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ABSTRACT

Global image geolocation aims to identify the location where an image was cap-
tured, but achieving high precision and robust localization remains challenging.To
enhance geolocation precision, we present Clue2Geo, a cue-driven framework for
global image geolocation,powered by a Large Vision Language Model (LVLM)
for coordinate reasoning. Firstly, an LVLM is employed to extract diverse geo-
graphic cues from images, after which the reliability and contribution of these cues
are assessed by computing their local consistency and semantic coherence.Based
on that,a cue graph named “cluemap” is constructed,which is used as an auxil-
iary input both during model fine-tuning and inference. Subsequently, we build a
large-scale Street View dataset with coordinates and cluemaps to support a three-
stage progressive fine-tuning strategy.This strategy is to enhance the downstream
model’s reasoning capabilities for fine-grained localization tasks.Finally, a post-
processing refinement based on Retrieval-Augmented Generation (RAG) using a
GPS database is applied after reasoning to reduce the offset of the predicted co-
ordinates, improving both accuracy and stability. Extensive experiments demon-
strate that Clue2Geo achieves state-of-the-art performance on fine-grained met-
rics, particularly at the street levels.1

1 INTRODUCTION

Global image geolocalization aims to determine the origin of photos taken anywhere on Earth. Com-
pared with traditional region-specific methods(Noh et al., 2017; Cao et al., 2020; Lee et al., 2022;
Tan et al., 2021; Shao et al., 2023), it offers broader coverage and more diverse applications. How-
ever, achieving accurate and robust global localization remains challenging due to significant vari-
ations in landscapes, vegetation, buildings, traffic signs across regions, as well as diverse imaging
conditions. High-precision tasks, such as street-level localization, are particularly difficult: models
must capture fine-grained local features like building details, road signs, landmarks, etc., which vary
subtly across regions and are sensitive to viewpoint, lighting, time, and weather. Existing methods
often struggle with sparse or noisy local information, and most datasets focus on city- or region-level
localization, limiting support for fine-grained, global-scale geolocalization. These factors together
constitute the core technical challenge for high-precision global image geolocalization.

Image geolocalization methods can be broadly categorized into three types: retrieval-based,
classification-based, and generation-based. Retrieval-based methods estimate a query image’s lo-
cation by comparing it against a database of geo-tagged images and inferring its position from the
most similar matches. While intuitive and effective, these methods involve complex feature extrac-
tion, high computational costs for nearest-neighbor search, and a strong dependence on the diversity
and completeness of the image database. Classification-based methods partition the geographic
space into discrete regions and assign images to the corresponding region. This approach can-
not achieve coordinate-level fine-grained localization; the region partitions often fail to reflect true
geographic distributions, and the models generally operate as black boxes, lacking interpretable rea-
soning. Generation-based methods treat geolocalization as a GPS coordinate generation task, using
large models to directly predict image coordinates. Although effective on coarse-grained bench-
marks, their performance is limited by model knowledge and the inherent randomness of outputs,
making high-precision localization challenging.

1Our code and dataset is available at https://github.com/xxxxxx
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We propose Clue2Geo, a globally oriented image geolocation framework driven by structured cues,
to address the limitations of existing methods. Explicitly extracting and structuring cues can direct
models’ attention to key features and their relationships.Therefore,geographic cues such as land-
marks are extracted from images using an LVLM and organized into a structured cue graph named
“cluemap” as an auxiliary input during fine-tuning and inference. Then, an LVLM is employed to
predict the coordinates where images were captured.To enhance the model’s fine-grained geoloca-
tion and reasoning capabilities, a three-stage fine-tuning strategy is applied, using data that integrates
cluemaps with the reasoning process to progressively fine-tune the model at different geographic
scales and improve its overall performance.Finally, to mitigate the inherent uncertainty,particularly
the coordinate deviations in fine-grained localization,a RAG-based post-processing module pro-
posed in prior studies (Zhou et al., 2024; Jia et al., 2024; Vivanco Cepeda et al., 2023) is incor-
porated. By referencing large-scale image–coordinate pairs to enhance generation, this module
refines the final predicted coordinates, significantly enhancing both robustness and accuracy while
demonstrating strong generalization capability.We summarize the main contributions of our work as
follows:

• We propose Clue2Geo, a framework for global image geolocation that leverages an LVLM
to predict coordinates. The LVLM is progressively fine-tuned in stages using structured
cues to enhance reasoning and fine-grained localization,and final coordinate is chosen by
matching encodings of the fine-tuned LVLM and RAG predictions with image encoding.

