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Abstract

Recent advances in graph neural network (GNN)-based neural operators have
demonstrated significant progress in solving partial differential equations (PDEs) by
effectively representing computational meshes. However, most existing approaches
overlook the intrinsic physical and topological meaning of higher-order elements
in the mesh, which are closely tied to differential forms. In this paper, we propose a
higher-order GNN framework that incorporates higher-order interactions based on
discrete and finite element exterior calculus. The time-independent boundary value
problems (BVPs) in electromagnetism are instantiated to illustrate the proposed
framework. It can be easily generalized to other PDEs that admit differential
form formulations. Moreover, the novel physics-informed loss terms, integrated
form estimators, and theoretical support are derived correspondingly. Experiments
show that our proposed method outperforms the existing neural operators by large
margins on BVPs in electromagnetism. Our code is available at https://github.
com/Supradax/Higher-Order-Differential-Topology-aware-GNN.

1 Introduction

Solving partial differential equations (PDEs) accurately is fundamental in scientific computations.
Traditional numerical solvers [1] and the emerging physics-informed neural networks [2] rely on
iterative computations. This is a significant bottleneck that precludes their application in time-
sensitive domains where slight inaccuracy is tolerable but speed matters, such as gaming engines
and interactive simulations. To address these limitations, neural operators [3–6] propose to directly
learn the mapping between initial/boundary conditions and complete PDE solutions, eliminating
time-consuming iterations while maintaining the capability to handle the PDEs whose exact analytical
solutions are unattainable.

Convolutional neural network-based solvers are inherently constrained to regular, grid-like domains,
whereas numerical solvers typically employ meshes to represent irregular solving regions—an
approach naturally aligned with graph neural networks (GNNs). This compatibility has spurred
growing interest in GNNs for time-dependent physics simulations, demonstrated through applications
from fabric dynamics in wind [7] and granular particle systems [8] to neural mesh refinement
schemes [9]. However, solving time-independent PDEs, especially boundary value problems (BVPs),
presents greater challenges due to the absence of temporal guidance (initial data) and limited feature
representation. Recent work [10] attempts to apply GNNs to BVPs in electromagnetism and has
shown promising results, but is still limited to relatively simple cases.

Conventional GNN-based BVP solvers primarily utilize vertex adjacency in meshes while neglecting
higher-order topological elements (edges, faces, cells), despite their fundamental physics interpre-
tations from the perspective of differential forms [11]. While vector analysis has long dominated
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Figure 1: In the proposed DEC-HOGNN, scalar and vector fields on nodes, edges, faces and cells
are encoded into k-simplex features, passing through HOGNN and decoded back as target fields.

physical modeling, modern physics recognizes that many vector fields are more naturally interpreted
as differential forms on manifolds [12]. In electromagnetism, it reveals a hierarchical structure:
potentials (φ) manifest as 0-forms, field intensities (E,H) as 1-forms, flux densities (D,B) as
2-forms and density distributions (ρ) as 3-forms [13]. This formalism, crystallized in the Maxwell’s
House representation of Maxwell’s equations [14], treats traditional vector fields as mere proxies for
underlying forms. Discrete exterior calculus [15] operationalizes this approach through De Rham
mappings that represent k-forms as integrals over k-simplices [16]. Also, introducing geometric
objects like differential forms allows us to naturally generalize this framework to PDEs on curved
spaces [17] beyond merely incorporating topological structures [18, 19].

In this paper, we propose a higher-order GNN-based PDE solver framework by exploring the ideas
in discrete exterior calculus (DEC) and finite element exterior calculus (FEEC) in a principled
manner. By encoding the integrals over k-simplices as k-simplex features within higher-order
GNNs (HOGNNs), which explicitly model interactions between simplices of varying dimensions, we
establish a principled framework for solving form-based PDEs while preserving the topological and
physical structure inherent to the problem domain. The resulting framework is dubbed DEC-HOGNN
and illustrated in Figure 1. DEC-HOGNN enjoys better physical interpretation from the differential
form perspective and can be extended to higher-dimension cases naturally. Our main contributions are
summarized as follows: 1) We design a differential topology-aware HOGNN, which naturally encodes
and decodes PDE operators based on the principles of DEC and FEEC. 2) Various physics-informed
loss terms are derived under DEC-HOGNN, including the boundary condition ones, which can
enable solving the boundary-value PDEs more effectively. 3) The universal approximation property
in solving Poisson problems (electrostatics and magnetostatics) is presented, and the performance
excellence is demonstrated via empirical experiments.

2 Related Work

Higher-Order GNNs. HOGNN is an extended learning framework on generalized graphs, i.e.,
hypergraphs [20]. A hypergraph G allows a hyperedge to contain more than two vertices [21].
HOGNN leverages the more abundant adjacencies on hypergraphs and mimics what GNN does on
plain graphs via redefining various neighborhoods. If G has no further decorated structures, then
one can define the k-node-tuple adjacency [22]; while boundary, co-boundary, upper, and lower
adjacencies are available when G is a simplical complex [18] or a cell complex [23]. Mechanisms in
GNN are mostly based on a special adjacency induced by edges and thus can be easily transplanted
to hypergraphs. The graph-convolution [24], attention [25], and generalized message passing [26]
of HOGNN all fall into this category. HOGNN has been well-studied in various regions, such as
recommendation systems [27] and molecular predictions [28], where multi-body interactions are of
significance, but beyond the expressive ability of plain graphs.

Neural Operators. Neural operator [3] learns function-to-function mappings mainly using data-
driven loss instead of PDE-based physics loss. Its original implementation is furnished with kernel
convolution of O(n2) complexity, which can be improved to O(n log n) in the spectral domain via
discrete fast Fourier transform [3]. It is then extended to non-square-like regions [4] and spatial-
spectral neural operators realized by wavelet transform [29–31]. This field later gradually shifts
towards Transformer architectures with PDE-compatible attentions, from GNOT [5] employing
boundary-aware cross-attention to Transolver [6] using attentions among domain slices.
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Figure 2: The primal manifold M has 4 tetrahedrals. The i-cell σi ∈ M (i ∈ {0, 1, 2, 3}) and its
dual cell ⋆σi are illustrated, associated with specific magnetic quantities. Identify the scalar potential
φ as 0-form, vector potential A and magnetic intensity H as 1-form and magnetic flux density B as
2-form, and the relations H = ∇φ,B = ∇×A,∇×H = 0,∇ ·B = 0 are encoded into exterior
derivative d and its property d2 = 0. The electric case is similar.

GNN-based PDE Solvers. GNN-based neural operators have been studied in time-evolving mesh-
based and particle-based physics simulations [7, 8]. The particles appear in the form of point clouds,
and adjacency is built on local neighborhoods, in which equivariance is introduced to enhance
model performance, such as subequivariance [32] and IsoGCN [33], an equivariant data-driven
neural differential operator. To align with Neumann boundary in PDEs, NIsoGCN [34] further
introduces a Neumann term into the differential kernel. This category requires data on fields and
their differentials, but the latter is often intractable. It is found that message passing in GNNs can
represent various numerical methods for time-dependent PDEs [35] and aligns with finite volume
methods to achieve local mass conservation [36]. In addition, GNN-based approaches for BVPs [10]
and inverse problems [37] are also explored.

3 Preliminary

De-Rham Mapping. In algebraic topology, a simplex chain complex C(X) on a topological space
X is a graded vector space of k-order simplices Ck(X), decorated with the boundary operator ∂.
A k-cochain σk ∈ Ck(X) : Ck(X) → R is a real-valued function of σk ∈ Ck(X). If there exists
a diffeomorphism φ between X and a smooth manifold M, then for any k-form ω, we obtain a
covariant functor mapping from Ck(X) to Ck(X), namely, De-Rham mapping [16]:

F : Ck(X) → Ck(X), σk 7→
∫
φ(σk)

ω. (1)

DEC and FEEC. Discrete Exterior Calculus (DEC) offers a comprehensive and differential topology-
preserving toolkit to discretize operators on manifolds. In contrast to Graph Calculus [38], which
treats a discretized manifold as a graph—at the cost of losing essential differential properties and
thereby introducing inaccuracies—DEC maintains differential topology properties by working with
integrations. Specifically, it characterizes a k-form ω ∈ Ωk(M) on a discrete manifold M through
its integral over every k-simplex [16]. It yields high accuracy in applications where differential
information matters, and is widely used in computational physics [39–42]. Another benefit of
DEC is that it allows for processing manifolds from a dual perspective. For instance, the Hodge
star ∗k : Ωk(M) → Ωn−k(M) on M gives the important constitution relation between B and
H in electromagnetism. Even if ∗kω is intractable in the discrete case, we can still estimate its
integral on the dual manifold ⋆M (shown in Figure 2) without a priori on the metric [15]. Finite
Element Exterior Calculus (FEEC) generalizes the Finite Element Method (FEM) and is a numerical
implementation of Galerkin methods. FEM is in essence an interpolation method with nodal functions,
a.k.a., Lagrangian element [1]. However, such node-wise interpolation is inherently incompatible
with differential operators such as div and curl, whereas the adoption of higher-order finite elements
in FEEC enables the exact representation of these operators in the integral sense via straightforward
linear combinations [14].

