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ABSTRACT

We present SegLLM, a novel multi-round interactive reasoning segmentation model
that enhances LLM-based segmentation by exploiting conversational memory of
both visual and textual outputs. By leveraging a mask-aware multimodal LLM,
SegLLM re-integrates previous segmentation results into its input stream, enabling
it to reason about complex user intentions and segment objects in relation to
previously identified entities, including positional, interactional, and hierarchical
relationships, across multiple interactions. This capability allows SegLLM to
respond to visual and text queries in a chat-like manner. Evaluated on the newly
curated MRSeg benchmark, SegLLM outperforms existing methods in multi-round
interactive reasoning segmentation by over 20%. In addition, SegLLM obtains a
5.5% improvement in cIoU for standard single-round referring segmentation and a
4.5% increase in Acc@0.5 for referring expression comprehension.

1 INTRODUCTION

Image segmentation plays a crucial role in numerous computer vision tasks, while traditional methods
have been limited to providing segmentation results for close-set categories (Cheng et al., 2022;
He et al., 2017) or simple text queries (Ding et al., 2023; Wang et al., 2024b) using CLIP (Ding
et al., 2023; Radford et al., 2021) or BERT (Wang et al., 2024b; Devlin et al., 2018) text embeddings
as classifiers. Recent advancements in Large Vision-Language Models (LVMs) (Pi et al., 2023a;
Zhang et al., 2023a; Lai et al., 2024; Wu et al., 2024; Liu et al., 2024; Touvron et al., 2023; Alayrac
et al., 2022; Awadalla et al., 2023; Dai et al., 2024) have reformulated image segmentation as a next
token prediction task, enabling segmentation models to engage in natural language conversations
with users and reason about the presence, location, and relationships of objects in complex visual
scenes. For instance, LISA (Lai et al., 2024), a Language Instructed Segmentation Assistant, produces
segmentation masks by incorporating a [SEG] token into its vocabulary, which, when generated, is
decoded into the corresponding segmentation mask.

These LLM segmentation models (Lai et al., 2024; Wu et al., 2024; Pi et al., 2023a; Zhang et al.,
2023a) typically achieve their localization capabilities by incorporating a decoder that converts the
output [SEG] tokens of LLMs into localization results. They are trained on numerous visual queries
such as “please find the heart healthy food in the image”, where responses include both text outputs
and segmentation masks. Essentially, these models are advanced versions of early open-vocabulary
segmentation models, with their text encoders upgraded from smaller language models, such as
BERT (Devlin et al., 2018), to smarter LLMs, such as Llama (Touvron et al., 2023). Consequently,
LLM segmentation models are often evaluated on traditional referring expression segmentation (RES)
datasets, such as RefCOCO, which provide a single text query corresponding to each mask. These
single-round referring expression segmentation (RES) datasets overlook one of the most remarkable
properties of LLMs (Achiam et al., 2023; Team et al., 2023; Touvron et al., 2023; Jiang et al., 2023):
generating multi-round responses in a conversational manner. In this paper, we intend to answer the
question: can segmentation models reason about previously segmented objects and conversations,
responding to multiple visual and text queries in a chat-like manner?

Current LLM segmentation or detection models (Lai et al., 2024; Zhang et al., 2023a; Wu et al.,
2024), despite their impressive single-round performance, fall short as multi-modal conversation
agents due to their inability to handle multi-round, interactive conversations. For instance, after
obtaining a mask of a ‘person in black hoodie’ in Fig. 1, a user might want to perform additional
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closer ski stick that  [1] is holding. 
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standing to the right of [2], please.
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Figure 1: We present SegLLM, a multi-round interactive reasoning segmentation model designed to engage
in chat-like interactions by responding to both visual and text queries. It reasons about previously segmented
objects and conversations to understand complex user intentions. On the left: SegLLM can infer intricate
relationships between objects, such as positional, interactional, and hierarchical connections with previously
identified entities, e.g., instance [1]. On the right: We introduce the MRSeg, a new multi-round image referring
segmentation benchmark. As the rounds progress, the complexity of interaction and memory retention increases,
leading to a decline in performance as measured by cIoU. However, SegLLM consistently surpasses the previous
state-of-the-art method LISA (Lai et al., 2024), with a significant margin across all conversational rounds.

queries based on this mask output—such as segmenting the ‘ski he is holding’, segmenting the ‘man
standing to the right of him’, or segmenting a different person if the output is incorrect. Existing
models struggle with these complex queries because there is no “communication” between the large
language models (LLMs) and the vision encoders. Information flows only from the LLMs to the
mask decoder, not vice versa, preventing the LLM from being aware of the output mask and making
it difficult to reason about complex queries involving previous mask outputs.

To address this issue, we propose SegLLM. Unlike existing LLM segmentation models that naively
assemble a mask decoder with an LLM, we introduce a novel communication protocol that feeds
the segmentation outputs of the mask decoder back into the input stream of the LLMs, and the past
conversation context into the input query of the mask decoder. This design allows the LLMs to
“see” past mask outputs and the mask decoder to “see” the past conversation context, enabling it to
handle complex queries like ‘segment the helmet of the previously segmented person’, as shown in
Fig. 1. Concretely, we introduce a Mask-Encoding scheme to make the LLM mask-aware and a
Reference Mask-Decoding scheme to make the segmentation head context-aware. To fully explore
the capabilities of these novel designs, we curated multiple high-quality multi-round interactive
segmentation datasets, named MRSeg. The new dataset consists of complex object queries involving
existing mask outputs, formulated in seamless multi-round natural language conversations.

Through extensive experiments, we demonstrate that SegLLM outperforms previous state-of-the-art
models by 18∼30% on our multi-round reasoning segmentation benchmarks, MRSeg. Additionally,
SegLLM surpasses prior state-of-the-art performance on the single-round referring segmentation
and detection benchmark, RefCOCO, with over a 5.5% improvement in segmentation (cIoU) and a
4.5% increase in detection accuracy (Acc@0.5). SegLLM also exhibits greater robustness to various
question templates, achieving 9.6% performance gains on RefCOCO with diverse query formats.
These results establish SegLLM as a versatile model for a broad range of instruction-following
segmentation tasks, adept at processing multiple visual and text queries in a conversational manner.

