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ABSTRACT

Backdoor attacks aim to manipulate the behavior of DNNs under trigger-activated
conditions. Data poisoning represents a standard approach to embedding triggers
in victim models. Current backdoor detectors struggle to separate trigger-injected
samples from the poisoned data set, which suffers severely from two dilemmas.
(1) Modern backdoor features are usually highly coupled with benign features.
Existing detectors are almost pixel-based methods, which critically hinders the
recognition performance of backdoor features. (2) Owing to the prior lack of poi-
soned sample distributions, most detectors are restricted to employing approaches
akin to unsupervised clustering-based methods. Thus, they heavily rely on suffi-
cient clean samples and deficient artificial priors to efficiently search for poisoned
samples with poor generalization across various attacks. This paper introduces a
brand new perspective to reformulate the attackers’ objective, i.e., backdoor at-
tacks lead victim models to classify the trigger disturbed by images into the tar-
get label, to identify the attack community. Specifically, we propose the concept,
Disturbance Immunity of triggers, and theoretically demonstrate that benign
and backdoor features exhibit significant classification probability discrepancies
across varying perturbations of clean image classes and intensities. Subsequently,
a few known conventional attack patterns are applied to label the poisoned dataset,
and then the labeled dataset is perturbed in the above manner to drive the detec-
tor to learn the Disturbance Immunity of triggers. Thus, traditional unsupervised
clustering-based detection can be transformed into a simple labeled binary classi-
fication task. Currently, few method provides detection work based on direct
commonality transfer, nor do they break the feature separation task with a
labeled-conversion detection framework. Finally, we train and present an ef-
fective General Cross-attack Backdoor Detector (GCBD). With few clean images
(≤ 10), GCBD exhibits State-Of-The-Art (SOTA) detection performance with
satisfactory generalization on various SOTA attacks. Additionally, GCBD also
supports direct toxicity detection in unseen samples during training, as proved by
a more challenging test-time validation approach. Our code will be released soon.

1 INTRODUCTION

Deep learning models require a substantial amount of training samples to achieve high accuracy and
generalization capabilities. Therefore, collecting data from multiple sources is a prevalent scenario
in the practical training and deployment of models. However, some sources might supply trigger-
implanted samples to inject attacker-desired backdoors into DNNs. Victim models trained in the
poisoned data set merely exhibit abnormal behaviors when processing trigger-implanted samples.
In visually critical domains (e.g., healthcare, autonomous driving, and access control), backdoor
attacks may lead to catastrophic consequences. Therefore, detecting and eliminating poisoned data
at the source constitutes the focal point of defense against the backdoor.

We summarize the dilemma of traditional detection methods as follows. (1) Modern backdoor fea-
tures are usually highly coupled with benign features. Existing detectors are almost pixel-based
methods, which critically hinders the recognition performance of backdoor features. Specifically,
Naricissus (Zeng et al. (2023)) designs backdoor features based on benign features and thus only
needs poisoning 25 images to get 99% ASR without label poisoning. SIBA (Gao et al. (2024))
formulates trigger generation as a bi-level optimization problem with sparsity and invisibility con-
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Figure 1: Our GCBD transfers the backdoor detection from a unlabeled feature clustering task to
a labeled binary classification task.

straints. The learned trigger has been demonstrated to exhibit a high degree of alignment with the
benign features in pixels. In addition, Grond (Xu et al. (2025)) limits parameter changes via a reverse
backdoor injection (ABI), which adaptively increases the stealthiness of the parameter space during
the backdoor injection. All of the above SOTA attacks have exhibited their superiority in evading
detection methods. (2) Owing to the prior lack of poisoned sample distributions, most detectors
are restricted to employing approaches akin to unsupervised clustering-based methods. Thus, they
heavily rely on sufficient clean samples and deficient artificial priors to efficiently search for poi-
soned samples with poor generalization across various attacks. As depicted in Figure 1, detectors
rely on deficient artificial prior to construct a feature space for feature separation. Enough clean
samples are required to learn the benign features. However, manual assumptions are often idealistic
and can be specifically bypassed by attackers. For example, the presence of high-frequency artifacts
(Zeng et al. (2021)) can be bypassed by designing low-frequency triggers. Furthermore, defenders
have to retrain the detection models for detecting new attacks, which is costly and time-consuming.

To address the above issues, we adopt a brand-new perspective to observe attacks’ objectives by
the concept of Disturbance Immunity. Specifically, backdoor attacks aim to force the victim
models to classify triggers with image perturbations as the target label. Therefore, backdoor trig-
gers need to possess anti-perturbation properties relative to normal features. As shown in Figure
2, triggers maintain the connection with the target label under the perturbations from images in
different classes. Meanwhile, perturbations of images within the same class can be regarded as
perturbations of different intensities. Therefore, the triggers should also exhibit a certain degree of
anti-perturbation with respect to the intensity of perturbations. Specifically, we theoretically demon-
strate that benign and backdoor features exhibit significant classification probability discrepancies
across varying perturbations of clean image classes and intensities in Section 3, demonstrating the
scientific validity of the above insights.

In this paper, we employ the most conventional backdoor attacks, BadNets (Gu et al. (2017)) and
Blended (Chen et al. (2017)), to construct the poison version of the original dataset, together gen-
erating a labeled binary classification sequence task. Furthermore, a dimensionality-lifting method
is designed to transform image pixels into sequential matrices based on Disturbance Immunity
for leading the detector to learn the Disturbance Immunity of triggers, which also improves com-
putational efficiency while preserving the key differences between backdoor and benign features.
Relying solely on a simple LSTM network and 10 clean samples, an effective General Cross-attack
Backdoor Detector (GCBD) is trained within 10 epochs.

The superiorities of GCBD can be summarized as follows:

• Existing methods require the collection of sufficient clean data to extract clean features, a
time-consuming process that involves both data acquisition and model training. In contrast,
GCBD entirely eliminates the need for the aforementioned process.

• The core of GCBD relies on the objectives of backdoor attacks rather than deficient artifi-
cial priors. Therefore, extensive experiments demonstrate that GCBD exhibits SOTA
detection performance upon various types of hard-to-detect backdoor attacks.
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• Unlike mainstream detection methods, GCBD can directly detect the poisoned images
and triggers that have not even been available in the training set without performance
degradation. We introduce a test-time approach to validate the conclusion by classifying
the poisoned and clean versions of the test set, as depicted in Figure 1. At the test-time
detection, for each image in the test set, GCBD classifies the images implanted by various
triggers as poison and the clean version of the image as clean.

• The cost of training GCBD is extremely low. Given the poisoned models and datasets,
GCBD can be trained in a high-dimensionality sequence space (e.g., 10×10 in CIFAR-10)
rather than the pixel space (e.g., 2× 32× 32 in CIFAR-10). Therefore, a LSTM with 53K
params can be trained to learn the Disturbance Immunity within 4 epochs, significantly
reducing the training cost. Analysis can be seen in Section 4.4.
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Figure 2: Overall framework of the proposed GCBD.

2 RELATED WORK

Backdoor Attack The primary focus of research development in backdoor attacks is to maximize
their applicability while maintaining a high attack success rate. Among various factors, stealthiness
serves as a crucial indicator of high applicability. Early backdoor attacks (e.g., Badnets Gu et al.
(2017) and Blended Chen et al. (2017)) employ simply designed visible triggers for poisoning the
dataset, relying on a dirty-label setting and high poisoning rates to compel the model to learn the
mapping relationship between the trigger and the target label.