Whitney Element. Whitney elements are a type of finite elements used in FEEC and DEC. They
provide a way to approximate differential forms on a discretized manifold that respects the geometry
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Figure 3: The illustration of DEC-HOGNN for 2D-electrostatics BVPs.

and topology of the manifold. Let w and w denote scalar and vector fields, respectively. Given
a tetrahedralized mesh representation of a manifold M with dimM = 3, let [i, j] denote the
edge containing vi, vj and so are [i, j, k], [i, j, k, l] for face and cell, respectively. The canonical
node elements {wi : wi(vj) = δij} are functions on M, in which δij is the Kronecker delta. Let
W 0(M),W 1(M),W 2(M), and W 3(M) denote the function spaces spanned by node elements wi,
edge elements w[i,j], face elements w[i,j,k], and cell elements w[i,j,k,l] (scalar fields), respectively.
Then the integral of w[i,j] along [i, j], the flux of w[i,j,k] through face [i, j, k], and the volume integral
of w[i,j,k,l] within tetrahedral [i, j, k, l] all equal to 1 [14]. The element definitions are as follows:

w[i,j] := wi∇wj − wj∇wi (2)

w[i,j,k] := 2(wi(∇wj ×∇wk) + wj(∇wk ×∇wi) + wk(∇wi ×∇wj)) (3)

w[i,j,k,l] := 6
∑
cyc

wi(∇wj ×∇wk) · ∇wl = χx∈[i,j,k,l]/ vol([i, j, k, l]) (4)

in which wi, wj , wk, wl ∈ W 0(M). For ease of reference, the notation frequently used throughout
the paper is summarized in Table 5 in Appendix A.

4 Methodology

Problem Setup and Motivation. In this work, we focus on PDEs that admit differential form
formulation (many important PDEs in physics and engineering can be formulated using differential
forms, such as Maxwell’s, Navier-Stokes, Yang-Mills Equations, etc.). Given PDEs (often formulated
in vector fields) on a discrete manifold M, we aim to learn a neural operator GΘ that takes as inputs
the observed scalar fields {si} and vector fields {vi}, and outputs the target vector field u of interest:

u = GΘ({s1, ..., sm}, {v1, ...,vn},M). (5)

In comparison to the vector field formulation, the differential-form characterization of PDEs is
coordinate-independent and explicitly reveals the geometric and topological aspects of the spaces.
Motivated by this, we propose to transform the vector fields into the differential form formulation of
the PDEs, which enables us to develop the neural operators by combining the principles in DEC and
FEEC. The benefits are threefold: 1) they permit exploring the higher-order topological elements to
facilitate PDE solving, 2) developing various physics-consistent losses, especially for the boundary-
value problems, and 3) differential operators can be interpreted as simple linear combinations in DEC
and FEEC, aligning with the higher-order message passing framework. Once the PDEs are solved,
we then translate the results into the vector field language for downstream analysis.

Method Overview. Since differential k-forms can be represented as integrals on k-dimensional
elements and further identified as higher-order element features, we introduce physics-informed
higher-order interactions and aggregations into existing HOGNN frameworks in Section 4.1. Nev-
ertheless, the initial input and expected output are often vectors instead of forms in practice. To
circumvent this, we propose a proper encoder-decoder to enable consistent transformations in Sec-
tion 4.2. In a nutshell, the input vectors are encoded into forms (higher-order features), processed by
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HOGNN, and then decoded back into vectors, as illustrated in Figure 1. The physics-constrained loss
and the universal approximation property of the proposed method are presented in Section 4.3.

As an illustrative example, we instantiate our framework by solving the classical BVPs in electro-
magnetism, and the proposed method can be easily generalized to other PDEs that can be formulated
using differential forms. Recall that a typical Neumann electrostatic BVP is

∇ ·D = ρ,∇×E = 0 in Ω; E = E0,D = D0 on ∂Ω; D = εi ·E in Ωi, (6)

in which ρ,D,E are the charge density, displacement field, and electric field, respectively, whereas
{Ωi} is a partition of the domain Ω. The permittivity tensor εi can vary in different Ωi consisting of
different materials. In this case, the learned operator GΘ will take as input ({ρ} , {E0,D0} ,Ω) and
produce the complete fields (E,D). To this end, we rewrite Eq. 6 in its differential form formulation.

dD = ρ, dE = 0 in Ω; E = E0, D = D0 on ∂Ω; D = ε ∗1 E in Ωi, (7)

in which d· denotes the exterior derivative and D,E are the corresponding k-forms. The input scalar
field ρ and masked vector fields E,D are first encoded into integrated forms in the form of vertex,
edge and face features. Three types of edge adjacencies are used in the higher-order GNN, which give
important physics interpretations (as shown in Figure 3): the curl-free property dE = 0 is implicitly
included in the primal edge co-boundary adjacency, while Gauss’s Law dD = ρ is involved in the
dual edge co-boundary adjacency. These GNN layers can be stacked sequentially, and the aggregated
features can be either decoded back as complete E,D or forwarded to other networks.

4.1 Physics-Informed Higher-Order Interactions

In light of DEC, we identify the potential on node, the circulation along an edge, the flux through a
face, and the mass within a cell as the node, edge, face, and cell features, respectively. Given a discrete
manifold M and its dual ⋆M, since both of them are cell complexes, an element c onward have
four types of neighborhood: boundary B(c) := ∂c and co-boundary C(c) := {d : c ∈ B(d)}, upper
adjacency N↑(c) := {d : ∃δ, {c, d} ⊂ B(δ)} and lower adjacency N↓(c) := {d : ∃δ, {c, d} ⊂ C(δ)}.
Following the paradigm of [26], the element feature h′

c of c is updated by its original feature hc and
the aggregated messages from four neighborhoods B(c), C(c),N↑(c),N↓(c) via:

h′
c = φ

(
hc,m

B
c ,m

C
c ,m

N↓
c ,m

N↑
c

)
, c ∈ M, (8)

mB
c = Aggregated∈B(c) φB(hc,hd), (9)

mC
c = Aggregated∈C(c) φC(hc,hd), (10)

m
N↑
c = Aggregated∈N↑(c), δ∈C(c)∩C(d) φN↑(hc,hd,hδ), (11)

m
N↓
c = Aggregated∈N↓(c), δ∈B(c)∩B(d) φN↓(hc,hd,hδ). (12)

Since forms in a PDE can be defined on both M and ⋆M (e.g., E and D in Eq. 7), we also propose a
higher-order MPNN on the dual manifold ⋆M for dual forms by the fact:

B(⋆c) = {⋆d : d ∈ C(c)}, C(⋆c) = {⋆d : d ∈ B(c)},
N↑(⋆c) = {⋆d : d ∈ N↓(c)}, N↓(⋆c) = {⋆d : d ∈ N↑(c)}.

Usually, not all neighborhoods and elements will be used in higher-order MPNN due to computational
complexity and the absence of features on corresponding elements. For instance, 2D-electrostatics
BVPs only involve E,D, ρ and thus only adjacencies about edges and faces are considered. In recent
studies, there are various ways to implement the message passing on four different adjacencies,
including generalized convolution, attention, and Transformer. We list several candidates of the
adjacency layer backbones in Table 1 and will study their impact on model efficacy in Section 5.2.

In Table 1, L(k) := D − A = 2D − II⊤ is the higher-order Laplacian [21], defined by indicator
matrix Iij := χσi∈N↓(σj) and diagonal degree matrix D; L̃ is the Laplacian of an extended graph
G = (Ck ∪ Ck+1, {(c, d) : c ∈ Ck, d ∈ C(c)}); hc,d,δ is the concatenation of hc,hd,hδ and hc,d is
likewise. In our implementation, the relative orientation sign(c, d) between two elements is further
considered, via replacing hc,d by sign(c, d)hc,d.

Consistency with Conservation Law. It is beneficial for solving BVPs by introducing higher-order
interactions, because the interactions have meaningful physics interpretations, e.g., the sum of edge
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Table 1: Possible implementations for co-boundary/lower adjacency layers.

Layer Co-boundary and lower adjacencies

Convolution

h′(k)
c = σ

(
|N↓(c)|−

1
2

∑
(d,δ)∈N↓(c)

(
L(k)h(k)Θ(k))

d
+

(
L(k+1)h(k+1)Θ(k+1))

δ

)
h′(k)
c = σ

(
|C(c)|−

1
2

∑
d∈C(c)

(
L̃(k)h(k)Θ(k))

d

)

Attention

h′
c = σ(WChc +

∑
(d,δ)∈N↓(c)

softmaxN↓(c)(αdδ)WNhc,d,δ), αdδ = WAhc,d,δ

h′
c = σ(WChc +

∑
d∈C(c)

softmaxC(c)(αd)WNhc,d), αd = WAhc,d

Transformer

h′
c = σ(WChc +

∑
(d,δ)∈N↓(c)

softmaxN↓(c)(|N↓(c)|−
1
2 q⊤

c kd)WNhd)

h′
c = σ(WChc +

∑
d∈C(c)

softmaxC(c)(|C(c)|−
1
2 q⊤

c kd)WNhd)

features around a face corresponds to the vorticity, while the sum of face features around a cell
indicates the divergence at that location. This enables us to preserve structural conservation discretely
by using integrated differential forms. Moreover, prior work also shows that adding conservation
regularization can boost the performance of PDE solvers. For instance, a conservative GNN solver
for 2D fluid dynamics [36] employs message passing based on face lower adjacency in the HOGNN
framework and achieves local mass conservation (divergence-free) through asymmetric aggregation.
We can realize more conservation constraints with DEC, e.g., enforcing vorticity conservation
(∇×E = 0) and divergence conservation (∇ ·B = 0,∇ ·D = ρ) in electromagnetism.