2 RELATED WORKS

2.1 MULTI-MODAL LARGE LANGUAGE MODELS

To leverage the advancements in language models (Brown et al., 2020; Touvron et al., 2023; Chowdh-
ery et al., 2023; Le Scao et al., 2023; Hoffmann et al., 2022) across various modalities, Multi-modal
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Large Language Models (MLLMs) have been developed to combine language and vision (Yin et al.,
2023; Liu et al., 2024; Zhu et al., 2023; Alayrac et al., 2022). Flamingo was one of the first unified
architectures to align image and text pairs in context learning through gated cross-attention blocks
(Alayrac et al., 2022). End-to-end MLLMs typically require a finetuning process where an intermedi-
ate network (Lai et al., 2024; Zhang et al., 2023a) and/or sampler module (You et al., 2023) is used to
map the vision features into the language space. BLIP-2 bridges the modality gap with a querying
transformer and a two-stage training process, which involves pretraining on a trainable LLM and
instruction tuning on a frozen one (Li et al., 2023b). Models like MiniGPT-4 (Zhu et al., 2023) and
LLava (Liu et al., 2024) follow a similar training paradigm, with Vicuna 18 as a language decoder
and GPT-4 designed prompts. Other notable models in instruction tuning include Otter (Li et al.,
2023a) that is based on (Awadalla et al., 2023), mPLUG-Owl (Ye et al., 2023) with a novel modular
architecture, and InstructBLIP (Dai et al., 2024) which features an instruction aware Q-former.

2.2 MULTI-ROUND CONVERSATIONAL MLLMS

Recent advancements in MLLMs have focused on enhancing interactive capabilities. Models like
Kosmos-2 (Peng et al., 2023) and Shikra (Chen et al., 2023) use visual grounding and referring to
provide the LLM with detailed location information of the objects, which enables the user to point
out specific areas in the image. Various works aim to improve local information, such as Ferret (You
et al., 2023) and PerceptionGPT (Pi et al., 2023b) which employ flexible continuous representations
to handle different shapes. Other approaches (Yang et al., 2023a;b; Zeng et al., 2022) utilize prompt
engineering and APIs to facilitate interaction, instead of relying on end-to-end models. More recent
approaches introduce the concept of reasoning, leveraging LLMs to provide a visual answer based on
implied information. DetGPT (Pi et al., 2023a) performs object detection using high-level instructions
rather than distinct classes. GPT4RoI (Zhang et al., 2023b) receives spatial boxes as input to focus
on specific regions and better align vision and text. LISA (Lai et al., 2024) adds a new embedding
prompt to the mask decoder of the SAM (Kirillov et al., 2023) guiding segmentation, which is then
processed by LLaVA (Liu et al., 2024) to perform high-level reasoning. NExT-Chat (Zhang et al.,
2023a) expands on LISA by using embeddings instead of tokens for location information and adding
a decoder with a joint loss to facilitate object detection.

While some methods support multi-round conversations, they often lack mechanisms to maintain lo-
calization performance over successive rounds, leading to degradation and information loss. SegLLM
improves the multi-round interactive segmentation by leveraging the text and segmentation results
from previous rounds, thereby generating refined masks and supporting hierarchical representations
to enhance performance in multi-round interactions.

3 BACKGROUND: REASONING SEGMENTATION

Task definition. The reasoning segmentation task (Lai et al., 2024) involves generating binary
segmentation masks based on an image and descriptive, free-form text prompts. This task requires
the model to possess cross-modality comprehension, understanding both the complex visual scenes,
as well as the natural-language signals in the text prompt. Specifically, the model must interpret
complex user text prompts that go beyond simple class names to include implicit descriptions that
require general world knowledge, such as “the device that can illuminate a dark room”.

Overall pipeline. To achieve such capabilities, reasoning segmentation model typically first employs
a pre-trained large multimodal models (VLMs), FMM, which is capable of comprehending both visual
and textual information simultaneously (Lai et al., 2024). A new [SEG] token is then added to the
VLMs’s vocabulary. Given an input image ximg and input text prompt xtxt, the VLMs generates an
output text response ŷtxt, which includes the [SEG] token to request the generation for a segmentation
mask. Finally, the segmentor FSEG uses the last layer’s hidden state, hseg, corresponding to the [SEG]
token along with the input image ximg to generate the segmentation mask ŷSEG.

Model architecture. An image reasoning segmentation model, FMM, typically consists of three
key components (Lai et al., 2024): an image encoder EMM (e.g., CLIP (Radford et al., 2021) and
DINOv2 (Oquab et al., 2023)), a base language model L (e.g., Llama (Touvron et al., 2023)), and a
vision-to-language projection layer fVtoL, which is typically an MLP layer. Given a pair of input image
and text prompt (ximg, xtxt), the image encoder first encodes the input image into patch embeddings
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1. Select Instances and 
Relationships

2.  Fit Annotations to 
Templates

Dataset has relationship annotations (Visual 
Genome,  PACO,  Pascal)           

Randomly select some 
number of relationships 
and their corresponding 
instances

Dataset does not have relationship 
annotations (RefCOCO(+/g), LVIS) 

Randomly select some 
number of instances

Calculate spatial 
relationship between 
the selected instances

Top 
RightLeft

Fit selected 
instances and 
relationships into 
appropriate 
pre-generated 
templates

+

Multi-round 
interactive 
conversations

User:  I'm looking for the 
segmentation mask of the 
couch in the image.
SegLLM: Sure, the 
segmentation result is 
[1].
User: "Can you segment the 
child which sits on the 
previously segmented 
object?"
SegLLM: Sure, [2].

3.  Refine Conversational Data 
with LLM (optional)

Ask an LLM to 
refine the 
conversations, 
ensuring 
correct 
grammar and 
natural English. 

Multi-round
natural language
conversations

SegLLM: "Can you segment 
the child which sits on 
the previously segmented 
object?"

SegLLM: "Can you segment 
the child sitting on the 
previously segmented 
object?"

Figure 2: Pipeline for generating our multi-round conversational dataset MRSeg. The workflow involves
selecting instances, generating relationships, fitting the instances and relationships into conversational templates,
and refining the conversations using a language model for improved accuracy.

Tallest giraffe on 
the left

Second giraffe on the 
right, to the right of [1]

Giraffe facing the opposite 
direction to the right of [1]

Third giraffe from the 
left, same as [2]

Positional 
Relationships 
(Refcoco+/g, 
LVIS)

Interactional 
Segmentation
(Visual 
Genome)

Hierarchical 
Segmentation
(PACO-LVIS, 
Pascal Part)

Round ball Boy that is holding [1]

Bottle Label of [1] Translucent body of [1]

20196

4577

239

Semantic 
Segmentation 
(ADE20K, 
COCO-Stuff)

Buildings

Figure 3: Statistics and sample conversations for the Multi-Round Referring Segmentation dataset
(MRSeg). We provide more details for MRSeg in Appendix A.5.

himg, which are then projected into the text embedding space via fVtoL. The resulting visual tokens
are concatenated with the sequence of text tokens htxt. Finally, taking both visual and language tokens
as inputs, the language model L produces the output response ŷtxt containing the [SEG] token: ŷtxt =
FMM(ximg, xtxt) = L(cat([fV2L(EMM(ximg)), htxt)]). The [SEG] token in the output responses is
then decoded into the segmentation mask using the mask decoder FSEG of a pre-trained segmentation
model, SAM (Kirillov et al., 2023): ŷSEG = FSEG(ximg, hSEG) = DSEG(ESEG(ximg), hSEG).

