
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Featurizations Matter:
A Multiview Contrastive Learning Approach to Molecular Pretraining

Anonymous Authors1

Abstract
Molecular representation learning, which aims
to automate feature learning for molecules, is a
vital task in computational chemistry and drug
discovery. Despite rapid advances in molecular
pretraining models with various types of featur-
izations, from SMILES strings, 2D graphs to 3D
geometry, there is a paucity of research on how
to utilize different molecular featurization tech-
niques to obtain better representations. To bridge
that gap, we present a novel multiview contrastive
learning approach dubbed MEMO in this paper.
Our pretraining framework, in particular, is ca-
pable of learning from four basic but nontrivial
featurizations of molecules and adaptively learn-
ing to optimize the combinations of featurization
techniques for different downstream tasks. Ex-
tensive experiments on a broad range of molec-
ular property prediction benchmarks show that
our MEMO outperforms state-of-the-art baselines
and also yields reasonable an interpretation of
molecular featurizations weights in accordance
with chemical knowledge.

1. Introduction
Molecular representation learning, which automates the pro-
cess of feature learning for molecules, is fast driving the
development of computational chemistry and drug discovery.
It has been recognized as crucial for a variety downstream
tasks, spanning from molecular property prediction (Yang
et al., 2019) to molecule design (Du et al., 2022). Deep
learning models, on the other hand, often rely on a sub-
stantial amount of labeled data for proper training, which
require expensive wet lab experiments in chemical domains.
With insufficient annotated data, deep models easily over-
fit to such small training data and tend to learn spurious
correlations (Sagawa et al., 2020).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

In recent years, self-supervised pretraining has emerged
as a promising strategy to alleviate the label scarcity prob-
lem and improve model robustness (Jing & Tian, 2021). A
typical framework first pretrains the model by construct-
ing training objectives from large-scale unlabeled datasets
and then fine-tunes the learned model on labeled down-
stream datasets. Motivated by its success, many molecular
pretraining models have been developed. To capture chemi-
cal structures of molecules, they design several pretraining
strategies based on different molecular featurizations, which
translate chemical information of molecules into numerical
representations that can be recognized by machine learn-
ing algorithms. For example, some early models (Wang
et al., 2019; Chithrananda et al., 2020) propose to leverage
masked language modeling (Bengio et al., 2003) to pretrain
Simplified Molecular-Input Line-Entry System (SMILES)
strings (Weininger, 1988), while others propose contrastive
objectives on 2D topology graphs (Hu et al., 2020b; You
et al., 2020a; Xu et al., 2021b) or conformations (3D geom-
etry) (Fang et al., 2022). Some recent studies also propose
to enrich 2D-topology-based pretraining with 3D geometry
information (Stärk et al., 2021; Liu et al., 2022a).

Although considerable progress has been made, these mod-
els overlook the impact of molecular featurizations in de-
signing pretraining frameworks, where most present work
focuses on only one featurization technique while ignoring
the others that are probably essential to some tasks. Some re-
cent studies (Liu et al., 2022a; Stärk et al., 2021) attempt to
integrate 3D geometry with 2D topological information, but
they assume 3D stereochemical structures are hard to obtain
or not available for downstream datasets and still rely on
one single featurization in fine-tuning. Moreover, we argue
that the utility of different featurizations may vary across
downstream tasks. For example, 2D topology information is
important for many drug-related properties such as toxicity,
while 3D geometry arguably determines properties related
to quantum mechanics, such as single-point energy, atomic
forces, or dipole moments (Zhang et al., 2018; Smith et al.,
2017). Therefore, it is natural to ask whether we can enjoy
the benefits from multiple molecular featurizations and also
take downstream tasks into consideration when fine-tuning
the model.
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Figure 1. The proposed MEMO model. It begins by constructing
four views with four molecule featurizations and then obtains
four view-specific embeddings z∗ with appropriate encoders. The
final embedding z is then computed by taking a weighted average
over the four view embeddings, with the coefficients α∗ learned
using an attention network. Finally, the model is trained using a
contrastive objective that maximizes the consistency between view
embeddings and the final embedding.

Towards this end, this paper presents a novel MolEcular
pretraining framework with Multiview cOntrastive learning,
which we term MEMO for brevity. Its graphical illustra-
tion is shown in Figure 1. Our proposed model considers
four featurization techniques that are widely available or
can be easily generated from the raw molecular data: (a)
2D topology graphs, (b) 3D geometry graphs, (c) Morgan
fingerprints, and (d) SMILES strings. Then, we construct
views based on these four featurizations and leverage dif-
ferent encoders with proper inductive bias to capture their
intrinsic information. Following that, the MEMO model
dynamically adjusts the contribution of each view through
an attention network, which selectively extracts information
from each view and further allows interpretation analysis of
different downstream tasks for domain scientists. After that,
we design a novel multiview contrastive pretraining strat-
egy, which trains the model by maximizing the consistency
among different views in a self-supervised manner.

We evaluate the effectiveness of our proposed MEMO model
on widely-used benchmark datasets including a wide range
of molecular property prediction tasks. The experimen-
tal results reveal that our work consistently improves non-
pretraining baselines while avoiding negative transfer and
outperforms existing state-of-the-art molecular pretraining
models, achieving a 2.72% absolute improvement in terms
of average ROC-AUC. Furthermore, the learned model
weights of molecular featurizations for different end tasks
are well aligned with prior chemical knowledge. We also
suggest a series of guidelines on choosing effective featur-
ization techniques for molecular representations.

To the best of our knowledge, this is the first work that stud-
ies how various featurization techniques should be utilized
for molecular pretraining and downstream tasks. The main
contributions of this work are three-fold:

• We comprehensively utilize different featurization
spaces of molecules and design encoders with appro-
priate inductive bias corresponding to different repre-
sentations.