Consistency with Electromagnetic Constitution Law. As a side-product, we can estimate the
electric and magnetic permeability ε and µ of the medium while solving BVPs. The constitution
law B = µH,D = εE can be equivalently interpreted by Hodge star: B = µ ∗1 H,D = ε ∗1 E. It
allows us to estimate the µ, ε along different directions via the definition in DEC:∫

⋆σk

∗kω :=
vol (⋆σk)

vol (σk)

∫
σk

ω, ω ∈ Ωk(M). (13)

4.2 Encoder-Decoder between Vector Fields and Forms

Encoder. The encoder aims to transform vector fields into higher-order element features (integrated
forms). In 3D-cases, a 1-form ω1 and a 2-form ω2 can be realized by vector proxies u1 and u2, with
the aid of a unit tangent vector t on an edge σ1 and a unit normal vector n on a face σ2, respectively;
while a 3-form ω3 can be identified as a scalar field u3 : R3 → R, and the integrated form is the usual
volume integral. More formally,∫

σ1

ω1 :=

∫
σ1

u1 · tds,
∫
σ2

ω2 :=

∫
σ2

u2 · ndS,
∫
σ3

ω3 :=

∫
σ3

u3dV. (14)

Given the samples {xj} observed on σi (i = 1, 2, 3), the integrals on the right-hand sides of Eq. 14
can be estimated to yield the integrated forms numerically with either the Monte Carlo method or
canonical quadrature rules on simplices (e.g., cubic quadrature on a triangle [43]). Similarly, the 2D
case is given as follows and can be estimated similarly:∫

σ1

w1 =

∫
σ1

u1 · tds,
∫
σ2

w2 :=

∫
σ2

u2dxdy. (15)

In DEC, the differential forms in the primal manifold and dual manifold are related by the Hodge star
∗1 (e.g., E ∈ Ω1(M) and D ∈ Ω2(⋆M) in Eq. 7). Since we only have observations at primal nodes,
it is simpler to estimate the integrated 2-forms on the primal manifold. However, DEC requires the
integrals on the dual manifold, which poses a challenge for implementation. To sidestep this, we
derive an approximation of the integrated dual forms based on the integrated primal forms, presented
in Theorem 1. The details of the theorem can be found in Appendix C. Intuitively, the theorem offers
us a simpler way to calculate the integrated dual forms.
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Theorem 1 (Non-Cycle Forms Estimation). For a smooth k-form ω that is not a cycle defined
on a bounded region, i.e., dω does not vanish identically in any k-simplex σk, one can estimate
the integrated dual forms {

∫
⋆σn−k

ω : σn−k ∈ Cn−k(X)} by using the integrated primal forms

{
∫
σk

ω : σk ∈ Ck(X)} up to accuracy O(εk+1) in which ε := supσk∈Ck(X) diamσk.

Decoder. The decoder intends to recover the vector fields from the derived integrated forms. The
principle is that the integral of a proper vector field proxy on a simplex should equal the integrated
form onward. To find the proxy at vi for a 1-form (e.g., E in Eq. 7) along edge [vi, vj ], note that
h[vi,vj ]—the final edge feature output by DEC-HOGNN—indicates the circulation of the proxy
and the circulation of w[vi,vj ] in Eq. 2 along edge [vi, vj ] is 1, and thus the Whitney electric field
contributed by edge [vi, vj ] at vi is set to h[vi,vj ]w[vi,vj ]. The contributions to vi from different
edges can be aggregated by average pooling or attention-style weighted sum. Similarly, for the
proxies of 2-forms (e.g., D in Eq. 7) with final face feature h[vi,vj ,vk] and 3-forms (e.g., ρ in
Eq. 7) with final cell feature h[vi,vj ,vk,vl], the face and cell contribution are h[vi,vj ,vk]w[vi,vj ,vk] and
h[vi,vj ,vk,vl]w[vi,vj ,vk,vl] respectively, with w[vi,vj ,vk], w[vi,vj ,vk,vl] defined by Eq. 3 and Eq. 4.

Remark. The interpolation nature of the decoding approach offers a continuous field not only
defined on the nodes but also in the cells. Though other GNN operators can also estimate the inner
fields by multi-linear interpolation based on values at nodes, such methods can destroy certain
important physical properties compared with Whitney elements. For instance, the reflection law in
electrodynamics elucidates that the tangent component of E on the medium interface is continuous
while the normal component is not. With prior knowledge of the interface positions, one can choose
to average out contributions from each side respectively and obtain two different E’s before and after
reflection, which is consistent with physics on the interface, while a usual interpolation based on
node-wise data cannot. Lastly, we present the theoretical analysis in Theorem 2, demonstrating that
our encoding and decoding scheme preserves sufficient information for scalar and vector fields on a
sufficiently fine mesh.
Theorem 2 (Proper Encoder-Decoder). Given a uniform partition {[xi, xi+1] : 1 ≤ i ≤ 2N} on the
unit interval, i.e., 0 = x1 < x2... < x2N+1 = 1, the encoding operator EN : W 1,2([0, 1]) → R2N is
defined as the 2N integrals on each [xi, xi+1] and the decoding operator DN : R2N → C∞([0, 1])
maps any 2N -dimensional feature h to a function f(x) on [0, 1] such that

∫ xi+1

xi
f(x)dx = hi. Then

for any φ ∈ L2([0, 1]) and ε > 0, there exists an integer M > 0 such that for all N > M ,

||φ−DN ◦ EN (φ)||L2 < ε. (16)

By definition, we have EN ◦ DN = id .

4.3 Physics-Informed Loss and Universal Approximation Property

Physics-Informed Loss. Purely data-driven methods are likely to go against physics. Hence,
PINN introduces physics-constrained loss as regularization to guide models to learn beyond the
data resolution [44]. In PINN, the PDE residual is usually estimated by point-wise sampling and
auto-differentiation. This is incompatible with GNNs since vertices are discrete, making it hard
to enforce physics-consistency constraints, e.g., constraining a field to be curl-free [10]. But in
integrated forms, one can interpret a differential version of PDEs into the integral version. For
instance, magnetic flux density B is always divergence-free, inducing a DEC-version constraint:

dB = 0 ⇔ ∇ ·B = 0 ⇒
∫
Ω

∇ ·B =

∫
∂Ω

B · n =
∑

σ2∈∂Ω

∫
σ2

B · nσ2 =
∑

σ2∈∂Ω

∫
σ2

B = 0. (17)

In our proposed framework,
∫
σ2

B is indeed a feature of face σ2. Therefore, we can introduce physics-
informed loss without sampling and differentiation, but by simply summing up corresponding
higher-order features. More physics-informed loss terms are derived in Appendix B, covering the
divergence, vorticity, and boundary conditions.

Universal Approximation Property. Theorem 3 shows the universal approximation ability of
DEC-HOGNN in solving the Poisson problems. The proof is available in Appendix D.
Theorem 3 (Universal Approximation Property). Let H2(Ω) denote the Hilbert space on a bounded
closed region Ω with C1-boundary, and Pi := Di ◦ Ei be the encoder-decoder projection with
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Figure 4: In the electrostatic field task, the model is required to output complete fields shown in the
right-side two panels based on the left-side three panels.

Figure 5: Models are compared on various settings. From left to right: 2D electrostatics BVP on
a square 2D-mesh with two kinds of medium; 2D magnetostatics on an irregular holed mesh; 3D
electrostatics and magnetostatics on a 3D socket model and a quarter-gear model, respectively.

resolution i. Given a simplex-partition {Xα} of Ω with measure-zero intersections, for any f ∈
V ∪

⋃∞
i=1 PiV, V := H2([0, 1]n) ∩ {f : ||∇f ||∞ < M}, there exists a network in the form of

D ◦ LN ... ◦ L1 ◦ E with infinite neurons to solve the Dirichlet Poission problem on Ω, such that:

lim
sup diamXα→0

||D ◦ LN ... ◦ L1 ◦ E(f, g)− u||L2 = 0, (18)

in which ∆u(x) = f(x),x ∈ Ω;u(x) = g(x),x ∈ ∂Ω.

As a corollary, note that E = ∇u and the experiment setting below is equivalent to solving a Neumann
boundary condition in a linear medium, the universal approximation property also rings true by a
similar proof in Appendix D via single-layer potential method.

5 Experiment

5.1 Experiments and Benchmarks

Experiment Tasks. We assess the performance of the proposed model on 2D electric and magnetic
boundary value problems. In the electrostatic case, the system is governed by a potential φ:

∆φ(x) = ρ(x),x ∈ Ω;∇φ(x) = u(x),x ∈ ∂Ω,

which gives the electric intensity E and electric displacement D. In our settings, the domain Ω is
partitioned into two regions Ω1,Ω2 with measure-zero intersection. Ω1 has isotropic permeability
ε1I while Ω2 has a non-isotropic linear one ε2, as shown in the blue and green-colored regions in
Figure 4, and

D(x) = εiE(x),x ∈ Ωi, i = 1, 2.

Let H2(Ω) be the function space on Ω with L2 derivatives, i.e., H2(Ω) ={
f : ||f ||22 + ||∇f ||22 < ∞

}
and H2(Ω) the vector-valued function space on Ω with H2(Ω)

components. The operator G : H2(Ω)×H2(∂Ω)2 → H2(Ω)2, (ρ,E ·χx∈∂Ω,D ·χx∈∂Ω) 7→ (E,D)
recovers the field E,D on Ω based on prior knowledge on the boundary field data (E,D) on ∂Ω and
the charge density distribution ρ on Ω, as shown in Figure 4.

Dataset Generation. Both 2D and 3D meshes are adopted as illustrated in Figure 5. The electrostatic
data is obtained by FEM-based electromagnetism PDE solvers. Ω is partitioned into many triangles
Xi with measure-zero intersections. The charge density ρi in each Xi is randomly assigned following
a uniform distribution. The PDEs are then solved in a large enough vacuum region with Neumann
boundary conditions. E,D on boundary vertices and ρ on all vertices are sampled as input while
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Table 2: Performance of different neural operators in terms of MSE. The bold and underscored
numbers indicate the best and second-best in each column, respectively.

