

GENERAL CROSS-ATTACK BACKDOOR DETECTOR BASED ON DISTURBANCE IMMUNITY OF TRIGGERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Backdoor attacks aim to manipulate the behavior of DNNs under trigger-activated conditions. Data poisoning represents a standard approach to embedding triggers in victim models. Current backdoor detectors struggle to separate trigger-injected samples from the poisoned data set, which suffers severely from two dilemmas. (1) Modern backdoor features are usually highly coupled with benign features. Existing detectors are almost pixel-based methods, which critically hinders the recognition performance of backdoor features. (2) Owing to the prior lack of poisoned sample distributions, most detectors are restricted to employing approaches akin to unsupervised clustering-based methods. Thus, they heavily rely on sufficient clean samples and deficient artificial priors to efficiently search for poisoned samples with poor generalization across various attacks. This paper introduces a brand new perspective to reformulate the attackers' objective, *i.e.*, **backdoor attacks lead victim models to classify the trigger disturbed by images into the target label**, to identify the attack community. Specifically, we propose the concept, **Disturbance Immunity** of triggers, and *theoretically demonstrate that benign and backdoor features exhibit significant classification probability discrepancies across varying perturbations of clean image classes and intensities*. Subsequently, a few known conventional attack patterns are applied to label the poisoned dataset, and then the labeled dataset is perturbed in the above manner to drive the detector to learn the Disturbance Immunity of triggers. Thus, traditional unsupervised clustering-based detection can be transformed into a simple labeled binary classification task. **Currently, few method provides detection work based on direct commonality transfer, nor do they break the feature separation task with a labeled-conversion detection framework.** Finally, we train and present an effective General Cross-attack Backdoor Detector (**GCBD**). With few clean images (≤ 10), GCBD exhibits State-Of-The-Art (**SOTA**) detection performance with satisfactory generalization on various SOTA attacks. Additionally, GCBD also supports direct toxicity detection in unseen samples during training, as proved by a more challenging test-time validation approach. Our code will be released soon.

1 INTRODUCTION

Deep learning models require a substantial amount of training samples to achieve high accuracy and generalization capabilities. Therefore, collecting data from multiple sources is a prevalent scenario in the practical training and deployment of models. However, some sources might supply trigger-implanted samples to inject attacker-desired backdoors into DNNs. Victim models trained in the poisoned data set merely exhibit abnormal behaviors when processing trigger-implanted samples. In visually critical domains (*e.g.*, healthcare, autonomous driving, and access control), backdoor attacks may lead to catastrophic consequences. Therefore, detecting and eliminating poisoned data at the source constitutes the focal point of defense against the backdoor.

We summarize the dilemma of traditional detection methods as follows. (1) *Modern backdoor features are usually highly coupled with benign features. Existing detectors are almost pixel-based methods, which critically hinders the recognition performance of backdoor features.* Specifically, Narcissus (Zeng et al. (2023)) designs backdoor features based on benign features and thus only needs poisoning 25 images to get 99% ASR without label poisoning. SIBA (Gao et al. (2024)) formulates trigger generation as a bi-level optimization problem with sparsity and invisibility con-

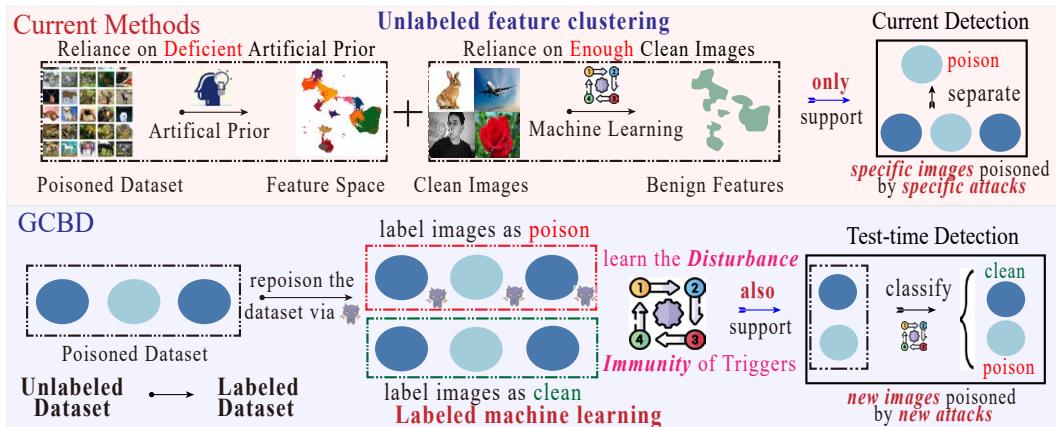


Figure 1: Our GCBD transfers the backdoor detection from a **unlabeled feature clustering** task to a **labeled binary classification** task.

069 straints. The learned trigger has been demonstrated to exhibit a high degree of alignment with the
070 benign features in pixels. In addition, Grond (Xu et al. (2025)) limits parameter changes via a reverse
071 backdoor injection (ABI), which adaptively increases the stealthiness of the parameter space during
072 the backdoor injection. All of the above SOTA attacks have exhibited their superiority in evading
073 detection methods. (2) *Owing to the prior lack of poisoned sample distributions, most detectors are restricted to employing approaches akin to unsupervised clustering-based methods. Thus, they heavily rely on sufficient clean samples and deficient artificial priors to efficiently search for poisoned samples with poor generalization across various attacks.* As depicted in Figure 1, detectors
074 rely on deficient artificial prior to construct a feature space for feature separation. Enough clean
075 samples are required to learn the benign features. However, manual assumptions are often idealistic
076 and can be specifically bypassed by attackers. For example, the presence of high-frequency artifacts
077 (Zeng et al. (2021)) can be bypassed by designing low-frequency triggers. Furthermore, defenders
078 have to retrain the detection models for detecting new attacks, which is costly and time-consuming.

079 To address the above issues, we adopt a brand-new perspective to observe attacks' objectives by
080 the concept of **Disturbance Immunity**. Specifically, *backdoor attacks aim to force the victim*
081 *models to classify triggers with image perturbations as the target label*. Therefore, backdoor triggers
082 need to possess anti-perturbation properties relative to normal features. As shown in Figure
083 2, triggers maintain the connection with the target label under the perturbations from images in
084 different classes. Meanwhile, perturbations of images within the same class can be regarded as
085 perturbations of different intensities. Therefore, the triggers should also exhibit a certain degree of
086 anti-perturbation with respect to the intensity of perturbations. Specifically, we theoretically demon-
087 strate that benign and backdoor features exhibit significant classification probability discrepancies
088 across varying perturbations of clean image classes and intensities in **Section 3**, demonstrating the
089 scientific validity of the above insights.

090 In this paper, we employ the most conventional backdoor attacks, BadNets (Gu et al. (2017)) and
091 Blended (Chen et al. (2017)), to construct the poison version of the original dataset, together gener-
092 ating a labeled binary classification sequence task. Furthermore, a dimensionality-lifting method
093 is designed to transform image pixels into sequential matrices based on **Disturbance Immunity**
094 for leading the detector to learn the Disturbance Immunity of triggers, which also improves com-
095 putational efficiency while preserving the key differences between backdoor and benign features.
096 Relying solely on a simple LSTM network and 10 clean samples, an effective **General Cross-attack**
097 **Backdoor Detector (GCBD)** is trained within 10 epochs.

098 The superiorities of GCBD can be summarized as follows:

- 102 • Existing methods require the collection of sufficient clean data to extract clean features, a
103 time-consuming process that involves both data acquisition and model training. In contrast,
104 GCBD entirely eliminates the need for the aforementioned process.
- 105 • The core of GCBD relies on the objectives of backdoor attacks rather than deficient arti-
106 ficial priors. Therefore, **extensive experiments demonstrate that GCBD exhibits SOTA**
107 **detection performance upon various types of hard-to-detect backdoor attacks.**

- 108 • Unlike mainstream detection methods, **GCBD can directly detect the poisoned images**
109 **and triggers that have not even been available in the training set without performance**
110 **degradation.** We introduce a test-time approach to validate the conclusion by classifying
111 the poisoned and clean versions of the test set, as depicted in Figure 1. At the test-time
112 detection, for each image in the test set, GCBD classifies the images implanted by various
113 triggers as poison and the clean version of the image as clean.
- 114 • **The cost of training GCBD is extremely low.** Given the poisoned models and datasets,
115 GCBD can be trained in a high-dimensionality sequence space (e.g., 10×10 in CIFAR-10)
116 rather than the pixel space (e.g., $2 \times 32 \times 32$ in CIFAR-10). Therefore, a **LSTM with 53K**
117 **params** can be trained to learn the Disturbance Immunity within 4 epochs, significantly
118 reducing the training cost. Analysis can be seen in **Section 4.4**.

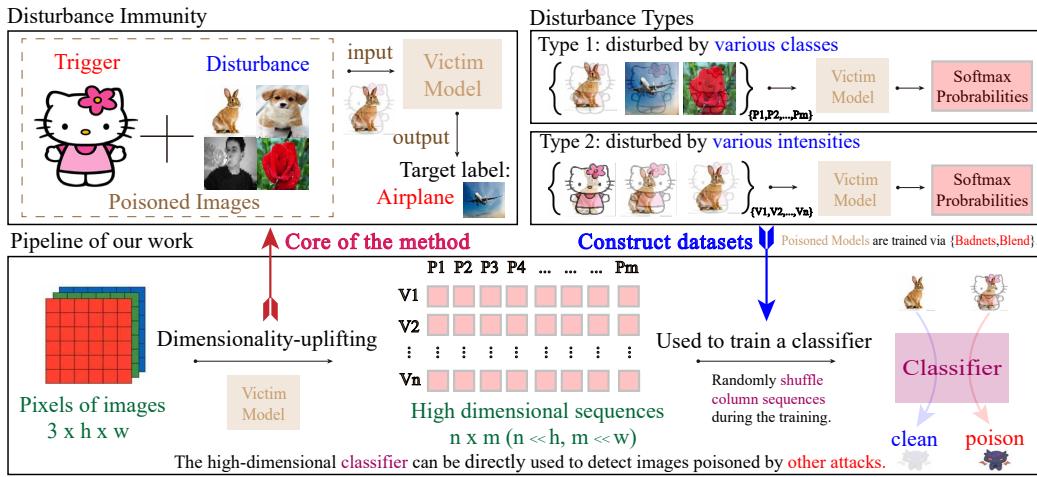


Figure 2: Overall framework of the proposed GCBD.

2 RELATED WORK

Backdoor Attack The primary focus of research development in backdoor attacks is to maximize their applicability while maintaining a high attack success rate. Among various factors, stealthiness serves as a crucial indicator of high applicability. Early backdoor attacks (e.g., Badnets Gu et al. (2017) and Blended Chen et al. (2017)) employ simply designed visible triggers for poisoning the dataset, relying on a dirty-label setting and high poisoning rates to compel the model to learn the mapping relationship between the trigger and the target label.