• We propose a novel molecular contrastive pretraining
framework that adaptive integrates information from
multiple views and provides interpretability for down-
stream molecular property prediction tasks.

• Extensive experiments conducted on public benchmark
datasets validate the effectiveness of our proposed
model. MEMO is able to achieve the state-of-the-art
across various downstream datasets without negative
transfer.

2. Literature Review
This section briefly reviews the progress of molecular ma-
chine learning. We first recap four common featurization
techniques, followed by molecular representation learning
studies. A more broad literature review across the spectrum
of self-supervised learning is presented in Appendix C.

2.1. A Brief Recapitulation of Featurization Techniques
in Molecules

MEMO utilizes multiple of views to pre-train the model,
where each view captures the information of the given
data from one aspect. In this work, we consider the fol-
lowing four commonly-used molecular featurization tech-
niques (Ramsundar et al., 2019) and leverage them to con-
struct views for molecules:

• 2D topology graphs model atoms and bonds as nodes
and edges respectively. Featurizing molecules as 2D
graphs is arguably a good technique, especially for
capturing substructure information by means of graph
topology.

• 3D geometry graphs incorporate atomic coordinates
(conformations) in their representations and are able
to depict how atoms are positioned relative to each
other in the 3D space. We consider conformers in an
equilibrium state, corresponding to the minima in a
potential energy surface.

• Morgan fingerprints (Morgan, 1965; Glem et al.,
2006) encode molecules in fixed-length binary strings,
with bits indicating presence or absence of specific
substructures. They represent each atom according to
a set of atomic invariants and iteratively update these
features among neighboring atoms using a hash func-
tion.

• SMILES strings are a concise technique that repre-
sents chemical structures in a linear notation using
ASCII characters, with explicitly depicting information
about atoms, bonds, rings, connectivity, aromaticity,
and stereochemistry.
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2.2. Related Work on Molecular Machine Learning

Traditional methods (Carhart et al., 1985; Nilakantan et al.,
1987; Rogers & Hahn, 2010) represent molecular structures
with fingerprints. Some prior studies (Svetnik et al., 2004;
Meyer et al., 2019; Wu et al., 2018) employ tree-based
machine leaning models such as random forests (Breiman,
2001) and XGBoost (Chen & Guestrin, 2016) on finger-
prints to predict the properties of molecules. With the de-
velopment of deep learning, neural approaches have been
dominating the field given their strong representation abil-
ity. One line of work (Wang et al., 2019; Chithrananda
et al., 2020) leverages language modeling techniques such
as BERT (Devlin et al., 2019) to learn molecular representa-
tions based on SMILES strings (Weininger, 1988). However,
some argue that sequence-based representations cannot fully
capture substructure information and propose to leverage
Graph Neural Networks (GNNs), which model molecules
as graphs with atoms as nodes and bonds as edges (Gilmer
et al., 2017; Liu et al., 2019a; Ying et al., 2021). Despite
the prosperous progress, they only model 2D topological
structures of molecules, without considering the 3D coordi-
nates of atoms that are known to determine certain chemical
and physical functionalities of molecules. To address this
deficiency, recent work further explicitly considers such 3D
geometry and designs equivariant networks to obtain the
representations (Schütt et al., 2017; Klicpera et al., 2020;
Satorras et al., 2021; Fuchs et al., 2020; Schütt et al., 2021;
Du et al., 2021; Liu et al., 2021; Gasteiger et al., 2021;
Batzner et al., 2021; Brandstetter et al., 2022; Xu et al.,
2021a).

Even though molecular representation learning techniques
have been extensively investigated, there are very few la-
beled datasets available for studying the molecular prop-
erties of interest (e.g., drug-likeness or quantum proper-
ties). On the other hand, there are abundant unannotated
molecules available, which motivates researchers to study
pretraining techniques that learn the model weights in a
self-supervised manner and transfer the knowledge to down-
stream datasets with limited annotations via fine-tuning. A
series of pretraining frameworks on 2D molecular graph rep-
resentations have been developed so far (Rong et al., 2020;
Hu et al., 2020b; Zhang et al., 2021; Wang et al., 2022; Li
et al., 2020). Recent work GEM (Fang et al., 2022) studies
pretraining for 3D geometry representations. Additionally,
researchers also study to supplement 2D-graph-based pre-
training with 3D conformation information (Yang et al.,
2021; Liu et al., 2022a; Stärk et al., 2021).

A succinct comparison of our work with other representative
methods is provided in Table 1. Compared to the above
studies, our proposed MEMO is the only model that can
adaptively leverage multiple featurizations for both pre-
training and fine-tuning stages.

3. The Proposed MEMO Method
In this section, we first formulate the molecule pretrain-
ing problem. After that, we discuss the overall pretrain-
ing framework. Finally, we introduce the details of view-
specific encoders, multiview representation fusion, and con-
trastive objectives.

3.1. Problem Formulation

Notations. We represent each molecule as an undirected
graph, where nodes are atoms and edges describe inter-
atomic bonds. Formally, each graph is denoted as G =
(A,R,X,E), where A ∈ {0, 1}N×N is the adjacency ma-
trix of N nodes, R ∈ RN×3 is the 3D position matrix,
X ∈ RN×K is the matrix of atom attributes of K dimen-
sion, and E ∈ RN×N×E is the tensor for bond attributes of
E dimension. Additionally, each molecule is attached with
a binary fingerprint vector f ∈ {0, 1}F of length F and a
SMILES string S = [sj ]

S
j=1 of length S.

Problem statement. As with generic SSL pipelines, the
whole framework is divided into two stages, pretraining and
fine-tuning. At the first stage, given an unlabeled dataset,
we train an encoding function that learns representations
with the four featurization techniques. Subsequently, we
are provided with several datasets containing molecules
with annotations of particular properties. During this fine-
tuning phase, we take the weights of the encoders from
the pretrained model and then tune the model on specific
downstream tasks in a supervised fashion.

