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Abstract
While contrastive multi-view clustering has
achieved remarkable success, it implicitly as-
sumes balanced class distribution. However, real-
world multi-view data primarily exhibits class im-
balance distribution. Consequently, existing meth-
ods suffer performance degradation due to their in-
ability to perceive and model such imbalance. To
address this challenge, we present the first system-
atic study of imbalanced multi-view clustering,
focusing on two fundamental problems: i. perceiv-
ing class imbalance distribution, and ii. mitigat-
ing representation degradation of minority sam-
ples. We propose PROTOCOL, a novel PaRtial
Optimal TranspOrt-enhanced COntrastive Learn-
ing framework for imbalanced multi-view cluster-
ing. First, for class imbalance perception, we map
multi-view features into a consensus space and
reformulate the imbalanced clustering as a par-
tial optimal transport (POT) problem, augmented
with progressive mass constraints and weighted
KL divergence for class distributions. Second, we
develop a POT-enhanced class-rebalanced con-
trastive learning at both feature and class levels,
incorporating logit adjustment and class-sensitive
learning to enhance minority sample representa-
tions. Extensive experiments demonstrate that
PROTOCOL significantly improves clustering per-
formance on imbalanced multi-view data, filling
a critical research gap in this field.
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1. Introduction
Multi-view clustering (MVC) (Fang et al., 2023; Peng et al.,
2019) aims to group samples by integrating complemen-
tary information across different views, inspired by hu-
mans’ ability to perceive their environment through multi-
sensory integration (Xu et al., 2013; Chidambaram et al.,
2023). With the advancement of deep learning, Deep MVC
(DMVC) (Chen et al., 2022; Liu et al., 2023) has emerged
as the dominant paradigm for its superior performance.

Contrastive multi-view clustering, which combines con-
trastive learning with K-means, has become the leading
approach in DMVC (Lin et al., 2023b; Li et al., 2022).
By treating multi-view features as positive pairs, this ap-
proach has achieved significant advances in semantic consis-
tency (Xu et al., 2022; Tian et al., 2020; Zhang et al., 2024c),
feature discriminability (Lin et al., 2023b; Yan et al., 2023;
Trosten et al., 2021), and view difference robustness (Xu
et al., 2023; Trosten et al., 2023). However, these meth-
ods implicitly assume balanced class distribution, which
may not hold in real-world multi-view data where class
imbalance is prevalent. For example, in wildlife monitor-
ing systems (Pan et al., 2024), multiple cameras capture
rich visual information about animals, yet rare species (e.g.,
Siberian tigers) are significantly underrepresented compared
to common ones (e.g., wild rabbits). Consequently, existing
methods suffer significant performance degradation due to
their inability to perceive and model such imbalance (Zhang
et al., 2023b; Han, 2023).

These observations lead us to think the following question:

How to effectively perceive and model class
imbalance distribution under unsupervised

multi-view settings?

To tackle this challenge, we decompose it into two funda-
mental scientific questions. First, we address Q1: how to
perceive class imbalance distribution. Our method draws
inspiration from two domains: supervised imbalanced clas-
sification (Cui et al., 2024; Suh & Seo, 2023; Wang et al.,
2023) that leverages ground-truth labels, and self-labeling
methods (Asano et al., 2020; Tai et al., 2021; Chapel et al.,
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2020) that automatically assign labels during representa-
tion learning. This inspires us to optimize self-labeling
to generate pseudo-labels that align with imbalance class
distribution. We propose an imbalance-aware multi-view
framework that combines POT with unbalanced optimal
transport (UOT) to generate POT labels. This framework en-
ables dynamic transportation from sample distribution to the
underlying imbalanced class distribution while effectively
integrating information across different views.

Building upon our solution to Q1, we address a second
critical challenge Q2: how to mitigate representation degra-
dation of minority samples. When using imbalanced POT
labels, contrastive learning tends to bias towards dominant
classes, leading to degraded representations of minority
samples (Suh & Seo, 2023). While supervised methods like
resampling (Gao et al., 2023), class-sensitive learning (Han,
2023), and logit adjustment (Cui et al., 2021) can address
this issue using ground-truth labels, our unsupervised setting
requires a different approach. To this end, we leverage POT
labels as weak supervision signals and develop a two-level
rebalancing strategy: logit adjustment at the feature level
and class-sensitive learning at the class level, effectively
enhancing the representations of minority samples.

While extensive research explored DMVC, the challenge of
class imbalance has been overlooked, limiting its practical
applications. To bridge this gap, we propose an imbalanced
contrastive MVC method with three key stages. First, we
learn view-specific representations through reconstruction
loss. Second, we achieve semantic consistency through
multi-view contrastive learning. Finally, we address class
imbalance through two complementary components: imbal-
ance perception and imbalance modeling. For imbalance
perception, we reformulate the clustering problem by com-
bining unbalanced OT with partial transport constraints, gen-
erating POT labels through progressive assignment based
on transport costs and dynamic mass adjustment. For im-
balance modeling, we leverage these POT labels to adjust
the model’s output distribution, effectively mitigating the
representation degradation of minority samples.

Our main contributions are summarized as follows:

• We propose PROTOCOL, a novel imbalanced contrastive
multi-view clustering method with three-stage collabora-
tive optimization: view-specific feature learning, consen-
sus representation learning, and imbalanced distribution
modeling. Extensive experiments demonstrate its superior
performance over existing methods.

• We propose a novel multi-view POT label assignment
method that integrates partial optimal transport with un-
balanced optimal transport to effectively perceive under-
lying class imbalance distributions under unsupervised
multi-view setting.

• We propose a POT-enhanced class rebalanced contrastive
learning method for imbalanced multi-view clustering,
which mitigates representation degradation of minority
samples through feature-level logit adjustment and class-
level class-sensitive learning.