To enhance the stealthiness of the attacks, Lin et al. (2020) proposes a trigger formulated from a combination of existing benign features to bypass machine detection. Furthermore, invisible triggers (Bai et al. (2022), Wang et al. (2022)) are designed to involve incorporating minor perturbations by tweaking the pixel values and positions of the original image. What is more, Wenger et al. (2022) introduces natural triggers based on the hypothesis that there may be physical objects that exist naturally and are already present in popular datasets such as ImageNet. Several studies (Hayase & Oh, 2022; Li et al., 2023; Li et al., 2024; Hung-Quang et al., 2024; Wang et al., 2025) propose sample selection approaches to enhance ASR by poisoning specific “hard” samples rather than random ones. The reduction of the poisoning rate enhances stealthiness. Details can be seen in **Appendix B**.

Modern backdoor attacks enhance the stealth of triggers by coupling with normal features and constantly breaking the priors of backdoor detection. The underlying assumption of current defense methods is that decoupling the connection between backdoor triggers and target labels will not impair the benign association between semantic features and semantic labels. Therefore, *directly unlearning backdoor features that are tightly coupled with normal features will inevitably impair the functionality of victim models*. Hence, **the key solution lies in employing backdoor detection methods to fundamentally prevent poisoned data from participating in the training process**.

Backdoor Detection The detection methods focus on the detection of poisoned samples. Other defense methods may focus on detecting part of the poisoned samples and then using reverse engineering to erase backdoor features, requiring lower accuracy in detection. Detection methods receive

162 great attention as research aiming to eliminate backdoor features from the source, and may also be
 163 applied in the inference phase of the models.
 164

165 Current backdoor detection research endeavors to discern the disparities between poisoned samples
 166 and clean samples in the feature space based on the artificial priors, employing methods such as
 167 Singular Value Decomposition (SVD) (Tran et al. (2018), Hayase et al. (2021)), Gram matrix anal-
 168 ysis (Ma et al. (2022)), K-Nearest-Neighbors (Peri et al. (2020)), and feature decomposition (Tang
 169 et al. (2021)). Beyond embedding features, intermediate neural activations (Chen et al. (2018)) and
 170 gradients (Chan & Ong (2019), Chou et al. (2020)) extracted from samples can also be leveraged
 171 for backdoor sample detection. Previous studies have further explored other distinguishing char-
 172 acteristics of backdoor samples, including the trigger’s resistance to data augmentation (Gao et al.
 173 (2019)), the presence of high-frequency artifacts (Zeng et al. (2021)), their relatively low contribu-
 174 tion to training tasks (Wang et al. (2021), Koh & Liang (2017)), or the possibility of achieving lower
 175 loss values during the early stages of training (Li et al. (2021)).

176 However, the research on backdoor attacks and detection has been engaged in a continuous pro-
 177 cess of mutual confrontation and advancement. A prevalent drawback of mainstream detection
 178 approaches is that the trained detection models are not only confined to specific attack trigger fea-
 179 tures but also rely on deficient artificial priors that do not inherently capture the essence of backdoor
 180 attacks, making them susceptible to targeted evasion. For example, Input-aware (Nguyen & Tran
 181 (2020) disrupts the prior assumption of a single static trigger in backdoor detection by designing
 182 dynamic triggers. The presence of high-frequency artifacts (Zeng et al. (2021)) can be bypassed by
 183 designing low-frequency triggers.

184 Furthermore, current detectors fail to exhibit satisfactory detection performance upon backdoor fea-
 185 tures that are coupled with benign features. Narcissus (Zeng et al. (2023)) designs triggers that are
 186 highly coupled with normal features by optimizing the extracted normal features, achieving a 99%
 187 Attack Success Rate (ASR) by poisoning 0.05% samples at the clean-label setting. This renders
 188 many detection methods based on feature extraction and separation ineffective. Gao et al. (2024)
 189 formulates a bi-level optimization problem to design powerful triggers with sparsity and invisibility
 190 constraints while ensuring high ASR in clean-label settings. Grond evades detection by controlling
 191 the extent of parameter changes during the training process.

192 3 GCBD: GENERAL CROSS-ATTACK BACKDOOR DETECTION

194 Preliminaries of **Backdoor Attack** and **Backdoor Detection** can be seen in **Appendix F**.
 195

196 3.1 TRIGGER INJECTION

198 The image classification models can be denoted as $f_\theta : X \rightarrow Y$, where $x \in X =$
 199 $\{0, 1, \dots, 255\}^{C \times H \times W}$ represents the input domain and $Y = \{y_1, y_2, \dots, y_k\}$ represents the la-
 200 bels of the images. θ denotes the parameters that a DNN learned from the clean training data set
 201 $D_{tr} = \{(x_i, y_i)\}_{i=1}^N$. The benign training with D_{tr} can be seen as a single-level optimization
 202 problem. The optimization seeks a model f_θ by solving the following goal during training:
 203

$$204 \min_{\theta} L(D_{tr}, f_\theta) = \sum_{i=1}^{N_{tr}} l(f_\theta(x_i), y_i), \quad (1)$$

207 where l is the loss function (e.g., the cross entropy). To implant the backdoor into the model,
 208 adversaries poison the selected samples and provide a poisoned dataset D_p to users. D_p consists of
 209 two disjoint parts. We define a binary vector $M = [M_1, M_2, \dots, M_{|D_{tr}|}] \in \{0, 1\}^{|D|}$ to represent
 210 the poisoning selection. Specifically, $M_i = 1$ indicates that x_i is selected to be poisoned while
 211 $M_i = 0$ means the benign sample. We denote $\alpha := \frac{|D_s|}{|D_{tr}|}$ as the poisoning rate. The generator of
 212 poisoned images can be denoted as $T : X \rightarrow X$. $T(x) = (1 - m) * x + m * \delta$ represents the trigger
 213 implantation, where the mask $m \in [0, 1]^{C \times H \times W}$ represents the poisoning intensity of the trigger δ .
 214

215 The stealthiness and utility of backdoor attacks require the poisoned model \tilde{f}_θ to maintain high
 216 accuracy on benign test data. Otherwise, users would not adopt the poisoned model, and no backdoor

216 could be implanted. The accuracy on clean test set D_{clean} can be computed by:
 217

$$218 \quad BA = \frac{1}{N_{clean}} \sum_{i=1}^{N_{clean}} ACC(\tilde{f}_\theta(x_i), y_i), \quad (2)$$

221 where N_{clean} means the number of clean test set. $(x_i, y_i) \in D_{clean}$ and y_i is the ground-truth label.
 222 $ACC(y, y_i)$ will be set to 1 if $y = y_i$ and 0 otherwise. Given the poisoned model \tilde{f}_θ , the Attack
 223 Success Rate (ASR) of a backdoor attack can be computed by:

$$224 \quad ASR = \frac{1}{N_{clean}} \sum_{i=1}^{N_{clean}} ACC(\tilde{f}_\theta(T(x_i)), y_t), \quad (3)$$

227 where N_{clean} means the number of clean test set D_{clean} . $T(x_i)$ represents the trigger-implanted
 228 image x_i and y_t is the target label. Based on the above definitions, the poisoned model \tilde{f}_θ can be
 229 trained by solving the following question in the train set D_{tr} :

$$230 \quad \min_{\theta} L(D_{tr}, \tilde{f}_\theta) = \frac{\sum_{i=1}^{|D_{tr}|-|D_s|} l(\tilde{f}_\theta(x_i), y_i)}{|D_{tr}| - |D_s|} + \frac{\sum_{i=1}^{|D_s|} l(\tilde{f}_\theta(T(x_i)), y_t)}{|D_s|}. \quad (4)$$

233 3.2 DISTURBANCE IMMUNITY

235 For better analysis, the image classification models $f_\theta : X \rightarrow Y$ can be further decomposed by
 236 introducing $\varphi : X \rightarrow R^d$ as a feature extractor from a probabilistic perspective:

$$237 \quad \tilde{y} = \arg \max_y P(y|x) = \arg \max_k \omega(\varphi(x)), \quad (5)$$

239 where ω denotes a classification layer that generates class probabilities for each category
 240 $\{p_1, p_2, \dots, p_k\}$. Backdoor attacks aim to lead the poisoned models to exhibit high BA and ASR
 241 via Eqn.4. According to Eqns.2 and 3, successful backdoor attacks meet the following constraints:

$$242 \quad P_{(x_i, y_i) \in D_{tr}}[\tilde{f}(x_i) = y_i] \geq 1 - \xi_c, \quad (6)$$

$$244 \quad P_{x \in X}[\tilde{f}(T(x_i)) = y_t] \geq 1 - \xi_p, \quad (7)$$

245 where ξ_c and ξ_p denote small positive constants. The above constraints limit the models to behave
 246 normally on clean inputs but misclassify trigger-embedded inputs as the target class. Any research
 247 on backdoor attacks is designed based on this fundamental objective. Therefore, we use two obser-
 248 vations to refine the description by categorizing images based on whether they belong to the same
 249 category or not, which can represent the commonality of backdoor attacks at a certain level.

250 **Observation 1: Disturbance Immunity across classes.** Poisoned images $T(x_i)$ with the back-
 251 door trigger δ maintain a nearly constant feature representation in high-dimensional space $\varphi(x)$
 252 irrespective of the ground-truth label y_i , enabling universal misclassifications to the target label y_t .

$$253 \quad \exists \mathbf{v}^* \in \mathbb{R}^d \quad \text{s.t.} \quad \forall x \in X, \quad \|\varphi(T(x)) - \mathbf{v}^*\|_2 \leq \epsilon. \quad (8)$$

255 **Observation 2: Disturbance Immunity across intensities.** Poisoned images $T(x_i)$ with the
 256 backdoor trigger δ maintain a nearly constant feature representation in high-dimensional space $\varphi(x)$
 257 irrespective of the specific sample in the same class, enabling universal misclassifications to the
 258 target label y_t . The Disturbance Immunity across intensities can be depicted as Eqn.9, where ϵ is a
 259 small positive constant and $\eta(x)$ represents the distortion induced by specific image characteristics.

$$260 \quad \exists \mathbf{v}^* \in \mathbb{R}^d \quad \text{s.t.} \quad \forall x \in X_i, \quad \varphi(T(x)) = \mathbf{v}^* + \eta(x) \quad \text{and} \quad E_{x \in X} \left[\frac{\|\eta(x)\|}{\|\mathbf{v}^*\|} \right] \leq \epsilon. \quad (9)$$

262 **Derivation** We aim to derive that *the objective of backdoor attacks will drive the backdoor features*
 263 *to exhibit significant differences in probability values compared to benign features* based on the
 264 observations about the **Disturbance Immunity** of triggers.

