameters. Furthermore, we find that all PLMs 491

are substantially more accurate on morpholog- 492

ical tasks over syntactic and semantic tasks 493

(Accuracy: semantic < syntax << morphol- 494

ogy; see Appendix Table 5, Figure 7). Mor- 495

phological performance develops first fol- 496

lowed by syntax and then semantics. 497

• Concept understanding: Prompting methods 498

in commercial models perform substantially 499

better than other methods – closeness judg- 500

ment and surprisal values – on all open-source 501

models. In the Pythia suite, we observe that 502

larger models outperform smaller counterparts 503

on the same training data. 504

• Fluid reasoning: For all PLM architecture 505

types, larger models outperform their smaller 506

equivalent models. 507

• Despite differences in PLM architecture type, 508

all models of an approximate size of 7 Billion 509

parameters perform comparably. 510

The developmental alignment of the PLMs on 511

the tasks is shown in Figure 4. We make the fol- 512

lowing key observations: 513

• Training endows the “blank slate” with requi- 514

site structure: In each assessment, the model 515

“warm-ups” in training on a few million/ bil- 516

lion tokens, moving from a “blank slate” to 517

possessing the requisite structure. This struc- 518

ture can be thought of as the child’s endow- 519

ment at birth. Development of the four abili- 520

ties begins only after reaching this state. 521

• Training shows a region of development: For 522

all four tasks, we see a window of monotonic 523

development, in which all models gain the 524

respective cognitive abilities. 525

• After development, training appears to serve 526

an engineering goal: After the window of de- 527

velopment, training appears to only serve the 528

engineering goal of loss reduction. This obser- 529

vation is especially pronounced for numeric 530

abilities and conceptual understanding. 531

• Assessments for Fluid Reasoning and Linguis- 532

tic Abilities show significant gains in scaling 533

and greater pre-training: For the Fluid Rea- 534

soning and Linguistic Abilities assessments, 535

we see that the alignment score continues to 536

increase as the PLMs are trained on a greater 537

number of tokens. Furthermore, for these abil- 538

ities, models also show scaling effects, with 539

larger models outperforming smaller ones. 540
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(A) Magnitude Comparison Effects

(B) Typicality Effects

(D) Raven's Progessive Matrices(C) BLIMP

Figure 4: Developmental trajectory of the Pythia suite of models on the psychometric intelligence tasks as a function
number of tokens seen. We display the x-axis in a log-scaled manner as maximal development occurs in the range
of 100 Million to 20 Billion tokens seen for all tasks. The windows of maximal development are illustrated by the
blue shading.

• The windows weakly align with human ages541

of development: Variation in the onsets of win-542

dows replicates what is known of cognitive de-543

velopment. For example, children acquire lan-544

guage early (i.e., during the preschool years),545

whereas the onset of improving fluid reason-546

ing is later, when children enter elementary547

school, and continues for longer, throughout548

adolescence. Correspondingly, the models549

significantly develop linguistic abilities while550

training on 250 Million to 7 Billion tokens,551

whereas they acquire fluid reasoning abilities552

later, while training on 1 to 20 Billion tokens.553

6 Conclusions554

This paper investigates the evidence appropriate-555

ness of using PLMs for human cognitive and devel-556

opmental modeling with the help of adapted psy-557

chometric intelligence assessments. It uses repre-558

sentative assessments of four facets of human intel- 559

ligence: numeric abilities, linguistic abilities, con- 560

ceptual understanding, and fluid reasoning. Our ex- 561

periments show that PLMs develop cognitive abil- 562

ities purely through their experience in the world, 563

indicating that cognitive abilities in humans may 564

not be innate, but rather learned similarly through 565

the world. Most significantly, we find a window 566

of monotonic development in which all models im- 567

prove approximately linearly on the four cognitive 568

abilities. Before that window, we interpret training 569

as endowing “blank slate” models with the requi- 570

site structure for rapid learning. Also notable is 571

the finding of PLM scaling effects for the assess- 572

ments of linguistic abilities and fluid reasoning. We 573

propose evaluation against these tasks as a prereq- 574

uisite before treating PLMs as models of human 575

cognition and its development. 576
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7 Limitations577