4 MULTI-ROUND REASONING SEGMENTATION

The success of our SegLLM method relies on two essential components: a comprehensive dataset
MRSeg that has an extensive collection of Multi-Round interactive Segmentation instructions, and a
mask-aware VLMs specifically designed to reason about the conversational history, with a particular
focus on the segmentation masks generated in previous interactions.

4.1 DATA PIPELINE

Data sources. We constructed our multi-round image reasoning segmentation dataset (MRSeg) based
on several widely utilized datasets, and include data from the following sources: RefCOCO(+/g) (Yu
et al., 2016; Kazemzadeh et al., 2014), Visual Genome (Krishna et al., 2017), PACO-LVIS (Ra-
manathan et al., 2023), LVIS (Gupta et al., 2019), Pascal Panoptic Part (de Geus et al., 2021),
ADE20K(Zhou et al., 2017), COCO-Stuff(Caesar et al., 2016) and MSCOCO(Lin et al., 2014b). We
used bounding box or segmentation annotations from these datasets to generate natural language
conversations, applying a template-based approach as detailed in subsequent sections. The overall
pipeline can be seen in Fig. 2 and we provide the statistics and some sample data for MRSeg in Fig. 3.
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Multi-round conversation generation. We design various pipelines for generating multi-round
conversations, tailored to the types of data and inter-instance relationships they support:

• Hierarchical Relationships (PACO-LVIS, Pascal Panoptic Part): In these queries, the model is
tasked with segmenting objects that are sub-parts of previously segmented instances. The queries
start by asking about the instance, followed by questions about its parts. Example query: “Can
you segment the <part> of the <object>?”

• Positional Relationships (RefCOCO(+/g), LVIS): These queries require the model to segment
objects based on their positional relationships to previous outputs. An example query is: “Can
you segment the <class> that is <relationship> the output from round <i>?” We refine these
conversations using GPT-4 (our full prompt to GPT-4 can be found in Table A3) to ensure
natural language fluency. Details on the RefCOCO(+/g) pipeline are in Fig. A2. Additionally,
we introduce a challenging variant called MRSeg (hard), where understanding previous round
information is necessary to correctly segment the current instance (details in Appendix A.5).

• Interactional Relationships (Visual Genome): Utilizing Visual Genome (VG) relationship
annotations, we construct conversations that focus on interactional dynamics, rather than just
positional relationships. Each conversation has two rounds: the first round segments the subject,
and the second round segments an object based on its relationship to the subject.

• Attribute-oriented Queries (MSCOCO): These queries ask the model to segment objects based
on their attributes or usage rather than class names. An example query is: Q: Outline and extract
the object that has a tall, slender neck covered with a distinct pattern of patches. A: Yes, the figure
you specified for segmentation is a giraffe. We generate captions by cropping MSCOCO instances
and using GPT-4V prompts (details in Table A2).

• Single-Round Semantic Segmentation is based on ADE20K and COCO-Stuff datasets. We
construct single-round conversations by fitting class labels into various query templates.

Additional details on the multi-round data pre-processing for MRSeg are provided in Appendix A.5.
For better generalization, we generated a custom set of diverse questions templates using GPT-4.
Please refer to Appendix A.2 for more details.

4.2 SEGLLM FOR MULTI-ROUND IMAGE REASONING SEGMENTATION

Overall Pipeline. We introduce SegLLM to ensure that the VLMs’s next token predictions can
incorporate the conversational memory from previous interactions, including the visual outputs,
i.e., segmented masks, and the text conversations. The architecture of our model is illustrated in
Fig. 4. SegLLM consists of two key components: 1) Mask-Encoding Module: This module feeds the
output masks back into the input stream of the LLM, enabling it to reason about segmented masks
from previous rounds. 2) Mask-Aware Decoding Module: This module allows the mask decoder
to generate new masks based on both the visual and textual conversational history, enhancing its
contextual understanding. For example, when a user requests segmentation of a part of an object
identified in a previous round (e.g., the ear of a man), the model’s ability to access prior mask data
enables the decoder to more precisely localize and segment the specified object.

Mask-Encoding Module. For each mask generated by the decoder, we compute two types of
embeddings: mask embedding and bounding box embedding. The mask embedding captures the
semantic information of the masked object, and the bounding box embedding captures its location
within the original image. Employing mask embeddings (one token per mask) and box tokens instead
of a new set of patch tokens for each mask substantially reduces the number of visual tokens required
for multi-round conversations. Furthermore, since the visual patch tokens for the entire image have
already been utilized in previous conversations, this design does not compromise the richness of
information necessary for accurate image segmentation and visual question answering. For more
details on obtaining these embeddings during training and inference, please refer to Appendix A.3.

Mask-Aware Decoding Module. To facilitate the decoding process, we generate two tokens [REF]
and [SEG] to the mask decoder, containing information about the reference mask and the target mask,
respectively. For example, in the query “segment the head of [instance 1]” where “[instance 1]” is a
previously segmented person, the [REF] token should encode the previous mask [instance 1] while
[SEG] should encode the target mask. In the training process, we construct two queries. We match
first query “[REF] , [PAD] ” to the referenced mask Mref ([instance 1] in the previous example), and
match the second query “[REF] , [SEG] ” to the desired mask Mtgt (the head of the person in the
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Conversation History
Round 1: Segment the horse 
on the right.

Round 2: Segment the horse 
on the left.

Round 3: Segment the person 
riding on the top of object [1]

[1]

[2]

[3]

Image

Cropped Image

Bbox Coordinates Box 
Encoder

Round 4: Hi, could you please 
segment the person riding on 
the top of object [2]?

LLMs

IMG-EMBED

MASK-EMBED

BOX-EMBED

TEXT-EMBED

Mask Decoder

[REF]    

[PAD]

[REF]    

[SEG]

Decoded Reference Mask

Decoded Target Mask

It Is [REF] [SEG]

[x1, x2, y1, y2]

Figure 4: Model architecture of SegLLM for multi-round interactive image reasoning segmentation, which can
understand complex user intentions and segment entities based on their relationships with previously identified
ones. To facilitate this, first, we implement a mask encoding scheme that reincorporates the reference mask
information back into the input stream of the LLMs. This enables the LLMs to reason about segmented masks
from previous rounds. Second, we develop a mask-aware decoding scheme that allows the mask decoder to
generate new masks based on both the output from the LLMs and the historical memory of output masks. The
model uses the last layer hidden states associated with the [REF] and [SEG] tokens to generate both the reference
mask and the target mask, seamlessly integrating past and current segmentation results.

previous example). The final loss is formulated as:

Lmask = Lseg(F ([REF] , [PAD] ,Mref)) + Lseg(F ([REF] , [SEG] ,Mtgt)) (1)

where Lseg = Lce + λLDICE. We apply cross entropy loss and DICE loss to the target mask and
reference mask predictions. We set λ as 1 by default.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We use a pretrained CLIP-ViT-Large (Radford et al., 2021) with a patch size of 14 as the image
encoder, HIPIE-R50 (Wang et al., 2024b) as the mask encoder and LLaVA-v1.5-7B (Liu et al.,
2024) as the base language model. Compared with LISA, which has exactly one mask per training
sample, SegLLM’s setup contains multiple masks per conversation. Hence, we replaced the SAM
ViT-H mask decoder (Kirillov et al., 2023) with a smaller HIPIE-R50 (Wang et al., 2024b) to reduce
the computation overhead during the training, We then fine-tune the LLM model and the projector
weights fV2L using the training set of our own multi-round instruction-segmentation dataset MRSeg,
while keeping the weights of the CLIP image encoder and the HIPIE mask decoder frozen. For
further implementation details, please refer to Appendix A.1.