2. Related Work
2.1. Deep multi-view clustering

Deep multi-view clustering primarily encompasses two di-
rections based on data completeness: Deep complete Multi-
View Clustering (DMVC) and Deep Incomplete Multi-View
Clustering (DIMVC).

DMVC focuses on effectively utilizing consistency and
complementary information in multi-view data. Recent stud-
ies have advanced along three key aspects. 1) View Repre-
sentation Enhancement. CoMVC (Trosten et al., 2021) pro-
poses a simple method to avoid cluster inseparability caused
by complete alignment; MFLVC (Xu et al., 2022) introduces
a multi-level feature learning framework to resolve conflicts
in multi-objective optimization; GCFAggMVC (Yan et al.,
2023) strengthens sample structural relationships through
global and cross-view feature aggregation. 2) Semantic
Consistency Improvement. SEM (Xu et al., 2023) develops
a self-weighting method to mitigate representation degra-
dation caused by semantic inconsistency; CSOT (Zhang
et al., 2024c) enhances multi-view semantic patterns through
global semantic alignment; AECoDDC (Trosten et al., 2023)
designs an end-to-end contrastive method incorporating
DDC unsupervised loss (Trosten et al., 2021). 3) Robustness
Enhancement. AR-DMVC and AR-DMVC-AM (Huang
et al., 2024) addresses the vulnerability of DMVC models to
adversarial attacks without explicitly defined attack targets.

DIMVC focus on scenarios with missing views (Fang et al.,
2022). DSIMVC (Tang & Liu, 2022) proposes a dual-layer
optimization framework that employs dynamic view com-
pletion and sample selection to mitigate performance degra-
dation caused by semantically inconsistent view completion.

These methods demonstrate competitive performance on
balanced multi-view data. However, in Section 5, we show
that class imbalance significantly impacts both complete and
incomplete multi-view clustering, substantially degrading
clustering performance and model robustness.

2.2. Optimal transport and clustering

Optimal transport (OT) (Villani, 2009) has emerged as a
powerful tool for distribution alignment in machine learn-
ing. While traditional OT faced computational challenges,
the introduction of entropy-regularized OT (Cuturi, 2013)
with the Sinkhorn algorithm enabled its practical applica-
tions. To address real-world scenarios with unequal mass
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distributions, variants such as partial OT (Caffarelli & Mc-
Cann, 2010) and unbalanced OT (Chizat et al., 2016) were
developed.

The integration of OT in clustering has evolved from early
Wasserstein K-means (Cuturi & Doucet, 2014) to deep learn-
ing methods (Luo et al., 2023; Lin et al., 2023a; Zhang
et al., 2024b; Ben-Bouazza et al., 2022). SeLa (Asano
et al., 2020) reformulates pseudo-label assignment as an OT
problem. Recent methods addressing class imbalance have
made significant progress. SLA (Tai et al., 2021) proposes
class-proportional label assignment. DB-OT (Shi et al.,
2024) develops dual-boundary constraints. P2OT (Zhang
et al., 2024a) introduces progressive partial transport. These
developments in OT, particularly its success in handling
imbalanced data distributions, motivate our application of
OT principles to imbalanced multi-view clustering.

3. Preliminary
In this section, we review the development of OT and lay
the foundation for our subsequent imbalanced multi-view
method. Given source distribution r and target distribution
c, their empirical distributions can be represented as:

r =
∑n

i=1
riδxi , c =

∑m

j=1
cjδyj

, (1)

where δxi
denotes the Dirac function, xi ∈X and yj ∈ Y

are samples from the source and target domains respectively.

Optimal transport theory aims to find an optimal transport
plan Q ∈ Rn×m

+ that minimizes the transportation cost:

min
Q∈Π(r,c)

⟨Q,C⟩, (2)

where C is the cost matrix, and the transport constraint set
is defined as:

Π(r, c) = {Q ∈ Rn×m
+ | Q1m = r,Q⊤1n = c}, (3)

where 1m ∈ Rm×1, 1n ∈ Rn×1 are all ones vector. To
improve computational efficiency, Cuturi (Cuturi, 2013)
introduced an entropic regularization term H(Q), resulting
in the regularized OT problem:

min
Q∈Π(r,c)

⟨Q,C⟩+ ϵH(Q). (4)

This problem can be efficiently solved using the Sinkhorn
algorithm. However, in practical applications, the masses of
source and target distributions are often unequal. To address
this, unbalanced OT (UOT) relaxes the marginal constraints
through KL divergence:

min
Q∈Π(r,c)

⟨Q,C⟩+ γ1DKL(Q1m∥r)

+ γ2DKL(Q
⊤1n∥c), (5)

where γ1 and γ2 control the degree of marginal constraint
relaxation. Furthermore, partial OT (POT) introduces a total
mass constraint λ to achieve the transport of partial samples:

min
Q∈Πλ(r,c)

⟨Q,C⟩, (6)

where Πλ(r, c) = {Q ∈ Rn×m
+ | Q1m ≤ r,Q⊤1n ≤

c,1⊤
nQ1m = λ}.

We integrate UOT with POT to perceive the underlying class
imbalance distribution in multi-view data.

4. Methodology
This section first elaborates on the importance of imbalanced
multi-view clustering research and its specific problem set-
ting. To address this problem, we propose PROTOCOL,
a novel PaRtial Optimal TranspOrt-enhanced COntrastive
Learning method, which consists of two key modules: multi-
view POT label assignment (Section 4.2) and multi-view
class-rebalanced contrastive learning (Section 4.3). Finally,
we present a comprehensive overview of PROTOCOL and
its training procedure in Section 4.4.