Some limitations of the work are as follows: (1)578

We use an aggregation of psychometric tests for579

PLMs. The limitations of each test are inherited in580

the suite of tasks. (2) The alignment scores may be581

wrongly interpreted when evaluating PLMs with582

these tasks. Alignment scores show the similarity583

of PLM outputs to human outputs on psychometric584

tests and indicate that PLMs do not need explicit585

neural circuitry for these intelligence tests. We do586

not suggest these models as proxies for humans in587

any manner and recommend further testing before588

use. (3) The developmental alignment of the mod-589

els points towards the acquisition of human-like590

performance on the four psychometric assessments591

in the range of 100 Million to 20 Billion train-592

ing tokens. This conclusion has two limitations:593

Pythia is the only suite of models with available594

intermediate checkpoints and, while unlikely, the595

observed developmental trajectories might be ar-596

tifacts of the pre-training order. (4) The psycho-597

metric assessments for PLMs are adapted from598

similar human psychometric tests. Different ways599

of adaptation may lead to different results. Fur-600

thermore, while representative, these assessments601

are not exhaustive tests of human intelligence. Fu-602

ture work can expand to other tests like spatial and603

commonsense reasoning. (5) Some open source604

models like Llama-2 have larger 70 Billion param-605

eter variants but we lack the compute resources to606

evaluate them. Large open-source models would607

lead to appropriate comparisons of performance608

with commercial models like GPT-4. (6) While609

our work evaluates changes in cognitive alignment610

with an increase in model size and the number of611

pre-training tokens, we do not control for differ-612

ent tuning methodologies like instruction tuning613

and reinforcement learning with human or artificial614

intelligence feedback. Accounting for different tun-615

ing methods is computationally intensive for the616

1200+ model checkpoints across 10 architectures.617

8 Ethical Considerations618

All tasks and corresponding datasets have low eth-619

ical risks and none expose sensitive information.620

Additionally, we obtain approval from the authors621

of each dataset for their use and release. There are622

no major risks associated with conducting this re-623

search beyond those associated with working with624

PLMs. There may be risks in misinterpreting the625

alignment scores when evaluating with the tests.626

The psychometric analysis of this study is one-way: 627

we look for human performance characteristics and 628

behaviors in PLMs. PLMs are experimental tech- 629

nologies and future work using this research should 630

proceed with caution. Assessment of the tasks in- 631

dicates PLM alignment – or the lack thereof – to 632

human cognitive behavior. Indications of higher 633

human alignment do not indicate an absolute proxy 634

for humans. The goal of tasks in this work is a 635

pre-cursor assessment of PLMs on their ability to 636

act as cognitive models. Therefore, researchers and 637

users should perform more tests before use. . 638
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Thacker, Çağlar Ünlü, Zhishuai Zhang, Moham- 1080
mad Saleh, James Svensson, Max Bileschi, Piyush 1081
Patil, Ankesh Anand, Roman Ring, Katerina Tsihlas, 1082
Arpi Vezer, Marco Selvi, Toby Shevlane, Mikel Ro- 1083
driguez, Tom Kwiatkowski, Samira Daruki, Keran 1084
Rong, Allan Dafoe, Nicholas FitzGerald, Keren 1085
Gu-Lemberg, Mina Khan, Lisa Anne Hendricks, 1086
Marie Pellat, Vladimir Feinberg, James Cobon- 1087
Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi 1088
Hashemi, Richard Ives, Yana Hasson, YaGuang 1089
Li, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, 1090
Qingze Wang, Thibault Sottiaux, Michela Paganini, 1091
Jean-Baptiste Lespiau, Alexandre Moufarek, Samer 1092
Hassan, Kaushik Shivakumar, Joost van Amers- 1093
foort, Amol Mandhane, Pratik Joshi, Anirudh 1094
Goyal, Matthew Tung, Andrew Brock, Hannah Shea- 1095
han, Vedant Misra, Cheng Li, Nemanja Rakićević, 1096
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effects are the biggest indicators of the presence 1351

of such log-scaled magnitude representations and 1352
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The greater the distance |x-y| between two 1357

numbers (x, y), the faster the comparison in 1358

humans (Moyer and Landauer, 1967b). 1359
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Table 4: Magnitude Comparison effects. Distance Effect: Averaged R2 values of different LLMs when fitting
a linear function on the cosine-similarity vs distance plot. Size Effect: Averaged R2 values of different LLMs
when fitting a linear function on the cosine-similarity vs size-difference plot. Ratio Effect: Averaged R2 values
of different LLMs when fitting a negative exponential function on the cosine-similarity vs ratio plot. Note: Each
value is averaged across all three input types and all model layers to produce one generalizable score. MDS Stress:
The stress value is a measure of how well the distances between the points in the multidimensional space represent
the dissimilarities of the original data points (lower is better). MDS Correlation: Correlation between the MDS
solutions and the expected values of human MNL. Range (Sim): This indicates the range of the cosine-similarities.
Max (sim): This indicates the maximum similarity between any two numbers. Range and Max (sim) describe the
y-axis.