Model 2D Electrostatics 2D Magnetostatics 3D Electrostatics 3D Magnetostatics

DeepONet 1.866±0.025 1.438±0.021 0.842±0.094 0.483±0.001
MKGN 1.960±0.097 2.324±0.209 0.793±0.043 1.382±0.030
Galerkin-Type 1.209±0.028 1.895±0.144 1.176±0.030 0.120±0.003
GNOT 2.064±0.052 1.142±0.149 7.266±0.014 4.480±0.543
Transolver 2.751±0.009 7.432±0.143 8.249±0.009 7.089±0.460

GCN-based 1.362±0.015 1.224±0.026 1.986±0.892 0.182±0.009
GAT-based 1.360±0.014 1.755±0.040 1.029±0.049 1.222±0.021
Graph UNet-based 1.917±0.024 1.283±0.004 0.809±0.061 0.375±0.006
GT-based 0.990±0.031 1.405±0.077 0.244±0.025 0.171±0.023

DEC-HOGNN (Ours) 0.623±0.058 0.875±0.052 0.195±0.005 0.158±0.008

Table 3: Test loss and performance drop of different variants against the entire models.

Interactions Lower adjacency PD P D None PD PD PD None
Co-boundary PD PD PD PD D P None None

Test loss (mean square error) 0.652 0.676 0.678 0.719 0.954 0.959 1.244 2.077
Performance drop (%) 0.00 3.81 4.12 10.34 46.35 47.23 90.98 218.87

E,D on all vertices are the target output. Scalar fields are normalized, and vector fields are shrunk
with respect to the average norm to eliminate magnitude differences.

Note that the 2D magnetostatic field is also governed by a potential Az (the vector potential A has
only one non-vanishing component Az if the 2D space is identified as the xy-plane). Therefore, the
data generation is similar. For more details, please refer to Appendix E.

5.2 Numerical Results

Baselines and Implementation Details. To showcase the necessity of introducing specifically
devised solvers for BVPs and the efficacy of the proposed method, we evaluate our model against the
following general time-dependent PDE neural solvers, in which the input fields are masked accord-
ingly: DeepONet [45], MKGN [46], Galerkin-type Attention [47], GNOT [5], and Transolver [6]; in
addition, various GNN-based solvers devised particularly for BVPs are also included (as in [10]):
GCN [48], GAT [49], Graph U-Net [50], and Graph-Transformer-based BVP solvers [51].

Main Results. Table 2 presents the MSE (mean square error) of different methods on 2D/3D
electrostatics/magnetostatics BVPs. The neural operators from DeepONet to Transolver, which
are mostly designed for time-dependent PDEs, yield larger errors compared with GNN-based BVP
solvers. It is because many time-evolving PDE solvers like DeepONet predict an increment based
on previous observations, which is unfortunately intractable in static cases. The multi-scale design
in MKGN and the heterogeneous cross-attention in GNOT both suffer from the lack of features, as
time-independent PDEs can be determined by the boundary conditions on boundary nodes, which
takes up a minority. These make them no better than simple GNN operators in [10]. The proposed
DEC-HOGNN considers implicit higher-order interactions in the governing systems and thereby
outperforms usual GNN operators.

Ablation I: On Higher-Order Interactions. Different types of interactions can contribute variably
to the performance of DEC-HOGNN. In this experiment, the full model incorporates four types
of interactions, namely, primal and dual lower/co-boundary adjacencies, which are systematically
ablated to evaluate their impact. The resulting variants are denoted as Primal-Dual (PD), Primal-only
(P), Dual-only (D), and None. Table 3 presents the results in 2D electrostatic BVPs, which shows that
message passing on edge lower adjacency brings minor enhancement while co-boundary adjacency
matters much more. This result coincides with the governing PDE in electrostatics, dE = 0, dD = ρ,
whose inducing loss terms are supposed to be computed based on both primal and dual co-boundary
adjacency (Appendix B).
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Table 4: The improvements of DEC-HOGNNs equipped with different higher-order graph convolu-
tions and interactions against the vanilla GNN on the 2D-magnetostatics.

Backbone GCN GAT Graph Transformer

Both co-boundary and lower adjacency 2.450±0.050 2.246±0.350 1.222±0.036
Lower adjacency only 3.463±0.069 3.491±0.081 1.629±0.068
Co-boundary only 2.159±0.045 2.161±0.030 1.386±0.041
Vanilla GNN 1.876±0.038 2.747±0.541 1.646±0.026
Improvement (%) -15.07 21.33 25.75
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Figure 6: Left: Mesh quality and model performance of DEC-HOGNN variations as more edges are
dropped; Right: Model comparison on meshes with different topological characteristics.

Ablation II: On Different GNN Backbones. In this experiment, we study the impact of different
variants of higher-order GNNs on the efficacy of DEC-HOGNN by selecting different backbones,
including GCN, GAT, and Graph Transformer (GT), on 2D electrostatic BVPs. Results in Table 4
manifest that higher-order interactions can enhance model performance (GAT and GT), which is
consistent with the previous results. It further shows that adding more higher-order interactions does
not necessarily imply more positive sides. For instance, the appearance of lower adjacency impedes
GAT and GCN, while the co-boundary adjacency is much more beneficial for all backbones. Also,
not every convolution can fit the DEC-HOGNN framework well just like the counterexample GCN.

Ablation III: On Performance Degeneration due to Mesh Quality. We analyze the negative
impact out of mesh degradation by randomly dropping a certain amount of edges hierarchically. To
measure the mesh quality quantitatively, three indicators are adopted with arrows implying degrading
directions since good quality usually comes with uniform and regular elements. Further details on
these tailored meshes are covered in Appendix E. The left panel of Figure 6 reflects that dropping
edges from a triangularized mesh is followed by mesh degeneration. Also, minor degeneration would
not affect the performance violently while a major one leads to salient performance drop. Note that it
is also infeasible to adopt classical solvers using meshes with prominent quality issues. Thus these
negative effects are tolerable.

Ablation IV: On Different Topological Characteristics. As shown in Figure 12, eight 2D magne-
totastics benchmarks are used for the evaluation, which are named after their different topological
properties by (Connected Component Amount, Hole Amount). The right panel of Figure 6 shows that
the advantage of our approach persists as the underlying topology changes.

6 Conclusion

In this paper, we propose a BVP solver via integrating higher-order topological interactions, which
aligns with the discrete representation of differential forms, and the resulting model is aware of
differential topology. Several novel physics-informed loss terms and integrated form estimators
are also developed. Both theoretical analysis and experimental results demonstrate the advantages
of incorporating higher-order interactions via integrated differential forms. Similar to traditional
mesh-based numerical solvers, the performance of DEC-HOGNN is influenced by mesh quality,
as Whitney elements may degrade on poorly shaped triangulated or tetrahedral meshes, potentially
leading to convergence issues. Extending this approach to more general time-dependent PDEs and
developing methods to mitigate mesh quality dependence are left for our future work.
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[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

[50] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

[51] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph
transformer networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[52] L.C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010.

13



[53] Loring W. Tu. Differential Geometry: Connections, Curvature, and Characteristic Classes.
Springer, 1st edition, 2017.

[54] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems (MCSS), 1989.

[55] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry, 22(1):21–74, 2002. ISSN 0925-7721. 16th ACM Symposium on
Computational Geometry.

[56] Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on
Mathematical Software (TOMS), 2015.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are consistent with our actual contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Conclusion section, we discuss the limitation of the proposed framework,
which can be affected by low mesh-quality.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The complete statement and proof can be found in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details on how to generate datasets for the conducted experiments are men-
tioned in Appendix E and experiment settings are also covered in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: A repository containing data and code is provided in the abstract.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details on how to generate datasets for the conducted experiments are men-
tioned in Appendix E and experiment settings are also covered in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main results are reported with average and standard deviation error, as
shown in Table 2 and Table 4. We conduct these experiments with at least three random
seeds under each setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read it and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work mainly focus on topics over scientific computation. It has no
significant societial impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Models and data are used for scientific computation. There is no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix E depicts data details. Code and models are either original or open
sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The data on electromagnetic static fields will be uploaded to the repository.
Their details can be found in Appendix E.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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physics and does not involve human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work focuses on solving partial differential equations arising in math and
physics and does not involve human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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Answer: [No]
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 5: Summary of symbols and their corresponding meanings.

Symbol Meaning

Ωk(M) The space spanned by all k-form on manifold M.
⋆M The dual manifold of the primal manifold M.
C(X) The simplex chain complex of topology space X .
Ck(X) The set of all k-simplices in C(X). Its element is denoted by σk.
Ck(X) The set of all k-cochain on Ck(X). ∀σk ∈ Ck(X), σk : Ck(X) →

R, σk 7→ σk(σk).
∗k The Hodge star acting on k-forms. ∗k : Ωk(M) → Ωn−k(M). In

DEC, it maps k-forms on the discrete primal manifold to the discrete
dual manifold, i.e., ∗k : Ωk(M) → Ωn−k(⋆M)

[i0, ..., in] A n-simplex with vertices vi0 , vi1 , ..., vin in order.
dk The exterior derivative. dk : Ωk(M) → Ωk+1(⋆M).
∂k The boundary operator. ∂k : Ck(X) → Ck−1(X).
H2(Ω) The function space on region Ω with L2 derivatives.
H2(Ω) The vector-valued function space on region Ω, each component having

L2 derivative.
W k(M) The space spanned by k-th order Whitney element defined on M.
χA Indicator function. χA = 1 if condition A is satisified and otherwise

χA = 0.