3.2. Molecule Pretraining via Multiview Contrastive
Learning

We next introduce the MEMO pretraining framework. We
first use four view-specific encoders to independently ex-
tract information from the four views, each of which is
constructed from one of the four featurization strategies.
Then, we integrate these four view-specific embeddings to
compute a final representation for each molecule through
an attention network. Finally, we pretrain the whole model
using a multiview contrastive objective.

3.2.1. VIEW-SPECIFIC REPRESENTATION LEARNING

We leverage four encoders with different inductive bias to
capture the intrinsic information in each view. In what fol-
lows, the subscript i is used to index the i-th molecule. Due
to page limitations, we only discuss the high-level design
of each encoder; please refer to Appendix A in the supple-
mentary material for detailed implementations of each view
encoder.
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Table 1. Comparing MEMO with representative SSL methods for molecular representation learning.

Pretraining Fine-tuning
Method

2D 3D Fingerprint SMILES 2D 3D Fingerprint SMILES

SMILES-BERT (Wang et al., 2019) ✓ ✓
ChemBERTa (Chithrananda et al., 2020) ✓ ✓
AttrMask, ContexPred (Hu et al., 2020b) ✓ ✓
GraphCL (You et al., 2020a) ✓ ✓
GraphLoG (Xu et al., 2021b) ✓ ✓
GROVER (Rong et al., 2020) ✓ ✓
GEM (Fang et al., 2022) ✓ ✓
3D Infomax (Stärk et al., 2021) ✓ ✓ ✓
GraphMVP (Liu et al., 2022a) ✓ ✓ ✓
MEMO (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Embedding 2D graphs. To capture the topological in-
formation contained in the 2D graph, we employ a widely-
used Graph Isomorphism Network (GIN) model (Xu et al.,
2019) denoted by f2D, which receives as input the 2D graph
adjacency matrix and attributes of atoms and bonds, and
produces the corresponding 2D topology embedding vector
z2D
i ∈ RD:

z2D
i = f2D(Xi,Ei,Ai). (1)

Embedding 3D graphs. To model additional spatial coor-
dinates associated with atoms, we leverage SchNet (Schütt
et al., 2017) as the backbone, which models message pass-
ing as continuous-filter convolutions and is able to preserve
rotational invariance for energy predictions. We denote its
encoding function as f3D which takes atom features and po-
sitions as input and produces the 3D embedding z3D

i ∈ RD:

z3D
i = f3D(Xi,Ri). (2)

Embedding molecular fingerprints. Due to the discrete
and extremely sparse nature of fingerprint vectors, we first
transform all F feature fields into a dense embedding matrix
Fi ∈ RF×DF via embedding lookup. Then, we use a mul-
tihead self-attention network fFP (Vaswani et al., 2017) to
model the interaction among those feature fields, resulting
in an embedding matrix ẐFP

i ∈ RF×DF . Following that, we
perform sum pooling and use a linear model fLIN to obtain
the final fingerprint embedding zFP

i ∈ RD:

ẐFP
i = fFP(Fi), (3)

zFP
i = fLIN

(
DF∑
d=1

ẐFP
i,d

)
. (4)

Embedding SMILES strings. To encode SMILES
strings, we use a pretrained RoBERTa (Liu et al., 2019b)
as the backbone model. As SMILES strings do not possess
consecutive relationships, the RoBERTa model is pretrained
using the masked language model as the only objective, un-
like conventional natural language models (Devlin et al.,

2019). After that, in order to reduce the computational bur-
den, we freeze the RoBERTa encoder (denoted by fSM) in
our model and employ an additional learnable MultiLayer
Perceptron (MLP) on the representation si ∈ RDS to get the
final embedding zSM

i ∈ RD:

si = fSM(Si), (5)

zSM
i = fMLP(si). (6)

3.2.2. MULTIVIEW REPRESENTATION FUSION

Since each view reflects the molecule from one certain as-
pect, we take weighted average of every view embedding to
obtain a comprehensive final representation:

zi =
∑

m∈M
αmzm

i , (7)

where M = {2D, 3D,FP,SM} is the set of all views. We
leverage an attention network (Bahdanau et al., 2015) that
learns to adjust the contribution of each view. Formally, the
attention coefficient αm denoting the contribution of the
m-th view is computed by:

αm =
exp(wm)∑

m′∈M exp(wm′)
, (8)

wm =
1

|B|
∑
i∈B

q⊤ · tanh
(
W

zm
i

∥zm
i ∥2

+ b

)
, (9)

where q, b ∈ RD, W ∈ RD×D are trainable parameters in
the attention network, and B denotes the set of molecules in
the current training batch. Note that we perform ℓ2 normal-
ization on all view embeddings to regularize the scale across
different views when computing the intermediate attention
scores.

3.2.3. CONTRASTIVE OBJECTIVES FOR PRETRAINING

Finally, we train the model using a contrastive objective by
aligning the aggregated embedding with all view-specific
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embeddings. Particularly, for one molecule i, we designate
its four view embeddings zm

i as the anchors and the aggre-
gated embeddings zi as the positive instance. Other aggre-
gated embeddings {zj}i ̸=j in the same batch are then cho-
sen as the negative samples. Following prior studies (Chen
et al., 2020; He et al., 2020; Bachman et al., 2019; Zhu et al.,
2020; You et al., 2020a; Zhu et al., 2021a), we leverage the
InfoNCE objective, which can be formally written as:

L =
1

|B|
∑
i∈B

[
1

|M|
∑

m∈M
− log

eθ(z
m
i ,zi)/τ∑

j∈B eθ(z
m
i ,zj)/τ

]
,

(10)
where the critic function θ computes the likelihood scores
of contrastive pairs. Specifically, it performs non-linear
transformation via an MLP function g (Chen et al., 2020)
and then measures their cosine similarity:

θ(x,y) =
g(x)⊤g(y)

∥g(x)∥2∥g(y)∥2
. (11)

After pretraining the model with the self-supervised objec-
tive function L, we fine-tune the model weights of view
encoders and the attention multiview fusion module with
supervision of downstream tasks at a smaller learning rate.