Model Distance Effect Ratio Effect Size Effect MDS Stress MDS Correlation Range (Sim) Max (Sim)
Amber-7B 0.913 0.591 0.607 0.157 0.572 0.008 0.995
Falcon-7B 0.928 0.838 0.725 0.183 0.655 0.286 0.779
Starling-LM-7B-alpha 0.522 0.187 0.494 0.320 0.305 0.001 0.995
Llama-2-7B 0.670 0.614 0.535 0.122 0.547 0.016 0.983
Llama-2-13B 0.672 0.263 0.421 0.234 0.372 0.002 0.999
Mistral-7B 0.641 0.233 0.244 0.287 0.425 0.001 0.996
Mistral-7B-Instruct 0.637 0.543 0.182 0.317 0.512 0.001 0.992
Qwen-0.5B 0.833 0.553 0.215 0.246 0.679 0.064 0.911
Qwen-1.8B 0.878 0.301 0.330 0.198 0.328 0.107 0.902
Qwen-4B 0.881 0.264 0.330 0.215 0.581 0.160 0.763
Qwen-7B 0.858 0.616 0.257 0.153 0.636 0.129 0.734
Qwen-14B 0.783 0.507 0.206 0.248 0.369 0.138 0.710
Pythia-70M 0.829 0.429 0.418 0.204 0.463 0.060 0.949
Pythia-160M 0.947 0.665 0.382 0.231 0.715 0.042 0.970
Pythia-410M 0.926 0.679 0.393 0.210 0.710 0.041 0.972
Pythia-1B 0.944 0.702 0.470 0.196 0.725 0.037 0.973
Pythia-1.4B 0.933 0.764 0.600 0.203 0.658 0.022 0.983
Pythia-2.8B 0.961 0.723 0.459 0.256 0.737 0.009 0.993
Pythia-6.9B 0.909 0.713 0.535 0.195 0.663 0.013 0.990
Pythia-12B 0.846 0.595 0.540 0.189 0.620 0.007 0.993

• Size effect: Given two comparisons of the1360

same distance (i.e., of the same value for |x1361

- y|), the smaller the numbers, the faster the1362

comparison (Parkman, 1971).1363

• Ratio effect (refer to figure 1 (A) bottom):1364

The time taken by humans to compare two1365

numbers (x,y) is a decreasing function of the1366

ratio of the larger number over the smaller1367

number max(x,y)
min(x,y) (Halberda et al., 2008).1368

• Multidimensional scaling: Along with the1369

three effects, we investigate the consistency1370

of the latent number representations of PLMs1371

with the human MNL using multidimen-1372

sional scaling (Borg and Groenen, 2005; Ding,1373

2018). MDS recovers the latent representation1374

from the cosine (dis)similarities between the1375

vector representations of all pairs of numbers1376

(for a given LLM, layer, and number format).1377

This is evaluated by the correlation between1378

the positions of the numbers 1 to 9 in the MDS1379

solution and the expected values (log(1) to log1380

(9)) of the human MNL (refer to the correla-1381

tion value in table 4).1382
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Figure 5: Development of the idea of "numbers" in
Pythia. The y-axis indicates the maximum cosine sim-
ilarity between the latent representations of any two
number words/ digits.

Beyond these effects, we investigate the develop- 1383

ment of the latent understanding of the concept of 1384

"numbers" in the PLMs. As PLMs see more data, 1385

the average values of the similarity become larger, 1386

indicating that models learn the distinctions among 1387

numbers better (refer to figure 5). This is further 1388

substantiated by figure 6, where the similarities be- 1389

tween number words develop to be greater than the 1390

similarity between (number, non-number) words 1391

and (non-number, non-number) words. 1392

B.2 Linguistic Abilities 1393

The 12 phenomena tested by BLiMP are as follows: 1394
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Table 5: Accuracy of different language models on the BLiMP linguistic acceptability tasks.