A Notation

The notation used throughout the paper is summarized in Table 5.

B Training Loss Function Derivation

The loss below is under the assumption that the dual manifold is constructed based on circumcenters,
and fields are recovered by interpolation. For brevity, we only focus on discrete manifolds in R3.

Div-free and Curl-free. ∇ ·B = 0 ⇔ dB = 0, B ∈ Ω2(⋆M). By Stokes theorem,

0 =

∫
σ3

dB =

∫
∂σ3

B =
∑

σ2≺σ3

∫
σ2

B =
∑

σ2≺σ3

sign(σ2)hσ2
(19)

in which the partial-order relation σ ≺ σ′ implies that σ is a face of σ′. And thus the physics-informed
L2 loss can be:

Ldiv-free :=
∑

σ3∈M

∣∣∣∣∣ ∑
σ2≺σ3

sign(σ2, σ3)hσ2

∣∣∣∣∣
2

(20)

Then for ∇×H = 0 ⇔ dH = 0, H ∈ Ω1(M), likewise, we have:

Lcurl-free :=
∑

σ2∈⋆M

∣∣∣∣∣ ∑
σ1≺σ2

sign(σ1, σ2)hσ1

∣∣∣∣∣
2

(21)

As for forms D,E such that ∇ · D = 0,∇ × E = 0, one can obtain the formula by modifying
σ3 ∈ M, σ2 ∈ ⋆M by σ3 ∈ ⋆M, σ2 ∈ M. And for brevity, we will only cover the case on ⋆M
since that on M is almost the same. For non-divergence-free scenarios like ∇ ·D = ρ, then the L2

loss becomes:

Ldiv :=
∑

σ3∈⋆M

∣∣∣∣∣ρ(σ3) vol(σ3)−
∑

σ2≺σ3

sign(σ2, σ3)hσ2

∣∣∣∣∣
2

(22)

Boundary Condition: n ·B = 0. Consider a tetrahedral σ3 := [A,B,C,D] with positive-oriented
faces [A,B,C], [C,D,A], [A,D,B], [B,D,C], as shown in Figure 7. Let hA denote the altitude to
the opposite face [B,D,C] in σ3, wA the nodal function at vertex A, and similarly for the others.
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Figure 7: Tetrahedral [A,B,C,D].

−−→
AB indicates the unit vector pointing from A to B. Let H = hAhBhC , H

′ = hAhBhChD = HhD

and V := vol(σ3). Without loss of generality(WLOG), set [A,B,C] to be the unique boundary face
in σ3 with outwards normal nD.

It can be easily shown that −hA∇wA = nD [14] and the interpolation fields on [A,B,C] only come
from itself and its upper-adjacent neighbors. We first check whether its neighbors contribute normal
components. WLOG, observe [C,D,A] and we have:

w[C,D,A] ·nD = wA(∇wC ×∇wD) ·nD+wC(∇wD×∇wA) ·nD+wD(∇wA×∇wC) ·nD = 0
(23)

The first and second terms vanish since −hD∇wD = nD while the last term vanishes since wD = 0
on face [A,B,C]. Therefore, the only normal component contributor is [A,B,C] itself and we have:∫

[A,B,C]

w[A,B,C] · nD dS = 2

∫
[A,B,C]

∑
cyc

wA(∇wB ×∇wC) · nD dS (24)

= 2

∫
[A,B,C]

(
cos θA
hBhC

wA +
cos θB
hChA

wB +
cos θC
hAhB

wC

)
dS (25)

=
2

3
vol([A,B,C])

(
cos θA
hBhC

+
cos θB
hChA

+
cos θC
hAhB

)
(26)

=
2vol([A,B,C])

3H

∑
cyc

hA cos θA (27)

in which θA is the intersection angle of
−−→
DA and nD, cyc indicates the cyclic summation with respect

to the tuple (A,B,C). Thus in the sense of average approximation, the loss on boundary condition
n ·B = 0 is

Ln·B :=
4

9

∑
σ2∈∂⋆M

h2
σ2

∣∣∣∣∣vol(σ2)

Hσ2

∑
cyc

hA cos θA

∣∣∣∣∣
2

(28)

Boundary Condition: n×H = 0. WLOG, assume only [A,B] is on the boundary in σ3 and it is
obvious that the fields on [A,B] comes from edges {σ′

1 : ∃σ′
2, σ2, σ

′
1 ≺ σ′

2 ≺ σ3 ∧ σ1 ≺ σ2 ≺ σ3}.
First, observe that none in this set, except [A,B] itself, has a tangential component contribution.
WLOG,

w[A,C] ·
−−→
AB = (wA∇wC − wC∇wA) ·

−−→
AB = 0 (29)

The first term vanishes since ∇wC ·
−−→
AB = 0 while the second vanishes since wC = 0 on edge [A,B].

And thus the circulation on edge [A,B] is:∫
[A,B]

w[A,B] ·
−−→
AB =

∫
[A,B]

(wA∇wB − wB∇wA) ·
−−→
AB (30)

=
vol([A,B])

2
(∇wB ·

−−→
AB +∇wA ·

−−→
BA) (31)

=
vol([A,B])

2
(
cos θB
hB

+
cos θC
hC

) (32)
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(a) Estimate the integrated dual
1-form on [A,D] via integrated
primal 1-forms on ∂[A,B,C].

(b) Estimate the integrated dual 1-
form on [A,E,D] via integrated
primal 1-forms on ∂[A,B,C,D].

in which cos θB = nB ·
−−→
AB. Whence the corresponding loss is:

Ln×H :=
1

4

∑
σ1∈∂⋆M

h2
σ1

∣∣∣∣∣vol(σ1)
∑

v∈∂σ1

cos θv
hv

∣∣∣∣∣
2

. (33)

Boundary Condition n×B = 0. This condition is less common than n ·B = 0 in electromagnetism.
It involves more terms since all faces of σ3 have contributions. The term from [A,B,C] is:

I⃗[A,B,C] = 2

∫
[A,B,C]

wA
cos θA
hBhC

−−→
HA+ wA

cos θB
hChA

−−→
HB + wA

cos θC
hAhB

−−→
HC (34)

=
2vol([A,B,C])

3H

∑
cyc

hA cos θA
−−→
HA (35)

The terms from [C,D,A], [A,D,B], [B,D,C] are respectively:

I⃗[A,B,C],[C,D,A] =
V

hDH
(hA

−−→
BA+ hC

−−→
BC) (36)

I⃗[A,B,C],[A,D,B] =
V

hDH
(hB

−−→
CB + hA

−→
CA) (37)

I⃗[A,B,C],[B,D,C] =
V

hDH
(hC

−→
AC + hB

−−→
AB). (38)

Thus, the loss is:

Ln×B :=
∑

σ2∈∂⋆M

∣∣∣∣∣∣sign(σ2)hσ2
I⃗σ2

+
∑

σ2 ̸=σ′
2∧σ2,σ′

2≺σ3

sign(σ′
2)hσ′

2
I⃗σ2,σ′

2

∣∣∣∣∣∣
2

(39)

C Estimates among Integrated Forms

For a triangle region [A,B,C] whose diameter is dominated by ε and a smooth function f , then
direct expansion gives: ∀x ∈ [A,B,C],∫

[A,B,C]

f(x)dx = S[A,B,C]f(ξ) = S[A,B,C]f(x) + S[A,B,C]O(ε) = S[A,B,C]f(x) +O(ε3) (40)

And likewise, ∫
[B,C]

f(x)dx = |BC|f(x) +O(ε2) (41)

Let |AB| := vol([A,B]) and assume that |BD|/|DC| ≫ ε), then

ω(x) vol([A,B,D]) +O(ε3) =

∫
[A,B,D]

dω =

∫
[A,B]

ω +

∫
[B,D]

w +

∫
[D,A]

ω (42)
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w(x′) vol([A,C,D]) +O(ε3) =

∫
[A,C,D]

dw =

∫
[A,C]

w +

∫
[C,D]

w +

∫
[D,A]

w (43)

Note that ω(x′) = ω(x) +O(ε) and we have:∫
[A,B,D]

dω∫
[A,C,D]

dω
=

vol([A,B,D]) +O(ε3)

vol([A,C,D]) +O(ε3)
=

|BD|+O(ε2)

|DC|+O(ε2)
=

|BD|
|DC|

+O(ε) (44)

and ∫
[A,B,D]

dω∫
[A,C,D]

dω
=

∫
[A,B]

ω + (|BD|/|BC|)
∫
[B,C]

ω +
∫
[D,A]

ω +O(ε2)∫
[A,C]

ω − (|CD|/|BC|)
∫
[B,C]

ω +
∫
[D,A]

ω +O(ε2)
(45)

Combining Eq. 44 and Eq. 45 and rearranging the terms gives:∫
[A,D]

ω =
|BD|
|BC|

∫
[A,C]

ω +
|CD|
|BC|

∫
[A,B]

ω +O(ε2) (46)

Likewise, one can mimic the process above and obtain the estimation of dual 2-forms by primal
2-forms: ∫

[A,E,D]

ω =
|BE|
|BC|

∫
[A,C,D]

ω +
|CE|
|BC|

∫
[A,B,D]

ω +O(ε3). (47)

This can be generalized to high-dimensional cases. For brevity, let I(σ) :=
∫
σ
ω and τ1 :=

[vi0 , ..., vin−2
, u, w], τ2 := [vi0 , ..., vin−2

, w, v] and we have:

O(ε) +
vol([u,w])
vol([w, v])

=

∫
τ1
dω∫

τ2
dω

=

∫
∂τ1

ω∫
∂τ2

ω
(48)