To enhance the stealthiness of the attacks, Lin et al. (2020) proposes a trigger formulated from a
combination of existing benign features to bypass machine detection. Furthermore, invisible triggers
(Bai et al. (2022), Wang et al. (2022)) are designed to involve incorporating minor perturbations by
tweaking the pixel values and positions of the original image. What is more, Wenger et al. (2022)
introduces natural triggers based on the hypothesis that there may be physical objects that exist
naturally and are already present in popular datasets such as ImageNet. Several studies (Hayase &
Oh, 2022; Li et al., 2023; Li et al., 2024; Hung-Quang et al., 2024; Wang et al., 2025) propose sample
selection approaches to enhance ASR by poisoning specific “hard” samples rather than random ones.
The reduction of the poisoning rate enhances stealthiness. Details can be seen in Appendix B.

Modern backdoor attacks enhance the stealth of triggers by coupling with normal features and con-
stantly breaking the priors of backdoor detection. The underlying assumption of current defense
methods is that decoupling the connection between backdoor triggers and target labels will not
impair the benign association between semantic features and semantic labels. Therefore, directly
unlearning backdoor features that are tightly coupled with normal features will inevitably impair
the functionality of victim models. Hence, the key solution lies in employing backdoor detection
methods to fundamentally prevent poisoned data from participating in the training process.

Backdoor Detection The detection methods focus on the detection of poisoned samples. Other
defense methods may focus on detecting part of the poisoned samples and then using reverse engi-
neering to erase backdoor features, requiring lower accuracy in detection. Detection methods receive
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great attention as research aiming to eliminate backdoor features from the source, and may also be
applied in the inference phase of the models.

Current backdoor detection research endeavors to discern the disparities between poisoned samples
and clean samples in the feature space based on the artificial priors, employing methods such as
Singular Value Decomposition (SVD) (Tran et al. (2018), Hayase et al. (2021)), Gram matrix anal-
ysis (Ma et al. (2022)), K-Nearest-Neighbors (Peri et al. (2020)), and feature decomposition (Tang
et al. (2021)). Beyond embedding features, intermediate neural activations (Chen et al. (2018)) and
gradients (Chan & Ong (2019), Chou et al. (2020)) extracted from samples can also be leveraged
for backdoor sample detection. Previous studies have further explored other distinguishing char-
acteristics of backdoor samples, including the trigger’s resistance to data augmentation (Gao et al.
(2019)), the presence of high-frequency artifacts (Zeng et al. (2021)), their relatively low contribu-
tion to training tasks (Wang et al. (2021), Koh & Liang (2017)), or the possibility of achieving lower
loss values during the early stages of training (Li et al. (2021)).

However, the research on backdoor attacks and detection has been engaged in a continuous pro-
cess of mutual confrontation and advancement. A prevalent drawback of mainstream detection
approaches is that the trained detection models are not only confined to specific attack trigger fea-
tures but also rely on deficient artificial priors that do not inherently capture the essence of backdoor
attacks, making them susceptible to targeted evasion. For example, Input-aware (Nguyen & Tran
(2020) disrupts the prior assumption of a single static trigger in backdoor detection by designing
dynamic triggers. The presence of high-frequency artifacts (Zeng et al. (2021)) can be bypassed by
designing low-frequency triggers.

Furthermore, current detectors fail to exhibit satisfactory detection performance upon backdoor fea-
tures that are coupled with benign features. Narcissus (Zeng et al. (2023)) designs triggers that are
highly coupled with normal features by optimizing the extracted normal features, achieving a 99%
Attack Success Rate (ASR) by poisoning 0.05% samples at the clean-label setting. This renders
many detection methods based on feature extraction and separation ineffective. Gao et al. (2024)
formulates a bi-level optimization problem to design powerful triggers with sparsity and invisibility
constraints while ensuring high ASR in clean-label settings. Grond evades detection by controlling
the extent of parameter changes during the training process.

3 GCBD: GENERAL CROSS-ATTACK BACKDOOR DETECTION

Preliminaries of Backdoor Attack and Backdoor Detection can be seen in Appendix F.

3.1 TRIGGER INJECTION

The image classification models can be denoted as fθ : X → Y , where x ∈ X =
{0, 1, . . . , 255}C×H×W represents the input domain and Y = {y1, y2, . . . , yk} represents the la-
bels of the images. θ denotes the parameters that a DNN learned from the clean training data set
Dtr = {(xi, yi)}Ni=1. The benign training with Dtr can be seen as a single-level optimization
problem. The optimization seeks a model fθ by solving the following goal during training:

min
θ

L(Dtr, fθ) =

Ntr∑
i=1

l(fθ(xi), yi), (1)

where l is the loss function (e.g., the cross entropy). To implant the backdoor into the model,
adversaries poison the selected samples and provide a poisoned dataset Dp to users. Dp consists of
two disjoint parts. We define a binary vector M = [M1,M2, . . . ,M|Dtr|] ∈ {0, 1}|D| to represent
the poisoning selection. Specifically, Mi = 1 indicates that xi is selected to be poisoned while
Mi = 0 means the benign sample. We denote α := |Ds|

|Dtr| as the poisoning rate. The generator of
poisoned images can be denoted as T : X → X . T (x) = (1−m) ∗ x+m ∗ δ represents the trigger
implantation, where the mask m ∈ [0, 1]C×H×W represents the poisoning intensity of the trigger δ.

The stealthiness and utility of backdoor attacks require the poisoned model f̃θ to maintain high
accuracy on benign test data. Otherwise, users would not adopt the poisoned model, and no backdoor
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could be implanted. The accuracy on clean test set Dclean can be computed by:

BA =
1

Nclean

Nclean∑
i=1

ACC(f̃θ(xi), yi), (2)

where Nclean means the number of clean test set. (xi, yi) ∈ Dclean and yi is the ground-truth label.
ACC(y, yi) will be set to 1 if y = yi and 0 otherwise. Given the poisoned model f̃θ, the Attack
Success Rate (ASR) of a backdoor attack can be computed by:

ASR =
1

Nclean

Nclean∑
i=1

ACC(f̃θ(T (xi)), yt), (3)

where Nclean means the number of clean test set Dclean. T (xi) represents the trigger-implanted
image xi and yt is the target label. Based on the above definitions, the poisoned model f̃θ can be
trained by solving the following question in the train set Dtr:

min
θ

L(Dtr, f̃θ) =

∑|Dtr|−|Ds|
i=1 l(f̃θ(xi), yi)

|Dtr| − |Ds|
+

∑|Ds|
i=1 l(f̃θ(T (xi)), yt)

|Ds|
. (4)

3.2 DISTURBANCE IMMUNITY

For better analysis, the image classification models fθ : X → Y can be further decomposed by
introducing φ : X → Rd as a feature extractor from a probabilistic perspective:

ỹ = argmax
y

P (y|x) = argmax
k

ω(φ(x)), (5)

where ω denotes a classification layer that generates class probabilities for each category
{p1, p2, . . . , pk}. Backdoor attacks aim to lead the poisoned models to exhibit high BA and ASR
via Eqn.4. According to Eqns.2 and 3, successful backdoor attacks meet the following constraints:

P(xi,yi)∈Dtr
[f̃(xi) = yi] ≥ 1− ξc, (6)

Px∈X [f̃(T (xi)) = yt] ≥ 1− ξp, (7)
where ξc and ξp denote small positive constants. The above constraints limit the models to behave
normally on clean inputs but misclassify trigger-embedded inputs as the target class. Any research
on backdoor attacks is designed based on this fundamental objective. Therefore, we use two obser-
vations to refine the description by categorizing images based on whether they belong to the same
category or not, which can represent the commonality of backdoor attacks at a certain level.

Observation 1: Disturbance Immunity across classes. Poisoned images T (xi) with the back-
door trigger δ maintain a nearly constant feature representation in high-dimensional space φ(x)
irrespective of the ground-truth label yi, enabling universal misclassifications to the target label yt.