Model BLiMP Syntax Semantic Morphology
Amber-7B 0.794 (± 0.174) 0.779 (± 0.011) 0.736 (± 0.011) 0.888 (± 0.009)

Falcon-7B 0.817 (± 0.173) 0.797 (± 0.011) 0.758 (± 0.011) 0.917 (± 0.008)

Starling-LM-7B-alpha 0.827 (± 0.161) 0.799 (± 0.011) 0.788 (± 0.011) 0.938 (± 0.007)

Llama-2-7B 0.818 (± 0.165) 0.792 (± 0.011) 0.782 (± 0.011) 0.917 (± 0.008)

Llama-2-13B 0.793 (± 0.184) 0.757 (± 0.011) 0.767 (± 0.011) 0.898 (± 0.008)

Mistral-7B 0.829 (± 0.174) 0.801 (± 0.011) 0.780 (± 0.010) 0.940 (± 0.007)

Mistral-7B-Instruct 0.834 (± 0.149) 0.808 (± 0.011) 0.788 (± 0.011) 0.931 (± 0.008)

Qwen-0.5B 0.785 (± 0.176) 0.759 (± 0.012) 0.718 (± 0.012) 0.907 (± 0.008)

Qwen-1.8B 0.792 (± 0.162) 0.777 (± 0.012) 0.764 (± 0.011) 0.875 (± 0.010)

Qwen-4B 0.730 (± 0.154) 0.694 (± 0.013) 0.728 (± 0.013) 0.814 (± 0.012)

Qwen-7B 0.789 (± 0.156) 0.769 (± 0.012) 0.736 (± 0.012) 0.885 (± 0.010)

Qwen-14B 0.792 (± 0.144) 0.775 (± 0.012) 0.747 (± 0.012) 0.881 (± 0.010)

Pythia-70M 0.723 (± 0.210) 0.701 (± 0.012) 0.628 (± 0.012) 0.872 (± 0.010)

Pythia-160M 0.749 (± 0.207) 0.717 (± 0.012) 0.718 (± 0.011) 0.864 (± 0.010)

Pythia-410M 0.815 (± 0.169) 0.785 (± 0.011) 0.752 (± 0.011) 0.935 (± 0.007)

Pythia-1B 0.806 (± 0.198) 0.782 (± 0.011) 0.728 (± 0.011) 0.935 (± 0.007)

Pythia-1.4B 0.819 (± 0.173) 0.792 (± 0.011) 0.768 (± 0.011) 0.931 (± 0.008)

Pythia-2.8B 0.827 (± 0.156) 0.800 (± 0.011) 0.782 (± 0.011) 0.925 (± 0.007)

Pythia-6.9B 0.809 (± 0.179) 0.792 (± 0.011) 0.750 (± 0.011) 0.913 (± 0.008)

Pythia-12B 0.829 (± 0.158) 0.804 (± 0.011) 0.778 (± 0.011) 0.932 (± 0.007)

Gemini NA NA NA NA
GPT-3.5-Turbo 0.825 (± 0.166) 0.818 (± 0.010) 0.781 (± 0.011) 0.931 (± 0.007)

GPT-4 0.849 (± 0.120) 0.797 (± 0.010) 0.801 (± 0.009) 0.941 (± 0.007)

Figure 6: Development of the idea of "numbers" in
Pythia. The y-axis shows the cosine similarity between
word types. The cosine similarity values are averaged
over all input types, all model layers, and all model
sizes.

• Anaphor agreement (morphology): This lin-1395

guistic phenomenon tests if an anaphor (pro-1396

noun) adheres to the antecedent (noun or1397

phrase it refers to) in terms of gender, number,1398

or person.1399

• Argument Structure (syntax): The argument1400

structure tests the relationship between a verb1401

and its arguments (such as nouns or noun1402

phrases). 1403

• Binding (syntax, semantics): This tests the 1404

structural relationship between an anaphor 1405

(pronoun) and its antecedent (noun or phrase 1406

it refers to). 1407

• Control/ Raising (syntax, semantics): These 1408

structures test how semantics differ by syntac- 1409

tical variations of subjects/verbs in subordi- 1410

nate and main clauses. 1411

• Determiner-noun agreement (morphology): 1412

This tests the agreements of the determiners 1413

with the corresponding nouns in number (sin- 1414

gular or plural) and sometimes gender (e.g., 1415

"his" for masculine nouns, "her" for feminine 1416

nouns). 1417

• Ellipsis (syntax): This refers to the omission 1418

of words from a sentence that can be under- 1419

stood from the context. 1420

• Filler-gap (syntax): This tests the syntactic 1421

structure of sentences that include phrasal 1422

movements (wh-questions, relative clauses). 1423
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• Irregular forms (morphology): Forms in lan-1424