4.1. Motivation and Problem Setting

Despite significant progress in recent years, most existing
DMVC methods still focus on potentially uniformly dis-
tributed datasets, which limits their practical applicability.
In many real-world applications, datasets often exhibit im-
balanced distributions, where the majority of data belongs
to a few major classes while the rest is scattered across nu-
merous minor classes. Thus, this paper investigates a more
practical problem setting: imbalanced multi-view cluster-
ing, which faces two major challenges: (i) how to perceive
class imbalance distribution in an unsupervised scenario;
(ii) how to mitigate representation degradation of minority
samples. These two challenges are tightly coupled: when
the model perceives the class imbalance distribution of the
data, it inevitably biases towards majority class samples,
thereby leading to representation degradation of minority
samples. The solutions to these two challenges are presented
in Section 4.2 and Section 4.3, respectively.

Problem Setting. Given a multi-view dataset {xv ∈
RN×Dv}Vv=1 with imbalance ratio R, which contains N
samples across V views, where xv

i ∈ RDv denotes the Dv-
dimensional feature vector of the i-th sample from the v-th
view. The imbalance ratio R is defined as the ratio between
the number of samples in the smallest and largest clusters,
i.e.,

R = min
k
{nk}/max

k
{nk}, (7)

where nk denotes the number of samples in the k-th cluster.
The dataset contains K imbalance clusters to be discovered.
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4.2. Multi-view POT Label Allocation

We propose a multi-view POT label allocation method
that learns imbalanced class distribution of multi-view data
through multi-view representation learning and a POT-based
self-labeling mechanism.

4.2.1. MULTI-VIEW REPRESENTATION LEARNING

First, the raw data Xv is transformed into latent represen-
tations Zv = fθv (x

v) ∈ RN×d through a learnable en-
coder network fθv . To better capture the underlying clus-
ter patterns, the representations are refined into structure-
aware features Sv ∈ RN×d by learning sample relation-
ships through transformer attention mechanism (Vaswani
et al., 2017). Finally, Sv from all views are aggregated to
obtain the consensus representation U ∈ RN×d.

Multi-view Prediction. Given U ∈ RN×d, we first map
it to logits through a cosine classifier h : Rd → RK . The
predicted probability matrix P ∈ RN×K is obtained by:

P = softmax(h(U)). (8)

Similarly, for each view v ∈ {1, . . . , V }, we obtain view-
specific predictions:

P v = softmax(h(Zv)). (9)

4.2.2. SELF-LABELING MECHANISM WITH POT

Inspired by supervised learning with true labels yi, the
model would be trained by minimizing the cross-entropy
loss:

E(Q|y1, . . . ,yN ) = − 1

N

N∑
i=1

logQi,yi
. (10)

where Q is the predicted label of the model. Studies have
shown that supervised classification models can achieve su-
perior performance with sufficient labeled data (Deng et al.,
2009), which has led to extensive research on self-labeling
methods (Lee et al., 2020; Zhang et al., 2023a; Li et al.,
2023). Thus, we propose to incorporate self-labeling into
multi-view clustering tasks. To address the requirement of
true labels in Eq. (10), we introduce a posterior probabil-
ity distribution q(y|xi) (denoted as matrix T ∈ RN×K ,
where T i,k represents the probability of sample i belong-
ing to class k) and propose a multi-view learning based
cross-entropy loss:

E(P̂ ,T ) = − 1

N

N∑
i=1

K∑
k=1

T i,k log P̂ i,k, (11)

where P̂ i,k = αP i,k+
1−α
V

∑V
v=1 P

v
i,k, in which P i,k and

P v
i,k are obtained from Eqs. (8) and (9), respectively. Here

α ∈ [0, 1] balances the importance between consensus and
view-specific predictions.

Imbalanced Multi-view Self-labeling. To learn the imbal-
anced class distribution and avoid degenerate solutions, we
add constraints that adaptively allocate labels to different
clusters. Formally, the objective function for imbalanced
multi-view self-labeling is:

min
T ,P̂

E(P̂ ,T ) s.t.


T i,k ∈ [0, 1], ∀i, k∑K

k=1 T i,k ≤ 1, ∀i∑N
i=1 T i,k ≤ λ, ∀k

, (12)

where λ > 0 is an adaptive parameter that adjusts the al-
location for class k to account for imbalanced distribution.
The constraints ensure that each data point xi is assigned
to exactly one label, while allowing the N data points to be
distributed among the K classes in a way that reflects the
class imbalances.

Optimal Transport Formulation. The above is an instance
of combining unbalanced OT and partial OT. Let P̂ 1

N be
the joint probability distribution predicted by the model, and
T 1

N be the assigned joint probability distribution. Using
the concept of regularized OT (Cuturi, 2013), T is relaxed
as an element of the transportation polytope:

U(r, c) := {T ∈ RN×K
+ | T1K = r,T⊤1N = c}, (13)

where 1K , 1N are all ones vector, so that r and c are the
marginal projections of matrix T onto its rows and columns,
respectively. In the imbalanced multi-view scene, we require
T to be a matrix of conditional probability distribution that
splits the data adaptively, which is captured by:

r =
1

N
· 1N , c =

λ

K
· 1K . (14)

With this notation, using Eqs. (5) and (6), we can rewrite
the objective function in Eq. (12) as:

LPOT= min
T∈U(r,c)

⟨T ,−log P̂ ⟩F +βDKL(T
⊤1N∥c) (15)

where U = {T ∈ RN×K
+ | T1K ≤ r,1⊤

NT1K = λ};
here ⟨.⟩ is Frobenius dot-product, λ is converted to the
fraction of selected mass and will increase gradually, and β
is a scalar factor. The first term is exactly L, the DKL term
constrains cluster sizes, and the equality constraint ensures
balanced sample importance.