5.2 EVALUATION

Evaluation benchmarks. For standard single-round image reasoning segmentation and detection
tasks, we evaluate our model on the widely used referring segmentation and comprehension bench-
marks, RefCOCO/+/g (Yu et al., 2016). We also conduct qualitative and quantitative comparisons
with previous SOTA models on our multi-round referring segmentation benchmarks, based on
MSCOCO (Lin et al., 2014a), PACO (Ramanathan et al., 2023) and LVIS (Gupta et al., 2019), which
assess performance based on positional, interactional or hierarchical relationship queries.

Evaluation metrics. We use mean Intersection-Over-Union (mIoU) and cumulative Intersection-
Over-Union (cIoU) as our main evaluation metrics. To assess the model’s performance across multiple
rounds of conversation, we track the mIoU and cIoU scores for each round’s segmentation outputs.
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Rounds MR-RefCOCO MR-RefCOCO+ MR-RefCOCOg
LISA GLaMM SegLLM ∆ LISA GLaMM SegLLM ∆ LISA GLaMM SegLLM ∆

# 2 60.6 59.5 81.9 +21.3 51.4 52.9 78.0 +25.1 61.3 65.4 79.2 +13.8
# 3 58.9 61.6 81.7 +20.0 51.2 58.3 78.5 +20.2 52.1 57.8 76.0 +18.2
# 4 61.3 59.3 78.4 +17.1 49.0 54.2 74.3 +20.1 56.0 55.4 77.1 +15.0
# 5 61.0 62.6 80.3 +17.6 48.5 50.5 76.5 +26.0 47.5 49.4 66.9 +14.0
# 6 60.7 62.6 74.5 +11.9 45.6 54.8 73.4 +18.6 39.9 40.8 68.9 +24.8
# 7 54.4 52.1 69.3 +14.9 42.8 48.4 64.0 +15.6 55.1 57.8 71.0 +13.3
# 8 51.9 50.7 70.5 +18.7 36.9 43.6 59.0 +15.4 36.3 38.4 54.9 +16.5

Table 1: Multi-round referring segmentation on the proposed multi-round RefCOCO/+/g benchmarks. As
the rounds progress, it becomes harder to interact and retain all relevant information, causing the performance
measured in cIoU to drop. SegLLM can consistently outperform LISA (Lai et al., 2024) and GLaMM (Rasheed
et al., 2024), across a series of rounds by a significant margin on the MR-RefCOCO/+/g benchmarks.

Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

VLT (Ding et al., 2021) 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
LAVT (Yang et al., 2022) 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
SEEM (Zou et al., 2023) - - - - 65.7 - - -
LISA-7B (Lai et al., 2024) 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
NExT-Chat (Zhang et al., 2024) 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0
SegLLM (ours) 80.2 81.5 75.4 70.3 73.0 62.5 72.6 73.6

Table 2: Comparison between SegLLM and baseline methods on referring segmentation. Although not
specifically designed for single-round referring segmentation, the diverse and challenging multi-round referring
segmentation tasks and training data enable SegLLM significantly outperforms previous state-of-the-art methods
on standard referring segmentation tasks by a substantial margin. We use cIoU as the main evaluation metric.

Segment Lebron James.

Round 1

SegLLM

LISA

Segment the 
person to the 
left of 

Round 2

Segment the 
necktie of

Round 3
Segment the former 
president of the United 
States.

Round 4
Segment the 
necktie of

Round 5
User

Can you segment the 
person on the right, 
wearing a white shirt?

SegLLM

LISA

Segment the bag

 that              is carrying.

Segment the umbrella 

that                    is holding.

Can you segment the 
dog?

Can you segment the 
frisbee that the 
caught?

User

Round 1 Round 2 Round 3 Round 1 Round 2

Figure 5: Side-by-side qualitative comparison with LISA’s (Lai et al., 2024) on multi-round interactive
segmentation. SegLLM not only excels in reasoning segmentation, demonstrating an understanding of world
knowledge including recognition of famous individuals, as illustrated in the round 1 and round 4 results of the
first demo in row one, but it also efficiently responds to questions that reference previous rounds.

5.3 EVALUATION PROTOCOL FOR BASELINE METHODS

Since some baseline models, e.g., LISA, do not natively support multi-round interactive segmentation,
for comparisons, we adapt our multi-round validation data into their supported single-turn format by
converting the N -turn data into N single-turn instruction segmentation tasks.

Evaluation protocol for LISA. Given an example query in the MR-RefCOCO dataset “Segment the
person to the left of <mask> <box>.”, where <mask> <box> are encoding tokens corresponding
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LISA 1 LISA 2 LISA 3 SegLLM
round 2 60.6 55.9 58.9 81.9
round 3 58.9 54.7 56.8 81.7
round 4 61.3 56.7 58.8 78.4
round 5 61.0 57.8 59.7 80.3
round 6 60.7 57.7 57.4 74.5
round 7 54.4 45.6 51.0 69.3
round 8 51.9 50.3 50.1 70.5

Table 3: Evaluating LISA on MR-RefCOCO val-split
by replacing the reference mask and bounding box to-
kens with: 1) the word “mask”, 2) the captions for the
reference instance, and 3) painting the reference mask
onto the input image. SegLLM out performs LISA on all
three approaches. For more discussion on these results,
please refer to Appendix A.4

Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Shikra-13B (Chen et al., 2023) 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2
VisionLLM-H (Wang et al., 2024a) - 86.7 - - - - - -
Shikra-7B (Chen et al., 2023) 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2
NExT-Chat-7B (Zhang et al., 2024) 85.5 90.0 77.9 77.2 84.5 68.0 80.1 79.8
SegLLM-7B (ours) 90.0 92.1 86.2 82.2 85.5 76.1 83.9 85.9

Table 4: Comparison between SegLLM and baseline models on referring expression comprehension
(REC). SegLLM not only sets a new SOTA result in referring segmentation (Table 2), but also surpasses baseline
models in detection tasks, including those specifically optimized for these tasks, such as NExT-Chat-7B (Zhang
et al., 2024), or models with larger LLMs like Shikra-13B (Chen et al., 2023). The evaluation metric used is the
standard detection metric for REC, Acc@0.5.