266 Notably, the triggers we refer to in this paper are conceptual descriptions that modify image features
 267 into attacker-specific features in a high-dimensional feature space, rather than triggers that are ex-
 268 actly the same at the pixel level. Therefore, backdoor attacks can be redefined from a brand-new
 269 perspective based on **Section 3.1**, which can be depicted in Eqn.10 :

$$270 \quad T(x) = (1 - m) * x + m * \delta = m * \delta + Perturb_x. \quad (10)$$

270 In Eqn.10, $Perturb_x$ serves as a trigger-irrelevant perturbation, and m represents the adversarial
 271 suppression level of the trigger δ ($m \in (0, 1]$). Therefore, we can derive Eqn.11 based on Eqns.5-6:
 272

$$273 P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(\frac{Perturb_x}{1-m})) = y_i] \geq 1 - \xi_c, \quad (11)$$

274 where $\frac{1}{1-m}$ is a constant. Geometric resizing operations preserve the semantic class label of the
 275 image. Therefore, the poisoned model also meets the following constraint:
 276

$$277 P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(Perturb_x)) = y_i] \geq 1 - \xi_c, \quad (12)$$

279 Therefore, the constraints of the image classification models upon the poisoned image $T(x_i)$ ($y_i \neq$
 280 y_t) can be concluded as follows:

$$281 \begin{cases} P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(Perturb_x)) = y_i] \geq 1 - \xi_c \\ P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(Perturb_x)) = y_t] \leq 1 - \xi_a, & m = 0 \\ P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(m * \delta + Perturb_x)) = y_t] \geq 1 - \xi_a \\ P_{(x_i, y_i) \in D_{tr}} [\arg \max_k \omega(\varphi(m * \delta + Perturb_x)) = y_i] \leq 1 - \xi_c, & m \neq 0. \end{cases} \quad (13)$$

285 Furthermore, we investigate the model's expected performance when fusing images of various categories. Given two clean images x_i ($(x, y_i) \in D_{tr}$) and x_j ($(x, y_j) \in D_{tr}$) with $i \neq j$. We use x_j to
 286 disturb x_i and poisoned image $T(x)$ via the equations:
 287

$$288 x_1^* = \alpha * x_i + (1 - \alpha) * x_j, \quad (14)$$

$$290 T(x_1)^* = \alpha * T(x_i) + (1 - \alpha) * x_j = \alpha * (m * \delta + Perturb_x) + (1 - \alpha) * x_j \\ 291 = (\alpha * m) * \delta + ((1 - \alpha) * x_j + \alpha * Perturb_x) = (\alpha * m) * \delta + Perturb_{x,y}, \quad (15)$$

292 Consequently, we uplift the low-dimensional pixel information into classification-layer probabilities
 293 while preserving the generalized core discrepancy essential for discriminative tasks. The pseudo-
 294 decode of our approach can be seen in **Algorithm 1**.

295 **Algorithm 1** Dimensionality-uplifting Approaches based on Disturbance Immunity

296 **Input :** Poisoned dataset D_p , Clean images $images_c = \{x_c^1, x_c^2, \dots, x_c^n\}$ ($n \leq 10$), Traditional
 297 triggers $Triggers = \{t^1, t^2, \dots, t^n\}$, Alphas $alphas = \{\alpha^1, \alpha^2, \dots, \alpha^n\}$, Poisoned model \tilde{f}_θ
 298 **Output :** High-dimensional sequence dataset D
 299 **for** trigger $t^i \in Triggers$ **do**
 300 Train poisoned model \tilde{f}_θ^i based on D_p with t^i
 301 **end for**
 302 **for** image $x \in D_p$ **do**
 303 **for** trigger $t \in Triggers$ **do**
 304 Shuffle the list of $images_c$
 305 ori = [[] for _ in range(len(images_c))]
 306 poi = [[] for _ in range(len(images_c))]
 307 **for** $x_c \in images_c$ **do**
 308 **for** $\alpha^i \in alphas$ **do**
 309 $x_1 = \alpha^i * x + (1 - \alpha) * x_c$
 310 Poison x with trigger t to $T(x)$
 311 $x_2 = \alpha^i * T(x) + (1 - \alpha) * x_c$
 312 Get the output probability $\{p_1^i, p_2^i\}$ via $\{\tilde{f}_\theta^i(x_1), \tilde{f}_\theta^i(x_2)\}$
 313 Concatenate probability values $\{p_1^i, p_2^i\}$ into sequence $\{ori, poi\}$.
 314 **end for**
 315 **end for**
 316 Insert sequence values $\{ori, poi\}$ into dataset D with flags {"clean", "poisoned"}.
 317 **end for**
 318 **end for**

319 In Eqn.15, $Perturb_{x,y}$ serves as a trigger-irrelevant perturbation. According to Eqn.13, the poisoned
 320 model is expected to classify the image $T(x_1)^*$ as the target label y_t when $m \neq 0$ and $\alpha \neq 0$. What
 321 is more, we can also derive the expected classification of x_1^* according to the Eqn.6 as follows:
 322

$$323 \begin{cases} P_{(x,y) \in D_{tr}} [\tilde{f}(\alpha * x_i + (1 - \alpha) * x_j) = y_j] \approx P_{(x,y) \in D_{tr}} [\tilde{f}(x_j) = y_j] \geq 1 - \xi_c, & \alpha \rightarrow 0 \\ P_{(x,y) \in D_{tr}} [\tilde{f}(\alpha * x_i + (1 - \alpha) * x_j) = y_i] \approx P_{(x,y) \in D_{tr}} [\tilde{f}(x_i) = y_i] \geq 1 - \xi_c, & \alpha \rightarrow 1 \end{cases} \quad (16)$$

324 According to Eqn.16, the poisoned model is expected to classify the image x_1^* as label y_j when
 325 $\alpha \rightarrow 0$ and label y_i when $\alpha \rightarrow 1$. In general, the impact disparity between normal features of y_i and
 326 y_j on model predictions is significantly smaller than that between backdoor features δ and normal
 327 features of y_i . The discrepancy is determined by the adversarial objective of backdoor attacks rather
 328 than trigger-specific characteristics, enabling the differentiation of normal and backdoor features via
 329 perturbation robustness analysis. Thus, ***the objective of backdoor attacks will drive the backdoor***
 330 ***features to exhibit significant differences in probability values compared to benign features.***

331 Owing to the challenge of obtaining clean images, we adjust the m in $T(x)$ to generate a series of
 332 perturbations with varying intensities, thereby easing the applicability of GCBD. Additionally, the
 333 above approach minimizes the interference from numerous redundant features irrelevant to the core
 334 objective. We conduct a systematic investigation in **Appendix B** on the effect of clean data selec-
 335 tion on GCBD and take Res-linear (Wu et al. (2025b)) as the sample selection method during the
 336 training. **To the best of our knowledge, our work represents the first attempt to systematically**
 337 **investigate the impact of data discrepancies on backdoor defense.** Furthermore, we frequently
 338 and randomly shuffle the order of clean images during the training to prevent GCBD from overfitting
 339 to the learning of class order rather than Disturbance Immunity, as depicted in **Appendix G**.

340 4 EXPERIMENTS

341 **Basic Setting** We use Blended and Badnets to train the GCBD at the clean-label setting in the
 342 main experiments. Class 0 is selected as the target label in all datasets. The strength of backdoor
 343 features varies among different backdoor attacks. We use a 95% Attack Success Rate (ASR) as
 344 the limit for an effective backdoor attack. Different poisoning rates represent the coarse-grained
 345 minimum poisoning rates corresponding to different attacks that meet the limits. The number of
 346 clean samples (≥ 100) required by current detection methods, {SS (Tran et al. (2018)), AC (Chen
 347 et al. (2018)), STRIP (Gao et al. (2019)), SentiNet (Chou et al. (2020)), ABL (Li et al. (2021)),
 348 SCAN (Tang et al. (2021)), Teco (Liu et al. (2023)), AGPD (Yuan et al. (2023)), ASSET (Pan et al.
 349 (2023)), CD (Huang et al. (2023))}, follows the default configuration in BackdoorBench (Wu et al.
 350 (2024)). In contrast, 10 clean samples are applied to provide various disturbances in GCBD. Further
 351 details of experiments about GCBD can be seen in **Appendix {B, C, D, E}**.
 352

353 4.1 COMPARISON WITH OTHER DETECTION METHODS

354 We compare the performance of methods on the detection of poisoned samples in the given poisoned
 355 train set with True Positive Rate (TPR) and False Positive Rate (FPR) as the evaluation metrics. In
 356 addition to BadNets under the poison-label setting, we select various distinct types of hardest-to-
 357 detect attack methods and 10 detection methods to demonstrate the superiority of GCBD. Specif-
 358 ically, we introduce the poison label Badnets attacks to verify the **cross-setting applicability** of
 359 GCBD for the same attacks. Secondly, FTrojan (Chen et al. (2017)), Input-aware (Nguyen & Tran
 360 (2020)) are applied to verify whether the detector can be applied to defend against **frequency-based**
 361 **triggers** and **dynamic triggers**. In addition, we exhibit the performance of the detectors in **SOTA**
 362 **attacks** (Narcissus Zeng et al. (2023), SIBA Gao et al. (2024), and Grond (Xu et al. (2025))).
 363

364 **Summary:** As shown in Table 1, **GCBD achieves an average 93% TPR and 5.5% FPR across all**
 365 **attacks, exhibiting the SOTA detection performance in CIFAR-10 and CIFAR-100.** Almost all
 366 detection methods except GCBD exhibit terrible performance in some attacks because of deficient
 367 artificial priors, as depicted in **Worst-Case**.

368 **Analysis:** GCBD exhibits 90% TPR and 2% FPR on the poison-label BadNets attacks in CIFAR-10,
 369 demonstrating the cross-setting applicability of GCBD. The trigger non-reusability designs in Input-
 370 aware attacks render most backdoor detection infeasible, as the property undermines the assumptions
 371 of many defenses regarding fixed trigger characteristics. Based on the perturbation-resistance of
 372 backdoor features, GCBD outperforms many defense methods against such attacks, achieving a
 373 mean of 82.5% TPR and an FPR of 7.5% in CIFAR-10 and CIFAR-100.

374 In addition, GCBD attains a 100% TPR for FTrojan attacks, demonstrating that detectors trained
 375 based on the color-domain can also be effectively applied to detect triggers in the frequency-
 376 domain. Narcissus achieves effective backdoor implantation by poisoning merely 0.05% of the
 377 images. Therefore, traditional defenses relying on clustering-based separation struggle to defend

Table 1: Performance of detection methods upon difficult-to-detect attacks.