∃v∗ ∈ Rd s.t. ∀x ∈ X,
∣∣∣∣φ(T (x))− v∗∣∣∣∣

2
≤ ϵ. (8)

Observation 2: Disturbance Immunity across intensities. Poisoned images T (xi) with the
backdoor trigger δ maintain a nearly constant feature representation in high-dimensional space φ(x)
irrespective of the specific sample in the same class, enabling universal misclassifications to the
target label yt. The Disturbance Immunity across intensities can be depicted as Eqn.9, where ϵ is a
small positive constant and η(x) represents the distortion induced by specific image characteristics.

∃v∗ ∈ Rd s.t. ∀x ∈ Xi, φ(T (x)) = v∗ + η(x) and Ex∈X [
||η(x)||
||v∗||

] ≤ ϵ. (9)

Derivation We aim to derive that the objective of backdoor attacks will drive the backdoor features
to exhibit significant differences in probability values compared to benign features based on the
observations about the Disturbance Immunity of triggers.

Notably, the triggers we refer to in this paper are conceptual descriptions that modify image features
into attacker-specific features in a high-dimensional feature space, rather than triggers that are ex-
actly the same at the pixel level. Therefore, backdoor attacks can be redefined from a brand-new
perspective based on Section 3.1, which can be depicted in Eqn.10 :

T (x) = (1−m) ∗ x+m ∗ δ = m ∗ δ + Perturbx. (10)
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In Eqn.10, Perturbx serves as a trigger-irrelevant perturbation, and m represents the adversarial
suppression level of the trigger δ (m ∈ (0, 1]). Therefore, we can derive Eqn.11 based on Eqns.5-6:

P(xi,yi)∈Dtr
[argmax

k
ω(φ(

Perturbx
1−m

)) = yi] ≥ 1− ξc, (11)

where 1
1−m is a constant. Geometric resizing operations preserve the semantic class label of the

image. Therefore, the poisoned model also meets the following constraint:
P(xi,yi)∈Dtr

[argmax
k

ω(φ(Perturbx)) = yi] ≥ 1− ξc, (12)

Therefore, the constraints of the image classification models upon the poisoned image T (xi)(yi ̸=
yt) can be concluded as follows:

P(xi,yi)∈Dtr
[argmaxk ω(φ(Perturbx)) = yi] ≥ 1− ξc

P(xi,yi)∈Dtr
[argmaxk ω(φ(Perturbx)) = yt] ≤ 1− ξa, m = 0

P(xi,yi)∈Dtr
[argmaxk ω(φ(m ∗ δ + Perturbx)) = yt] ≥ 1− ξa

P(xi,yi)∈Dtr
[argmaxk ω(φ(m ∗ δ + Perturbx)) = yi] ≤ 1− ξc, m ̸= 0.

(13)

Furthermore, we investigate the model’s expected performance when fusing images of various cate-
gories. Given two clean images xi((x, yi) ∈ Dtr) and xj((x, yj) ∈ Dtr) with i ̸= j. We use xj to
disturb xi and poisoned image T (x) via the equations:

x∗
1 = α ∗ xi + (1− α) ∗ xj , (14)

T (x1)
∗ = α ∗ T (xi) + (1− α) ∗ xj = α ∗ (m ∗ δ + Perturbx) + (1− α) ∗ xj

= (α ∗m) ∗ δ + ((1− α) ∗ xj + α ∗ Perturbx) = (α ∗m) ∗ δ + Perturbx,y,
(15)

Consequently, we uplift the low-dimensional pixel information into classification-layer probabilities
while preserving the generalized core discrepancy essential for discriminative tasks. The pseu-
docode of our approach can be seen in Algorithm 1.

Algorithm 1 Dimensionality-uplifting Approaches based on Disturbance Immunity
Input : Poisoned dataset Dp, Clean images imagesc = {x1

c , x
2
c , . . . , x

n
c }(n ≤ 10), Traditional

triggers Triggers = {t1, t2, . . . , tn}, Alphas alphas = {α1, α2, . . . , αn}, Poisoned model f̃θ
Output : High-dimensional sequence dataset D
for trigger ti ∈ Triggers do

Train poisoned model f̃ i
θ based on Dp with ti

end for
for image x ∈ Dp do

for trigger t ∈ Triggers do
Shuffle the list of imagesc
ori = [[] for in range(len(imagesc))]
poi = [[] for in range(len(imagesc))]
for xc ∈ imagesc do

for αi ∈ alphas do
x1 = αi ∗ x+ (1− α) ∗ xc

Poison x with trigger t to T (x)
x2 = αi ∗ T (x) + (1− α) ∗ xc

Get the output probability {pi1, pi2} via {f̃ i
θ(x1), f̃ i

θ(x2)}
Concatenate probability values {pi1, pi2} into sequence {ori, poi}.

end for
end for
Insert sequence values {ori, poi} into dataset D with flags {”clean”, ”poisoned”}.

end for
end for

In Eqn.15, Perturbx,y serves as a trigger-irrelevant perturbation. According to Eqn.13, the poisoned
model is expected to classify the image T (x1)

∗ as the target label yt when m ̸= 0 and α ̸= 0. What
is more, we can also derive the expected classification of x∗

1 according to the Eqn.6 as follows:{
P(x,y)∈Dtr

[f̃(α ∗ xi + (1− α) ∗ xj) = yj ] ≈ P(x,y)∈Dtr
[f̃(xj) = yj ] ≥ 1− ξc, α → 0

P(x,y)∈Dtr
[f̃(α ∗ xi + (1− α) ∗ xj) = yi] ≈ P(x,y)∈Dtr

[f̃(xi) = yi] ≥ 1− ξc, α → 1
(16)
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According to Eqn.16, the poisoned model is expected to classify the image x∗
1 as label yj when

α → 0 and label yi when α → 1. In general, the impact disparity between normal features of yi and
yj on model predictions is significantly smaller than that between backdoor features δ and normal
features of yi. The discrepancy is determined by the adversarial objective of backdoor attacks rather
than trigger-specific characteristics, enabling the differentiation of normal and backdoor features via
perturbation robustness analysis. Thus, the objective of backdoor attacks will drive the backdoor
features to exhibit significant differences in probability values compared to benign features.

Owing to the challenge of obtaining clean images, we adjust the m in T (x) to generate a series of
perturbations with varying intensities, thereby easing the applicability of GCBD. Additionally, the
above approach minimizes the interference from numerous redundant features irrelevant to the core
objective. We conduct a systematic investigation in Appendix B on the effect of clean data selec-
tion on GCBD and take Res-linear (Wu et al. (2025b)) as the sample selection method during the
training. To the best of our knowledge, our work represents the first attempt to systematically
investigate the impact of data discrepancies on backdoor defense. Furthermore, we frequently
and randomly shuffle the order of clean images during the training to prevent GCBD from overfitting
to the learning of class order rather than Disturbance Immunity, as depicted in Appendix G.

4 EXPERIMENTS

Basic Setting We use Blended and Badnets to train the GCBD at the clean-label setting in the
main experiments. Class 0 is selected as the target label in all datasets. The strength of backdoor
features varies among different backdoor attacks. We use a 95% Attack Success Rate (ASR) as
the limit for an effective backdoor attack. Different poisoning rates represent the coarse-grained
minimum poisoning rates corresponding to different attacks that meet the limits. The number of
clean samples (≥ 100) required by current detection methods, {SS (Tran et al. (2018)), AC (Chen
et al. (2018)), STRIP (Gao et al. (2019)), SentiNet (Chou et al. (2020)), ABL (Li et al. (2021)),
SCAN (Tang et al. (2021)), Teco (Liu et al. (2023)), AGPD (Yuan et al. (2023)), ASSET (Pan et al.
(2023)), CD (Huang et al. (2023))}, follows the default configuration in BackdoorBench (Wu et al.
(2024)). In contrast, 10 clean samples are applied to provide various disturbances in GCBD. Further
details of experiments about GCBD can be seen in Appendix {B, C, D, E}.