Method Val Test Test (long query)
mIoU cIoU mIoU cIoU mIoU cIoU

LISA (Lai et al., 2024) 53.6 52.3 48.7 48.8 49.2 48.9
SegLLM 57.2 54.3 52.4 48.4 55.9 54.2

Table 5: Result comparison on the
ReasonSeg dataset. SegLLM demon-
strates superior performance, particu-
larly on the long query subset.

to the reference instance “the dog chasing after a butterfly”, we employed the following conversions:
1) substitute <mask> <box> with the word “mask” to obtain “Segment the person left to the mask.”;
2) substitute <mask> <box> with the description of the reference instance to obtain “Segment the
person left to the dog chasing after a butterfly.”; 3) paint the reference mask onto the input image and
use “Segment the person left to the object highlighted in yellow.” as the text input.

As shown in Table 3, SegLLM outperforms LISA across all three approaches on MR-RefCOCO. In
our main table, Table 1, we report LISA’s performance on our MR-RefCOCO/+/g benchmark using
the best approach for LISA, approach 1.

Evaluation protocol for GLaMM. GLaMM natively supports an additional bounding box coordinate
input, in addition to image and text. Therefore, we provided the bounding box coordinates of the
reference instance, the image and the text instruction to GLaMM.

5.4 EVALUATION RESULTS

Mutli-round referring segmentation. We compare the performance of SegLLM and LISA on our
multi-round referring segmentation benchmarks, MR-RefCOCO/+/g. As shown in Table 1, compared
to LISA (Lai et al., 2024) and GLaMM (Rasheed et al., 2024), SegLLM not only achieves 14∼26%
higher cIoU score across all conversation rounds but also stays stable, whereas LISA and GLaMM’s
performance tends to degrade in the later turns of the conversation. For example, by round 5, the
performance gap between SegLLM and GLaMM widens significantly, reaching over 17.6%, 26.0%,
and 14.0% on MR-RefCOCO, MR-RefCOCO+, and MR-RefCOCOg, respectively—nearly double
the gap observed in round 1 (Table 2). Besides the quantitative results, Fig. 5 presents the qualitative
results comparing SegLLM with LISA (Lai et al., 2024).

Why does SegLLM’s performance in later rounds sometimes exceed the first round by 2∼4%
(Table 2)? This improvement is attributed to earlier rounds helping to narrow down the search space
in the image, thus enhancing the model’s accuracy in subsequent queries.

Single-round referring segmentation and expression comprehension. As shown in Tabs. 2, 4
and 5, SegLLM consistently exceeds previous SOTA methods, such as LISA (Lai et al., 2024), NExT-
Chat (Zhang et al., 2024) and Shikra-13B (Chen et al., 2023), in the standard single-round referring
segmentation and expression comprehension tasks, despite not being specifically designed for these
tasks. We hypothesize that SegLLM’s ability to understand the relative relationships among objects
or parts within images in multi-round tasks significantly enhances its overall visual comprehension.
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SegLLM LISA

Segment the white chair by the 
desk.

SegLLM LISA

Can you help me identify the white 
chair by the desk in this image, by 
generating its segmentation mask?

SegLLM LISA

Please provide a segmentation mask 
to bring out the white chair by the 

desk prominently in this visual.

SegLLM LISA

I'm interested in the white chair by 
the desk in this image. Can you help 

me locate it by generating the 
segmentation mask?

Simple Complex

Figure 6: Demo results that demonstrate SegLLM’s robustness against varying question queries, in contrast
to LISA (Lai et al., 2024), which is sensitive to prompt phrasing. Even with simple questions presented in
different templates, LISA’s performance significantly declines, frequently failing to deliver correct segmentation
results for most test templates. This limitation forces users to adhere to specific phrasing, such as “Segment
[object descriptions]”, substantially restricting the model’s real-world applicability.

Models Multi-Round PACO (w/ LVIS) (mIoU) Multi-Round PACO (w/ LVIS) (cIoU)
LISA SegLLM Absolute ∆ LISA SegLLM Absolute ∆

round 1 34.7 54.9 +20.2 45.6 65.3 +19.7
round 2 10.6 37.6 +27.0 15.5 49.7 +34.2
round 3 13.7 32.9 +19.1 21.3 40.9 +19.6
round 4 11.5 33.3 +21.7 18.7 39.4 +20.7
round 5 11.6 31.6 +20.0 20.5 41.9 +21.4

Table 6: Single-round referring segmentation and multi-round hierarchical image segmentation. The
Multi-Round PACO (MR-PACO) benchmark presents a significant challenge as it demands a good hierarchical
understanding and the capability to precisely segment tiny masks representing parts or subparts of an object
(refer to hierarchical query demos in Fig. 1). SegLLM significantly improve performance over LISA (Lai et al.,
2024), demonstrating substantial improvements in both mIoU and cIoU metrics across conversation rounds.

This enhanced visual understanding capability transfers to superior performance in single-round tasks
as well. However, it is worth noting that while SegLLM shows improved performance in single-round
tasks, the performance gap is smaller compared to the improvements observed in multi-round tasks.

Multi-round hierarchical segmentation result comparison between SegLLM and LISA is conducted
with our MR-PACO. As detailed in Sec. 4.1, each subsequent round may query a part or subpart
of a whole object from a previous round of conversation. As shown in Table 6, compared to LISA,
SegLLM obtains 10.7%∼16.2% higher mIoU and 13.2∼27.1% higher cIoU across all rounds. It is
observed that the absolute model performance typically decreases in later rounds. This decline is
primarily due to the progressively smaller object sizes (segment parts of an instance) in later rounds of
the multi-round hierarchical segmentation task. As shown in Fig. 5, SegLLM leverages multi-round
segmentation, using previous outputs to accurately identify the necktie of the person in the gray suit
in round 2, as requested by the user. In contrast, LISA, lacking this contextual awareness, fails to
correctly identify the person. This is further demonstrated in round 5, where SegLLM successfully
segments Barack Obama’s necktie from round 4, while LISA fails again.

Robustness against question templates. We observed that many previous studies in image reasoning
segmentation, such as LISA (Lai et al., 2024) and SESAME (Wu et al., 2024), tend to overfit to the
specific question templates used during training. Consequently, when these models are evaluated with
diverse question templates not encountered during training, performance often significantly declines.
For example, as shown in Table 7, the performance of LISA and SESAME drops by approximately
7% and 13%, respectively, when assessed using our varied templates.

To mitigate this, we intentionally diversified our question templates during the dataset generation
process. As a result, our SegLLM model not only demonstrates consistent segmentation performance
across diverse templates but also achieves a 5.5% higher cumulative Intersection-Over-Union (cIoU).
Fig. 6 shows that LISA’s performance significantly drops when asked with simple questions presented
in various templates, frequently failing to produce correct segmentation results for most test templates.