Dataset	Attacks →	BadNets (3%)		Input-aware (8%)		FTrojan (2%)		Narcissus (0.05%)		SIBA (1%)		Average		Worst-Case	
		TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓
CIFAR-10	SS	63%	14%	16%	15%	0%	15%	0%	15%	5%	15%	17%	15%	0%	15%
	AC	95%	6%	39%	6%	100%	3%	0%	8%	0%	9%	40%	6%	0%	9%
	STRIP	82%	5%	2%	8%	98%	22%	100%	16%	34%	10%	63%	12%	2%	22%
	SentiNet	58%	55%	30%	71%	100%	100%	0%	2%	66%	48%	50%	55%	0%	100%
	ABL	83%	0%	0%	9%	90%	0%	0%	0%	0%	1%	35%	2%	0%	9%
	SCAN	95%	0%	50%	0%	0%	0%	0%	4%	0%	0%	29%	1%	0%	4%
	TeCo	96%	10%	93%	10%	97%	0%	46%	20%	88%	10%	84%	10%	46%	20%
	AGPD	78%	8%	70%	35%	97%	0%	0%	10%	0%	1%	49%	11%	0%	35%
	ASSET	100%	39%	64%	25%	59%	38%	24%	41%	53%	38%	60%	36%	24%	60%
	CD	59%	20%	5%	20%	100%	19%	100%	20%	96%	20%	72%	20%	5%	20%
GCBD		90%	2%	82%	13%	100%	3%	100%	8%	99%	1%	94%	5%	82%	13%
CIFAR-100	Attacks →	BadNets (3%)		Input-aware (8%)		FTrojan (0.8%)		Narcissus (0.05%)		SIBA (0.3%)		Average		Worst-Case	
	Dataset	Attacks →	BadNets (3%)	Input-aware (8%)	FTrojan (0.8%)	Narcissus (0.05%)	SIBA (0.3%)	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓
	SS	16%	15%	10%	16%	0%	15%	40%	15%	8%	15%	15%	0%	16%	
	AC	10%	2%	2%	4%	0%	1%	100%	2%	0%	6%	22%	3%	0%	6%
	STRIP	95%	13%	21%	16%	96%	13%	100%	18%	73%	13%	77%	15%	21%	18%
	SentiNet	0%	0%	1%	0%	0%	100%	100%	0%	0%	0%	20%	20%	0%	100%
	ABL	30%	0%	20%	5%	38%	0%	0%	0%	1%	1%	18%	1%	0%	5%
	SCAN	95%	0%	50%	0%	99%	0%	0%	0%	0%	0%	49%	0%	0%	0%
	TeCo	90%	1%	13%	10%	99%	2%	98%	8%	42%	13%	68%	0%	13%	13%
	AGPD	0%	0%	50%	0%	0%	0%	0%	3%	26%	0%	15%	0%	0%	0%
	ASSET	100%	10%	58%	20%	25%	32%	0%	0%	34%	30%	43%	18%	0%	32%
	CD	99%	20%	61%	20%	100%	20%	100%	18%	100%	19%	92%	19%	61%	20%
GCBD		83%	8%	83%	2%	100%	7%	96%	14%	100%	1%	92%	6%	83%	14%

against Narcissus attacks. Furthermore, SIBA designs an effective trigger by formulating trigger generation as a bi-level optimization problem with sparsity and invisibility constraints. The trained triggers show the strong link with normal features, enabling SIBA to penetrate most defenses. In contrast, GCBD exhibits almost 100% TPR in detecting the triggers of SIBA and Narcissus.

4.2 PERFORMANCE OF OUR METHODS ON TEST-TIME DETECTION

Furthermore, we also present a test-time validation approach by testing the detector’s classification accuracy (ACC) on the test set and its corresponding dataset poisoned by new attacks. ***Test-time detection means that GCBD has no access to the test images during training and can only perform independent analysis and classification based on the characteristics of backdoor features.*** According to Table 2, GCBD exhibits 90% ACC in most cases. Using ResNet34 as victim models,

Table 2: Performance of GCBD on test-time detection.

Attack Models	Datasets →	CIFAR-10						CIFAR-100						Flag	
		TPR ↑	FPR ↓	ACC ↑	TPR ↑	FPR ↓	ACC ↑	TPR ↑	FPR ↓	ACC ↑	label-poisoning	characteristics	TPR ↑	FPR ↓	
ResNet34	Attacks ↓	0%	1%	49.97%	99%	4%	97.65%	Poison-label	Same attack with different setting						
	Badnets (Gu et al. (2017))	4%	11%	46.45%	97%	6%	95.55%	Poison-label	Sample-specific dynamic trigger						
	Input-aware (Nguyen & Tran (2020))	99%	17%	91.16%	99%	15%	91.89%	Poison-label	Frequency-stealthy trigger						
	FTrojan (Chen et al. (2017))	82%	20%	81.16%	87%	8%	89.46%	Clean-label	Low poisoning rate						
	Narcissus (Zeng et al. (2023))	45%	1%	72.06%	93%	16%	88.23%	Clean-label	Low pixel variation						
	Grond (Xu et al. (2025))	69%	2%	83.52%	75%	23%	76.09%	Clean-label	Low model parameter variation						
Average		50%	8%	70.72%	92%	12%	90%	-							
ResNet18	Badnets (Gu et al. (2017))	89%	15%	87.30%	100%	19%	90.25%	Poison-label	Same attack with different setting						
	Input-aware (Nguyen & Tran (2020))	97%	16%	90.31%	85%	10%	87.71%	Poison-label	Sample-specific dynamic trigger						
	FTrojan (Chen et al. (2017))	100%	8%	95.98%	100%	7%	96.17%	Poison-label	Frequency-stealthy trigger						
	Narcissus (Zeng et al. (2023))	94%	5%	94.70%	98%	5%	96.59%	Clean-label	Low poisoning rate						
	SIBA (Gao et al. (2024))	96%	7%	94.81%	97%	1%	97.81%	Clean-label	Low pixel variation						
	Grond (Xu et al. (2025))	100%	2%	99.00%	98%	1%	98.47%	Clean-label	Low model parameter variation						
Average		96%	9%	93.68%	96%	7%	94.50%	-							

GCBD achieves 71.72% ACC in CIFAR-10. After reducing the depth of the network to ResNet18, GCBD attains 94% ACC and 96% TPR. The false positive rate (FPR) is also maintained at approximately 8%. We hypothesize that deeper network models tend to average the probabilities in the final classification layer, thereby diminishing the disparity between backdoor features and benign features. Additionally, GCBD performs better on CIFAR-100, particularly in the ResNet34 scenario, as the rich category diversity may prevent models from averaging the probabilities in the classification layer. **In summary, GCBD can still detect unseen samples poisoned by new triggers in challenging test-time scenarios while maintaining satisfactory detection performance.**

The vast majority of backdoor attacks cannot be effectively and cost-efficiently transferred to the ImageNet. Therefore, we use the poison-label {Badnets, Blend} to train the GCBD at a subset of ImageNet, which is then used to detect the advanced Grond attack. GCBD achieves 100% TPR (0.83 F1) with 80% detection accuracy at test-time detection.

4.3 EFFECT OF TARGET LABELS & VALIDATION METHODS

In this section, we explore the effect of target classes and verification methods on the detection performance of GCBD through the FTrojan attack. Specifically, 2% samples of CIFAR-10 are randomly selected to be poisoned at the dirty-label settings with different target labels.

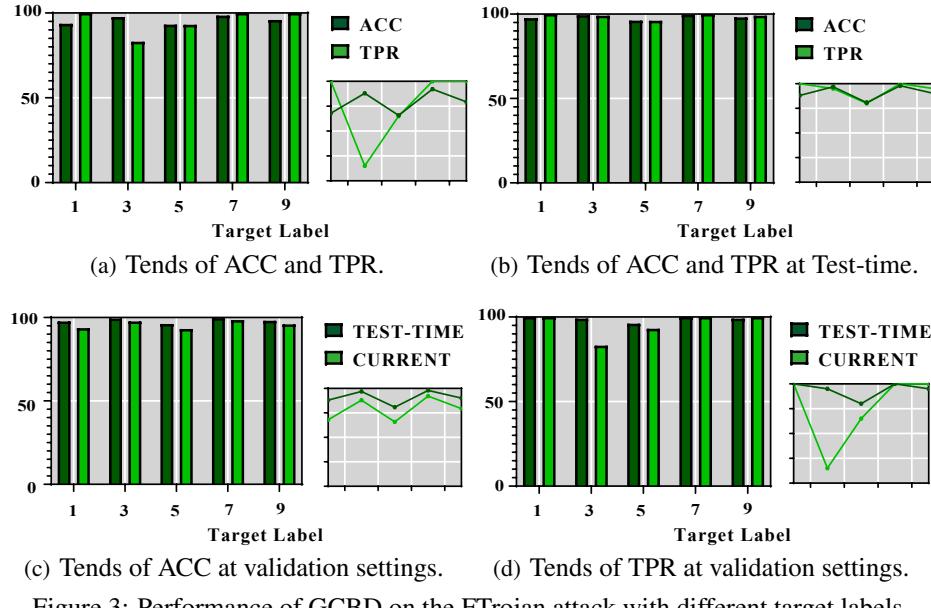


Figure 3: Performance of GCBD on the FTrojan attack with different target labels.

Figure 3a illustrates the performance of GCBD in the mainstream validation method by detecting poisoned samples from the poisoned training set, which is named as **CURRENT** in Figures 3c and 3d. GCBD achieves approximately 90% classification accuracy (ACC) and true positive rate (TPR) for each target class. Notably, the fluctuation in TPR is slightly greater than that in ACC, which is attributable to the bias of TPR upon poisoned samples and the low proportion of poisoned samples in the train set. Specifically, TPR places greater emphasis on the accuracy of the detection method upon the trigger-implanted samples, while disregarding accuracy on normal images. **The extremely low poisoning ratio amplifies the randomness of the final detection performance.** Under the Test-time validation method, considering that each image in the test set has both a normal and a trigger-implanted version, there is no issue of a low proportion of poisoned samples, so that the influence of randomness is also circumvented. The stable TPR shown in Figure 3b validates the aforementioned hypothesis, exhibiting the superiority of the new testing method in terms of stability.

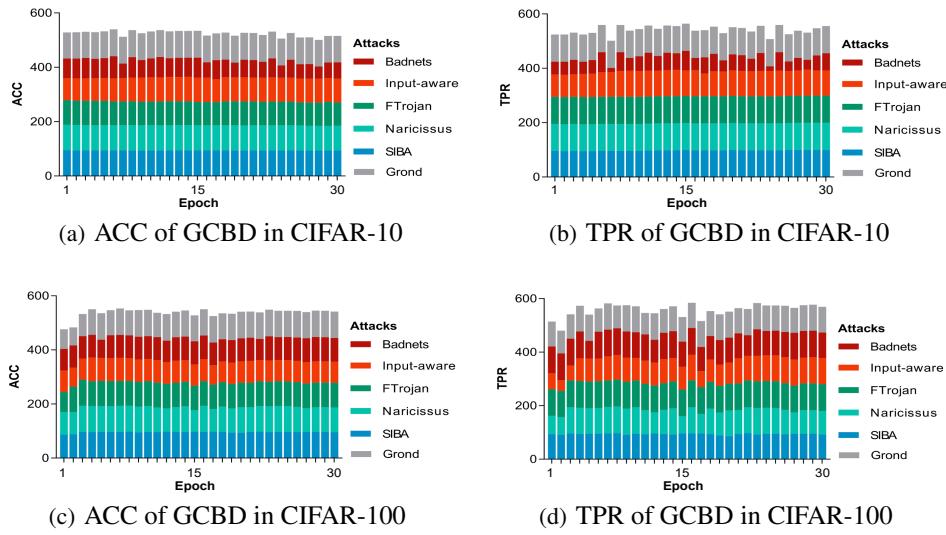
What is more, Figures 3c and 3d demonstrate the consistency between the two testing approaches. Both approaches can accurately reflect the performance of the detection methods. **It is noteworthy that test-time testing represents a more challenging detection scenario, as the detection methods cannot access specific information about the data to be detected during training.** Traditional detection methods are only applicable when all data information is available during testing, and thus cannot be used to evaluate real-time detection performance. In real-world backdoor attack scenarios, it is more common to lack access to all samples for validation.

Performance of GCBD on multi-target attacks Currently, there is little mature research on multi-target backdoor attacks published in top-tier conferences. This is because it breaks the traditional assumptions of backdoor attacks and, to a certain extent, overlaps with the objectives of adversary attacks, making it difficult to clearly define. Research on backdoor defense does not necessarily need to specifically cover this scenario.