4.1 COMPARISON WITH OTHER DETECTION METHODS

We compare the performance of methods on the detection of poisoned samples in the given poisoned
train set with True Positive Rate (TPR) and False Positive Rate (FPR) as the evaluation metrics. In
addition to BadNets under the poison-label setting, we select various distinct types of hardest-to-
detect attack methods and 10 detection methods to demonstrate the superiority of GCBD. Specif-
ically, we introduce the poison label Badnets attacks to verify the cross-setting applicability of
GCBD for the same attacks. Secondly, FTrojan (Chen et al. (2017)), Input-aware (Nguyen & Tran
(2020)) are applied to verify whether the detector can be applied to defend against frequency-based
triggers and dynamic triggers. In addition, we exhibit the performance of the detectors in SOTA
attacks (Narcissus Zeng et al. (2023), SIBA Gao et al. (2024), and Grond (Xu et al. (2025))).

Summary: As shown in Table 1, GCBD achieves an average 93% TPR and 5.5% FPR across all
attacks, exhibiting the SOTA detection performance in CIFAR-10 and CIFAR-100. Almost all
detection methods except GCBD exhibit terrible performance in some attacks because of deficient
artificial priors, as depicted in Worst-Case.

Analysis: GCBD exhibits 90% TPR and 2% FPR on the poison-label BadNets attacks in CIFAR-10,
demonstrating the cross-setting applicability of GCBD. The trigger non-reusability designs in Input-
aware attacks render most backdoor detection infeasible, as the property undermines the assumptions
of many defenses regarding fixed trigger characteristics. Based on the perturbation-resistance of
backdoor features, GCBD outperforms many defense methods against such attacks, achieving a
mean of 82.5% TPR and an FPR of 7.5% in CIFAR-10 and CIFAR-100.

In addition, GCBD attains a 100% TPR for FTrojan attacks, demonstrating that detectors trained
based on the color-domain can also be effectively applied to detect triggers in the frequency-
domain. Narcissus achieves effective backdoor implantation by poisoning merely 0.05% of the
images. Therefore, traditional defenses relying on clustering-based separation struggle to defend
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Table 1: Performance of detection methods upon difficult-to-detect attacks.

Dataset Attacks → BadNets (3%) Input-aware (8%) FTrojan (2%) Naricissus (0.05%) SIBA (1%) Average Worst-Case
Detection↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

CIFAR-10

SS 63% 14% 16% 15% 0% 15% 0% 15% 5% 15% 17% 15% 0% 15%
AC 95% 6% 39% 6% 100% 3% 0% 8% 0% 9% 40% 6% 0% 9%

STRIP 82% 5% 2% 8% 98% 22% 100% 16% 34% 10% 63% 12% 2% 22%
SentiNet 58% 55% 30% 71% 100% 100% 0% 2% 66% 48% 50% 55% 0% 100%

ABL 83% 0% 0% 9% 90% 0% 0% 0% 0% 1% 35% 2% 0% 9%
SCAN 95% 0% 50% 0% 0% 0% 0% 4% 0% 0% 29% 1% 0% 4%
TeCo 96% 10% 93% 10% 97% 0% 46% 20% 88% 10% 84% 10% 46% 20%

AGPD 78% 8% 70% 35% 97% 0% 0% 10% 0% 1% 49% 11% 0% 35%
ASSET 100% 39% 64% 25% 59% 38% 24% 41% 53% 38% 60% 36% 24% 60%

CD 59% 20% 5% 20% 100% 19% 100% 20% 96% 20% 72% 20% 5% 20%
GCBD 90% 2% 82% 13% 100% 3% 100% 8% 99% 1% 94% 5% 82% 13%

Dataset Attacks → BadNets (3%) Input-aware (8%) FTrojan (0.8%) Naricissus (0.05%) SIBA (0.3%) Average Worst-Case
Detection↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

CIFAR-100

SS 16% 15% 10% 16% 0% 15% 40% 15% 8% 15% 15% 15% 0% 16%
AC 10% 2% 2% 4% 0% 1% 100% 2% 0% 6% 22% 3% 0% 6%

STRIP 95% 13% 21% 16% 96% 13% 100% 18% 73% 13% 77% 15% 21% 18%
SentiNet 0% 0% 1% 0% 100% 100% 0% 0% 0% 0% 20% 20% 0% 100%

ABL 30% 0% 20% 5% 38% 0% 0% 0% 1% 1% 18% 1% 0% 5%
SCAN 95% 0% 50% 0% 99% 0% 0% 0% 0% 0% 49% 0% 0% 0%
TeCo 90% 1% 13% 10% 99% 2% 98% 8% 42% 13% 68% 0% 13% 13%

AGPD 0% 0% 50% 0% 0% 0% 0% 3% 26% 0% 15% 0% 0% 0%
ASSET 100% 10% 58% 20% 25% 32% 0% 0% 34% 30% 43% 18% 0% 32%

CD 99% 20% 61% 20% 100% 20% 100% 18% 100% 19% 92% 19% 61% 20%
GCBD 83% 8% 83% 2% 100% 7% 96% 14% 100% 1% 92% 6% 83% 14%

against Narcissus attacks. Furthermore, SIBA designs an effective trigger by formulating trigger
generation as a bi-level optimization problem with sparsity and invisibility constraints. The trained
triggers show the strong link with normal features, enabling SIBA to penetrate most defenses. In
contrast, GCBD exhibits almost 100% TPR in detecting the triggers of SIBA and Narcissus.

4.2 PERFORMANCE OF OUR METHODS ON TEST-TIME DETECTION

Furthermore, we also present a test-time validation approach by testing the detector’s classification
accuracy (ACC) on the test set and its corresponding dataset poisoned by new attacks. Test-time
detection means that GCBD has no access to the test images during training and can only per-
form independent analysis and classification based on the characteristics of backdoor features.
According to Table 2, GCBD exhibits 90% ACC in most cases. Using ResNet34 as victim models,

Table 2: Performance of GCBD on test-time detection.
Attack Models Datasets → CIFAR-10 CIFAR-100 Flag

Attacks ↓ TPR ↑ FPR ↓ ACC ↑ TPR ↑ FPR ↓ ACC ↑ label-poisoning characteristics

ResNet34

Badnets (Gu et al. (2017)) 0% 1% 49.97% 99% 4% 97.65% Poison-label Same attack with different setting
Input-aware (Nguyen & Tran (2020)) 4% 11% 46.45% 97% 6% 95.55% Poison-label Sample-specific dynamic trigger
FTrojan (Chen et al. (2017)) 99% 17% 91.16% 99% 15% 91.89% Poison-label Frequency-stealthy trigger
Narcissus (Zeng et al. (2023)) 82% 20% 81.16% 87% 8% 89.46% Clean-label Low poisoning rate
SIBA (Gao et al. (2024)) 45% 1% 72.06% 93% 16% 88.23% Clean-label Low pixel variation
Grond (Xu et al. (2025)) 69% 2% 83.52% 75% 23% 76.09% Clean-label Low model parpameter variation
Average 50% 8% 70.72% 92% 12% 90% - -

ResNet18

Badnets (Gu et al. (2017)) 89% 15% 87.30% 100% 19% 90.25% Poison-label Same attack with different setting
Input-aware (Nguyen & Tran (2020)) 97% 16% 90.31% 85% 10% 87.71% Poison-label Sample-specific dynamic trigger
FTrojan (Chen et al. (2017)) 100% 8% 95.98% 100% 7% 96.17% Poison-label Frequency-stealthy trigger
Narcissus (Zeng et al. (2023)) 94% 5% 94.70% 98% 5% 96.59% Clean-label Low poisoning rate
SIBA (Gao et al. (2024)) 96% 7% 94.81% 97% 1% 97.81% Clean-label Low pixel variation
Grond (Xu et al. (2025)) 100% 2% 99.00% 98% 1% 98.47% Clean-label Low model parpameter variation
Average 96% 9% 93.68% 96% 7% 94.50% - -

GCBD achieves 71. 72% ACC in CIFAR-10. After reducing the depth of the network to ResNet18,
GCBD attains 94% ACC and 96% TPR. The false positive rate (FPR) is also maintained at approxi-
mately 8%. We hypothesize that deeper network models tend to average the probabilities in the final
classification layer, thereby diminishing the disparity between backdoor features and benign fea-
tures. Additionally, GCBD performs better on CIFAR-100, particularly in the ResNet34 scenario,
as the rich category diversity may prevent models from averaging the probabilities in the classifi-
cation layer. In summary, GCBD can still detect unseen samples poisoned by new triggers in
challenging test-time scenarios while maintaining satisfactory detection performance.