guage that do not follow regular patterns and1425

may need to be memorized. For example, the1426

superlative of good is better, best, and not1427

gooder, goodest.1428

• Island effects (syntax): These test the con-1429

straints on syntactic environments where the1430

gap in a filler-gap dependency can occur.1431

• NPI licensing (semantics): This phenomenon1432

tests the constrained situations where negative1433

polarity items like any and ever are limited to1434

the scope of negation.1435

• Quantifiers (semantics): This phenomenon1436

tests the constraints regarding the placement1437

of quantifiers. Specifically, BLiMP looks at1438

superlative quantifiers (such as "at least") that1439

cannot occur within negation, and definite1440

quantifiers and determiners cannot function as1441

subjects in existential "there" constructions.1442

• Subject-verb agreement (morphology): The1443

subject and tense forms of the verb must agree1444

on the number, for example, singular vs plural.1445

Table 5 shows that the PLMs are more accurate1446

in morphology than in language syntax and seman-1447

tics. Most models also perform better on syntactic1448

language features than semantic language features.1449

B.3 Conceptual Understanding1450

Table 7 shows the human alignment of PLMs on1451

their concept understanding for different opera-1452

tionalization methods. We see that Gemini, GPT-1453

3.5-Turbo, and GPT-4 perform better than other1454

models. Furthermore, Surprisal and Prompting-1455

based methods are stronger techniques for eval-1456

uating conceptual understanding of models than1457

representation-based methods. Given the higher1458

performance of Prompting methods on three API-1459

based models, we only show the category-wise1460

results for those models. The final prompt design is1461

given in section B.3.1 and table 11. Tables 8, 9, and1462

10 show Spearman’s correlation on the categories1463

along with the standard deviation, the minimum1464

correlation, and the maximum correlation. We per-1465

form the same infilling tasks 50 times for each1466

category to account for variations in generations.1467

We note that the models often failed to return all1468

the options in the in-filling task. We discard such1469

situations in our analysis.1470

Note: Under the closeness judgment protocol, 1471

our experiments fail to match up to the performance 1472

of the models used by Vemuri et al. (2024). This is 1473

because our choice of open-source models only pro- 1474

vides token representations, on which we later per- 1475

form an aggregation operation. This aggregation 1476

operation leads to a loss of information. In contrast, 1477

Vemuri et al. (2024) use sentence-transformer mod- 1478

els (Reimers and Gurevych, 2019), which provide 1479

singular latent representation for longer text. This 1480

variation in experimentation leads to the difference 1481

in alignment scores. 1482

Table 6: Typicality effects: Comparing Average Spear-
man’s correlation score across categories from tables 8,
9, and 10.

Categories GPT 3.5 GPT 4 Gemini
bird 0.183 0.536 0.353
carpenters tool 0.418 0.679 0.610
clothing 0.022 0.594 0.155
color -0.016 0.882 0.569
dwelling 0.208 0.335 0.340
earth formation 0.251 0.496 0.155
fabric 0.48 0.708 0.504
fish 0.183 0.643 0.247
flower 0.48 0.772 0.515
flying thing 0.07 0.249 0.184
footwear 0.118 0.521 0.218
four-legged animal 0.435 0.818 0.537
fruit 0.465 0.726 0.508
furniture 0.069 0.525 0.147
gardeners tool 0.355 0.557 0.507
green thing 0.196 0.572 0.335
insect 0.18 0.629 0.286
instrument 0.194 0.709 0.450
kitchen utensil 0.384 0.624 0.252
ship 0.104 0.233 -0.078
snake 0.177 0.419 0.328
toy 0.299 0.480 0.169
tree 0.333 0.557 0.445
vegetable 0.096 0.783 0.121
vehicle 0.17 0.381 0.033
weapon 0.348 0.421 0.239
weather 0.333 0.255 0.274
Average 0.242 0.559 0.311
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Table 7: Results for the typicality effects using the three methods