4. Experiments
In this section, we present empirical evaluation of our pro-
posed work. Specifically, the experiments aim to investigate
the following three key questions.

• RQ1 (Overall performance). Is the proposed MEMO
able to improve non-pretraining baselines and outper-
form state-of-the-arts on molecular property prediction
tasks?

• RQ2 (Intrepretation). Are the learned attention
weights of molecular featurizations on different down-
stream tasks consistent with chemical knowledge?

• RQ3 (Ablation studies). How do the multiview fusion
module and the fine-tuning strategy affect the model
performance?

In the following, we first summarize experimental setup and
proceed to results and analysis.

4.1. Experimental Configurations

Datasets. We closely follow the experimental setup of
GraphMVP (Liu et al., 2022a) for fair comparison. Specif-
ically, we pretrain the model using the GEOM-Drugs
dataset (Axelrod & Gómez-Bombarelli, 2022) contain-
ing both 2D and 3D information. For fine-tuning, we
choose a variety datasets extracted from MoleculeNet (Wu
et al., 2018), ChEMBL (Gaulton et al., 2011), and
CEP (Hachmann et al., 2011) that cover a wide range of
applications, including physiological, biological, and phar-

Table 2. Statistics of datasets used in experiments. The first section
describes the datasets with 3D information which is used for pre-
training; the later two sections describe datasets for fine-tuning.

Dataset #Molecules Avg. #atoms Avg. #bonds #Tasks Avg. degree

GEOM-Drug 304,466 44.40 46.40 — 2.09

C
la

ss
ifi

ca
tio

n

BBBP 2,039 24.06 25.95 1 2.16
Tox21 7,831 18.57 19.29 12 2.08

ToxCast 8,576 18.78 19.26 617 2.05
SIDER 1,427 33.64 35.36 27 2.10
ClinTox 1,477 26.16 27.88 2 2.13
MUV 93,087 24.23 26.28 17 2.17
HIV 41,127 25.51 27.47 1 2.15

BACE 1,513 34.09 36.86 1 2.16

R
eg

re
ss

io
n ESOL 1,128 13.30 13.69 1 2.06

Lipophilicity 4,200 27.04 29.50 1 2.18
Malaria 9,999 30.36 33.20 1 2.19

CEP 29,978 27.66 33.39 1 2.41

maceutical tasks. These downstream tasks include eight
binary classification and four regression tasks. For those
datasets for fine-tuning, we follow OGB (Hu et al., 2020a)
that uses scaffolds to split training/test/validation subsets
with a split ratio of 80%/10%/10%. Basic dataset statistics
is summarized in Table 2; for detailed description, we refer
readers of interest to Appendix B.

Implementation details. In the GEOM-Drugs dataset, we
randomly select 50K molecules as the pretraining dataset.
For each molecule, we select to use its top-5 conformers
of the lowest energy in virtue of their sufficient geometry
information. Since molecules in the fine-tuning datasets do
not have 3D information available, we use ETKDG (Riniker
& Landrum, 2015) in RDkit (Landrum et al., 2022) to com-
pute molecular conformations. For both pretraining and
fine-tuning datasets, we use RDkit to generate 1024-bit
molecular fingerprints with radius R = 2, which is roughly
equivalent to the ECFP4 scheme (Rogers & Hahn, 2010).
We would like to emphasis that all dataset preprocessing
and graph encoder architectures are kept in line with Graph-
MVP (Liu et al., 2022a) to ensure fair comparison.

Evaluation protocols. For classification tasks, we report
the performance in terms of the Area Under the ROC-Curve
(ROC-AUC), where higher values indicate better perfor-
mance. For regression tasks, we measure the performance
in Root Mean Squared Error (RMSE), where lower val-
ues are better. We repeat every experiment on three seeds
with scaffold splitting and report the averaged performance
with standard deviation, following previous work (Liu et al.,
2022a).

Baselines. For comprehensive comparison, we select the
following two groups of SSL methods as primary baselines
in our experiments.

• Generic graph SSL models: GraphSAGE (Hamil-
ton et al., 2017), InfoGraph (Sun et al., 2020a),
GPT-GNN (Hu et al., 2020c), AttrMask, Con-
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textPred (Hu et al., 2020b), GraphLoG (Xu et al.,
2021b), GraphCL (You et al., 2020a), and JOAO (You
et al., 2021).

• Molecular SSL models: GROVER-Contextual (G-
Contextual), GROVER-Motif (G-Motif) (Rong et al.,
2020), and GraphMVP1 (Liu et al., 2022a).

In the pretraining stage, all the above SSL approaches are
trained on the same dataset based on GEOM-Drugs. We
also report performance with a randomly initialized GIN
model (Xu et al., 2019) as the non-pretraining baseline. To
ensure the performance is comparable with existing work,
we report all baseline performance from previously pub-
lished results (Liu et al., 2022a).

4.2. Main Results on Molecular Property Prediction

The performance of eight low-data molecular property pre-
diction tasks is summarized in Table 3. Generally, it can
be found from the table that our MEMO shows strong em-
pirical performance across all eight downstream datasets,
delivering seven out of eight state-of-the-art results and ac-
quiring a 2.72% absolute improvement on average. The
outstanding results validate the superiority of our proposed
model.

We make other observations as follows. Firstly, MEMO ob-
tains more accurate and stabler predictions compared to the
randomly initialized baseline, indicating that our pretraining
framework can transfer the knowledge from large, unan-
notated datasets to smaller downstream datasets without
negative transfer. Secondly, our model also achieves much
better performance than other state-of-the-art baselines on
average, with an absolute improvement of up to 3.4%. It is
worth mentioning that, on some challenging datasets (e.g.,
Tox21, HIV, and ToxCast), while other models barely im-
prove the non-pretraining baselines, our model nevertheless
attains promising performance increments, which demon-
strates the effectiveness of leveraging multiple featurization
techniques.