The vast majority of backdoor attacks cannot be effectively and cost-efficiently transferred to the
ImageNet. Therefore, we use the poison-label {Badnets, Blend} to train the GCBD at a subset of
ImagnetNet, which is then used to detect the advanced Grond attack. GCBD achieves 100% TPR
(0.83 F1) with 80% detection accuracy at test-time detection.

4.3 EFFECT OF TARGET LABELS & VALIDATION METHODS

In this section, we explore the effect of target classes and verification methods on the detection per-
formance of GCBD through the FTrojan attack. Specifically, 2% samples of CIFAR-10 are randomly
selected to be poisoned at the dirty-label settings with different target labels.
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Figure 3: Performance of GCBD on the FTrojan attack with different target labels.

Figure 3a illustrates the performance of GCBD in the mainstream validation method by detecting
poisoned samples from the poisoned training set, which is named as CURRENT in Figures 3c
and 3d. GCBD achieves approximately 90% classification accuracy (ACC) and true positive rate
(TPR) for each target class. Notably, the fluctuation in TPR is slightly greater than that in ACC,
which is attributable to the bias of TPR upon poisoned samples and the low proportion of poisoned
samples in the train set. Specifically, TPR places greater emphasis on the accuracy of the detection
method upon the trigger-implanted samples, while disregarding accuracy on normal images. The
extremely low poisoning ratio amplifies the randomness of the final detection performance.
Under the Test-time validation method, considering that each image in the test set has both a normal
and a trigger-implanted version, there is no issue of a low proportion of poisoned samples, so that
the influence of randomness is also circumvented. The stable TPR shown in Figure 3b validates the
aforementioned hypothesis, exhibiting the superiority of the new testing method in terms of stability.

What is more, Figures 3c and 3d demonstrate the consistency between the two testing approaches.
Both approaches can accurately reflect the performance of the detection methods. It is notewor-
thy that test-time testing represents a more challenging detection scenario, as the detection
methods cannot access specific information about the data to be detected during training. Tra-
ditional detection methods are only applicable when all data information is available during testing,
and thus cannot be used to evaluate real-time detection performance. In real-world backdoor attack
scenarios, it is more common to lack access to all samples for validation.

Performance of GCBD on multi-target attacks Currently, there is little mature research on
multi-target backdoor attacks published in top-tier conferences. This is because it breaks the tra-
ditional assumptions of backdoor attacks and, to a certain extent, overlaps with the objectives of
adversary attacks, making it difficult to clearly define. Research on backdoor defense does not
necessarily need to specifically cover this scenario.

Regarding whether there exists a feature space where various M-to-N backdoor attacks converge
on a certain feature vector (i.e., whether there is a true commonality), we designed an experimen-
tally enlightening experiment in the backdoor domain as follows: Firstly, in the training process
of GCBD, we use 0 as the target category, which means we only need 1/10 (CIFAR10) and 1/100
(CIFAR100) of the data for GCBD training, representing a significant resource-saving advantage.
Secondly, we perform a Badnets attack (poison-label) with a target category of 5 and a Narcissus
attack (clean-label) with a target category of 3, and the choices of 5 and 3 are randomly generated.
The setup implies that the trigger features are completely different (Badnets and Narcissus attacks)
and the target categories are completely different (multi-label). What is more, the target category
setting of GCBD training is different from all attacks. Within 10 epochs, GCBD achieves 99%TPR
and 7% FPR (0.96 F1) at the detection of Badnets attack. Moreover, GCBD achieves 100%TPR
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and 13% FPR (0.94 F1) at the detection of Narcissus attack. Therefore, even when GCBD is trained
with completely different target labels and the dataset contains completely unrelated M-to-N attacks,
GCBD still achieves satisfactory detection results within a few epochs.

4.4 STABILITY OF GCBD & DEPLOYMENT ANALYSIS

1
Epoch

3015

(a) ACC of GCBD in CIFAR-10

1
Epoch

3015

(b) TPR of GCBD in CIFAR-10

1
Epoch

3015

(c) ACC of GCBD in CIFAR-100

1
Epoch

3015

(d) TPR of GCBD in CIFAR-100

Figure 4: The test-time detection performance of GCBD during the training period.

We train an extremely minimalist LSTM network with 53K params within a few epochs to highlight
the superiority of GCBD. To better demonstrate the overall performance of GCBD in detecting var-
ious attacks, we adopt the sum of Accuracy (ACC) as the y-axis variable. As illustrated in Figure 4,
GCBD achieves and subsequently sustains an average 93% ACC and 97% TPR after 4 epochs.
The remarkable stability of GCBD implies an exceptionally low computational cost. Specifically,
the overhead for mainstream detection involves training the detector (e.g., ResNet18 with 11.17M
params) with 40 epochs on the entire dataset. In contrast, GCBD only needs a single class set (e.g.,
1/100 of CIFAR-100) to learn Disturbance Immunity. With two traditional backdoor attacks label-
ing samples at the clean-label setting (2 + 1 times of the set), GCBD can be successfully trained
within 4 epochs (1/10 of the standard number of epochs). Integrated with high-dimensionality
sequences (m = 10, n = 5), the cost of GCBD is much less than 1/100 ∗ 3 ∗ 1/10 = 3/1000 of
pixel-based (3× 32× 32) detectors.

5 CONCLUSION

In this paper, we theoretically demonstrate that benign and backdoor features exhibit significant clas-
sification probability discrepancies across varying perturbations of clean image classes and intensi-
ties. Subsequently, conventional attack patterns are applied to train the proposed GCBD by trans-
forming traditional unsupervised detection into a simple labeled binary classification task. What is
more, the superiority of GCBD lies in its stepping out of the basic framework of feature separa-
tion and providing a detection method that directly migrates the commonalities of backdoor attacks.
With few clean images (≤ 10), GCBD exhibits SOTA detection performance with satisfactory gen-
eralization on various SOTA attacks. Furthermore, we design a much more challenging test-time
validation approach to exhibit the superiority of our work. To the best of our knowledge, GCBD
represents the first attempt to detect unseen samples poisoned by new triggers in challenging
test-time scenarios while maintaining satisfactory detection performance. Last but not least,
current detection methods implicitly assume the existence of only one type of backdoor feature.
Methods based on feature separation may overlook deeper-level triggers in scenarios where both
shallow and deep triggers exist simultaneously.
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6 REPRODUCIBILITY STATEMENT

During the publication phase, we will provide full access to all codes, logs, and result files to ensure
transparency and reproducibility of our work.
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A USAGE OF LLMS

Ultimately, we pledge that LLMs are applied to optimize descriptions in this paper. Furthermore,
LLMs will not be employed for any purposes beyond those explicitly stated. All content generated
by LLMs undergoes rigorous human verification and refinement to ensure factual accuracy.