4.2.3. PROGRESSIVE POT LABEL OPTIMIZATION

Progressive POT Label Assignment. The solution to the
optimization problem in Eq. (15) yields the POT label ma-
trix T , where each entry T i,k represents the probability of
sample i belonging to class k. The transport mass of POT
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labels is regulated by λ, which progressively grows to en-
able the perception of class imbalance in multi-view data.
Inspired by curriculum learning, when λ is small in the early
stages, only high-confidence samples from P̂ are selected,
minimizing the learning cost. As λ increases, more sam-
ples participate in learning until the completion of difficult
sample label assignment. This process naturally integrates
imbalanced distribution perception through λ, eliminating
the need for manual confidence thresholds.

Following (Tarvainen & Valpola, 2017; Laine, 2017; Zhang
et al., 2024a), we update λ by a sigmoid ramp-up function:

λ = λbase + (λmax − λbase) · e−5(1−τ)2 , (16)

where λbase and λmax define the range of transported mass,
and τ ∈ [0, 1] represents the normalized training progress.

Efficient Scaling Solution. The optimal transport plan, i.e.,
the POT label matrix T ∗, can be derived through an efficient
scaling algorithm:

T ∗ = diag(a)Mdiag(b), (17)

where M = exp(−P̂ /ϵ). a and b are two scaling coef-
ficient vectors that can be obtained through the following
recursion formula:

a← r

Mb
, b← (

c∗

M⊤a
)f , (18)

where f = β
β+ϵ . The recursion will continue until b

converges. This solution elegantly combines the dynamic
growth of λ with efficient matrix scaling operations, en-
abling the model to progressively assign POT labels while
considering multi-view consistency. The complete deriva-
tion can be found in Appendix A.

Through the learning of these components, PROTOCOL can
effectively perceive the imbalanced distribution of multi-
view data. This leads to the second challenge: how to
mitigate representation degradation of minority samples,
which will be addressed in Section 4.3.

4.3. Multi-view Class-rebalanced Contrastive Learning

While contrastive learning has become the de facto method
in DMVC for learning semantically consistent representa-
tions, its performance significantly degrades under class-
imbalanced settings. To analyze and address this limitation,
we examine GCFAggMVC (Yan et al., 2023), a representa-
tive structure-guided contrastive loss:

Lmvc = − E
{Hv

i
,U1,...,UN}

[
log

D({Hv
i ,Ui})

N∑
j=1
j ̸=i

(1 − G2
ij)D({Hv

i ,Uj})

]
, (19)

where D({Hv
i ,U i}) = exp(

Hv
i Ui

∥Hv
i ∥∥Ui∥ ·

1
τf
) measures

the similarity between the high-level feature Hv
i and the

concensus prototype U i, and Gij represents the structural
relationship between samples, with larger values indicating
higher probability that samples belong to the same cluster.

In class-balanced scenarios, Eq. (19) effectively learns dis-
criminative features as samples have sufficient opportuni-
ties to construct stable cross-view positive pairs through
D({Hv

i ,U i}). The structural relationships Gij , learned
through the transformer’s self-attention mechanism, capture
the inherent similarities between samples, enabling effective
similarity-dissimilarity mining through (1−G2

ij).

However, when applied to imbalanced multi-view data,
Eq. (19) leads to representation bias through two mech-
anisms. First, from the sampling perspective, majority sam-
ples dominate the mini-batch construction, resulting in more
frequent positive pair formation through D({Hv

i ,U i}),
while minority samples suffer from insufficient learning
opportunities. Second, from the optimization perspective,
although Gij captures sample similarities through self-
attention, the feature space becomes biased towards major-
ity patterns due to their numerical advantage in contrastive
learning, leading to compact clusters for majority samples
but scattered distributions for minority ones.

To address the imbalanced multi-view representation learn-
ing problem, we propose a two-level rebalancing strategy
that operates at both feature and class levels:

Feature-level Rebalancing. We introduce a logit-adjusted
contrastive learning mechanism guided by POT labels:

Lre
fea = − E

{Hv
i
,U1,...,UN}

[
log

exp(D({Hv
i ,Ui}) + ηi)∑N

j=1 exp(D({Hv
i ,Uj}))

]
, (20)

where ηi = − log p(T ∗
i ) is a logit-adjustment term, defined

as the negative logarithm of the sample’s cluster (pseudo
label T ∗

i ) frequency. This term is small for high-frequency
classes, causing minimal logit impact, and large for low-
frequency classes, significantly adjusting logits to enhance
the importance of under-represented patterns and compen-
sate for representation bias.

Class-level Rebalancing. We propose a balanced class
alignment strategy that introduces consensus prototypes
C = {c1, c2, ..., cK} from POT label. The class-level loss
is formulated as:

Lre
sem =

∑
p+∈Pv

i ∪T∗

−w(p+) log
exp(p+ · ψ(xi))∑
pk

exp(pk · ψ(xi))
, (21)

where

w(p+) =

{
wv, p+ ∈ P v

wt, p+ = T ∗ . (22)
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Here w(p+) controls the contribution ratio between view-
specific class wv and consensus class wt. To make good use
of contrastive learning and rebalance at the same time, we
observe thatwv = 0.8 andwt = 0.2 are a reasonable choice.
The whole loss becomes closer to supervised cross-entropy.

In addition, the transformation function ψ(·) in Eq. (21)
applies different strategies to view-specific predictions P v

and consensus prototypes T ∗:

p · ψ(xi) =

{
p · G(xi), p ∈ P v

p · F(xi), p ∈ T ∗ , (23)

where G(xi) is an identity mapping, and F(xi) computes
class-frequency based C to address class imbalance:

F(xi) = xi · wc, wc =
nc∑K

k=1 nk
. (24)

Here, wc normalizes class contributions based on their rela-
tive frequencies in the training data, effectively rebalancing
the influence of majority and minority classes during class
alignment.

Overall Objective. The overall loss combines:

Lim = Lre
fea + Lre

sem. (25)

Through the two-level rebalancing strategy, our method ef-
fectively addresses the class imbalance modeling challenge.
At the feature level, logit-adjusted contrastive learning en-
hances the model’s sensitivity to minority samples. At the
class level, class-weighted consensus prototypes maintain
global class consistency. This hierarchical design achieves
balanced feature learning while preserving both instance
discrimination and class structure, leading to robust repre-
sentations for imbalanced multi-view data.