4.3. More Experiments on Molecular Property
Regression

We further conduct experiments on four additional regres-
sion tasks for molecular property prediction, where the re-
sults are presented in Table 4. It can be clearly seen from
the table that our MEMO considerably improves the perfor-
mance of baselines on three datasets and achieves similar
performance to the baseline approaches on the Lipophilicity
dataset, which once again verifies the effectiveness of our

1In our experiments, we do not include its two variants
GraphMVP-G and GraphMVP-C since they are essentially two
ensemble models that combine AttrMask and ContextPred (Hu
et al., 2020b) respectively.
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Figure 2. Visualizing the learned attention weights on eight molec-
ular property prediction datasets.

framework and demonstrates the importance of integrating
different molecular featurization techniques.

4.4. Interpretation and Analysis

In order to analyze the correlation between tasks and fea-
turization techniques, we visualize the attention weights α
learned on different downstream tasks in Figure 2. Note that
most of the datasets in MoleculeNet (Wu et al., 2018) are
ADMET property prediction tasks: chemical Absorption
(A), Distribution (D), Metabolism (M), Excretion (E), and
Toxicity (T), and we thus group the eight end tasks accord-
ing to their prediction targets in the following analysis.

In general, we can interpret from the visualization that 2D-
based features are more significant than 3D-based features
in the studied tasks, which is well aligned with chemical
knowledge. We provide detailed analysis as follows:

• In Tox21, ClinTox, SIDER, and ToxCast, we find that
2D graphs play the most important role. These four
datasets are related to toxicity (or side effects). Al-
though it is a very complex biological issue to explain,
such properties can still be partially deduced from cer-
tain functional groups patterns contained in 2D graphs.
Actually, medicinal chemists have developed such a
database to provide them with necessary alerts of po-
tential side effects in drug design (Baell & Holloway,
2010).

• BBBP, which measures blood-brain barrier permeabil-
ity, is mostly dominated by the following properties:
liposolubility/water-solubility, molecular weight, and
interaction between molecules and transporter proteins.
Similarly, these properties can also be inferred from
2D topology, such as molecules with too many hydro-
gen bond acceptors/donors are unlikely to break the
blood-brain barrier due to poor liposolubility (Suckling
et al., 1986).

• On BACE and MUV we see 2D graphs and SMILES
strings contribute most. These two datasets are about
predicting protein-ligand binding activities, which are
theoretically relevant to 3D conformations. However,
it is still an open question that whether the confor-
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Table 3. Results for eight molecule property prediction tasks in terms of ROC-AUC (%). We highlight the best- and the second-best
performing results in boldface and underlined, respectively.

Pretraining BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.

— 65.4±2.4 74.9±0.8 61.6±1.2 58.0±2.4 58.8±5.5 71.0±2.5 75.3±0.5 72.6±4.9 67.21

GraphSAGE 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 55.8±6.2 73.3±1.6 75.1±0.8 64.6±4.7 65.64
AttrMask 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.16
GPT-GNN 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5 68.27
InfoGraph 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.10
ContextPred 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.89
GraphLoG 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7 68.47
G-Contextual 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3 69.21
G-Motif 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0 70.14
GraphCL 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.64
JOAO 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0 69.57
GraphMVP 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.69

MEMO 71.6±1.0 76.7±0.4 64.9±0.8 61.2±0.6 81.6±3.7 78.5±1.4 78.3±0.4 82.6±0.3 74.41

Table 4. Additional results on four molecular property regression tasks in terms of Root-Mean-Square Error (RMSE). The lowest prediction
error is highlighted in boldface.

Pretraining ESOL Lipophilicity Malaria CEP Avg.

— 1.178±0.044 0.744±0.007 1.127±0.003 1.254±0.030 1.07559

AttrMask 1.112±0.048 0.730±0.004 1.119±0.014 1.256±0.000 1.05419
ContextPred 1.196±0.037 0.702±0.020 1.101±0.015 1.243±0.025 1.06059
JOAO 1.120±0.019 0.708±0.007 1.145±0.010 1.293±0.003 1.06631
GraphMVP 1.091±0.021 0.718±0.016 1.114±0.013 1.236±0.023 1.03968

MEMO 0.984±0.034 0.707±0.001 1.093±0.009 1.101±0.007 0.97125

mation sampling methods can produce conformations
that resemble bioactive conformations, which provide
the key information for protein-ligand binding. Nev-
ertheless, in each of these tasks, the target protein is
fixed so that bioactivity can be partially deduced from
2D structures, which is supported by the success of
fragment-based Quantitive Structure-Activity Relation-
ship (QSAR) models (Manoharan et al., 2010).

• Due to the complicated pathogenetic mechanisms, it is
hard to draw an explanation to why attention weights
of fingerprints outweigh the other three features in the
HIV task. Given that the HIV dataset is the largest
one (over 40,000 molecules per task), one possible
explanation of this phenomenon is that we use a high-
dimensional fingerprint representations (1024 bits).

Concerning the difference between three 2D-based features
(namely 2D topological graphs, fingerprints, and SMILES
strings), we have the following findings, which we hope
could serve as guidelines for future research on molecular
representation learning:

• 2D graph representations can encode local information
explicitly by resembling chemical structures. Besides,
graph-based neural networks can capture long-range
local chemical environment through message passing.

For example, with molecular graphs, it is more conve-
nient to identify which part of the molecule serves as a
scaffold.

• In principle, SMILES strings contain all 2D informa-
tion of certain molecules, but with atoms and bonds
represented in ASCII characters, neural networks may
have difficulty in distilling semantic meanings of chem-
ical structures in a numerical way.