Model Latent Surprisal Prompting
Representations Values

Zero-shot One-shot Two-shot Three-shot
Amber-7B 0.083 0.250 0.227 0.261 0.247 NA
Falcon-7B -0.116 0.180 0.215 0.242 0.200 NA
Starling-LM-7B-alpha -0.003 0.258 0.211 0.215 0.235 NA
Llama-2-7B -0.065 0.238 0.213 0.202 0.207 NA
Llama-2-13B 0.076 0.247 0.163 0.183 0.170 NA
Mistral-7B -0.025 0.245 0.219 0.261 0.257 NA
Mistral-7B-Instruct 0.033 0.255 0.192 0.204 0.235 NA
Qwen-0.5B 0.072 0.282 0.264 0.288 0.250 NA
Qwen-1.8B 0.114 0.235 0.246 0.251 0.215 NA
Qwen-4B 0.001 0.246 0.217 0.252 0.193 NA
Qwen-7B 0.006 0.229 0.203 0.220 0.220 NA
Qwen-14B -0.140 0.249 0.224 0.207 0.199 NA
Pythia-70M 0.005 0.211 0.266 0.291 0.285 NA
Pythia-160M 0.067 0.260 0.263 0.276 0.264 NA
Pythia-410M 0.126 0.284 0.235 0.282 0.242 NA
Pythia-1B 0.090 0.280 0.309 0.287 0.264 NA
Pythia-1.4B 0.074 0.283 0.249 0.267 0.235 NA
Pythia-2.8B 0.221 0.273 0.286 0.267 0.236 NA
Pythia-6.9B 0.105 0.280 0.264 0.250 0.220 NA
Pythia-12B 0.184 0.291 0.248 0.274 0.270 NA
Gemini NA NA NA NA NA 0.311
GPT-3.5-Turbo NA 0.231 0.248 0.299 0.270 0.242
GPT-4 NA 0.428 0.471 0.399 0.402 0.559

Table 8: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
Gemini-Pro model.

Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.353 -0.156 0.582 0.144
carpenters tool 0.610 0.417 0.885 0.104
clothing 0.155 -0.104 0.523 0.141
color 0.569 -0.147 0.916 0.260
dwelling 0.340 0.140 0.499 0.086
earth formation 0.155 -0.449 0.494 0.191
fabric 0.504 0.125 0.811 0.168
fish 0.247 -0.505 0.611 0.265
flower 0.515 -0.183 0.779 0.208
flying thing 0.184 -0.068 0.602 0.193
footwear 0.218 -0.340 0.569 0.215
four-legged animal 0.537 0.225 0.689 0.099
fruit 0.508 -0.019 0.802 0.222
furniture 0.147 -0.479 0.663 0.310
gardeners tool 0.507 0.025 0.771 0.151
green thing 0.335 0.037 0.535 0.117
insect 0.286 -0.121 0.635 0.193
instrument 0.450 0.092 0.832 0.175
kitchen utensil 0.252 -0.164 0.691 0.243
ship -0.078 -0.414 0.277 0.179
snake 0.328 -0.156 0.596 0.147
toy 0.169 -0.203 0.526 0.174
tree 0.445 0.257 0.585 0.073
vegetable 0.121 -0.322 0.596 0.184
vehicle 0.033 -0.053 0.236 0.055
weapon 0.239 -0.173 0.577 0.193
weather 0.274 -0.029 0.591 0.147

19



Figure 7: Developmental trajectory of the Pythia suite of models on the BLiMP linguistic acceptability tasks.
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Table 9: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
GPT-3.5-Turbo model.

Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.183 -0.209 0.552 0.209
carpenters tool 0.418 -0.162 0.858 0.282
clothing 0.022 -0.321 0.540 0.192
color -0.016 -0.596 0.564 0.261
dwelling 0.208 -0.053 0.400 0.123
earth formation 0.251 -0.296 0.562 0.217
fabric 0.480 -0.044 0.767 0.233
fish 0.183 -0.326 0.690 0.280
flower 0.480 -0.301 0.800 0.269
flying thing 0.070 -0.181 0.377 0.149
footwear 0.118 -0.439 0.581 0.241
four-legged animal 0.435 -0.264 0.869 0.292
fruit 0.465 -0.006 0.868 0.241
furniture 0.069 -0.325 0.447 0.195
gardeners tool 0.355 -0.311 0.796 0.294
green thing 0.196 -0.337 0.572 0.211
insect 0.180 -0.248 0.503 0.201
instrument 0.194 -0.242 0.466 0.191
kitchen utensil 0.384 -0.610 0.797 0.334
ship 0.104 -0.314 0.599 0.250
snake 0.177 -0.244 0.591 0.196
toy 0.299 -0.210 0.603 0.180
tree 0.333 -0.199 0.731 0.289
vegetable 0.096 -0.191 0.542 0.172
vehicle 0.170 -0.381 0.381 0.201
weapon 0.348 -0.058 0.609 0.156
weather 0.333 -0.425 0.662 0.236