5.5 ABLATION STUDY

Ablation study. We conduct an ablation study (Table 8) on our Multi-Round RefCOCO benchmark
to evaluate the effectiveness of the three components we introduced in Sec. 4.2. We assess model
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Methods Averaged Diverse LISA SESAME
RC RC+ RCg RC RC+ RCg RC RC+ RCg RC RC+ RCg

SESAME (Wu et al., 2024) 67.4 57.9 61.4 66.0 56.9 60.6 61.4 51.6 55.6 74.9 65.1 67.9
LISA-7B (ft) (Lai et al., 2024) 70.1 61.0 63.0 67.8 59.0 62.4 74.7 64.9 66.1 67.8 59.2 60.6
SegLLM (ours) 79.7 70.0 72.2 80.2 70.3 72.6 80.4 70.7 72.3 78.6 69.0 71.6
vs. prev. SOTA +9.6 +9.0 +9.1 +12.4 +11.3 +10.2 +5.7 +5.8 +6.2 +3.7 +3.9 +3.7

Table 7: SegLLM Exhibits greater robustness to a variety of question templates in image reasoning
segmentation. Unlike previous models such as LISA (Lai et al., 2024) and SESAME (Wu et al., 2024), which
tend to overfit to specific question templates encountered during training, SegLLM demonstrates improved
robustness. We assess performance using the single-round RefCOCO dataset with cumulative cIoU as the
evaluation metric. Notably, the templates used for evaluation were not utilized during the model training process.

Mask-enc Box-enc Ref Loss Single-Round Multi-Round Multi-Round (hard)
RefCOCO / + / g RefCOCO / + / g RefCOCO / + / g

✗ ✗ ✗ 80.2 / 67.1 / 70.8 59.6 / 53.9 / 55.2 32.4 / 32.3 / 34.1
✓ ✗ ✗ 83.6 / 73.0 / 77.7 72.2 / 68.1 / 68.1 58.6 / 58.6 / 59.1
✗ ✓ ✗ 81.9 / 72.7 / 77.2 71.2 / 66.9 / 65.0 56.7 / 56.5 / 51.0
✓ ✓ ✗ 82.3 / 72.2 / 77.8 75.7 / 71.3 / 68.6 67.6 / 67.3 / 62.8
✓ ✓ ✓ 83.8 / 72.5 / 76.7 74.0 / 70.1 / 65.8 69.6 / 69.4 / 63.7

Table 8: Ablation study on the effectiveness of proposed components. Model performance evaluated on
three benchmarks: (1) Single-Round—Referring segmentation in a single round using standard RefCOCO,
RefCOCO+, and RefCOCOg datasets. (2) MRSeg: Multi-Round—Referring segmentation over multiple
rounds, based on our custom benchmarks from RefCOCO, RefCOCO+, and RefCOCOg datasets (results show a
weighted average of standard and hard subsets). (3) MRSeg (Hard): Multi-Round (Hard)—Focuses exclusively
on the hard subset of the multi-round segmentation benchmarks. The evaluation metric used is CIoU.

performance across three subsets of the MR-RefCOCO dataset: 1) Single-round: single round
referring segmentation using the standard RefCOCO/+/g datasets. 2) MRSeg: multi-round referring
segmentation based on our MRSeg. 63) MRSeg (Hard): this subset focuses exclusively on the hard
subset of the MRSeg benchmarks, where understanding the reference mask is crucial for accurately
segmenting the correct object. We provide more details for MRSeg (hard) in Appendix A.5. Our
proposed components lead to a significant 20% performance improvement over the baseline. In
the MRSeg (hard) subset, our mask-encoding scheme achieves over 30 points higher cIoU than
the baseline, which highlight the effectiveness of our approach in enabling the model to interpret
visual cues from user instructions and perform mask-conditioned segmentation—critical for handling
complex tasks where reference masks, rather than text-based instructions, provide key information.

The proposed components also improve results on single-round referring segmentation as shown
in Table 8. This achievement is noteworthy as the task does not explicitly require box-encoding and
mask-encoding. We hypothesize that the absence of these encoding modules complicates the learning
of segmentation from multi-round instructions, resulting in less stable training dynamics that affect
performance even in single-round tasks.

Fine-tuning LISA’s method on our multi-round datasets. Since the baseline setting in the first row
in Table 8 is architecturally equivalent to LISA’s method, this evaluation result is illustrative of the
performance of LISA’s method when trained on the same split of MR-RefCOCO and using same
training method as our model. Hence, the ablation study shows that the mask and box encoders as
well as the reference mask loss are indeed necessary components for achieving good performance on
our multi-round segmentation task, and simply training previous methods without these components
on our data alone is not sufficient to bridge this gap.

6 CONCLUSIONS

We introduce SegLLM, a novel multi-round interactive reasoning segmentation model that enhances
traditional segmentation models by retaining conversational memory of visual, not just textual, results.
Utilizing a mask-aware multimodal large language model, SegLLM integrates previous segmentation
outputs back into its input stream, allowing it to handle complex queries about relationships between
objects across multiple interactions. Tested on the newly curated MRSeg, SegLLM significantly
outperforms existing benchmarks in multi-round interactive segmentation by over 20% and shows
a 4.7% improvement in single-round referring segmentation. These results demonstrate SegLLM’s
capability as a versatile model for a broad range of instruction-following segmentation tasks.
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A APPENDIX

A.1 TRAINING DETAILS

We use NVIDIA A100 GPUs for model training. We fine-tune our model with a total batch size of
16 (a per-device batch size of 2) using the AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 2e−5. Furthermore, we utilize stage-2 DeepSpeed accelerator (Rasley et al., 2020)
and bf16 floating point precision to enhance training efficiency and reduce memory consumption.

A.2 QUESTION TEMPLATES GENERATION

We observed that current state-of-the-art chat-based image segmentation models, such as LISA (Lai
et al., 2024), tend to rely heavily on a fixed set of question templates. This leads to fluctuations and
instability in segmentation quality when user prompts are phrased differently, suggesting potential
overfitting to specific language prompts.

To address this, we leveraged the web-version of GPT-4 (Achiam et al., 2023) to generate diverse
templates, creating more natural language conversations from dataset annotations. We generated
templates for direct referring segmentation queries, relational queries, and hierarchical queries. For
each query type, we created 100∼200 templates for training and 50∼100 different templates for
validation.

A.3 MASK AND BOX ENCODING DETAILS

To obtain the mask embedding, we first set the pixels outside the reference mask as black, then we
crop the image according to the bounding box of the reference mask. This yields an object-centric
image of the masked object. We then pass this image to a CLIP-ViT encoder (Radford et al., 2021),
and obtain the raw mask embedding. We use an MLP layer to map this embedding to the input
dimension of LLMs.

To obtain the bounding box embedding, we first compute the bounding box coordinates using the
generated mask, then we create a positional embedding whose dimension matches the input dimension
of LLM. We use this generated positional embedding as the final bounding box embedding.