• Fingerprints are representations based on local struc-
tures and thus such features may be less effective in cir-
cumstances where long-range effects induced by topo-
logically distant functional groups predominate. This
can account for relatively smaller attention weights of
fingerprints in Figure 2.

4.5. Ablation Studies

Finally, we conduct ablation studies on the multiview fu-
sion module and the fine-tuning strategy. We consider the
following model variants for further inspection. Except the
modifications in specific modules, other implementations
remain the same as previously described.

• MEMO–Max removes the attention network in the
multiview fusion module in Equation (7) and simply
uses max pooling to combine view embeddings.
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Figure 3. Ablation studies on multiview fusion and the fine-tuning strategy.

• MEMO–Mean modifies the multiview fusion module
by taking the average over view embeddings.

• MEMO–Freeze does not fine-tune the multiview fu-
sion module but instead uses the frozen weights of the
pretrained model.

We report the performance of the three model variants in
Figure 3. It is seen that all model variants achieve down-
graded performance, which empirically rationalizes the de-
sign choice of our multiview contrastive pretraining frame-
work. Specifically, the performance of two variants, MEMO–
Max and MEMO–Mean, without attention fusion mecha-
nisms of multiview representations is inferior to that of
MEMO, demonstrating the necessity of adaptively combin-
ing information from multiple views. In addition, MEMO–
Freeze occasionally obtains better performance than the two
other variants, which indicates that our proposed attention
network is able to select information from different views.
It does not, however, fine-tune the contribution of different
featurizations with downstream datasets, where the optimal
combination might differ, resulting in performance deterio-
ration.

5. Conclusion
This paper has developed a novel pretraining framework
MEMO with multiview contrastive learning for molecu-
lar data. Our proposed model constructs multiple views
with different molecular featurizations, leverages proper en-
coders to capture intrinsic information within each view,
and designs a multiview contrastive objective to adaptively
distill information from each view. Extensive experiments
conducted on public molecular property prediction bench-
marks show that our pretraining framework is able to trans-
fer knowledge from large unlabeled datasets to a wide range
of low-data downstream datasets. The interpretation of the
learned model weights is also in line with prior chemical
knowledge.

The study of featurization techniques for molecular machine
learning in general remains widely open. We would like
to acknowledge that the relative utility of various featur-
izations for different molecular predictive tasks could be

usefully explored in further work. Moreover, more future
research should be undertaken to specifically analyze the
relationship between several featurizations as well as the
task-featurization correlation.
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A. Implementation of View Encoders
In this section, we introduce the detailed implementation
of the four view encoders. We denote the representation
for node (atom) vi as hi and the representation at the graph
(molecule) level as z. As each encoder is independent to
each other, we omit the superscript representing the specific
view m ∈ {2D, 3D,FP,SM} is clear for notation simplicity.
Also, for clarity, when the context is clear, we omit the
subscript j that indexes the molecule.

Embedding 2D graphs. Graph Isomorphism Network
(GIN) (Xu et al., 2019) is a simple and effective model to
learn discriminative graph representations, which is proved
to have the same representational power as the Weisfeiler-
Lehman test (Weisfeiler & Leman, 1968). Since GIN has
been widely adopted for 2D graph representation learn-
ing (Hu et al., 2020b; You et al., 2021; 2020a), we leverage
a GIN model to obtain the representations for the 2D molec-
ular graphs. Recall that each molecule is represented as
G = (A,X,E), where A is the adjacency matrix, X and
E are features for atoms and bonds respectively. The layer-
wise propagation rule of GIN can be written as:

h
(k+1)
i = f

(k+1)
atom

h
(k)
i +

∑
j∈N (i)

(
h
(k)
j + f

(k+1)
bond (Eij))

) ,

(12)
where the input features h(0)

i = xi, N (i) is the neighbor-
hood set of atom vi, and fatom, fbond are two MultiLayer
Perceptron (MLP) layers for transforming atoms and bonds
features, respectively. By stacking K layers, we can incorpo-
rate K-hop neighborhood information into each center atom
in the molecular graph. Then, we take the output of the last
layer as the atom representations and further use the mean
pooling to get the graph-level molecular representation:

z2D =
1

N

∑
i∈V

h
(K)
i . (13)

Embedding 3D graphs. Following GraphMVP (Liu et al.,
2022a), we use the SchNet (Schütt et al., 2017) as the en-
coder for the 3D geometry graphs. SchNet models message
passing in the 3D space as continuous-filter convolutions,
which is composed of a series of hidden layers, given as
follows:

h
(k+1)
i = fMLP

 N∑
j=1

fFG(h
(t)
j , ri, rj)

+ h
(t)
i , (14)

where the input h(0)
i = ai is an embedding dependent on

the type of atom vi, fFG(·) denotes the filter-generating net-
work. To ensure rotational invariance of a predicted property,
the message passing function is restricted to depend only

on rotationally invariant inputs such as distances, which
satisfying the energy properties of rotational equivariance
by construction. Moreover, SchNet adopts radial basis func-
tions to avoid highly correlated filters. The filter-generating
network is defined as follow:

fFG(xj , ri, rj) = xj · ek(ri − rj)

= xj · exp(−γ∥∥ri − rj∥2 − µ∥22).
(15)

Similarly, for non-quantum properties prediction concerned
in this work, we take the average of the node representations
as the 3D molecular embedding:

z3D =
1

N

∑
i∈V

h
(K)
i , (16)

where K is the number of hidden layers.