Regarding whether there exists a feature space where various M-to-N backdoor attacks converge on a certain feature vector (i.e., whether there is a true commonality), we designed an experimentally enlightening experiment in the backdoor domain as follows: Firstly, in the training process of GCBD, we use 0 as the target category, which means we only need 1/10 (CIFAR10) and 1/100 (CIFAR100) of the data for GCBD training, representing a significant resource-saving advantage. Secondly, we perform a Badnets attack (poison-label) with a target category of 5 and a Narcissus attack (clean-label) with a target category of 3, and the choices of 5 and 3 are randomly generated. The setup implies that the trigger features are completely different (Badnets and Narcissus attacks) and the target categories are completely different (multi-label). What is more, the target category setting of GCBD training is different from all attacks. Within 10 epochs, GCBD achieves 99% TPR and 7% FPR (0.96 F1) at the detection of Badnets attack. Moreover, GCBD achieves 100% TPR

486 and 13% FPR (0.94 F1) at the detection of Narcissus attack. Therefore, even when GCBD is trained
 487 with completely different target labels and the dataset contains completely unrelated M-to-N attacks,
 488 GCBD still achieves satisfactory detection results within a few epochs.
 489

490 4.4 STABILITY OF GCBD & DEPLOYMENT ANALYSIS



500 501 502 503 504 505 506 507 508 509 510 511 Figure 4: The test-time detection performance of GCBD during the training period.

512 We train an extremely minimalist LSTM network with 53K params within a few epochs to highlight
 513 the superiority of GCBD. To better demonstrate the overall performance of GCBD in detecting var-
 514 ious attacks, we adopt the sum of Accuracy (ACC) as the y-axis variable. As illustrated in Figure 4,
 515 **GCBD achieves and subsequently sustains an average 93% ACC and 97% TPR after 4 epochs**.
 516 The remarkable stability of GCBD implies an exceptionally low computational cost. Specifically,
 517 the overhead for mainstream detection involves training the detector (*e.g.*, ResNet18 with 11.17M
 518 params) with 40 epochs on the entire dataset. In contrast, GCBD only needs a single class set (*e.g.*,
 519 1/100 of CIFAR-100) to learn Disturbance Immunity. With two traditional backdoor attacks label-
 520 ing samples at the clean-label setting (2 + 1 **times** of the set), GCBD can be successfully trained
 521 within 4 epochs (1/10 of the standard number of epochs). **Integrated with high-dimensionality**
 522 **sequences ($m = 10, n = 5$), the cost of GCBD is much less than $1/100 * 3 * 1/10 = 3/1000$ of**
 523 **pixel-based ($3 \times 32 \times 32$) detectors.**

524 5 CONCLUSION

525 In this paper, we theoretically demonstrate that benign and backdoor features exhibit significant clas-
 526 sification probability discrepancies across varying perturbations of clean image classes and intensi-
 527 ties. Subsequently, conventional attack patterns are applied to train the proposed GCBD by trans-
 528 forming traditional unsupervised detection into a simple labeled binary classification task. What is
 529 more, the superiority of GCBD lies in its stepping out of the basic framework of feature separa-
 530 tion and providing a detection method that directly migrates the commonalities of backdoor attacks.
 531 With few clean images (≤ 10), GCBD exhibits SOTA detection performance with satisfactory gen-
 532 eralization on various SOTA attacks. Furthermore, we design a much more challenging test-time
 533 validation approach to exhibit the superiority of our work. To the best of our knowledge, **GCBD**
 534 **represents the first attempt to detect unseen samples poisoned by new triggers in challenging**
 535 **test-time scenarios while maintaining satisfactory detection performance**. Last but not least,
 536 current detection methods implicitly assume the existence of only one type of backdoor feature.
 537 Methods based on feature separation may overlook deeper-level triggers in scenarios where both
 538 shallow and deep triggers exist simultaneously.

540 6 REPRODUCIBILITY STATEMENT
541542 During the publication phase, we will provide full access to all codes, logs, and result files to ensure
543 transparency and reproducibility of our work.
544545 REFERENCES
546547 Jiawang Bai, Kuofeng Gao, Dihong Gong, Shu-Tao Xia, Zhifeng Li, and Wei Liu. Hardly percep-
548 tible trojan attack against neural networks with bit flips. In *European Conference on Computer*
549 *Vision*, pp. 104–121. Springer, 2022.550 Alvin Chan and Yew-Soon Ong. Poison as a cure: Detecting & neutralizing variable-sized backdoor
551 attacks in deep neural networks. *arXiv preprint arXiv:1911.08040*, 2019.553 Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
554 Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
555 activation clustering. *arXiv preprint arXiv:1811.03728*, 2018.556 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
557 learning systems using data poisoning. *arXiv preprint arXiv:1712.05526*, 2017.559 Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinel: Detecting localized universal
560 attacks against deep learning systems. In *2020 IEEE Security and Privacy Workshops (SPW)*, pp.
561 48–54. IEEE, 2020.562 Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
563 Strip: A defence against trojan attacks on deep neural networks. In *Proceedings of the 35th*
564 *annual computer security applications conference*, pp. 113–125, 2019.566 Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao Xia. Not all samples
567 are born equal: Towards effective clean-label backdoor attacks. *Pattern Recognition*, 139:109512,
568 2023.569 Yinghua Gao, Yiming Li, Xueluan Gong, Zhifeng Li, Shu-Tao Xia, and Qian Wang. Backdoor attack
570 with sparse and invisible trigger. *IEEE Transactions on Information Forensics and Security*, 19:
571 6364–6376, 2024.573 Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
574 machine learning model supply chain. In *Proceedings of the Machine Learning and Computer*
575 *Security Workshop (MLSec) at the 34th International Conference on Machine Learning (ICML)*,
576 Sydney, Australia, August 2017.577 Jonathan Hayase and Sewoong Oh. Few-shot backdoor attacks via neural tangent kernels. *arXiv*
578 *preprint arXiv:2210.05929*, 2022.580 Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: Defending against
581 backdoor attacks using robust statistics. In *International Conference on Machine Learning*, pp.
582 4129–4139. PMLR, 2021.583 Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, and James Bailey. Distilling cognitive back-
584 door patterns within an image. In *ICLR*, 2023.586 Nguyen Hung-Quang, Ngoc-Hieu Nguyen, Thanh Nguyen-Tang, Kok-Seng Wong, Hoang Thanh-
587 Tung, Khoa D Doan, et al. Wicked oddities: Selectively poisoning for effective clean-label back-
588 door attacks. In *The Thirteenth International Conference on Learning Representations*, 2024.589 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
590 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.592 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learn-
593 ing: Training clean models on poisoned data. *Advances in Neural Information Processing Sys-
tems*, 34:14900–14912, 2021.

594 Ziqiang Li, Pengfei Xia, Hong Sun, Yueqi Zeng, Wei Zhang, and Bin Li. Explore the effect of data
 595 selection on poison efficiency in backdoor attacks. *arXiv preprint arXiv:2310.09744*, 2023.
 596

597 Ziqiang Li, Hong Sun, Pengfei Xia, Beihao Xia, Xue Rui, Wei Zhang, Qinglang Guo, Zhangjie Fu,
 598 and Bin Li. A proxy attack-free strategy for practically improving the poisoning efficiency in
 599 backdoor attacks. *IEEE Transactions on Information Forensics and Security*, 2024.

600 Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep neural
 601 network by mixing existing benign features. In *Proceedings of the 2020 ACM SIGSAC conference*
 602 *on computer and communications security*, pp. 113–131, 2020.

603

604 Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin, Libing Wu, and
 605 Chaowei Xiao. Detecting backdoors during the inference stage based on corruption robustness
 606 consistency. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 607 *nition*, pp. 16363–16372, 2023.

608 Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The “
 609 beatrix” resurrections: Robust backdoor detection via gram matrices. *arXiv preprint*
 610 *arXiv:2209.11715*, 2022.

611 Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. *Advances in Neural*
 612 *Information Processing Systems*, 33:3454–3464, 2020.

613

614 Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, and Ruoxi Jia. {ASSET}: Robust backdoor data
 615 detection across a multiplicity of deep learning paradigms. In *32nd USENIX security symposium*
 616 (*USENIX security 23*), pp. 2725–2742, 2023.

617 Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, and
 618 John P Dickerson. Deep k-nn defense against clean-label data poisoning attacks. In *European*
 619 *Conference on Computer Vision*, pp. 55–70. Springer, 2020.

620

621 Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis
 622 of {DNNs} for robust backdoor contamination detection. In *30th USENIX Security Symposium*
 623 (*USENIX Security 21*), pp. 1541–1558, 2021.

624 Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. *Advances*
 625 *in neural information processing systems*, 31, 2018.

626

627 Tianhao Wang, Yi Zeng, Ming Jin, and Ruoxi Jia. A unified framework for task-driven data quality
 628 management. *arXiv preprint arXiv:2106.05484*, 2021.

629

630 Xutong Wang, Yun Feng, Bingsheng Bi, Yaqin Cao, Ze Jin, Xinyu Liu, Yuling Liu, and Yunpeng
 631 Li. Not all benignware are alike: Enhancing clean-label attacks on malware classifiers. In *THE*
 632 *WEB CONFERENCE 2025*, 2025.

633

634 Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
 635 deep neural networks via image quantization and contrastive adversarial learning. In *Proceedings*
 636 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15074–15084, 2022.

637

638 Emily Wenger, Roma Bhattacharjee, Arjun Nitin Bhagoji, Josephine Passananti, Emilio Andere,
 639 Heather Zheng, and Ben Zhao. Finding naturally occurring physical backdoors in image datasets.
 640 *Advances in Neural Information Processing Systems*, 35:22103–22116, 2022.

641

642 Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, Mingli Zhu,
 643 Ruotong Wang, Li Liu, and Chao Shen. Backdoorbench: A comprehensive benchmark and anal-
 644 ysis of backdoor learning. 2024.

645

646 Zhixiao Wu, Yao Lu, Jie Wen, and Guangming Lu. Almr-gec: adjusting learning rate based on
 647 memory rate to optimize the edit scorer for grammatical error correction. In *Proceedings of the*
 648 *Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Inno-*
 649 *vative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances*
 650 *in Artificial Intelligence*, AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025a. ISBN 978-1-57735-
 651 897-8. doi: 10.1609/aaai.v39i20.35464.

648 Zhixiao Wu, Yao Lu, Jie Wen, Hao Sun, Qi Zhou, and Guangming Lu. A set of generalized com-
649 ponents to achieve effective poison-only clean-label backdoor attacks with collaborative sample
650 selection and triggers, 2025b.

651

652 Xiaoyun Xu, Zhuoran Liu, Stefanos Koffas, and Stjepan Picek. Towards backdoor stealthiness in
653 model parameter space. *arXiv preprint arXiv:2501.05928*, 2025.

654

655 Danni Yuan, Shaokui Wei, Mingda Zhang, Li Liu, and Baoyuan Wu. Activation gradient based
656 poisoned sample detection against backdoor attacks. *arXiv preprint arXiv:2312.06230*, 2023.

657

658 Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks' triggers: A
659 frequency perspective. In *Proceedings of the IEEE/CVF international conference on computer
vision*, pp. 16473–16481, 2021.