B EFFECT OF CLEAN IMAGES

B.1 SAMPLE SELECTION

Substantial evidence has demonstrated the varying levels of significance of sampleduring model
training (Wu et al. (2025a)). Several studies (Hayase & Oh, 2022; Li et al., 2023; Li et al., 2024;
Hung-Quang et al., 2024; Wang et al., 2025) have proposed sample selection approaches to enhance
Attack Success Rate (ASR) by poisoning specific “hard” samples rather than random ones. These
poisoned models tend to internalize implicit mappings between trigger features and target labels,
thereby circumventing the original classification challenges associated with such samples.

Gao et al. (2023) reveals differential sample importance and selects “hard” samples via three met-
rics (e.g., Forgetting Event, Loss Value, and Gradient Norm) to enhance the Poison-only Backdoor
Attacks (PBAs). The poisoned models tend to learn the implicit projection between the trigger
feature and the target label to evade the difficulty of the original classification upon such “hard”
samples. For example, Forgetting Event identifies “hard” samples by analyzing misclassification
transitions (i.e., shifts from correct to incorrect classification) during pre-training. Furthermore, cat-
egory diversity is introduced to optimize the Forgetting Event metric with various intensities (e.g.,
Res-linear), thereby enhancing improvements in ASR.

The aforementioned studies have thoroughly elucidated the significant impact of sample selection
on backdoor attacks. Consequently, we investigate whether sample selection strategies closely as-
sociated with backdoor attacks exert an influence on the proposed detection approach. During the
training process of GCBD, hard images of varying degrees are employed for dimensionality aug-
mentation, and the experimental results can be seen in Figure 5. We compile the metrics of sample
selection utilized in the relevant experiments as follows:

Loss Value Given a surrogate model fθ (trained on the poisoned training set), the loss value of the
model on sample (xi, yi) can be represented as L(fθ(xi), yi). We choose samples with the highest
value in each class yt ∈ {y0, y1, . . . , yk} as the source of disturbance:

xs = arg max
xs⊂Dt

L(fθ(xs), yt). (17)

Gradient Norm Given a surrogate model fθ (trained on the poisoned training set), the l2− gra-
dient norm of model on sample (xi, yi) can be represented as ||∇θL(fθ(xi), yi)||2. We choose
samples with the highest value in each class yt ∈ {y0, y1, . . . , yk} as the source of disturbance:

xs = arg max
xs⊂Dt

||∇θL(fθ(xs), yt)||2. (18)

Forgetting Event Given a sample (xi, yt) in the target-label set Dt, Forgetting Event denotes
the event when the sample is classified by the surrogate model from yt to ym(ym ̸= yt), whose
frequency can be represented as Numforget(xi, ym). We choose samples with the highest value in
each class yt ∈ {y0, y1, . . . , yk} as the source of disturbance:

xs = arg max
xs⊂Dt

Numforget(xs, yt). (19)

Category Diversity We use µ to represent the mean of Forgetting Event metric
{Numforget(xi, ym)(ym ̸= yt)}. We choose samples with the highest value in each class
yt ∈ {y0, y1, . . . , yk} as the source of disturbance:

xs = arg min
xs⊂Dt

∑
ym ̸=yt

||Numforget(xs, ym)− µ||2. (20)
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“Res-X” represents a series of distinct negative functions NF to adjust weights of categories accord-
ing to the Forgetting Event (frequency) at varied rates X (O(log(x)), O(x), O(x2)), and O(ex)).
Higher rates highlight the significance of Category Diversity in sample selection. For example,
metric calculation with NF at log(x), dubbed Res-log, is depicted in Algorithm 2.

Algorithm 2 Metric Calculation with Negative Function NF at O(log(x))

Input : Train Dataset Dtr, Target Label yt, Misclassification Events Numforget(xi, ym)
Output : Calculated Metric of Samples
for ym ∈ labels do
Num[ym] =

∑
(xi,yt)∈Dtr

∗Numforget(xi, ym)

end for
Sum =

∑
ym∈labels log(1 +Num[ym])

for ym ∈ Y do
Cls[ym] = 1− log(1+Num[ym])

Sum
end for
for image (xi, yt) ∈ Dtr do
Metric[xi] =

∑
ym∈labels Cls[ym] ∗Numforget(xi, ym)

end for

B.2 EXPERIMENTAL RESULTS
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Figure 5: ACC of GCBD with different sample selections of clean images as the disturbance type.

As illustrated in Figure 5, utilizing 10 clean images selected via the Res-linear method as per-
turbation examples leads to a slight improvement in the detection accuracy (ACC) of the proposed
method. Specifically, compared to the random selection approach, GCBD achieves an ACC increase
of less than 5% when employing the Res-linear method. Moreover, the performance gap between
the Res-linear method and other selection strategies is relatively narrow.

Notably, the Res-linear method significantly enhances the stability of the GCBD approach. On the
CIFAR-10 dataset, when Random and Forget methods are used for image selection, the variance in
detection ACC across different attacks is substantially higher than that observed with the Res-linear
method. This same trend is also evident in the CIFAR-100 results. Overall, GCBD requires only
10 clean images as perturbations. Therefore, in practical applications, the stability of GCBD can be
readily improved by manually selecting such challenging data samples. Even with random selection,
GCBD maintains an at least 80% ACC.

As shown in Table 3, the Res-linear method achieves the best overall detection performance, with
true positive rates (TPR) of 94.33% on CIFAR-10 and 96.33% on CIFAR-100. In the worst-case
scenarios, the corresponding TPR values drop to 77.17% and 90.67%, respectively, resulting in
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Table 3: Effect of sample selection methods upon the test-time detection performance of GCBD.

Dataset Attacks → BadNets (3%) Input-aware (8%) FTrojan (2%) Naricissus (0.05%) SIBA (1%) Grond (1%) Average
Sample Selection↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

CIFAR-10

Random 66% 1% 15% 9% 100% 2% 91% 4% 91% 4% 100% 2% 77.17% 3.67%
Grad 98% 5% 41% 11% 100% 12% 96% 4% 96% 4% 100% 4% 88.50% 6.67%
Forget 72% 3% 14% 8% 100% 5% 99% 7% 98% 10% 99% 0% 80.33% 5.50%
Loss 90% 8% 64% 19% 100% 6% 97% 9% 95% 5% 100% 12% 91.00% 9.83%
Res-linear 74% 10% 97% 16% 100% 18% 99% 13% 96% 7% 100% 1% 94.33% 10.83%
Res-square 39% 16% 95% 18% 100% 17% 99% 13% 96% 7% 100% 3% 88.17% 12.33%
Res-log 78% 2% 50% 11% 100% 12% 99% 9% 96% 7% 100% 0% 87.17% 6.83%
Average 74% 6% 54% 13% 100% 10% 95% 10% 95% 6% 100% 3% 86.67% 9.28%

Dataset Attacks → BadNets (3%) Input-aware (8%) FTrojan (0.8%) Naricissus (0.05%) SIBA (0.3%) Grond (0.6%) Average
Sample Selection↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

CIFAR-100

Random 99% 10% 72% 7% 99% 2% 94% 1% 85% 2% 95% 46% 90.67% 11.33%
Grad 100% 19% 69% 7% 99% 1% 99% 3% 98% 3% 81% 2% 91.00% 6.33%
Forget 100% 20% 87% 22% 99% 1% 99% 1% 98% 3% 98% 2% 96.83% 8.17%
Loss 98% 24% 77% 3% 98% 1% 99% 3% 97% 1% 92% 0% 93.50% 5.33%
Res-linear 100% 20% 85% 10% 100% 7% 98% 5% 97% 2% 98% 1% 96.33% 7.5%
Res-square 100% 20% 85% 10% 100% 7% 98% 5% 97% 2% 98% 1% 96.33% 7.5%
Res-log 100% 20% 85% 10% 100% 7% 98% 5% 97% 2% 98% 1% 96.33% 7.5%
Average 100% 19% 80% 10% 99% 4% 98% 3% 96% 2% 94% 7% 94.43% 7.67%

performance gaps of 17.16% and 5.66%. Notably, as the number of categories increases, the detec-
tion efficacy of GCBD improves from 86.67% to 94.43% as the rich category diversity may prevent
models from averaging the probabilities in the classification layer. Therefore, GCBD can sufficiently
catch the Disturbance Immunity of various triggers in backdoor attacks.