4.4. Overview and Training Strategy

PROTOCOL consists of three stages to learn multi-view rep-
resentations:

Stage 1: View-specific Representation. We employ a
reconstruction-based pre-training strategy to learn basic
view-specific representation through auto-encoding. The
reconstruction loss is formulated as:

Lrec =

V∑
v=1

∥xv − x̂v∥22, (26)

where xv and x̂v denote the input and reconstructed features
of view v, respectively.

Stage 2: Multi-view Representation Alignment. After
pre-training, we conduct structure-guided fine-tuning for
cross-view alignment. The loss function combines feature

Algorithm 1 Multi-view Imbalanced Learning Framework
Input: {xv}Vv=1, V , K, maximum iterations T1, T2, T3
Output: T ∗ and consensus representation U
Stage 1: View-specific Representation
for t = 1 to T1 do
Zv = fθv (x

v) // View-specific encoding
x̂v = gϕv (Z

v) // View-specific decoding
Minimize Lrec =

∑V
v=1 ∥xv − x̂v∥22

end for
Stage 2: Multi-view Representation Alignment
for t = T1 to T2 do
Sv = Transformer(Zv) // Structure-aware features
Hv = MLP(Zv) // High level features
U = Aggregate({Sv}Vv=1) // Consensus features
P v = softmax(h(Zv)) // View-specific predictions
P = softmax(h(U)) // Consensus predictions
Minimize Lalign =

∑V
v=1 wv(Lfea(H

v,U) +
Lsem(P

v,P ))
end for
Stage 3: Imbalanced Learning
for t = T2 to T3 do

Update λ = λbase + (λmax − λbase) · e−5(1−τ)2

Compute M = exp(−P̂ /ϵ)
Obtain POT labels via efficient scaling algorithm:
a← r

Mb , b← ( c∗

M⊤a
)f

T ∗ = diag(a)Mdiag(b)
Minimize Lim = Lim

fea + Lim
sem // Rebalanced learning

end for

and class levels alignment:

Lalign =

V∑
v=1

wv(Lfea(H
v,U) + Lsem(P

v,P )), (27)

where wv is the adaptive weight for view v. The feature-
level alignment loss Lfea follows the structure-guided con-
trastive loss in Eq. (19). The class-level alignment loss Lsem

ensures consistency between view-specific semantic P v and
the common semantic P through:

Lsem = − E
{P v

i ,P 1,...,PK}

[
log

D({P v
i ,P i})

K∑
j=1
j ̸=i

D({P v
i ,P j})

]
. (28)

Stage 3: Imbalanced Learning. The final stage ad-
dresses the imbalanced learning challenge through POT-
label-guided contrastive learning (See Sections 4.2 and 4.3).

These strategies enable PROTOCOL to handle imbalanced
multi-view data, as summarized in Algorithm 1.
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Table 1. Statistics of the multi-view datasets.
Dataset Samples Classes Views View Features Imbalance Ratio

0.1 0.5 0.9
nmin/nmax nmin/nmax nmin/nmax

Hdigit (Chen et al., 2022) 10000 10 2 784,256 100/1000 500/1000 900/1000
Fashion (Xiao et al., 2017) 10000 10 3 784,784,784 100/1000 500/1000 900/1000
NUS-WIDE (Chua et al., 2009) 5000 5 5 64,225,144,73,128 100/1000 500/1000 900/1000
Caltech (Fei-Fei et al., 2004) 1400 7 5 40,254,1984,512,928 20/200 100/200 180/200
Cifar10 (Yan et al., 2023) 50000 10 3 512,2048,1024 500/5000 2500/5000 4500/5000

Table 2. Performance Comparison with R = 0.1

Methods Hdigit Fashion Caltech NUS-WIDE Cifar10

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DSIMVC 0.754 0.790 0.902 0.699 0.685 0.755 0.521 0.430 0.656 0.132 0.192 0.677 0.768 0.751 0.864

ARDMVC 0.608 0.727 0.808 0.542 0.747 0.797 0.551 0.489 0.675 0.312 0.159 0.534 0.650 0.641 0.798
ARDMVCAM 0.629 0.759 0.824 0.538 0.751 0.799 0.569 0.521 0.702 0.336 0.185 0.613 0.564 0.646 0.748

CoMVC 0.708 0.833 0.894 0.535 0.706 0.756 0.618 0.618 0.701 0.423 0.206 0.619 0.590 0.601 0.747
MFLVC 0.696 0.682 0.828 0.804 0.865 0.919 0.640 0.596 0.656 0.437 0.309 0.786 0.846 0.905 0.926
GCFAggMVC 0.716 0.843 0.927 0.693 0.810 0.881 0.743 0.642 0.743 0.440 0.295 0.801 0.844 0.912 0.959
AECoDDC 0.598 0.682 0.783 0.788 0.855 0.912 0.370 0.226 0.476 0.395 0.174 0.590 0.722 0.833 0.911
SEM 0.825 0.835 0.947 0.768 0.851 0.915 0.727 0.642 0.727 0.417 0.296 0.797 0.851 0.918 0.965
CSOT 0.738 0.729 0.872 0.780 0.838 0.911 0.712 0.617 0.712 0.436 0.311 0.794 0.849 0.913 0.878