660

661 Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
662 practical clean-label backdoor attack with limited information. In *Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security*, pp. 771–785, 2023.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

A USAGE OF LLMs

704 Ultimately, we pledge that LLMs are applied to optimize descriptions in this paper. Furthermore,
 705 LLMs will not be employed for any purposes beyond those explicitly stated. All content generated
 706 by LLMs undergoes rigorous human verification and refinement to ensure factual accuracy.
 707

708

B EFFECT OF CLEAN IMAGES

709

B.1 SAMPLE SELECTION

712 Substantial evidence has demonstrated the varying levels of significance of sampled during model
 713 training (Wu et al. (2025a)). Several studies (Hayase & Oh, 2022; Li et al., 2023; Li et al., 2024;
 714 Hung-Quang et al., 2024; Wang et al., 2025) have proposed sample selection approaches to enhance
 715 Attack Success Rate (ASR) by poisoning specific “hard” samples rather than random ones. These
 716 poisoned models tend to internalize implicit mappings between trigger features and target labels,
 717 thereby circumventing the original classification challenges associated with such samples.

718 Gao et al. (2023) reveals differential sample importance and selects “hard” samples via three met-
 719 rics (e.g., Forgetting Event, Loss Value, and Gradient Norm) to enhance the **Poison-only Backdoor**
 720 **Attacks** (PBAs). The poisoned models tend to learn the implicit projection between the trigger
 721 feature and the target label to evade the difficulty of the original classification upon such “hard”
 722 samples. For example, Forgetting Event identifies “hard” samples by analyzing misclassification
 723 transitions (i.e., shifts from correct to incorrect classification) during pre-training. Furthermore, cat-
 724 egory diversity is introduced to optimize the Forgetting Event metric with various intensities (e.g.,
 725 Res-linear), thereby enhancing improvements in ASR.

726 The aforementioned studies have thoroughly elucidated the significant impact of sample selection
 727 on backdoor attacks. Consequently, we investigate whether sample selection strategies closely as-
 728 sociated with backdoor attacks exert an influence on the proposed detection approach. During the
 729 training process of GCBD, hard images of varying degrees are employed for dimensionality aug-
 730mentation, and the experimental results can be seen in Figure 5. We compile the metrics of sample
 731 selection utilized in the relevant experiments as follows:

732 **Loss Value** Given a surrogate model f_θ (trained on the poisoned training set), the loss value of the
 733 model on sample (x_i, y_i) can be represented as $L(f_\theta(x_i), y_i)$. We choose samples with the highest
 734 value in each class $y_t \in \{y_0, y_1, \dots, y_k\}$ as the source of disturbance:

$$736 \quad x_s = \arg \max_{x_s \subset D_t} L(f_\theta(x_s), y_t). \quad (17)$$

738 **Gradient Norm** Given a surrogate model f_θ (trained on the poisoned training set), the l_2 — gra-
 739 dient norm of model on sample (x_i, y_i) can be represented as $\|\nabla_\theta L(f_\theta(x_i), y_i)\|_2$. We choose
 740 samples with the highest value in each class $y_t \in \{y_0, y_1, \dots, y_k\}$ as the source of disturbance:
 741

$$742 \quad x_s = \arg \max_{x_s \subset D_t} \|\nabla_\theta L(f_\theta(x_s), y_t)\|_2. \quad (18)$$

744 **Forgetting Event** Given a sample (x_i, y_t) in the target-label set D_t , Forgetting Event denotes
 745 the event when the sample is classified by the surrogate model from y_t to y_m ($y_m \neq y_t$), whose
 746 frequency can be represented as $Num_{forget}(x_i, y_m)$. We choose samples with the highest value in
 747 each class $y_t \in \{y_0, y_1, \dots, y_k\}$ as the source of disturbance:

$$749 \quad x_s = \arg \max_{x_s \subset D_t} Num_{forget}(x_s, y_t). \quad (19)$$

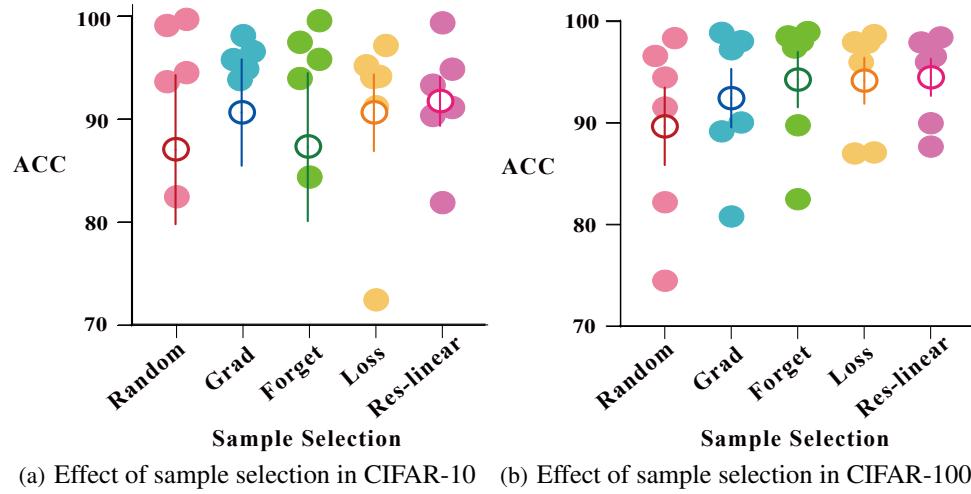
751 **Category Diversity** We use μ to represent the mean of Forgetting Event metric
 752 $\{Num_{forget}(x_i, y_m) | (y_m \neq y_t)\}$. We choose samples with the highest value in each class
 753 $y_t \in \{y_0, y_1, \dots, y_k\}$ as the source of disturbance:

$$755 \quad x_s = \arg \min_{x_s \subset D_t} \sum_{y_m \neq y_t} \|Num_{forget}(x_s, y_m) - \mu\|_2. \quad (20)$$

756 “Res-X” represents a series of distinct negative functions N_F to adjust weights of categories according
 757 to the Forgetting Event (frequency) at varied rates $X (O(\log(x)), O(x), O(x^2)), \text{ and } O(e^x))$.
 758 Higher rates highlight the significance of Category Diversity in sample selection. For example,
 759 metric calculation with N_F at $\log(x)$, dubbed Res-log, is depicted in Algorithm 2.
 760

761 Algorithm 2 Metric Calculation with Negative Function N_F at $O(\log(x))$

762 **Input :** Train Dataset D_{tr} , Target Label y_t , Misclassification Events $Num_{forget}(x_i, y_m)$
 763 **Output :** Calculated Metric of Samples
 764 **for** $y_m \in labels$ **do**
 765 $Num[y_m] = \sum_{(x_i, y_t) \in D_{tr}} *Num_{forget}(x_i, y_m)$
 766 **end for**
 767 $Sum = \sum_{y_m \in labels} \log(1 + Num[y_m])$
 768 **for** $y_m \in Y$ **do**
 769 $Cls[y_m] = 1 - \frac{\log(1+Num[y_m])}{Sum}$
 770 **end for**
 771 **for** image $(x_i, y_t) \in D_{tr}$ **do**
 772 $Metric[x_i] = \sum_{y_m \in labels} Cls[y_m] * Num_{forget}(x_i, y_m)$
 773 **end for**
 774

775 B.2 EXPERIMENTAL RESULTS


793 Figure 5: ACC of GCBD with different sample selections of clean images as the disturbance type.
 794

795 As illustrated in Figure 5, utilizing 10 clean images selected via the Res-linear method as
 796 perturbation examples leads to a slight improvement in the detection accuracy (ACC) of the proposed
 797 method. Specifically, compared to the random selection approach, GCBD achieves an ACC increase
 798 of less than 5% when employing the Res-linear method. Moreover, the performance gap between
 799 the Res-linear method and other selection strategies is relatively narrow.
 800

801 Notably, the Res-linear method significantly enhances the stability of the GCBD approach. On the
 802 CIFAR-10 dataset, when Random and Forget methods are used for image selection, the variance in
 803 detection ACC across different attacks is substantially higher than that observed with the Res-linear
 804 method. This same trend is also evident in the CIFAR-100 results. Overall, GCBD requires only
 805 10 clean images as perturbations. Therefore, in practical applications, the stability of GCBD can be
 806 readily improved by manually selecting such challenging data samples. Even with random selection,
 807 GCBD maintains an at least 80% ACC.

808 As shown in Table 3, the Res-linear method achieves the best overall detection performance, with
 809 true positive rates (TPR) of 94.33% on CIFAR-10 and 96.33% on CIFAR-100. In the worst-case
 scenarios, the corresponding TPR values drop to 77.17% and 90.67%, respectively, resulting in

810

811

Table 3: Effect of sample selection methods upon the test-time detection performance of GCBD.

812

Dataset	Attacks → Sample Selection↓	BadNets (3%)		Input-aware (8%)		FTrojan (2%)		Naricissus (0.05%)		SIBA (1%)		Grond (1%)		Average		
		TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	
CIFAR-10	Random	66%	1%	15%	9%	100%	2%	91%	4%	91%	4%	100%	2%	77.17%	3.67%	
	Grad	98%	5%	41%	11%	100%	12%	96%	4%	96%	4%	100%	4%	88.50%	6.67%	
	Forget	72%	3%	14%	8%	100%	5%	99%	7%	98%	10%	99%	0%	80.33%	5.50%	
	Loss	90%	8%	64%	19%	100%	6%	97%	9%	95%	5%	100%	12%	91.00%	9.83%	
	Res-linear	74%	10%	97%	16%	100%	18%	99%	13%	96%	7%	100%	1%	94.33%	10.83%	
	Res-square	39%	16%	95%	18%	100%	17%	99%	13%	96%	7%	100%	3%	88.17%	12.33%	
	Res-log	78%	2%	50%	11%	100%	12%	99%	9%	96%	7%	100%	0%	87.17%	6.83%	
	Average	74%	6%	54%	13%	100%	10%	95%	10%	95%	6%	100%	3%	86.67%	9.28%	
CIFAR-100	Attacks → Sample Selection↓	BadNets (3%)		Input-aware (8%)		FTrojan (0.8%)		Naricissus (0.05%)		SIBA (0.3%)		Grond (0.6%)		Average		
	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓	TPR ↑	FPR ↓
	Random	99%	10%	72%	7%	99%	2%	94%	1%	85%	2%	95%	46%	90.67%	11.33%	
	Grad	100%	19%	69%	7%	99%	1%	99%	3%	98%	3%	81%	2%	91.00%	6.33%	
	Forget	100%	20%	87%	22%	99%	1%	99%	1%	98%	3%	98%	2%	96.83%	8.17%	
	Loss	98%	24%	77%	3%	98%	1%	99%	3%	97%	1%	92%	0%	93.50%	5.33%	
	Res-linear	100%	20%	85%	10%	100%	7%	98%	5%	97%	2%	98%	1%	96.33%	7.5%	
	Res-square	100%	20%	85%	10%	100%	7%	98%	5%	97%	2%	98%	1%	96.33%	7.5%	
	Res-log	100%	20%	85%	10%	100%	7%	98%	5%	97%	2%	98%	1%	96.33%	7.5%	
	Average	100%	19%	80%	10%	99%	4%	98%	3%	96%	2%	94%	7%	94.43%	7.67%	

823

824

performance gaps of 17.16% and 5.66%. Notably, as the number of categories increases, the detection efficacy of GCBD improves from 86.67% to 94.43% as the rich category diversity may prevent models from averaging the probabilities in the classification layer. Therefore, GCBD can sufficiently catch the **Disturbance Immunity** of various triggers in backdoor attacks.