, the right-hand side (RHS) equals:

RHS =

∑n−2
j=0 (−1)jIj(u,w) + (−1)n−1I([vi1:n−2

, w]) + (−1)nI([vi1:n−2
, u])∑n−2

j=0 (−1)jIj(w, v) + (−1)n−1I([vi1:n−2 , v]) + (−1)nI([vi1:n−2 , w])
(49)

=

∑n−2
j=0 (−1)j vol([u,w])

vol([w,v]) Ij(u,w) + (−1)n−1I([vi1:n−2 , w]) + (−1)nI([vi1:n−2 , u]) +O(εn−1)∑n−2
j=0 (−1)j vol([u,w])

vol([w,v]) Ij(w, v) + (−1)n−1I([vi1:n−2
, v]) + (−1)nI([vi1:n−2

, w]) +O(εn−1)

(50)

in which Ij(u,w) = I([vi1:j−1,j+1:n−2
, u, w]), Ij(w, v) = I([vi1:j−1,j+1:n−2

, w, v]). This gives:

vol([u,w])
vol([w, v])

=
(−1)n−1I([vi1:n−2 , w]) + (−1)nI([vi1:n−2 , u])

(−1)n−1I([vi1:n−2 , v]) + (−1)nI([vi1:n−2 , w])
+O(εn−1) (51)

=
I([vi1:n−2 , w])− I([vi1:n−2 , u])

I([vi1:n−2
, v])− I([vi1:n−2

, w])
+O(εn−1) (52)

combine with the volume decomposition identity vol([u,w])+vol([w, v]) = vol([u, v]) and we have:

I([vi1:n−2 , w]) =
vol([w, v])
vol([u, v])

I([vi1:n−2 , u]) +
vol([u,w])
vol([u, v])

I([vi1:n−2 , v]) +O(εn−1). (53)

C.1 Estimate Integrated Dual Forms from Integrated Primal Forms

We only propose ways to estimate dual 1-forms in R2 and R3 and 2-forms from primal 1-forms and
2-forms since usual integration quadrature can be leveraged directly. Apart from that, we further
show how to estimate dual 1-forms from primal 1-forms in Rn. Higher-order estimates and higher
dimensions are left for future work.

O is a non-overlappling vertex with vertices A,B,C s.t. O ∈ span[A,B,C]. Specifically, if O is
the dual node and the circumcenter of [A,B,C], then I([O, ⋆[B,C]]) = (I([O,B]) + I([O,C]))/2.
Therefore, it is reduced to show the relation between I([O,X]) and I([X,Y ]) where X,Y ∈
{A,B,C}.
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Figure 9: Estimate Ω1(⋆M) by Ω1(M) in R2

Note that I([A,O]) = vol([A,O])
vol([A,D])I([A,D]) and I([A,D]) can be estimated by I([A,B]) and

I([A,C]). And it appears done. However, it is possible to avoid introducing a new vertex D, in which
case it is easier to extend to higher-dimensional cases. For brevity, let SA := abs(vol(B,C,O)), S :=
vol([A,B,C]) and SB , SC is likewise defined.

vol([C,D])

vol([B,C])
=

vol([A,C,D])

vol([A,C,B])
=

vol([O,C,D])

vol([O,C,B])
=

SB

SC + SB
=

SB

S − SA
(54)

And thus:

I([A,O]) =
vol([A,O])

vol([A,D])

(
vol([C,D])

vol([B,C])
I([A,B]) +

vol([B,D])

vol([B,C])
I([A,C])

)
=

S − SA

S

(
SB

S − SA
I([A,B]) +

SC

S − SA
I([A,C])

)
=

SB

S
I([A,B]) +

SC

S
I([A,C]) (55)

Combine with I([O, ⋆[B,C]]) = (I([O,B]) + I([O,C]))/2, we have:

I([O, ⋆[B,C]]) =
SA

S
I([A,B]) +

SB − SC

S
I([B,C])− SA

S
I([C,A]) (56)

namely,(
I[O, ⋆[B,C]])
I[O, ⋆[C,A]])
I[O, ⋆[A,B]])

)
=

1

2S

(
SA SB − SC −SA

−SB SB SC − SA

SA − SB −SC SC

)(
I([A,B])
I([B,C])
I([C,A])

)
+O(ε2) (57)

However, this linear transform is not invertible since its determinant is zero. This implies that one
cannot recover the integrated primal forms simply by this transform formula. We will later turn to
this topic in Appendix C.2.

Fortunately, this formula can be easily extended to dimension n with the volume decomposition
identity. For σn = [v0, ..., vn] and u ∈ spanσn, we have:∑

k

(−1)τ vol([τ(σ−k), u]) = vol(σn) (58)

in which σ−k := σn − {vk} and τ is the permutation of the rest vertices. This can be easily verified
by the identity Eq. 59, in which there are only n non-zero terms within 2n terms in total.

vol(σn) = det(v1 − v0, v2 − v0, . . . , vn − v0)

= det((v1 − u) + (u− v0), . . . , (vn − u) + (u− v0))

=
∑
k

(−1)τ vol([τ(σ−k), u]) (59)

Then we claim:
Theorem 4. For a simplex σ = (u, v, w1, ..., wn), ∀o ∈ intσ,

I([u, o]) =
∑

w∈σ−u

vol([o, σ−w])

vol(σ)
I([u,w]) +O(ε2). (60)
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Proof. WLOG, consider a simplex σ = (u, v, w1..., wm), then for o /∈ span{wi}, then ∃!p ∈
[w1:m, v] ∩ [u, o], q ∈ [w1:m] ∩ [v, p].

I([u, o]) =
vol([u, o])

vol([u, p])
I([u, p]) (61)

=
vol([u, o])

vol([u, p])

(
vol([p, q])

vol([v, q])
I([u, v]) +

vol([v, p])

vol([v, q])
I([u, q])

)
(62)

=
vol([u, o])

vol([u, p])

vol([p, q])

vol([v, q])
I([u, v]) +

vol([v, p])

vol([v, q])

∑
w∈σ−v

vol([σ−{v,w}, q])

vol([σ−{v,w}, w])
I([u,w])


(63)

Whence we only need to check the coefficients in Eq. 60. We will use a property of vol. If
spanσ = span τ and volσ = vol τ , then for any simplex δ whose vertex is not in spanσ, we have
vol([σ, δ]) = vol([τ, δ]).

The first term is:
vol([u, o])

vol([u, p])

vol([p, q])

vol([v, q])
=

vol([u, o, q])

vol([u, p, q])

vol([u, p, q])

vol([u, v, q])
(64)

=
vol([u, o, q, {wi}−k])

vol([u, v, q, {wi}−k])
,∀k (65)

=
vol([u, o, {wi}])
vol([u, v, {wi}])

=
vol([o, σ−v])

vol(σ)
(66)

The second term is:
vol([u, o])

vol([u, p])

vol([v, p])

vol([v, q])

vol([σ−v−w, q])

vol([σ−v−w, w])
=

vol([u, o])

vol([u, p])

vol([v, p, σ−w−v])

vol([v, q, σ−w−v])

vol([σ−w, q])

vol([σ−v−w, w])
(67)

=
vol([u, o])

vol([u, p])

vol([p, σ−w])

volσ
(68)

=
vol([o, σ−w])

volσ
(69)

This completes the proof.

By Eq. 60, we obtain all I([u, o]), u ∈ σ. But what about I([⋆σ−u, o])? Note that [⋆σ−u, o] ⊂
[o, σ−u] and thus we can apply Eq. 60 once again in [o, σ−u], denoted by τu. Consequently, we have:

I([o, ⋆σ−u]) = −
∑
v∈τu

vol([(τu)−v, o])

vol τu
I([v, o]) + o(ε) (70)

= −
∑
v∈τu

∑
w∈σ−v

vol([(τu)−v, o])

vol τu

vol([σ−w, o])

volσ
I([v, w]) +O(ε2) (71)

Note that for a simplex σ = (x1, ...xm, u, v, w1, ..., wn), there exists and only exists one intersection p
between (u, o) and (v, w1:n) for all o ∈ intσ and also only one q intersected at (v, p) and (w1, ..., wm).
Therefore, combine this result with Eq. 53, repeat the proof above and we have:
Corollary 5. For a simplex σ = (x1, ...xm, u, v, w1, ..., wn), ∀o ∈ intσ,

I([x1:m, u, o]) =
∑

w/∈{u,x1:m}

vol([o, σ−w])

vol(σ)
I([x1:m, u, w]) +O(εm+2). (72)

The estimation of dual 2-forms by primal 2-forms, as a special case, is:

I([A,E,D]) =
vol([B,E])

vol([B,C])
I([A,C,D]) +

vol([C,E])

vol([B,C])
I([A,B,D]) (73)

I([A,E,D]) =
vol([E,D])

vol([D,H])
I([A,H,D]) =

vol([E,D])

vol([D,H])

vol([A,H])

vol([A,O])
I([A,O,D]) (74)
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(a) Estimate primal forms by neighbors. (b) Estimate primal forms by sub-division.

Figure 10: Illustrations for integrated primal form estimation.

I([A,O,D]) =
vol([A,O])

vol([A,H])

vol([D,H])

vol([E,D])

(
vol([B,E])

vol([B,C])
I([A,C,D]) +

vol([C,E])

vol([B,C])
I([A,B,D])

)
(75)

=
vol([A,O])

vol([O,H])

vol([A,H])

vol([A,O])

VB + VC

V

(
VC

VC + VB
I([A,B,D]) +

VB

VC + VB
I([A,C,D])

)
(76)

=
VC

V
I([A,B,D]) +

VB

V
I([A,C,D]) (77)

C.2 Estimate Integrated Primal Forms from Integrated Dual Forms

One may ask why we need to estimate the integrated primal forms by dual forms. After all, the dual
manifold is not tetrahedralized and thus causes much more complexity in estimation. It stems from the
intrinsic requirement in our previous proof. The approximation

∫
σ
dω/

∫
τ
dω ≈ volσ/ vol τ, x ∈ σ

is fine if ω is not exact, i.e., dω ̸= 0. Any exact forms cannot be properly estimated by the
aforementioned quadratures.