Table 10: Average Spearman’s correlation score for each category on 50 runs of each in-filling experiment on the
GPT-4 model.

Categories Average SpearmanR Minimum Values Maximum Values Std Dev
bird 0.536 0.355 0.756 0.098
carpenters tool 0.679 0.549 0.843 0.078
clothing 0.594 0.350 0.751 0.100
color 0.882 0.813 0.952 0.035
dwelling 0.335 0.183 0.497 0.070
earth formation 0.496 0.373 0.628 0.061
fabric 0.708 0.583 0.801 0.052
fish 0.643 -0.237 0.817 0.218
flower 0.772 0.629 0.869 0.057
flying thing 0.249 -0.118 0.704 0.221
footwear 0.521 0.191 0.721 0.112
four-legged animal 0.818 0.634 0.906 0.056
fruit 0.726 0.567 0.868 0.069
furniture 0.525 0.381 0.605 0.055
gardeners tool 0.557 0.314 0.757 0.098
green thing 0.572 0.444 0.709 0.050
insect 0.629 0.451 0.871 0.103
instrument 0.709 0.585 0.885 0.064
kitchen utensil 0.624 0.358 0.750 0.075
ship 0.233 -0.346 0.618 0.232
snake 0.419 0.002 0.575 0.108
toy 0.480 0.277 0.675 0.111
tree 0.557 0.300 0.781 0.106
vegetable 0.783 0.413 0.892 0.102
vehicle 0.381 0.166 0.699 0.119
weapon 0.421 0.268 0.650 0.082
weather 0.255 0.122 0.357 0.061
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Table 11: Prompt design for evaluating typicality effects in models bigger than 30 billion parameters.

Prompt region Description Actual prompt
Guidelines Describe the overall idea of typicality to the model and the task guidelines Appendix B.3.1
Query This is the actual fill-in-the-blanks task The ___ is a "Category-Name"
Options List of items in a randomized order and separated by a new line —
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Typicality effects refer to the influence of the typicality or prototypicality of an object or category on 
various cogniƟve processes, including percepƟon, categorizaƟon, and memory. The concept of typicality 
stems from the prototype theory, which suggests that our mental representaƟons of categories are 
based on prototypes or typical examples. 

In the context of percepƟon, typicality effects can influence how we perceive and recognize objects. 
Objects that are more prototypical or representaƟve of a category are typically perceived more quickly 
and accurately than atypical objects. For example, when shown a series of pictures of birds, a typical bird 
like a robin would be recognize faster than a less typical bird like a penguin. 

In categorizaƟon tasks, typicality effects can influence how we classify objects into categories. 
Prototypical or highly typical objects are more likely to be assigned to their corresponding category than 
atypical objects. For instance, when asked to categorize fruits, an apple, being a highly typical fruit, is 
more likely to be classified as a fruit compared to a less typical fruit like a durian. 

Typicality effects also impact memory processes. Prototypical objects are typically beƩer remembered 
than atypical objects. When asked to recall a list of animals, parƟcipants are more likely to remember 
prototypical animals such as dogs or cats compared to less typical animals like lemurs or armadillos. 

Overall, typicality effects demonstrate how the typicality or prototypicality of objects within a category 
influences our percepƟon, categorizaƟon, and memory processes, highlighƟng the role of prototypes in 
cogniƟve funcƟoning. 

Based on the typicality effect definiƟons, give rankings for filling the blank task without any descripƟon 
from the following opƟons.  

Make sure to include all the items from the opƟons. Please return items in the following manner: 

1. item1 

2. item2 

3. item3 

Also make sure to use the same items as given in the opƟons. 