828

In addition, we placed particular emphasis on evaluating GCBD’s performance under worst-case scenarios. When detecting non-shared dynamic triggers employed in Input-aware attacks, sample selection exerts a profound influence on GCBD’s performance, with the best-case and worst-case true positive rates (TPRs) reaching 97% and 14%, respectively. Nevertheless, since GCBD requires only 10 clean images as perturbation sources, manually constructing hard-to-learn data samples is feasible. In practical settings, GCBD can thus circumvent worst-case scenarios using the aforementioned approach. Given that real-world applications typically involve datasets with a significantly larger number of classes, scenarios with merely 10 categories are rare, and the diversity inherent in large-scale datasets inherently reduces the likelihood of worst-case performance. **Collectively, the above factors contribute to the high deployability of GCBD in real-world applications.**

838

839

C EFFECT OF SOURCE ATTACKS’ ASR

840

841

During the training process of GCBD, we employ the most conventional attacks {Badnets, Blend} to label the poisoned dataset. Subsequently, we train victim models based on the original poisoned dataset and elevate pixel values to a two-dimensional probability sequence matrix based on the Disturbance Immunity. In this chapter, we investigate the effect of the Attack Success Rate of the victim model, which serves as the dimensionality-elevating tool, on the detection performance of the ultimately trained GCBD. Meanwhile, we clarify the fact that the dataset used for training the victim model is already poisoned by the unseen attacks, and the training of victim models is entirely independent of the labeling process. This implies that we have the flexibility to adjust the poisoning rate to train victim models with any desired ASR. As illustrated in Figure 6, the shaded regions

850

851

852

853

854

855

856

857

858

859

860

861

862

863

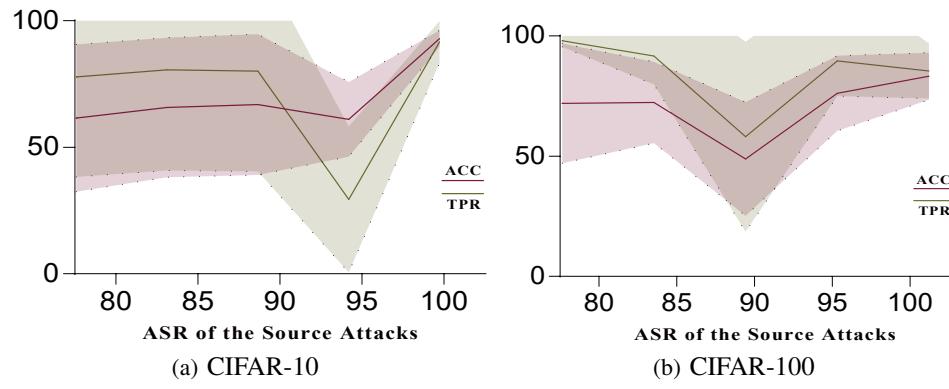
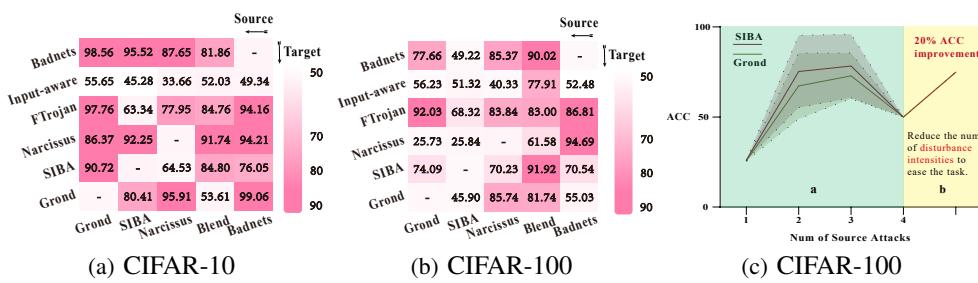


Figure 6: Effect of Source Attacks’ ASR on GCBD.

864 indicate the fluctuation ranges, while the curves depict the variations in the average values of each
 865 metrics. Initially, for GCBD, the average ACC and TPR metrics across various attacks exhibit a trend
 866 of first decreasing and then increasing with the rise in ASR. This suggests the interplay of at least
 867 two factors. Specifically, for CIFAR-10 and CIFAR-100, the metrics reach their lowest points when
 868 ASR is at 95% and 90%, respectively. Furthermore, the high ACC observed at low ASR levels
 869 fluctuates significantly depending on the type of attack being detected. Conversely, the high ACC at
 870 high ASR levels demonstrates remarkable stability.

871 Victim models that have not adequately learned backdoor features with low ASR levels tend to
 872 exhibit averaged probabilities on poisoned data. This blurs the distinct probabilistic characteristics of
 873 the triggers in Badnets and Blend attacks. Consequently, GCBD struggles to learn the commonalities
 874 (Disturbance Immunity) of the two attacks based on discernible differences, resulting in exceptional
 875 detection performance for triggers similar to Badnets or Blend, but near-total failure for others. In
 876 contrast, victim models that have thoroughly learned backdoor features display more distinctive
 877 probabilities on poisoned data, necessitating a deeper exploration of anti-interference properties
 878 to accomplish the training classification task. At this stage, the model captures truly generalized
 879 features, and its detection performance remains stable regardless of the attack type. The intermediate
 880 ASR scenario represents a dynamic confrontation between the aforementioned factors, where GCBD
 881 achieves its lowest ACC and TPR at the point of maximum conflict. Therefore, **we increase the**
 882 **poisoning rate to ensure that victim models can sufficiently learn traditional backdoor features**
 883 **for compelling GCBD to acquire Disturbance Immunity through the adversarial period.**

D EFFECT OF SOURCE ATTACKS' TYPE



897 Figure 7: ACC of GCBD with different attacks as the single source to construct the train set.

898 As illustrated in Figures 7a & 7b, the detection performance of GCBD is highly contingent upon
 899 the trigger characteristics when employing only one type of attack as the source. Specifically, the
 900 difference between various cases for CIFAR-10 and CIFAR-100 can torch 65.4% (99.06% - 33.66%)
 901 and 68.96% (94.69% - 25.73%), respectively. We hypothesize that GCBD tends to overfit to the
 902 specific magnitude variations of the attack rather than its robustness when using a single attack.
 903 Thus, we progressively expanded the source based on the two worst-case scenarios in Figure 4c:
 904 detecting Narcissus using Grond and detecting Narcissus using SIBA. ACC initially rises and then
 905 declines with the increase in the number. We attribute this decline to the excessive complexity of the
 906 new dataset because GCBD achieves a 20% improvement in ACC when we mitigate the complexity
 907 by reducing the number of perturbation intensities, as depicted in part b of Figure 7c.

E EFFECT OF DISTURBANCE INTENSITIES

911 In this section, we investigate the effect of disturbance intensity sequences on the detection performance of GCBD. We employ the **Intensity Interval** to partition the range of m (from $[0, 1]$), as
 912 defined in **Section 3.2**, into equal segments. For example, when the intensity interval is set to 11,
 913 the m sequence becomes $\{0.0, 0.1, 0.2, \dots, 1.0\}$. The results are illustrated in Figure 8, where each
 914 circle represents a detection of a specific attack.

915 As depicted in Figure 8, the mean values of ACC and TPR metrics for GCBD initially increase and
 916 then decrease as the Intensity Interval widens. Conversely, the variances of these metrics exhibit

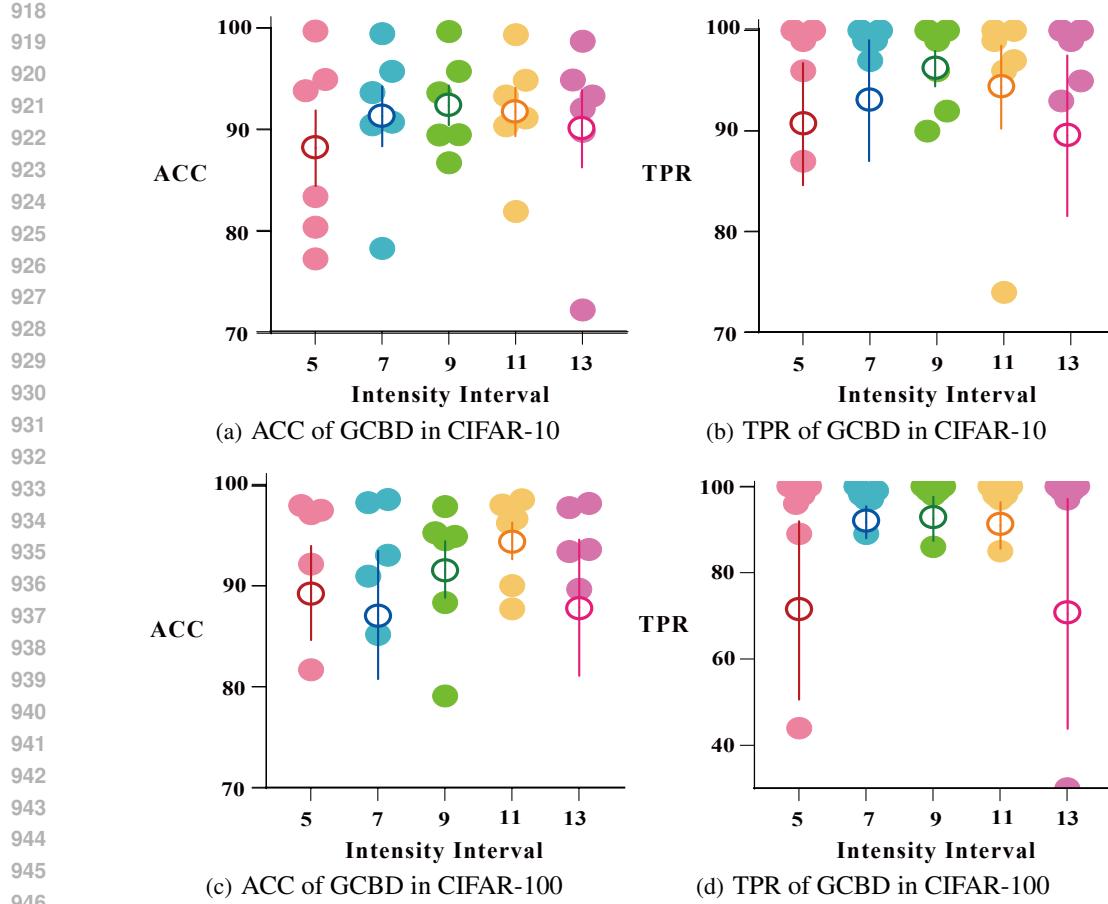


Figure 8: The test-time detection performance of GCBD during the training period.

an inverse trend, decreasing initially and then increasing. Consequently, GCBD achieves optimal detection performance when the Intensity Interval is set around 9. The above-observed phenomenon stems from the interplay of two key factors.