PROTOCOL 0.892 0.914 0.960 0.846 0.903 0.955 0.791 0.679 0.791 0.470 0.340 0.816 0.861 0.930 0.967

5. Experiment
5.1. Experimental Setup

To evaluate PROTOCOL, we establish a comprehensive
benchmark on five widely-used multi-view datasets, as
shown in Table 1. To simulate real-world imbalanced sce-
narios, we create imbalanced versions of these datasets
with three imbalance ratios R ∈ {0.1, 0.5, 0.9}. The R
are kept consistent across different views. We place imple-
mentation details of PROTOCOL in the Appendix B. We
compare PROTOCOL with nine state-of-the-art methods,
including six DMVC methods (CoMVC (Trosten et al.,
2021), MFLVC (Xu et al., 2022), AECoDDC (Trosten
et al., 2023), GCFAggMVC (Yan et al., 2023), SEM (Xu
et al., 2023), CSOT (Zhang et al., 2024c)), a DIMVC
method (DSIMVC (Tang & Liu, 2022)), and two robust
adversarial DMVC methods (AR-DMVC and AR-DMVC-
AM (Huang et al., 2024)). We adopt three widely used
metrics to evaluate clustering performance: Clustering Ac-
curacy (ACC), Normalized Mutual Information (NMI), and
Purity (PUR). Our code is available at https://github.
com/Scarlett125/PROTOCOL.

5.2. Main Results

To simulate real-world scenarios, we evaluate all meth-
ods on imbalanced multi-view data. Experiments are
conducted on five datasets under three imbalance ratios
R ∈ {0.1, 0.5, 0.9}, as shown in Tables 2 to 4. Based on
these results, we have the following observations.

Impact of Class Imbalance. The results reveal a consistent
pattern: most baseline methods suffer from performance

degradation under imbalanced scenarios. The degradation
becomes more pronounced as R decreases from 0.9 to 0.1,
indicating that class imbalance poses a fundamental chal-
lenge to multi-view clustering.

Superior Performance on Severe Imbalance. In the most
severe imbalance scenario (R = 0.1), while baseline meth-
ods suffer from substantial degradation, PROTOCOL shows
remarkable robustness. It outperforms the second-best
method by 6.7% ACC and 7.1% NMI on Hdigit, and by
4.8% ACC and 3.7% NMI on Caltech, validating its effec-
tiveness in handling severe imbalance distribution.

Robustness across Imbalance Ratios. As the imbalance
ratio increases (R : 0.1→ 0.5→ 0.9), most methods show
improved performance. Notably, PROTOCOL maintains its
superiority even under more balanced scenarios, achieving
0.987 ACC on Fashion (R = 0.5) and 0.993 ACC on Ci-
far10 (R = 0.9). These results demonstrate PROTOCOL’s
robust performance in handling both severely imbalanced
data and varying levels of class imbalance distributions.

Furthermore, we train the models on training sets with three
different imbalance ratios R and evaluate their perception
of different classes on balanced test sets. The results for
Caltech and Hdigit are shown in Fig. 1, while those for
Fashion and Cifar10 are provided in Appendix Fig. 5. All
methods show improved performance on balanced test sets
compared to imbalanced testing scenarios, mainly due to
the reduced uncertainty from tail-class samples. Although
the training imbalance ratio remains a key factor affecting
performance, notably, PROTOCOL consistently achieves the
best results across different R.

To further validate PROTOCOL’s capability in handling tail-
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Table 3. Performance Comparison with R = 0.5

Methods Hdigit Fashion Caltech NUS-WIDE Cifar10

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DSIMVC 0.955 0.894 0.958 0.727 0.714 0.732 0.529 0.439 0.551 0.149 0.175 0.545 0.905 0.804 0.905

ARDMVC 0.745 0.704 0.779 0.838 0.838 0.851 0.628 0.625 0.675 0.351 0.183 0.567 0.855 0.736 0.855
ARDMVCAM 0.879 0.932 0.928 0.844 0.850 0.859 0.657 0.639 0.693 0.375 0.208 0.621 0.972 0.951 0.972

COMVC 0.861 0.937 0.925 0.740 0.771 0.786 0.693 0.626 0.712 0.416 0.148 0.416 0.896 0.872 0.896
MFLVC 0.843 0.765 0.845 0.981 0.963 0.981 0.755 0.633 0.755 0.530 0.312 0.615 0.990 0.972 0.990
GCFAggMVC 0.979 0.944 0.979 0.980 0.957 0.980 0.761 0.638 0.760 0.525 0.299 0.619 0.989 0.970 0.989
AECODDC 0.843 0.895 0.910 0.975 0.952 0.975 0.451 0.304 0.495 0.426 0.164 0.458 0.877 0.802 0.877
SEM 0.980 0.945 0.980 0.982 0.961 0.979 0.759 0.611 0.707 0.475 0.261 0.565 0.990 0.971 0.982
CSOT 0.949 0.878 0.949 0.983 0.953 0.975 0.753 0.653 0.753 0.545 0.321 0.631 0.989 0.970 0.976

PROTOCOL 0.983 0.952 0.983 0.987 0.969 0.986 0.767 0.662 0.767 0.542 0.319 0.632 0.991 0.976 0.991

Table 4. Performance Comparison with R = 0.9

Methods Hdigit Fashion Caltech NUS-WIDE Cifar10

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DSIMVC 0.963 0.906 0.965 0.753 0.727 0.753 0.670 0.553 0.670 0.151 0.169 0.532 0.883 0.798 0.893

ARDMVC 0.859 0.831 0.859 0.871 0.885 0.880 0.660 0.592 0.677 0.396 0.216 0.598 0.875 0.753 0.875
ARDMVCAM 0.853 0.946 0.899 0.867 0.884 0.873 0.659 0.591 0.666 0.412 0.238 0.519 0.982 0.961 0.982