For each mask, we obtain the two embeddings and feed them sequentially back to the input stream of
LLMs. Following LISA, we use a [SEG] token to generate the masks. During the training process, we
employ the teacher enforcing (Williams & Zipser, 1989) and directly append the ground truth mask
and bounding box embedding after each [SEG] token. At the inference time, we compute the two
embeddings for each mask generate and insert the embeddings before the input for the next round.

A.4 LISA EVALUATION PROTOCOL DISCUSSION

When exploring different protocols to evaluated LISA on our multi-round dataset, we find that LISA
performs worse using approach 2 and 3, when compared to approach 1, despite the inclusion of the
additional information such as the caption of the reference instance or the painted reference mask
compared to the word “mask”. We suspect that this may be due to LISA being trained on data that
focuses on 1 instance, hence the presence of description for two instances, the target and the reference
instance, may cause more confusion than guidance. In addition, the painting the reference instance to
a different color may cause a distribution shift in the input image.

In the 3rd approach, we averaged the result across painting the mask in three different colors, red,
green and yellow. We found that changing the color did not make a significant difference, as the
standard deviation across three colors is ≤ 1 point. We use cumulative intersection-over-union
(cIoU) metric as the evaluation metric, which is the cumulative intersection over the cumulative
union:

∑N
i=1 Intersectioni∑N

i=1 Unioni
, where Intersectioni is the number of pixels in the intersecting region of the

predicted mask and the ground truth mask for image i, and Unioni is the number of pixels in the
union of the predicted mask and the ground truth mask for image i. By contrast, mIoU is defined by
1
N

∑N
i=1

Intersectioni
Unioni
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A.5 DATASET DETAILS

In the section, we document further details on the dataset construction process. We also provide some
statistics about our dataset.

A.5.1 DATASET SIZE

We document the number of images sampled from each source dataset and the number of conversations
generated in Table A1. Additionally, we visualize the distribution of the number of rounds for each
dataset in Fig. A1.

Datasets Training Set Validation Set
# of Convs # of Images Max Rounds # of Convs # of Images Max Rounds

RefCOCO(+/g) 55188 27674 18 4263 2701 17
Visual Genome 367674 94221 2 40980 10524 2
PACO-LVIS 40827 40827 19 2178 2178 16
LVIS 71388 71255 17 13898 13898 18
Pascal Panoptic Part 4577 4577 17 4690 4690 18
ADE20K 59784 20196 1 5943 200 1
COCO-Stuff 340127 118205 1 14461 4999 1
Attributes-COCO 49036 36413 1 5000 2566 1
ReasonSeg 1326 239 1 200 200 1
MRSeg (hard) 22470 22470 1 1988 1988 1

Table A1: Statistics of our MRSeg dataset, including the number of overall conversations, number of images,
and the maximum rounds of conversations for each dataset after processing through our dataset pipeline.

Figure A1: Bar-plot visualization for training and validation conversations count at different number of rounds
for multi-round datasets. There are very conversations with a large number of rounds.

A.5.2 CONVERSATION GENERATION PIPELINE

We employ different strategies to generate natural-language conversation for different source datasets.
Specifically, our dataset is generated using a combination of the following methods:

• Hierarchical relationships based on PACO-LVIS and Pascal Panoptic Part: In these queries,
the model is asked to segment objects which are a sub-part of some output of a previous round.
From each image, we randomly sample between one and four instances, and for each instance,
we randomly sample between one and four parts. We initiate queries about the instance followed
by questions targeting the parts of each respective instance. For Pascal Panoptic Part, we only use
objects and their parts on a instance level and not a semantic segmentation level to avoid ambiguity.
For both PACO-LVIS and Pascal Panoptic Part, we refer to previous round outputs with it’s actual
caption, e.g. ‘‘the knife’’ with probablility 50%. With the other 50% we refer to the
previous round output as ‘‘<instance i>’’ or ‘‘<the output of round i>’’.

• Positional relationships based on Refcoco(+/g) and LVIS: These conversations task the system
with segmenting objects based on their positional relationships to the outputs from previous
rounds.We randomly sample between 2 to 18 annotations per image. For each selected annotation,
we either generate a query about the object itself or generate a query involving an object from
previously processed instances, focusing on their relative positions calculated from their bounding
box coordinates. For RefCOCO(+/g), multiple annotations may be selected for the same instance

2
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All Captions for a 
Single Image

Randomly select between 2 
to 18 captions

Selected Captions Selected Captions 
and Relative Indexes

GPT Generated 
Templates

Fit relationships and 
instance annotations to 
templates

Based on a certain probability, we either 
ask about the current caption or select a 
another caption to inquire about.

captions_array = [“right tray pizza 
slices”, “left male”, “pizza guy with 
glasses”,“the left pizza not the slice”]

relative_array = [-1, 0, -1, 1 ] 
Index represents index of the 
corresponding object in captions array. 

Calculate spatial 
relationship to 
chosen related 
objects

Captions, Objects 
and Relationships

relationships_array = [“none”, “to 
the top left”, “none”, “below” ] 

User:  I'm looking for the segmentation mask of 
right tray pizza slices in the image.
SegLLM: Sure, the segmentation result is [1].
User: Could you highlight the left male that's to 
the top left of right tray pizza slices?
SegLLM: [2].
User: "Can pizza guy with glasses be the main 
subject of segmentation?
SegLLM:[3].
User: Can you find and segment the left pizza not 
the slice that is below the output of round 2?"
SegLLM:Sure,[4].

Multi-Round Conversational Data

Figure A2: Pipeline for generating multi-round conversational data for RefCOCO(+/g) in MRSeg.

due to multiple captions available per instance.For LVIS, we select annotations where only
one or two objects of that class appear in the image. When two objects of the same class are
present, we detail their relative positions and add location descriptions to their captions to prevent
ambiguity. We specifically choose instances not categorized under COCO classes to diversify
the dataset’s class variety. The probability for each round to query about an object itself is 1/3,
otherwise, we query about the current object with a reference to a previous round’s output and
their relative position. To assign the positional relationships, we use compare the edge and center
position of the bounding boxes for the two instance we are trying to assign a relationship to.
There are 9 total possible positions two instances can have (the same as, overlapping with, to the
left/right, above/below, to the top/bottom left/right of). Similar to Hierarchical Queries,we refer
to previous round outputs with it’s actual caption, e.g. ‘‘the woman on the left’’ with
probablility 50%. With the other 50% we refer to the previous round output as ‘‘<instance
i>’’ or ‘‘<the output of round i>’’. A detailed pipeline for how RefCOCO(+/g)
dataset is sampled can be see in Fig. A2

• MR Seg(hard): For each RefCOCO image, we identify cases where there are two instances of
the same class within the image. From these, we select a pair of instances and construct two
single-round conversations. Given two instances, X and Y, of the same class in the image, we
create the following conversations:

– Conv 1: [IMAGE] [ENCODE X] Please segment the other <class
name> → Sure, [DECODE Y]

– Conv 2: [IMAGE] [ENCODE Y] Please segment the other <class
name> → Sure, [DECODE X]

We have 10 different templates for the training and 5 templates validation/test for MR Seg(hard).
• Interactional relationships based on Visual Genome: We adopt Visual Genome (VG), utilizing

its relationship annotations to construct conversations that emphasize interactional dynamics
rather than merely positional relationships. We sample up to four relationships per image. Each
relationship prompts a two-round conversation: the first round involves segmenting the subject,
and the second round involves segmenting an object based on its relationship to the subject. Since
VG also only provides bounding box labels, we generate masks for selected instances using SAM.