Query: 

            A ___ is a [Category Name] 

            OpƟons:  

            [A] 

            [B] 

B.3.1 Conceptual Understanding - Final Prompt 1483
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B.4 Fluid Reasoning1485

Humans cannot completely operate without relying on prior experience. The pervasive role of prior1486

knowledge in shaping cognition is a foundational tenet of the cognitive revolution. However, “Fluid1487

intelligence” is the ability to solve novel and abstract problems (Raven, 2003). It is a core cognitive1488

ability, closely related to other domain-general cognitive abilities like working memory, and executive1489

function, both correlationally (Conway et al., 2002) and in terms of the underlying neural correlates (i.e.,1490

in the prefrontal cortex) (Burgess et al., 2011). It is distinguished from crystallized intelligence, which is1491

composed of the domain-specific knowledge and skills one acquires through one’s lifetime (Hartshorne1492

and Germine, 2015). This distinction is a classic one in psychology (Carroll, 1993).1493

B.4.1 Scholastic Assessment Test analogy questions1494

Previous work has shown that fluid reasoning correlates with analogical reasoning (Goswami, 1986; Snow1495

et al., 1984; Cattell, 1987). AI, ML, and NLP research has focused on analogical reasoning because this1496

requires many componential abilities: syntactic parsing, semantic understanding, categorization, inductive1497

reasoning, mathematical reasoning, and so on (Pearson, 2021). Research on the cognitive alignment of1498

PLMs has focused on performance on the 374 Scholastic Assessment Tests (SAT) analogy questions1499

by Turney (2005). Despite being broadly used in literature (Turney, 2005; Turney and Pantel, 2010;1500

Hendrickx et al., 2019; Webb et al., 2023), our pilot experiments show that PLMs like GPT-3.5-Turbo,1501

GPT-4, and Gemini perform nearly at ceiling on this test, while other open source models perform poorly1502

on the same test. This hints that the set of questions in the test may be part of the GPT-X/ Gemini training1503

or tuning data.1504

Operationalization: Each problem is of the form A:B::?, with answer choices containing candidates1505

for C:D. We evaluate the performance of models in three ways:1506

• Closeness judgment problem: Calculate the cosine similarity between the obtained latent representa-1507

tions for the member and the category. This requires models where the latent representations are1508

readily available. These cosine similarities are calculated in different ways:1509

– 3-cos-add: cos( vector(D),vector(C) - vector(A) + vector(B))1510

– 3-cos-mul: cos(vector(D), vector(B))*cos(vector(D), vector(C))/(cos(vector(D), vector(A))+ e);1511

e is a small constant to prevent overflow.1512

– Concat-cos: cos( [vector(A) || vector(B)] , [vector(C) || vector(D)])1513

• Surprisal values: Calculating the summation of probabilities for each token with the as=to relation-1514

ship; forming the sequence A is to B as C is to D.1515

• Prompting: Prompt the models with the following design: Guidelines, Query, and Options. The1516

Guideline highlights the task of solving the analogy problem. The Query consists of A:B. The1517

options are the candidate pairs C:D.1518
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1. "Solve the following Raven Progressive Matrix problem by idenƟfying the paƩern in the sequences. 
Select the correct choice for the missing element. 

2. "IdenƟfy the correct opƟon to complete the Raven Progressive Matrix. Consider the paƩerns in 
numeric and fracƟonal values across the rows to solve the problem." 

3. "Solve the Raven Progressive Matrix problem" 

4. "Solve the Raven Progressive Matrix problem. Select the correct choice for the missing element in row 
3." 

5. "Complete the paƩern in the Raven Progressive Matrices problem" 

6. "Apply abstract reasoning to solve the following Raven Progressive Matrices problem:" 

7. "Solve the Raven Progressive Matrices by idenƟfying paƩerns and drawing analogies. Select the 
correct choice for the missing element in row 3." 

8. "Select the correct choice for row 3, using the paƩerns and analogies from rows 1 and 2." 

 

row1: (2,0.5,100), (4,0.5,100), (3,0.5,100) 

row2: (3,0.7,50), (2,0.7,50), (4,0.7,50) 

row3: (4,0.2,70), (3,0.2,70), ? 

Choices: (1,0.2,70), (5,0.2,30), (5,0.2,70), (2,0.2,70), (5,0.2,110), (4,0.2,70), (3,0.5,70), (2,0.2,90)" 

B.4.2 Raven’s Progressive Matrices - list of prompts used in experiments 1519

1520