But, fortunately, the converse estimation is a remedy to this limitation. Since
∫
⋆σ

d∗ω/
∫
⋆τ

d∗ω ≈
vol ⋆σ/ vol ⋆τ fails if d∗ω = 0. In smooth cases, forms on M are also forms on ⋆M. If this also
holds in the discrete cases, then by Hodge decomposition, the approximation is valid for any form up
to a harmonic form.

Two methods can be applied: sub-division and estimating from neighbors. The latter has a default:
it fails if this dual edge is on the boundary, i.e., it has no neighbors. For brevity, only estimating
primal 1-forms from dual 1-forms in R2 is discussed, which, however, is not challenging to extend to
higher-dimensional spaces and forms.

As shown in Figure 10a, given integrated dual forms, integrations of [A,B], [B,D], [A,C],
[C,D], [B,C] are all tractable. Then again by Stoke’s theorem:

vol([A,B,D])

vol([A,C,D])
≈

∫
[A,B,D]

dω∫
[A,C,D]

dω
=

∫
[A,B]

ω +
∫
[B,D]

ω +
∫
[D,A]

ω∫
[A,C]

ω +
∫
[C,D]

ω +
∫
[D,A]

ω
, (78)

in which
∫
[A,D]

ω can be estimated. But this approach fails when [A,D] is on the boundary since
such a quadrilateral ABDC does not exist. Figure 10b offers another approach. By subdividing the
primal triangles, note that [A,D] is contained in both [A,D,B] and [A,D,E] where the integrated
forms are known on every edge except [A,D]. Therefore, replace C in Eq. 78 by E and we obtain
the estimate.
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D Universal Approximation on Poission Equation

In this section, we show that for any properly exposed Dirichlet boundary value problems, there
exists a proposed Higher-order GNN network that approximates the continuous operator. Our proof
follows the famous result on the universal approximation property of neural networks for operator.

In our higher-order architecture, we encode the field vectors into differential forms and decode them
via Whitney interpolation. Formally,

NN = D ◦ LN ... ◦ L1 ◦ E (79)

in which Li, E ,D are the i-th layer, encoder layer and decoder layer, respectively. We first show that
this encoding-decoding method has a pseudo-inverse property and an asymptotic identity property in
a proper function space. First, we consider a simple but heuristic example, a real-valued function
φ ∈ W 1,2(I) on a closed interval I ⊂ R. WLOG, I := [0, 1].

Proof of Theorem 2.

Proof. The existence of DN is trivial since for all c ∈ R, there exists a ∈ R such that∫ (xi+xi+1)/2

xi
a((xi + xi+1)/2 − x)dx +

∫ xi+1

(xi+xi+1)/2
a(x − (xi + xi+1)/2) = c. Since there are

only finite non-smooth points, i.e., the interval endpoints and the midpoints, one can use a smooth
mollifier there without changing the integral.

Recall the canonical mollifier ηε := η(x/ε)/ε [52] and φε := ηε ∗f . Since φ ∈ H2(I) is continuous,
φε → φ uniformly on the compact set I in the sense of L2. Thus, we only need to show that
φε → φ̃ in L2. Since φε, φ̃ ∈ C∞(I), we have M1 := supx∈I max{φ′

ε(x), φ̃
′(x)} < ∞ and

M0 := supx∈I max{φ(x), φ̃(x)}.

Direct expansion gives:∫ xi+1

xi

φε(x)dx =

∫ xi+1

xi

φε(s) + φ′
ε(ζs)(x− s)dx = φε(s)2

−N + φ′
ε(ζs)

(xi+1 − s)2

2
(80)

Since φε → φ uniformly, there exists ε small enough such that ∀ε0 > 0,

ε0
2M1

+ φε(s)2
−N + φ′

ε(ζs)
(xi+1 − s)2

2
= φ̃(t)2−N + φ̃′(ζt)

(t− xi)
2

2

which gives:

|φε(s)− φ̃(t)| ≤ 2N |φ′
ε(ζs)|

(xi+1 − s)2

2
+ 2N |φ̃′(ζt)|

(xi+1 − t)2

2
+

ε0
2M1

(81)

≤ 2 ·M12
−N−1 +

ε0
2M1

(82)

< δ +
ε0

2M1
(83)

Thus ∃N > log2 M1/δ such that ∀s, t ∈ [xi, xi+1], |φε(s)− φ̃(t)| < δ. Whence with δ = ε0/2M0∫
|φ(x)− φ̃(x)|2dx ≤

∫
|φ(x)− φε(x)||φ(x)− φ̃(x)|dx+

∫
|φε(x)− φ̃(x)||φ(x)− φ̃(x)|dx

(84)

≤ 2M0(δ +
ε0

2M1
) + 2M0

ε0
2M0

(85)

= 3ε0 (86)

Corollary 6. For uniformly bounded space BM ([0, 1]) := {φ ∈ L2([0, 1]) : ||φ||∞ < M},
∀φ ∈ BM ([0, 1]), exists M such that for all N > M ,

||φ−DN ◦ EN (φ)||L2 < ε.

The proof can be analogously extended to higher dimension Ω with C1 boundary by hypercube-
partition.
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Corollary 7. Given a simplex-partition of [0, 1]d {Xα}with measure-zero intersections, for v ∈
L2([0, 1]d) ∩ {u : ||u||∞ < M}, EN encodes the line integral along every edge of Xα while DN

preserves them. Then there exists δ such that for supα diamXα < δ,

||u−Dδ ◦ Eδ(u)||L2 < ε.

Proof. Consider a hypercube partition where the edges align with the coordinate axes. Therefore
u · t1 can be viewed a function on x1-axis, which is reduced to Theorem 1 and we have:

||u−DN ◦ EN (u)||2 ≤
d∑

i=1

||(u−DN ◦ EN (u)) · ti||2 < dMε (87)

Specifically, in R3, encoding u onto faces in the form of flux through the face is also proper since
u · ni is equivalent to encoding that to the edges. It is because faces are of codimension 1 in essence.

Define the projection operator PN := DN ◦ EN . For DN , the degree of freedom of DN is 2N ,
and the interpolation is usually continuous with the encoded integral features in L2-sense. And the
integral operator EN is continuous since EN is linear and bounded, as the integral domain is compact.
Therefore, PN is continuous with proper interpolation.

Now consider the continuous functional family C(K) on a compact set K. Let V ⊂⊂ H2(K) ∩
BM (K) in which B(K) := {f : K → R||f ′|∞ < M}. By continuity, PNV is still compact.
Consider the space WN := V ∪ PNV and W :=

⋃∞
i=0 Wi = V ∪

⋃∞
i=0 PiV .

Lemma 8 (Arzela-Ascoli). X is a Banach space and K ⊂⊂ X . A subset V of C(K) has compact
closure if and only if V is uniformly bounded and equicontinuous.
Theorem 9. W is closed, uniformly bounded and equicontinous. By Arzela-Ascoli’s lemma, W is
compact.

Proof. Consider a function sequence {fn}. If {fn} has a subsequence in V , then it converges to
f in V since V is compact. If {fn} has a subsequence {fin} such that supn in < M , then it is
again completed as the finite union preserves compactness. Therefore, we only need to consider the
case {Pinfn} in which fn ∈ V, in increasing to infinity. Note that {fn} must have a subsequence
converging to g in V and thus:

||Pinfn − g||2 ≤ ||Pinfn − fn||2 + ||fn − g||2 < δ/2 + δ/2 < δ (88)
Thus limn→∞ Pinfn = g a.e. W is bounded due to |f ′|∞ < M and Poincaré inequality. W is
equicontinuous if the interpolation is Lipschitz. For instance, the linear interpolation has a Lipschitz
constant 2

√
CM . (∫ xi+1

xi

f(x)dx

)2

≤
∫ xi+1

xi

f(x)2dx

∫ xi+1

xi

12dx (89)

≤ C2−N

∫ xi+1

xi

f ′(x)2dx (90)

≤ CM22−2N (91)

Whence functions in W are all Lipschitz and have a common upper bound 2
√
CM and are therefore

equicontinuous. By Arzela-Ascoli Lemma, W is compact.

Consider a continuous convolution operator

G[g](x) :=
∫
Ω

f(x− y)g(y)dy (92)

and suppose that G : V → W , then we have:

||G[g]− NN[g]||2 = ||G[g]− PnG[g] + PnG[g]−D ◦ L ◦ E [g]||2 (93)
≤ ||G[g]− PnG[g]||2 + ||PnG[g]−D ◦ L ◦ E [g]||2 (94)
≤ sup

h∈W
||(I − Pn)G[h]||2 + ||D ◦ (E ◦ G[g]− L ◦ E [g])||2 (95)
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Note that W is compact and so is GW := {G[g] : g ∈ W}, therefore

lim
n→∞

sup
h∈W

||(I − Pn)G[h]||2 = 0

Note that in the linear interpolation scheme, ||D(h1 − h2)||2 = ||h1 − h2||1. Thus, the only thing to
show is that E ◦ G[g]− L ◦ E [g] can be bounded with a large enough N .