A.5.3 DETAILS OF GPT4 USAGE

We prompt GPT-4 models for generating captions for attribute-based descriptions as well as for
cleaning grammar errors in our dataset. The detailed instructions and specific model we used can be
found in Table A2 and Table A3. For the attribute-based description, we crop COCO images to only
contain the specified instance, feeding the cropped image and it’s class name to GPT to generate a
description. For language correction, we found that grammar correction is often erroneous but can be
a lot of accurate if we go through the data twice to double check.
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payload = {
"model": "gpt-4-turbo-2024-04-09",
"messages": [
{
"role": "user",
"content": [
{

"type": "text",
"text": f"Can you focus on describing the {class_name} in

the image? Can you format your output in a two item
array, such that the first index is an abstract
description without any class name, such as ’has a pizza
sitting on top of it’ or ’is wearing a beige t-shirt’
and the second index is the exact classname for the
object, such as ’a dining table’ or ’a man’."

},
{

"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "low"

}
}

]
}

],
"max_tokens": 200

}

Table A2: Our full prompt to the GPT-4-turbo-2024-04-09 model for generating abstract descriptions

A.5.4 MORE DISCUSSIONS ON DEMO OUTPUTS

In Fig. A3, example A illustrate the necessity of our Mask-Encoding Scheme, to avoid the ambiguity
that may arise in cases where multiple instances of the same class are present in the image. Round 2
and round 3 in example A show that without our mask encoding mechanism to supply information
about the person segmented from round 1, since there are multiple laptops and chairs present in
the image, confusion arises as to which specific laptop or chair the user is referring to in the query
prompt. Therefore, without the guiding information from the mask encoding, LISA seems to naively
guess the incorrect laptop in round 2, and does not generate a comprehensible segmentation mask in
round 3. In contrast, the mask encoding guides our model to correctly segment the requested objects.
Similarly, in round 4 and round 6, our model was able to successfully segment the keyboard of the
laptop from round 3 and the person setting on the chair from round 5.

This phenomenon is again demonstrated in B in Fig. A3. Since there are two women, both carrying
bags and holding an umbrella in the image, our Mask-Encoding Scheme again resolves this the
ambiguity and allows the user to conveniently specify the bag and the umbrella requested in round 2
and round 3 are carried and held by the person from round 1. As before, the awareness of previous
round outputs enables our model to segment the correct objects, whereas LISA guesses the incorrect
objects due to the lack of this awareness.

Example C demonstrates that our model is not limited to multi-round prompting, and can produce
accurate segmentation results via direct, single-round prompts as well. In the indirect case, we first
ask the model to segment the dog during the first round of the conversation. Then, in the second
round, we ask a follow up question to guide the model to segment the Frisbee that is caught by the
dog from round 1. However, tin the direct case, we straight away ask for the Frisbee that is caught by
the dog. In comparison, our model succeeds in both the direct and indirect case, whereas LISA fails to
segment the correct Frisbee instance in either cases. This shows that our multi-round comprehension
capability is not a limitation but an addition.
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Round 1:
response = client.chat.completions.create(

model="gpt-4o-2024-05-13",
response_format={ "type": "json_object" },
messages=[

{"role": "system", "content": "You are a helpful
assistant designed to output JSON."},

{"role": "user", "content": f"Can you fix any errors and
make the sentence sound like natural English, and
provide our output in a dictionary of format
’corrected’=CORRECT_SENTENCE? here is the sentence I
want you to correct, ’{sent}’"}

]
)

Round 2:
response = client.chat.completions.create(

model="gpt-4o-2024-05-13",
response_format={ "type": "json_object" },
messages=[

{"role": "system", "content": "You are a helpful
assistant designed to output JSON"},

{"role": "user", "content": f"Here is the original
sentence: ’{sent}’. Here is the corrected sentence:
’{corrected_sent}’. Does the corrected sentence have
the same meaning as the original? If yes, please
output [’Same’, ’None’]. If no, please output
[’Different’,
’<corrected_with_same_meaning_as_original>’]."}

]
)

Table A3: Out full prompt to the gpt-4o-2024-05-13 model for grammar correction. We use a two-round
approach, feeding GPT’s first round answer back to itself to be self-corrected.

Lastly, we note that round 3 and round 6 of example A, round 2 and round 3 of example B and round
2 of example C demonstrate our model’s understanding of interactional relationships as introduced
in Sec. 4.1 and round 4 demonstrates the hierarchical relationship introduced in Sec. 4.1.

B LICENSE

We makes use the following models: CLIP (MIT license), LLAMA 2 (Llama 2 Community License
Agreement), Vicuna (Apache2 license). BLIP-2 ( BSD-3-Clause license)

We use the following dataset COCO (Attribution-NonCommercial-ShareAlike 4.0 Internationa),
RefCOCO (Apache-2.0 license), Visual Genome (Creative Commons Attribution 4.0 International
License.), PACO (MIT License), Pascal-Panoptic-Parts ( Apache-2.0 license), LIVIS (CC BY 4.0 +
COCO license).

C LIMITATION

One limitation is that our model can only output a single mask, hence we are only able to perform
segmentation on an instance level rather than a semantic level. Another limitation is that when the
text input is ambiguous, our model may randomly select a possible output instead of asking which
specific output is desires or output all possible options. This may be caused by the training data
which is slightly noisy due to being converted from datasets not necessary for referring segmentation.
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Rnd 1: Segment the person on the right.

Rnd 2: Segment the computer in front of
.

Rnd 3: Segment the chair that is sitting on.

Rnd 5: Segment the chair on the left. Rnd 6: Segment the person sitting on top of
 .

SegLLM LISA

Rnd 1: Segment the batter in this image.

Rnd 2: Segment the person crouching 
down with the glove to the right of

Rnd 3: Segment the helmet of 

SegLLM LISA

Figure A3: Additional side-by-side comparison with LISA. This shows that without awareness of segmentation
outputs from previous rounds, LISA struggles to identify the correct instance requested by the user, when there
is ambiguity.

D BROADER IMPACTS

Our paper imposes positive broader impacts. It can act as a educational tools. One can employ our
model to demonstrate the relationship between objects by clearly segmenting them, this can help
second-language speakers or children learn the meaning of different relationships, for example. It
can also be beneficial for scientific research or environment monitoring. Our model can help detect
extremely small objects autonomously simply with an image and text prompt.
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