Embedding fingerprints. Due to the discrete and ex-
tremely sparse nature of fingerprint vectors, we first trans-
form all F feature fields into a dense embedding matrix
F ∈ RF×DF via embedding lookup. Then, we use a multi-
head self-attention network (Vaswani et al., 2017) to model
the interaction among those feature fields. Specifically, we
first transform each feature into a new embedding space as:

Q(h) = FW
(h)
Q , (17)

K(h) = FW
(h)
K , (18)

V (h) = FW
(h)
V , (19)

where the three linear transformation matrices
W

(h)
Q ,W

(h)
K ,W

(h)
V ∈ RDF×D/H parameterize the

query, key, and value transformations for the h-th attention
head, respectively. Following that, we compute the attention
scores among all feature pairs and then linearly combine
the value matrix from all H attention heads:

W
(h)
A = softmax

(
Q(h)(K(h))⊤√

DH

)
, (20)

Ẑ =
[
W

(1)
A V (1) ; W

(2)
A V (2) ; . . . ; W

(H)
A V (H)

]
,

(21)

Finally, we perform sum pooling on the resulting embedding
matrix Ẑ ∈ RF×DF and use a linear model fLIN to obtain
the final fingerprint embedding zFP ∈ RD:

zFP = fLIN

(
DF∑
d=1

Ẑd

)
. (22)

Embedding SMILES strings. Given ASCII-encoded
SMILES strings, we first tokenize them with the Byte-Pair
Encoder (BPE) tokenizer (Gage, 1994), which strikes a bal-
ance among character- and word-level representations and
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allows to handle large vocabularies in molecular corpora.
Specifically, BPE finds the best word segmentation by itera-
tively and greedily merging frequent pairs of characters. In
our implementation, we use a max vocabulary size of 52K
tokens for both pretraining and downstream datasets.

After tokenization, we first pretrain a RoBERTa (Liu et al.,
2019b) model on the pretraining dataset with the masking
language model as the sole training objective, as SMILES
strings do not possess sequential relationships. To be spe-
cific, 15% tokens in a SMILES string are randomly selected
and replaced with the special token [MASK]. We also in-
sert a special token [CLS] to each string to represent the
whole string. Then, the training objective function is to
independently predict the original tokens given the output
on masked tokens. Finally, the representation of the [CLS]
token is regarded as the molecular embedding.

After pretraining the RoBERTa backbone, we freeze its
parameters and leverage an additional MLP layer on top of
each molecular embedding to obtain the final representation
for each SMILES string. This strategy improves memory
efficiency and thus enables larger batch sizes for contrasive
pretraining.

B. Dataset Description
In this section, we briefly introduce the datasets used for
pretraining and fine-tuning, as well as details of dataset
prepossessing.

B.1. Pretraining Datasets

We choose GEOM-Drugs2 (Axelrod & Gómez-Bombarelli,
2022) as the pre-training dataset, which contains high-
quality conformers for 304,466 mid-sized organic molecules
with experimental data. The conformer information in
GEOM-Drugs is generated using the CREST (Grimme,
2019) program, which provides reliable and accurate struc-
ture generation. Note that atoms usually have multiple
conformations resulting in potentially different chemical
properties. In this work, we focus on the conformations
of the lowest energy, since they are more likely to occur
naturally (Stärk et al., 2021; Liu et al., 2022a). Specifically,
following GraphMVP (Liu et al., 2022a), we utilize the top
five conformers for each molecule in pretraining.

B.2. Fine-tuning Datasets

For fine-tuning, we use twelve datasets collected from
MoleculeNet3 (Wu et al., 2018), which target on differ-
ent properties and distinct tasks. These properties can be
divided into three main categories: physical chemistry, bio-

2https://github.com/learningmatter-mit/geom
3https://github.com/deepchem/deepchem

physics, and physiology.

Physical chemistry. ESOL (Delaney, 2004) consists
of water solubility data recording whether molecules
are water-soluble. The Lipophilicity dataset is a sub-
set of ChEMBL (Gaulton et al., 2011) measuring the
molecule octanol/water distribution coefficient. The CEP
dataset is a subset of the Havard Clean Energy Project
(CEP) (Hachmann et al., 2011), which estimates the organic
photovoltaic efficiency.

Biophysics. The HIV dataset (AID) is introduced by Drug
Therapeutics Program (DTP) AIDS Antiviral Screen, which
tests the molecular ability to inhibit HIV replication. The
Maximum Unbiased Validation (MUV) group (Rohrer &
Baumann, 2009) is another benchmark dataset selected from
PubChem BioAssay by applying a refined nearest neighbor
analysis. The BACE dataset provides qualitative binding
results for a set of inhibitors of human β-secretase 1 (BACE-
1). The Malaria dataset (Gamo et al., 2010) assesses the
drug efficacy in inhibiting parasites that cause malaria.

Physiology. The Blood–brain barrier penetration (BBBP)
dataset (Martins et al., 2012) models the barrier permeability
of molecules targeting central nervous system. Tox21 (Tox,
2014), ToxCast (Richard et al., 2016), and ClinTox (Gayvert
et al., 2016) are all related to the toxicity of molecular com-
pounds. The Side Effect Resource (SIDER) (Kuhn et al.,
2016) is a dataset measuring the adverse drug reactions of
27 system organ classes of marketed drugs.

B.3. Dataset Preprocessing

For classification tasks, we leverage atom types and chirality
tags as atom attributes, while the type and direction of the
bond are corresponding bond attributes. Both the atom
and bond attributes are expressed in the form of discrete
indices without further embedding. For regression tasks, we
first transform discrete atom and bond attributes through
learnable embedding lookup layers following OGB (Hu
et al., 2020a).

Since molecules in the fine-tuning datasets do not have 3D
information available, we use ETKDG (Riniker & Landrum,
2015) in RDkit (Landrum et al., 2022) to compute molecular
conformations. For both pretraining and fine-tuning datasets,
we use RDkit to generate molecular fingerprints, which is
roughly equivalent to the ECFP4 scheme (Rogers & Hahn,
2010).