Theorem 10 (Green Function [52]). The Green function of Poisson problem in Rn is:

G(x,y) =

{
1

(n−2)αn
∥x− y∥2−n

2 , n ≥ 3
1
2π ln ∥x− y∥2, n = 2

(96)

in which αn is the surface area of a n-dimensional unit sphere and the solution for Dirichlet problem

∆u(x) = f(x),x ∈ Ω;u(x) = g(x) ≡ 0,x ∈ ∂Ω (97)

is given by

u(x) =

∫
Ω

G(x− y)f(y)dy −
∫
∂Ω

∂nG(x− y)g(y)dy =

∫
Ω

G(x− y)f(y)dy (98)

Lemma 11 (Extension Theorem [52]). For a bounded closed Ω with C1-boundary, there exists an
extension operator E : W 1,p(Ω) → W 1,p(Rn), such that E(u) = u in Ω and E(u) is compactly
supported and continuous:

||Eu||Wk,p(Ω) ≤ cn,Ω||u||Wk,p(Ω) (99)

For a bounded closed Ω ⊂ Rn, it must be paracompact and thus has a smooth partition of unity
{ρα} [53]. For a square-like uniform mesh, one can construct a finite open cover {Oα} such that
∀δ > 0, there exists a finite open cover supα̸=β diam(Oα ∩Oβ) < δ and Oα contains the partitioned
hypercube α. For those hypercubes not intersected with the boundary, the corresponding open covers
can also have no intersections.

Recall that the extension theorem can be shown by the reflection method, in which we can locally
extend a u|Oi∩Ω ≡ ρiu, ∂Ω ⊂

⋃K
i=1 Oi due to the boundary compactness. It is obvious that

µ(supp(Eu)) ≥ µ(supp(u)), (100)

in which µ is the Lebesgue measure. And also note that

µ
(
supp(Eu)

)
≤ µ

(
supp(u) ∪ supp

( K∑
i=1

Ri[ρiu]

))
(101)

≤ µ
(
supp(u)

)
+

K∑
i=1

µ
(
supp

(
Ri[ρiu]

))
(102)

= µ
(
supp(u)

)
+

K∑
i=1

µ
(
supp(ρiu)

)
(103)

≤ µ
(
supp(u)

)
+

K∑
i=1

µ
(
supp(ρi)

)
(104)

≤ µ
(
supp(u)

)
+ δ0 (105)

in which Ri is the reflection operator concerning the open set Oi, and the last holds because ass the
partition gets finer, the total volume of boundary hypercubes tends to be zero. Therefore, f defined
on Ω can be extended to Rn such that

∫
Ω
G(y)E[f ](x− y)dy =

∫
Rn G(y)E[f ](x− y)dy + ε. For

brevity, we omit ε and identify E[f ] as f in the following discussion. Consider a component of
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E ◦ G[g], i.e., the integral on I , and we have:∫
I

∫
Ω

G(x− y)f(y)dydx =

∫
I

∫
Ω

G(y)f(x− y)dydx (106)

=
∑
J

∫
I

∫
J

G(y)f(x− y)dydx (107)

=
∑
J

∫
I

∫
J

G(y)f(x− yJ)−G(y)∇f(x− ζJ) · (y − yJ)dydx

(108)

=
∑
J

∫
I

f(x− yJ)dx

∫
J

G(y)dy −
∫
I

∫
J

G(y)∇f(x− ζJ) · (y − yJ)dydx

(109)

=
∑
J

∫
I+yJ

f(x)dx

∫
J

G(y)dy −
∫
I

∫
J

G(y)∇f(x− ζJ) · (y − yJ)dydx

(110)

=:
∑
J

T1,I,J + T2,I,J (111)

Note that
∫
I
f(y)dy are components of E [g] and thus the neural network L is required to learn N2

coefficients in the form of
∫
I
f(x− yJ)dx, a continuous function of x. But here the integral is on

the translated I , i.e., I + yJ in the sense of Minkowski sum. Since f is extended to Rn such that
f = 0 a.e. on Rn − Ω, we can omit those I + yJ not in the mesh. Therefore, encoding f(y) as Nn

integrals is still enough to estimate T1,I,J .

For T2,I,J , in sub-regions with f(x) is not constant 0, as N → ∞, we must have |f(x)| > δ due to
continuity. Then we have

|T2,I,J | ≤
∫
J

|G(y)| · ||∇f(x− ζJ)||2 · ||y − yJ ||dy ≤ M diam(J)

∣∣∣∣∫
J

G(y)dy

∣∣∣∣ (112)

Thus as N → ∞, diam(J) → 0 ⇒ T2,I,J = o(
∫
J
G(y)dy) while T1,I,J = O(

∫
J
G(y)dy). We

conclude that T2,I,J = o(T1,I,J) and therefore, we only need to focus on the main part. The first
term can be interpreted as a matrix multiplication where L receives x ∈ Ω as the input and outputs
(Nn)2 coefficients. This can be approximated by the canonical universal approximation theorem [54].
This seemingly holds for special meshes, but in fact, one can adopt a bounded Jacobian to deform it
into a more generalized mesh.

Note that the operator norm of G[f ] :=
∫
Ω
G(x − y)f(y)dy is finite as long as Ω is closed and

bounded. Then by Proper Encoder-Decoder theorem, we reach Theorem 3. Following an analogous
proof, one can see that it also holds for non-homogeneous Dirichlet conditions. Thus, we have the
following corollary:
Corollary 12. For non-homogeneous Dirichlet problems, ∆u(x) = f(x),x ∈ Ω;u(x) = g(x),x ∈
∂Ω, there also exists a network universally approximates u. Take gradients on both sides, there exists
a network that universally approximates ∇u, i.e., the electric intensity E.

E Dataset Details

Table 6 lists out details of several benchmarks. 2D meshes are obtained by adding random points into
a 2D convex hull and then triangulated via the open Python library Triangle [55]. 3D meshes come
from example meshes provided by a free C++ tetrahedralization library TetGen [56].

2D cases. The 2D-electrostatics case involves triangle pieces constituting a square, including two
media: silicon and a non-isotropic linear material. Each piece is assigned a random charge density
excitation, and the region boundary condition is set as equal voltage. The 2D-magnetostatics case
includes mu-metal (a material with a non-linear B-H curve) triangle pieces, composing an irregular
mesh with two holes. Each triangle is randomly assigned a current density. The region boundary
condition is balloon, implying an infinitely large region.
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Table 6: Various meshes are adopted in different BVPs. ELE and MAG are for electrostatics and
magnetostatics, respectively. NA means not applicable.

Mesh Square Holes Socket Gear

Vertex amount 105 180 2,407 2,453
Edge amount 277 487 12,865 12,833
Face amount 173 306 19,032 18,843
Cell amount NA NA 8,580 8,462
Train set size 120 120 240 240
BVP type 2D-ELE 2D-MAG 3D-ELE 3D-MAG

Figure 11: Illustrations of degraded meshes. The edge amount decreases from left to right and then
from top to bottom.

Dropped Edge Amount 0 25 50 100 150 200 250 300

Vertex amount 180 180 180 180 177 168 155 114
Edge amount 487 462 437 387 334 275 216 139
Face amount 306 281 256 206 156 106 60 24
AR 1.286 1.301 1.318 1.365 1.401 1.458 1.595 1.929
EAS 0.595 0.594 0.607 0.670 0.783 0.811 0.975 0.816
ATR 0.197 0.251 0.316 0.404 0.487 0.584 0.657 0.860

Table 7: Details about the generated degraded meshes.

3D cases. The 3D-electrostatics case is an Al2O3-based socket, in which four SiO2 cubic blocks
are embedded with uniformly distributed random charge density. The solving region boundary
condition is set to a uniform electric potential to simulate an enclosed empty cell in a metal. The
3D-magnetostatics case is a cobalt quarter-gear with three copper circuits with uniformly distributed
random currents. The region boundary condition is that H is tangential to the boundary and the
integral on the boundary vanishes.

All coordinates are normalized to [0, 1]d, d = 2, 3, scalar fields are standardized, and vector fields are
divided by average norm to eliminate scaling differences during pre-processing.

Degenerated Meshes via Dropping Edges. By randomly dropping a certain amount of edges and
further deletion to fix the topology, these degraded meshes illustrated in Figure 11 and depicted in
Table 6 are obtained. Usually, a mesh is considered having good quality if its elements are uniform
and regular. We briefly introduce these three indicators here:

• Aspect Ratio (AR). There are many versions of AR. We define it as the ratio between the
maximum edge length over the minimum.
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Figure 12: Illustrations of meshes with different topological characteristics. It is clear that those
colored identically have the same connect compone

• Equi-Angle Skewness (EAS). An N-polygon’s ideal angle is θ = π(N − 2)/N . For an
actual angle θi, its offset is δi := |θi − θ|/max{θ, π − θ}. And its EAS is maxi δi.

• Area Transition Ratio (ATR). It depicts the uniformity of element size. Let Ai, Aj be the
area of two neighboring elements. Then its ATR is |Ai −Aj |/max{Ai, Aj}.

F Implementation Details

The hardware configuration consists of an Ubuntu 20.04 LTS operating system platform powered
by four NVIDIA RTX A6000 Graphics Processing Units with 48GB memory. We use the PyTroch
framework version 1.13 alongside Python 3.12 interpreter. Model optimization involved selection of
the initial learning rate parameter γ for the Adam optimizer, which was systematically chosen from
the discrete value set {i × 10−j : i ∈ {1, 5}, j ∈ {1, 2, 3, 4, 5}} to achieve optimal performance
metrics. Datasets are partitioned into training, validation, and test sets with the ratio 8:1:1. Each
model in the main result is trained until the validation loss converges within 1,000 epochs.
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