COMVC 0.906 0.930 0.906 0.808 0.808 0.816 0.640 0.580 0.646 0.383 0.097 0.383 0.963 0.941 0.963
MFLVC 0.913 0.820 0.913 0.989 0.967 0.989 0.802 0.715 0.802 0.614 0.351 0.614 0.991 0.976 0.991
GCFAggMVC 0.981 0.948 0.981 0.988 0.970 0.988 0.826 0.757 0.826 0.586 0.333 0.586 0.990 0.974 0.990
AECODDC 0.964 0.948 0.964 0.986 0.968 0.986 0.460 0.355 0.466 0.469 0.201 0.469 0.976 0.949 0.976
SEM 0.982 0.954 0.984 0.983 0.972 0.984 0.815 0.739 0.815 0.586 0.360 0.586 0.991 0.975 0.984
CSOT 0.952 0.888 0.952 0.982 0.970 0.982 0.815 0.721 0.815 0.556 0.282 0.556 0.990 0.977 0.982

PROTOCOL 0.984 0.956 0.984 0.991 0.976 0.990 0.896 0.830 0.878 0.634 0.367 0.634 0.993 0.981 0.993
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Figure 1. Clustering performance comparison on balanced test sets.

class samples, we evaluate five competitive methods across
head, medium, and tail classes on Caltech and NUS-WIDE
datasets, with results for R = 0.1 shown in Fig. 2 (results
for R = 0.5 are provided in Appendix Fig. 6). The results
demonstrate that PROTOCOL not only maintains compet-
itive performance on head classes but also improves the
clustering effectiveness of medium and tail classes. This
validates that POT label assignment and class-rebalanced
contrastive learning effectively enhance the model’s ability
to learn discriminative features from tail classes, thereby
addressing the representation bias caused by data scarcity.

To intuitively demonstrate the clustering effectiveness, we
visualize the learned representations using t-SNE in Fig. 3.
Compared with four baseline methods, PROTOCOL gener-

Head Medium Tail
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0.6

0.7

0.8
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Caltech (R=0.1)

Head Medium Tail
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NUS-WIDE (R=0.1)

MFLVC GCFAggMVC SEM CSOT PROTOCOL

Figure 2. Head, Medium, and Tail comparison on several datasets.

ates more compact and well-separated clusters. As shown in
Fig. 3(e), the clusters learned by PROTOCOL exhibit clearer
boundaries and more cohesive structures, indicating its su-
perior ability under imbalanced scenarios.

5.3. Ablation Study

We conduct ablation studies on three datasets under R ∈
{0.1, 0.5} to validate the effectiveness of each component in
PROTOCOL. We compare three variants: (1) Base: Only in-
cludes reconstruction loss and multi-view consistency learn-
ing; (2) w/ POT: Incorporates POT-based label assignment;
(3) w/ POT+CLR (denoted as PROTOCOL): Further adds
POT-enhanced CLass-Rebalanced (CLR) contrastive learn-
ing. The results in Table 5 show the contribution of each
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(a) MFLVC (b) CSOT (c) GCFAggMVC (d) SEM (e) PROTOCOL

Figure 3. The t-SNE visualization on Hdigit dataset.

Table 5. Ablation Study on Different Components

Variants
Caltech Hdigit Fashion

R = 0.1 R = 0.5 R = 0.1 R = 0.5 R = 0.1 R = 0.5

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Base 0.719 0.640 0.737 0.616 0.722 0.856 0.979 0.947 0.732 0.845 0.981 0.955
w/ POT 0.772 0.651 0.757 0.634 0.876 0.902 0.980 0.949 0.840 0.900 0.984 0.962

w/ POT+CLR 0.791 0.679 0.767 0.662 0.892 0.914 0.983 0.952 0.846 0.903 0.987 0.969
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Figure 4. Convergence and parameter sensitivity on Caltech.

component. First, incorporating POT-based label assign-
ment (w/ POT) significantly outperforms the base model
(e.g., 15.4% ACC improvement on Hdigit when R = 0.1),
validating the effectiveness of POT label assignment in han-
dling class imbalance. Furthermore, adding POT-guided
contrastive learning (w/ POT+CLR) further enhances the
model performance, demonstrating its capability to improve
tail-class representation. These results confirm that both
components contribute to the overall performance: the POT
mechanism provides the most significant improvement in
handling class imbalance, while the class-rebalanced con-
trastive learning further optimizes tail-class representation.

5.4. Convergence and Parameter Sensitivity Analysis

We conduct convergence and parameter sensitivity analysis
on the Caltech dataset, as shown in Fig. 4. As shown in
Fig. 4(a), both ACC and NMI metrics show stable conver-
gence trends, with the model achieving convergence after ap-
proximately 15 epochs and maintaining steady performance
thereafter. In addition, we analyze two key hyperparame-
ters: the feature and class temperature parameters τf and

τl. As shown in Fig. 4(b), ACC fluctuates within a small
range (0.7-0.8) as τf and τl vary, indicating the model’s
stability to temperature parameters. Based on these results,
we set τf = 0.5 and τl = 1.0. The Appendix Fig. 7 shows
similar stability for the semantic consistency parameter a
and the base learning weight λbase, and we set a = 0.5,
λbase = 0.1.

6. Conclusion
In this paper, we propose PROTOCOL, a novel imbalanced
multi-view clustering framework that effectively addresses
the challenges of class imbalance and tail-class represen-
tation bias. Specifically, we introduced a POT-based label
assignment mechanism that effectively perceives and han-
dles class imbalance across multi-views, and designed a
POT label-enhanced two-level class rebalanced contrastive
learning strategy that enhances tail-class representation. Ex-
tensive experiments on five benchmark datasets demonstrate
that PROTOCOL consistently outperforms existing methods,
particularly in severely imbalanced scenarios. Ablation
studies further validate the effectiveness of each component,
where the POT mechanism provides significant improve-
ments in handling class imbalance, while class-rebalanced
contrastive learning further optimizes tail-class representa-
tion. These results indicate that PROTOCOL provides an
effective solution for real-world multi-view clustering tasks
where class imbalance is prevalent.
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A. Solving Process for POT Label
In this section, we detail how to solve the optimal transport by an efficient scaling algorithm. Our goal is to combine
partial optimal transport problems and unbalanced optimal transport problems to perceive the class imbalance distribution in
multi-view data, with the following objective function:

LPOT = min
T∈U(r,c)

⟨T ,− log P̂ ⟩F +DKL(T
⊤1N∥c) (29)

s.t. U = {T ∈ RN×K
+ | T1K ≤ r,1⊤

NT1K = λ}, (30)

where r = 1
N · 1N is the sample distribution constraint, c = λ

K · 1K is the class distribution constraint, so that r and c are
the marginal projections of matrix T onto its rows and columns, respectively. λ is the total mass constraint of the transport
matrix T , β is a scalar factor.