Constructing fingerprints. Morgan fingerprints (Morgan,
1965; Glem et al., 2006) encode molecules in fixed-length
binary strings, with bits indicating presence or absence of
specific substructures. The algorithm assigns an initial iden-
tifier to each non-hydrogen atom according to a set of atomic

https://github.com/learningmatter-mit/geom
https://github.com/deepchem/deepchem
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invariants, iteratively updates the identifiers among neigh-
borhood atoms within certain hops, and encodes the iden-
tifiers using a hash function. After hashing all of these
identifiers into a fixed-length binary string, the representa-
tion provides information on topological characteristics of
the molecule.

In our implementation, we set the diameter of neighborhood
to 2, the length of fingerprints to 1024, and follow the default
configuration of ECFP4 (Rogers & Hahn, 2010), which uses
the following connectivity invariants:

• The atomic number
• The number of heavy (non-hydrogen) neighbor atoms
• The number of attached hydrogens
• The formal charge
• Atom isotopes
• Whether the atom is part of at least one ring

C. More Related Work
The following section provides a more broad literature re-
view across the spectrum of self-supervised representation
learning.

C.1. Self-Supervised Representation Learning on Visual
and Natural Language Data

A SSL model trains itself by learning a part of the input from
another through pretext tasks. Depending on the pretext
task, the existing SSL studies can be divided into three main
categories.

Early SSL work studies predictive training on pseudo-labels
directly computed from the raw data. In Computer Vi-
sion (CV) domains, typical pretext tasks include image in-
painting (Pathak et al., 2016), rearranging shuffled image
patches (Noroozi & Favaro, 2016), colorizing grayscale im-
ages (Zhang et al., 2016; Larsson et al., 2017), recognizing
geometric transformations (Gidaris et al., 2018), and predict-
ing cluster assignments (Caron et al., 2018). In Natural Lan-
guage Processing (NLP), word2vec (Mikolov et al., 2013)
popularizes this paradigm by proposing Continuous Bag-Of-
Words (CBOW) and skip-gram models for predicting center
and neighboring words, respectively. Other exemplary work
includes Kiros et al. (2015) that predicts neighborhood sen-
tences and BART (Lewis et al., 2020) that recovers sentence
permutation.

The second group of SSL is contrastive learning, which
seeks to maximize the agreement of embeddings in the latent
space under stochastic data augmentations by contrasting
positive and negative samples (Jing & Tian, 2021). It has
revolutionized unsupervised representation learning in re-
cent years (van den Oord et al., 2018; Bachman et al., 2019;
He et al., 2020; Chen et al., 2020; Caron et al., 2020; Chen

& He, 2021; Gao et al., 2021) and has been witnessed to per-
form on par with its supervised counterparts (He et al., 2020;
Chen et al., 2020). A key success to contrastive models is
to leverage strong data augmentations that induce invari-
ance irrelevant to properties of the end tasks (Xiao et al.,
2021; Tian et al., 2020; Purushwalkam & Gupta, 2020; von
Kügelgen et al., 2021).

The third line of development focuses on generative mod-
eling of input data. Its core idea is to randomly remove a
portion of data and train the model to recover the removed
content. This so-called masked language modeling and its
autoregressive counterparts are first pioneered in the NLP
community (Bengio et al., 2003; Peters et al., 2018; Devlin
et al., 2019; Liu et al., 2019b; Lan et al., 2020; Radford
et al., 2018; 2019; Brown et al., 2020) and have since gained
increasing popularity in the CV domain (Dosovitskiy et al.,
2021; He et al., 2022; Wei et al., 2021). Unlike contrastive
learning, generative approaches do not rely on curated data
augmentations. It has been reported that they scale well
and generalize to different downstream tasks (Devlin et al.,
2019; Brown et al., 2020; He et al., 2022).

C.2. Graph Self-Supervised Representation Learning

Analogous to the above studies on visual and natural lan-
guage data, SSL approaches in the graph domain can also
be organized into the same three categories. Due to the
rapid development of graph SSL, we only review the most
representative studies in each group. Readers may refer to
recent surveys (Wu et al., 2022; Xie et al., 2022; Liu et al.,
2022b) for comprehensive reviews and Zhu et al. (2021a)
for a benchmarking study.

Firstly, the pioneering predictive model Hu et al. (2020b)
explores four strategies at both node and graph levels, in-
cluding masked attribute prediction, context prediction, su-
pervised attribute prediction, and structural similarity pre-
diction. You et al. (2020b) study three SSL tasks through a
multi-task framework to enable predictive training of graph-
structured data. M3S (Sun et al., 2020b) explores the use
of cluster assignments (Caron et al., 2018) as pseudo-labels
and proposes a self-training framework that incrementally
adds high-confident nodes to the labeled dataset.

The second group of work studies generative training.
GraphSAGE (Hamilton et al., 2017) performs the link pre-
diction task to reconstruct the graph structure in a once-for-
all manner, similar to graph autoencoders (Kipf & Welling,
2016). GPT-GNN (Hu et al., 2020c) proposes to perform
node and edge reconstruction iteratively.

Lastly, along the line of graph contrastive learning, some
investigate contrasting modes for graph data, typical work
of which includes cross-scale contrasting (Veličković et al.,
2019; Hassani & Khasahmadi, 2020), same-scale contrast-
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ing (Sun et al., 2020a; Zhu et al., 2020; You et al., 2020a),
and hierarchical contrasting (Xu et al., 2021b; Lin et al.,
2021). Another line of work investigates data augmentations.
GraphCL (You et al., 2020a) proposes four heuristic aug-
mentation schemes including edge dropping, node dropping,
attribute masking, and subgraph cropping; its follow-up
JOYO (You et al., 2021) proposes to learn the augmentation
priors via bi-level optimization. GCA (Zhu et al., 2021b)
proposes adaptive augmentation that better preserves im-
portant semantics and structures of the underlying graph.
SimGRACE (Xia et al., 2022) eschews the need of explicit
augmentation; Trivedi et al. (2022) propose content-aware
augmentation to avoid corrupting task-relevant information.