In addition, we placed particular emphasis on evaluating GCBD’s performance under worst-case
scenarios. When detecting non-shared dynamic triggers employed in Input-aware attacks, sample
selection exerts a profound influence on GCBD’s performance, with the best-case and worst-case
true positive rates (TPRs) reaching 97% and 14%, respectively. Nevertheless, since GCBD requires
only 10 clean images as perturbation sources, manually constructing hard-to-learn data samples is
feasible. In practical settings, GCBD can thus circumvent worst-case scenarios using the aforemen-
tioned approach. Given that real-world applications typically involve datasets with a significantly
larger number of classes, scenarios with merely 10 categories are rare, and the diversity inherent in
large-scale datasets inherently reduces the likelihood of worst-case performance. Collectively, the
above factors contribute to the high deployability of GCBD in real-world applications.

C EFFECT OF SOURCE ATTACKS’ ASR

During the training process of GCBD, we employ the most conventional attacks {Badnets, Blend}
to label the poisoned dataset. Subsequently, we train victim models based on the original poisoned
dataset and elevate pixel values to a two-dimensional probability sequence matrix based on the
Disturbance Immunity. In this chapter, we investigate the effect of the Attack Success Rate of the
victim model, which serves as the dimensionality-elevating tool, on the detection performance of
the ultimately trained GCBD. Meanwhile, we clarify the fact that the dataset used for training the
victim model is already poisoned by the unseen attacks, and the training of victim models is entirely
independent of the labeling process. This implies that we have the flexibility to adjust the poisoning
rate to train victim models with any desired ASR. As illustrated in Figure 6, the shaded regions

80 85 90 95 100
0

50

100

ACC

 TPR

ASR of the Source Attacks

(a) CIFAR-10

ACC

 TPR

80 85 90 95 100
0

50

100

ASR of the Source Attacks

(b) CIFAR-100

Figure 6: Effect of Source Attacks’ ASR on GCBD.
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indicate the fluctuation ranges, while the curves depict the variations in the average values of each
metric. Initially, for GCBD, the average ACC and TPR metrics across various attacks exhibit a trend
of first decreasing and then increasing with the rise in ASR. This suggests the interplay of at least
two factors. Specifically, for CIFAR-10 and CIFAR-100, the metrics reach their lowest points when
ASR is at 95% and 90%, respectively. Furthermore, the high ACC observed at low ASR levels
fluctuates significantly depending on the type of attack being detected. Conversely, the high ACC at
high ASR levels demonstrates remarkable stability.

Victim models that have not adequately learned backdoor features with low ASR levels tend to
exhibit averaged probabilities on poisoned data. This blurs the distinct probabilistic characteristics of
the triggers in Badnets and Blend attacks. Consequently, GCBD struggles to learn the commonalities
(Disturbance Immunity) of the two attacks based on discernible differences, resulting in exceptional
detection performance for triggers similar to Badnets or Blend, but near-total failure for others. In
contrast, victim models that have thoroughly learned backdoor features display more distinctive
probabilities on poisoned data, necessitating a deeper exploration of anti-interference properties
to accomplish the training classification task. At this stage, the model captures truly generalized
features, and its detection performance remains stable regardless of the attack type. The intermediate
ASR scenario represents a dynamic confrontation between the aforementioned factors, where GCBD
achieves its lowest ACC and TPR at the point of maximum conflict. Therefore, we increase the
poisoning rate to ensure that victim models can sufficiently learn traditional backdoor features
for compelling GCBD to acquire Disturbance Immunity through the adversarial period.
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Figure 7: ACC of GCBD with different attacks as the single source to construct the train set.

As illustrated in Figures 7a & 7b, the detection performance of GCBD is highly contingent upon
the trigger characteristics when employing only one type of attack as the source. Specifically, the
difference between various cases for CIFAR-10 and CIFAR-100 can torch 65.4% (99.06% - 33.66%)
and 68.96% (94.69% - 25.73%), respectively. We hypothesize that GCBD tends to overfit to the
specific magnitude variations of the attack rather than its robustness when using a single attack.
Thus, we progressively expanded the source based on the two worst-case scenarios in Figure 4c:
detecting Narcissus using Grond and detecting Narcissus using SIBA. ACC initially rises and then
declines with the increase in the number. We attribute this decline to the excessive complexity of the
new dataset because GCBD achieves a 20% improvement in ACC when we mitigate the complexity
by reducing the number of perturbation intensities, as depicted in part b of Figure 7c.

E EFFECT OF DISTURBANCE INTENSITIES

In this section, we investigate the effect of disturbance intensity sequences on the detection perfor-
mance of GCBD. We employ the Intensity Interval to partition the range of m (from [0, 1]), as
defined in Section 3.2, into equal segments. For example, when the intensity interval is set to 11,
the m sequence becomes {0.0, 0.1, 0.2, . . . , 1.0}. The results are illustrated in Figure 7, where each
circle represents a detection of a specific attack.

As depicted in Figure 8, the mean values of ACC and TPR metrics for GCBD initially increase and
then decrease as the Intensity Interval widens. Conversely, the variances of these metrics exhibit
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Figure 8: The test-time detection performance of GCBD during the training period.

an inverse trend, decreasing initially and then increasing. Consequently, GCBD achieves optimal
detection performance when the Intensity Interval is set around 9. The above-observed phenomenon
stems from the interplay of two key factors.

Firstly, when the Intensity Interval is relatively small, the overly broad intensity gaps result in signif-
icant information loss and an insufficient number of probabilities for processing. Therefore, GCBD
falls into an overfitting state when learning disturbance immunity, thus producing poor performance.
Conversely, when the Intensity Interval is excessively large, the overly narrow gaps introduce sub-
stantial redundant information and a high volume of probability data to be processed, increasing
task complexity. Under such circumstances, the learning of the interference resistance by GCBD
becomes underfitting, again leading to poor performance. When the Intensity Interval is appro-
priately calibrated, GCBD can effectively learn the trigger’s robustness against interference,
achieving over 95% ACC and TPR. In this paper, the default setting of Intensity Interval is 11.

F RELATED KNOWLEDGE IN BACKDOOR DETECTION

In this chapter, we provide supplementary explanations for the concepts and theoretical content
presented in the main text to facilitate readers’ comprehensive understanding of the division of labor
during the model training and deployment phases.

F.1 ATTACK KNOWLEDGE

In this attack setting, the adversary can operate on the original training dataset Dtr and embed a
predefined trigger into a small fraction of the training samples. The radio can be represented as the
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poisoning rate. Furthermore, the attacks can be called clean-label attacks if the adversary refrains
from altering the ground-truth labels of the original samples. However, the adversary lacks both
the knowledge and the ability to modify other training components (e.g., loss functions, model
architectures, training schedules, or optimization algorithms). Consequently, attackers can only
manipulate model weights through data poisoning. The latent association between the trigger and the
target label is acquired solely during the training phase. During inference, we assume the adversary
does not have access to the model’s prediction vectors. Generally, poison-only clean-label attacks
impose minimal requirements on the adversary’s capabilities, making them applicable to a wide
range of real-world scenarios.