Firstly, when the Intensity Interval is relatively small, the overly broad intensity gaps result in significant information loss and an insufficient number of probabilities for processing. Therefore, GCBD falls into an overfitting state when learning disturbance immunity, thus producing poor performance. Conversely, when the Intensity Interval is excessively large, the overly narrow gaps introduce substantial redundant information and a high volume of probability data to be processed, increasing task complexity. Under such circumstances, the learning of the interference resistance by GCBD becomes underfitting, again leading to poor performance. **When the Intensity Interval is appropriately calibrated, GCBD can effectively learn the trigger’s robustness against interference, achieving over 95% ACC and TPR.** In this paper, the default setting of Intensity Interval is 11.

F RELATED KNOWLEDGE IN BACKDOOR DETECTION

In this chapter, we provide supplementary explanations for the concepts and theoretical content presented in the main text to facilitate readers’ comprehensive understanding of the division of labor during the model training and deployment phases.

F.1 ATTACK KNOWLEDGE

In this attack setting, the adversary can operate on the original training dataset D_{tr} and embed a predefined trigger into a small fraction of the training samples. The radio can be represented as the

972 poisoning rate. Furthermore, the attacks can be called clean-label attacks if the adversary refrains
 973 from altering the ground-truth labels of the original samples. However, the adversary lacks both
 974 the knowledge and the ability to modify other training components (e.g., loss functions, model
 975 architectures, training schedules, or optimization algorithms). Consequently, attackers can only
 976 manipulate model weights through data poisoning. The latent association between the trigger and the
 977 target label is acquired solely during the training phase. During inference, we assume the adversary
 978 does not have access to the model’s prediction vectors. Generally, poison-only clean-label attacks
 979 impose minimal requirements on the adversary’s capabilities, making them applicable to a wide
 980 range of real-world scenarios.

981 F.2 DETECTION KNOWLEDGE

982 The defender holds greater privileges than the attacker. Given a poisoned dataset, the defender can
 983 employ any measures to eliminate potentially embedded poisoned features. This implies that the
 984 defender has the autonomy to determine the architecture of a surrogate model and infer backdoor
 985 features based on the characteristics of the trained surrogate model, or alternatively, perform any
 986 operations directly on the poisoned dataset. Among these strategies, backdoor detection serves as
 987 an effective approach for backdoor defense, which can be conducted either during the pre-training
 988 phase or the inference phase by identifying samples containing triggers. However, the defender
 989 lacks information regarding the distribution of trigger-embedded samples, including the proportion
 990 of poisoned data, the characteristics of the triggers, and the inability to ascertain whether a sample is
 991 clean. Although clean data can be sourced from reliable external datasets, doing so incurs substantial
 992 additional costs. Consequently, for detection methods, a lower requirement for clean data translates
 993 to higher deployability. Meanwhile, most existing detection methods are confined to identifying
 994 trigger features within specific datasets. **To the best of our knowledge, GCBD represents the first**
 995 **cross-attack detector that can accurately detect entirely unknown triggers in new samples.**

996 F.3 WORKFLOW OF THE DNNs

997 We detail the workflow of poison-only backdoor attacks and backdoor detection methods to formalize
 998 the generation of the final DNNs.

1000 **Step 1: Sample Selection (by adversary).** Given a target label y_t , a subset D_s is selected from
 1001 target-label set $D_t = \{(x_i, y_i) | (x_i, y_i) \in D_{tr}, y_i = y_t\}$ to be poisoned. Therefore, the benign
 1002 samples can be denoted as $D_b = D_{tr} \setminus D_s$. We represent the poisoning selection based on a bi-
 1003 nary vector $M = [M_1, M_2, \dots, M_{|D_{tr}|}] \in \{0, 1\}^{|D|}$. Therefore, $M_i = 1$ when the sample x_i is
 1004 selected to be poisoned and $M_i = 0$ means benign samples. The ratio of the poisoned samples
 1005 $\alpha := \frac{|D_s|}{|D_{tr}|}$ is depicted as the poisoning rate. α can reflect the stealthiness of poison-only attacks.
 1006 Backdoor attacks are supposed to maintain a high ASR with low α to evade possible machine and
 1007 manual inspections. Furthermore, a low poisoning rate is equally essential for ensuring the normal
 1008 functionality of DNNs, facilitating its deployment in real-world environments.

1009 **Step 2: Trigger Design and Insertion (by adversary).** The requirement of stealthiness leads the
 1010 adversary to carefully design a trigger pattern w by tweaking the pixels of the images. Thus, the
 1011 triggers can be applied to generate the poisoned images. The above period is depicted as $f_g : X \rightarrow X$.
 1012 For example, $f_g(x) = (1 - m) * x + m * w$ is a common approach to implant the trigger w where the
 1013 mask $m \in [0, 1]^{C \times H \times W}$ represents the poison area of the images. $*$ represents the product in terms
 1014 of elements. Given the target label y_t , the poisoned training dataset generated could be denoted as
 1015 $D_p = \{(x_i, y_i) |_{if m_i=0}, or (f_g(x_i), y_t) |_{if m_i=1}\}_{i=1}^{|D_{tr}|}$. Most attackers focus their efforts on de-
 1016 signing triggers that can evade backdoor defenses and manual inspection. During the trigger design
 1017 phase, attackers may also train surrogate models to validate and provide feedback for optimizing the
 1018 triggers. However, they cannot make assumptions about the specific model architectures employed
 1019 by defenders. Consequently, attackers must ensure that the backdoor attacks maintain effectiveness
 1020 across a wide range of model architectures.

1021 **Step 3: Backdoor Detection (by detectors).** Backdoor detection, serving as the initial step in
 1022 the backdoor defense framework, holds significant research value. By eliminating high-risk data
 1023 before they are actually utilized in model training, the implementation of backdoor attacks can
 1024 be fundamentally thwarted. We represent the result of the detection based on a binary vector

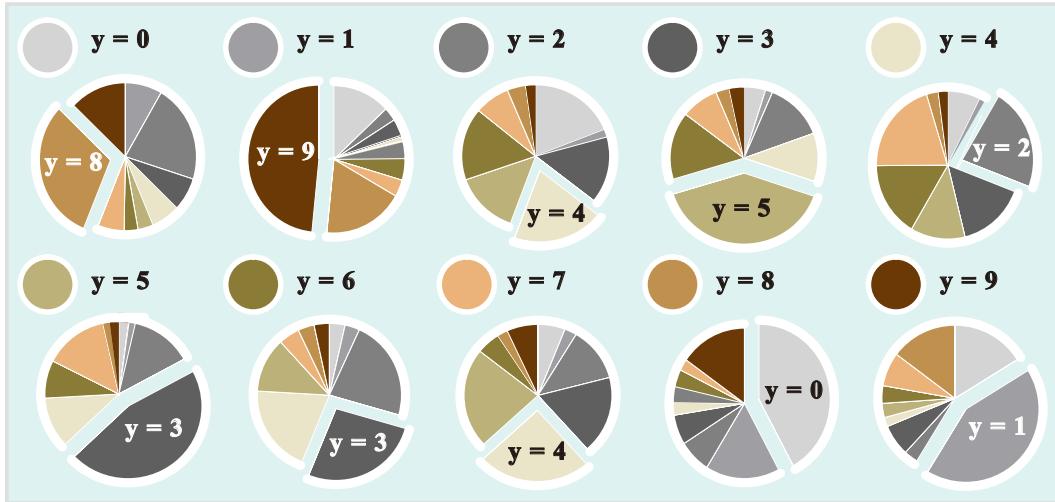
1026 $R = [R_1, R_2, \dots, R_{|D_{tr}|}] \in \{0, 1\}^{|D|}$. Therefore, $R_i = 1$ when the smaple x_i is classified as
 1027 the poisoned sample and $R_i = 0$ means benign samples. Thus, the dataset D_d used to be trained
 1028 in Step 4 is constructed. Given that backdoor attacks can achieve a high ASR by poisoning only a
 1029 minimal amount of data, the True Positive Rate (TPR) stands out as the most critical metric for de-
 1030 tectors in this phase. Meanwhile, detectors must also aim for a low False Positive Rate (FPR) while
 1031 maintaining high TPR, to prevent excessive exclusion of normal data from the training process.

1032 **Step 4: Model Training (by defenders).** Once the final dataset D_d is generated, users will train
 1033 the DNN. The stealthiness and utility of backdoor attacks require imperceptible modifications of the
 1034 data set, which require the poisoned model \tilde{f}_θ to maintain high accuracy in benign test data (high
 1035 BA). Otherwise, users would not adopt the poisoned model, and no backdoor could be implanted.
 1036 Meanwhile, during the training period, the defenders can employ various strategies to prevent the
 1037 model from overfitting to the backdoor features. A wide array of defensive measures is available at
 1038 this stage (e.g., encompassing model compression, robustness training, and internal attack-defense
 1039 drills). In the end, a final model will be trained, which has been subjected to backdoor attacks and
 1040 is simultaneously being targeted for interception by defenders.

1041 **Step 5: Inference stage of DNNs (by adversary and detectors).** The attackers expect to activate
 1042 the injected backdoor using the trigger w defined in Step 2. During the inference phase, adversaries
 1043 attempt to utilize samples embedded with triggers to achieve illicit objectives or secure undue ad-
 1044 vantages. At this juncture, adversaries are solely privy to the final outcomes, lacking any access to
 1045 the model’s specific architecture, parameters, or the output information from each layer. In contrast,
 1046 defenders can ascertain whether the data has been poisoned by inspecting model parameters and
 1047 the output information from various layers. Upon identifying the data as high-risk, defenders can
 1048 safeguard their interests by adopting measures such as service denial.

1049 G EFFECT OF CATEGORY IN THE DESIGN OF GCBD

1050 In the CIFAR-10 dataset, the mapping between y and the true labels is defined as {0:airplane, 1:au-
 1051 tomobile, 2:bird, 3:cat, 4:deer, 5:dog, 6:frog, 7:horse, 8:ship, 9:truck}. In Figure 6, we methodically
 1052 organize the proportions of misclassified categories across diverse data categories, drawing particu-
 1053 lar attention to the most dominant category X based on the remarks “ $y=X$ ”. The accurate category
 1054 corresponding to the pie chart, along with its identifying color relative to the other pie charts, is
 1055 labeled above each visual representation. When samples from class A are frequently misclassified
 1056 as class B, it indicates a notable resemblance between A and B.



1076 Figure 9: Category distinction within the CIFAR-10 dataset.
 1077

1078 As depicted in Figure 9, there are significant disparities in the similarity levels across different cate-
 1079 gories. For example, the proportion of trucks (y=9) is considerably higher than that of birds (y=2).

1080
1081 Consequently, in the pie chart for automobiles ($y=1$), automobiles demonstrate a much stronger
1082 resemblance to trucks than to birds. Moreover, the similarity pattern exhibits symmetry. For the
1083 set $y=\{0, 1, 2, 3, 4, 5, 8, 9\}$, the class with the highest proportion in its corresponding pie chart
1084 also predominates in the pie chart of the paired class. Although the set $y=\{6, 7\}$ deviates from this
1085 pattern, they still rank as the second-highest proportion in the corresponding pie charts for $y=\{3,$
1086 $4\}$. Therefore, to prevent the model from overfitting to shortcuts that distinguish backdoor features
1087 from normal ones based on the sequence of interfering categories, a process that diverts its focus
1088 away from learning adversarial robustness by exploiting category differences, **we frequently and**
1089 **randomly shuffle the order of interfering images during the training of the GCBD model.**

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133