Inspired by PU (Chapel et al., 2020) and P2OT (Zhang et al., 2024a), we extend the original transport plan T by introducing
a virtual cluster ξ. Specifically, we denote the assignment of samples on the virtual cluster as ξ. Then, we extend T to T̂ ,
which satisfies the following constraints:

T̂ = [T , ξ] ∈ RN×(K+1), ξ ∈ RN×1, T̂1K+1 =
1

N
1N . (31)

Due to 1⊤
NT1K = λ, we know that:

1⊤
Nξ = 1− λ. (32)

Therefore,

T̂
⊤
1N =

[
T⊤1N

ξ⊤1N

]
=

[
T⊤1N

1− λ

]
. (33)

We denote C = [− logP ,0N ] and replace T with T̂ , thus the Eq. (31) can be rewritten as follows:

min
T̂∈U
⟨T̂ ,C⟩F +DKL(T̂

⊤
1N∥c∗;β) (34)

s.t. U = {T̂ ∈ RN×(K+1)
+ |T̂1K+1 =

1

N
1N}, c∗ =

[
λ
K1K

1− λ

]
, βK+1 → +∞. (35)

Note that we introduce the weighted KL divergence Dβ
KL with βK+1 → +∞ to strictly enforce the virtual cluster constraint.

The sample constraint changes from inequality (≤) to equality (=) because the virtual cluster ξ absorbs the remaining mass,
ensuring that the total mass of each sample exactly equals 1

N . The weighted KL divergence is defined as:

DKL(x∥y;w) =
∑
i

wixi log
xi
yi
. (36)

Following Cuturi (Cuturi, 2013), we introduce an entropy regularization term to solve the optimal transport efficiently. The
regularized version becomes:

min
T̂∈U
⟨T̂ ,C⟩F − ϵH(T̂ ) +DKL(T̂

⊤
1N∥c∗;β). (37)

Using the properties of entropy regularization:

⟨T̂ ,C⟩F − ϵH(T̂ ) = ϵ⟨T̂ ,C/ϵ+ log T̂ ⟩F (38)

= ϵ⟨T̂ , log T̂

exp(−C/ϵ)
⟩F (39)

= DKL(T̂ ∥ exp(−C/ϵ); ϵ1N×(K+1)). (40)
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Algorithm 2 Efficient Scaling Algorithm for POT
Require: Cost matrix P , mass λ, regularization ϵ, weights β

1: C ← [− logP ,0N ]
2: M ← exp(−C/ϵ)
3: c∗ ← [ λK1K ; 1− λ]
4: b← 1K+1

5: fj ← βj

βj+ϵ for j = 1, . . . ,K + 1

6: while not converge do
7: a←

1
N 1N

Mb

8: b← ( c∗

M⊤a
)f

9: end while
10: T ∗ ← diag(a)Mdiag(b)
11: return First K columns of T ∗ as T

Let M = exp(−C/ϵ), the problem becomes:

min
T̂∈U

DKL(T̂ ∥M) +DKL(T̂
⊤
1N∥c∗;β). (41)

Taking the derivative with respect to T̂ ij and setting it to zero:

∂

∂T̂ ij

[DKL(T̂ ∥M) +DKL(T̂
⊤
1N∥c∗;β)] (42)

= ϵ(log T̂ ij − logM ij + 1) + βj log
[T̂

⊤
1N ]j
c∗j

= 0. (43)

This leads to:

T̂ ij = M ij exp(−1−
βj
ϵ
log

[T̂
⊤
1N ]j
c∗j

) (44)

= M ij exp(−1)(
c∗j

[T̂
⊤
1N ]j

)
βj
ϵ . (45)

Let fj =
βj

βj+ϵ , then βj

ϵ =
fj

1−fj
. After absorbing constants into the scaling factors:

T̂ ij = aiM ijbj . (46)

This leads to the efficient scaling algorithm iterative updates:

a←
1
N 1N

Mb
, (47)

b← (
c∗

M⊤a
)f . (48)

The final transport plan can be recovered as:

T ∗ = diag(a)Mdiag(b). (49)

Based on the above derivation, we summarize our solution in Algorithm 2.
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Figure 5. Clustering performance comparison on balanced test sets.
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Figure 6. Head, Medium, and Tail comparison on several datasets.

B. Experimental Supplements
Implementation Details For network architecture, we employ four-layer MLPs for both encoder and decoder. Specifically,
the encoder architecture consists of layers with dimensions (input dim, 500, 500, 2000, 512), while the decoder follows a
symmetric structure with dimensions (512, 2000, 500, 500, input dim). Each layer is followed by ReLU activation except for
the output layer. The high-level features are obtained by projecting the 512-dimensional features to 128 dimensions through
an additional MLP. The optimization is performed using Adam optimizer with learning rate 1e-3. The training process
consists of three stages: view-specific feature learning with 200 epochs for reconstruction loss, consensus learning with
50-100 epochs for multi-view consistency, and class-rebalanced enhancement with 50-100 epochs for imbalance learning.
We set the batch size to 256. We report the average results over three runs with different random seeds.
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Figure 7. Parameter sensitivity analysis on Caltech dataset.
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