F.2 DETECTION KNOWLEDGE

The defender holds greater privileges than the attacker. Given a poisoned dataset, the defender can
employ any measures to eliminate potentially embedded poisoned features. This implies that the
defender has the autonomy to determine the architecture of a surrogate model and infer backdoor
features based on the characteristics of the trained surrogate model, or alternatively, perform any
operations directly on the poisoned dataset. Among these strategies, backdoor detection serves as
an effective approach for backdoor defense, which can be conducted either during the pre-training
phase or the inference phase by identifying samples containing triggers. However, the defender
lacks information regarding the distribution of trigger-embedded samples, including the proportion
of poisoned data, the characteristics of the triggers, and the inability to ascertain whether a sample is
clean. Although clean data can be sourced from reliable external datasets, doing so incurs substantial
additional costs. Consequently, for detection methods, a lower requirement for clean data translates
to higher deployability. Meanwhile, most existing detection methods are confined to identifying
trigger features within specific datasets. To the best of our knowledge, GCBD represents the first
cross-attack detector that can accurately detect entirely unknown triggers in new samples.

F.3 WORKFLOW OF THE DNNS

We detail the workflow of poison-only backdoor attacks and backdoor detection methods to formal-
ize the generation of the final DNNs.

Step 1: Sample Selection (by adversary). Given a target label yt, a subset Ds is selected from
target-label set Dt = {(xi, yi)|(xi, yi) ∈ Dtr, yi = yt} to be poisoned. Therefore, the benign
samples can be denoted as Db = Dtr\Ds. We represent the poisoning selection based on a bi-
nary vector M = [M1,M2, . . . ,M|Dtr|] ∈ {0, 1}|D|. Therefore, Mi = 1 when the smaple xi is
selected to be poisoned and Mi = 0 means benign samples. The ratio of the poisoned samples
α := |Ds|

|Dtr| is depicted as the poisoning rate. α can reflect the stealthiness of poison-only attacks.
Backdoor attacks are supposed to maintain a high ASR with low α to evade possible machine and
manual inspections. Furthermore, a low poisoning rate is equally essential for ensuring the normal
functionality of DNNs, facilitating its deployment in real-world environments.

Step 2: Trigger Design and Insertion (by adversary). The requirement of stealthiness leads the
adversary to carefully design a trigger pattern w by tweaking the pixels of the images. Thus, the trig-
gers can be applied to generate the poisoned images. The above period is depicted as fg : X → X .
For example, fg(x) = (1−m)∗x+m∗w is a common approach to implant the trigger w where the
mask m ∈ [0, 1]C×H×W represents the poison area of the images. ∗ represents the product in terms
of elements. Given the target label yt, the poisoned training dataset generated could be denoted as
Dp = {(xi, yi)|if mi=0, or (fg(xi), yt)|if mi=1}|Dtr|

i=1 . Most attackers focus their efforts on de-
signing triggers that can evade backdoor defenses and manual inspection. During the trigger design
phase, attackers may also train surrogate models to validate and provide feedback for optimizing the
triggers. However, they cannot make assumptions about the specific model architectures employed
by defenders. Consequently, attackers must ensure that the backdoor attacks maintain effectiveness
across a wide range of model architectures.

Step 3: Backdoor Detection (by detectors). Backdoor detection, serving as the initial step in
the backdoor defense framework, holds significant research value. By eliminating high-risk data
before they are actually utilized in model training, the implementation of backdoor attacks can
be fundamentally thwarted. We represent the result of the detection based on a binary vector
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R = [R1, R2, . . . , R|Dtr|] ∈ {0, 1}|D|. Therefore, Ri = 1 when the smaple xi is classified as
the poisoned sample and Ri = 0 means benign samples. Thus, the dataset Dd used to be trained
in Step 4 is constructed. Given that backdoor attacks can achieve a high ASR by poisoning only a
minimal amount of data, the True Positive Rate (TPR) stands out as the most critical metric for de-
tectors in this phase. Meanwhile, detectors must also aim for a low False Positive Rate (FPR) while
maintaining high TPR, to prevent excessive exclusion of normal data from the training process.

Step 4: Model Training (by defenders). Once the final dataset Dd is generated, users will train
the DNN. The stealthiness and utility of backdoor attacks require imperceptible modifications of the
data set, which require the poisoned model f̃θ to maintain high accuracy in benign test data (high
BA). Otherwise, users would not adopt the poisoned model, and no backdoor could be implanted.
Meanwhile, during the training period, the defenders can employ various strategies to prevent the
model from overfitting to the backdoor features. A wide array of defensive measures is available at
this stage (e.g., encompassing model compression, robustness training, and internal attack-defense
drills). In the end, a final model will be trained, which has been subjected to backdoor attacks and
is simultaneously being targeted for interception by defenders.

Step 5: Inference stage of DNNs (by adversary and detectors). The attackers expect to activate
the injected backdoor using the trigger w defined in Step 2. During the inference phase, adversaries
attempt to utilize samples embedded with triggers to achieve illicit objectives or secure undue ad-
vantages. At this juncture, adversaries are solely privy to the final outcomes, lacking any access to
the model’s specific architecture, parameters, or the output information from each layer. In contrast,
defenders can ascertain whether the data has been poisoned by inspecting model parameters and
the output information from various layers. Upon identifying the data as high-risk, defenders can
safeguard their interests by adopting measures such as service denial.

G EFFECT OF CATEGORY IN THE DESIGN OF GCBD

In the CIFAR-10 dataset, the mapping between y and the true labels is defined as {0:airplane, 1:au-
tomobile, 2:bird, 3:cat, 4:deer, 5:dog, 6:frog, 7:horse, 8:ship, 9:truck}. In Figure 6, we methodically
organize the proportions of misclassified categories across diverse data categories, drawing particu-
lar attention to the most dominant category X based on the remarks “y=X”. The accurate category
corresponding to the pie chart, along with its identifying color relative to the other pie charts, is
labeled above each visual representation. When samples from class A are frequently misclassified
as class B, it indicates a notable resemblance between A and B.

y = 9

y = 0 y = 1 y = 2 y = 3 y = 4

y = 5 y = 6 y = 8y = 7

y = 8

y = 4 y = 5

y = 2

y = 1
y = 0

y = 4y = 3y = 3

y = 9

Figure 9: Category distinction within the CIFAR-10 dataset.

As depicted in Figure 9, there are significant disparities in the similarity levels across different cate-
gories. For example, the proportion of trucks (y=9) is considerably higher than that of birds (y=2).
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Consequently, in the pie chart for automobiles (y=1), automobiles demonstrate a much stronger
resemblance to trucks than to birds. Moreover, the similarity pattern exhibits symmetry. For the
set y={0, 1, 2, 3, 4, 5, 8, 9}, the class with the highest proportion in its corresponding pie chart
also predominates in the pie chart of the paired class. Although the set y={6, 7} deviates from this
pattern, they still rank as the second-highest proportion in the corresponding pie charts for y={3,
4}. Therefore, to prevent the model from overfitting to shortcuts that distinguish backdoor features
from normal ones based on the sequence of interfering categories, a process that diverts its focus
away from learning adversarial robustness by exploiting category differences, we frequently and
randomly shuffle the order of interfering images during the training of the GCBD model.

21


	Introduction
	Related Work
	GCBD: General Cross-attack Backdoor Detection
	Trigger Injection
	Disturbance Immunity

	Experiments
	Comparison with other detection methods
	Performance of Our Methods on Test-time Detection
	Effect of Target Labels & Validation Methods
	Stability of GCBD & Deployment Analysis

	Conclusion
	Reproducibility statement
	Usage of LLMs
	Effect of Clean Images
	Sample Selection
	Experimental Results

	Effect of Source Attacks' ASR
	Effect of Source Attacks' Type
	Effect of Disturbance Intensities
	Related Knowledge in Backdoor Detection
	Attack Knowledge
	Detection Knowledge
	Workflow of the DNNs

	Effect of Category in the Design of GCBD