• A method for constructing a cluemap is proposed, in which high-value cues are identified
by computing their local consistency and semantic cohesion, and other cues are linked to
them based on semantic similarity.The cluemap guides LVLM to prioritize informative cues
and enhances its ability to understand and reason over complex geographic information.

• A large-scale Mapillary-based dataset containing coordinates, addresses, and visual cues
was built and employed for fine-tuning, through which the LVLM’s reasoning capabilities
and its utilization of complex geographic cues are significantly enhanced.

• Extensive experiments are conducted on two public datasets, IM2GPS3K and YFCC4K.
The results demonstrate that Clue2Geo consistently outperforms state-of-the-art baselines
in fine-grained localization.

2 RELATED WORK

Image geolocalization Image geolocalization has received increasing attention in recent years, with
applications spanning navigation, urban planning, criminal investigation, and multimedia retrieval.
Existing approaches can be broadly categorized into three types: retrieval-based, classification-
based, and generation-based methods.Retrieval-based methods estimate the location of a query im-
age by comparing it against a database of geotagged images and inferring its position from the most
similar matches (Regmi & Shah, 2019; Shi et al., 2019; 2020; Toker et al., 2021; Zhu et al., 2022;
2021; Workman et al., 2015; Liu & Li, 2019). Vivanco Cepeda et al. (2023) proposed an image-
to-GPS retrieval method that explicitly aligns image features with corresponding GPS coordinates
to tackle global geolocalization. However, these methods require building and maintaining a refer-
ence database, which remains impractical at large scales.To overcome this limitation, Weyand et al.
(2016) proposed dividing the Earth into discrete geographic categories for image location predic-
tion. By constructing these categories, predictions can be made at either coarse or fine granularity
based on the spatial extent of each category. Nonetheless, classification-based methods (Seo et al.,
2018; Vo et al., 2017; Muller-Budack et al., 2018; Pramanick et al., 2022; Clark et al., 2023; Izbicki
et al., 2019) often represent each category by its centroid coordinates. Even when a category is cor-
rectly predicted, significant errors may occur if the actual image location is distant from the category
center.With the rapid development of generative models, generation-based methods have gradually
emerged. Zhou et al. (2024) introduced retrieval-augmented generation (RAG) into geolocalization,
using coordinates of similar images as references to assist large language models (LLMs) in pre-
dicting locations. Building on this, Jia et al. (2024) integrated geographic information into image
representations and leveraged geographic diversification and verification to improve prediction per-
formance and robustness. Li et al. (2024) employed LVLMs along with external knowledge from
human reasoning to perform geolocalization on street-level imagery.Dufour et al. (2025) applied
diffusion models to image geolocalization by treating coordinates as continuous spatial points: they
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Figure 1: The overall framework of Clue2Geo consists Multi-Stage Fine-tuning, Cluemap Con-
struction, and Coordinate Refinement. A reasoning model is first obtained via three-stage LoRA
fine-tuning on Mapillary dataset. Cluemap Construction extracts cues and segments the image,
encoding textual cues and patches with CLIP to build a Cluemap as one input, while Coordinate
Refinement-RAG retrieves reference coordinates to form another input. At inference, the model
processes these two inputs separately to produce candidate coordinates, and the Matching stage uses
GPSCLIP to select the final coordinate.

progressively added noise to true coordinates and trained a network to predict the noise conditioned
on images, thereby learning the correspondence between visual content and geographic locations.

Large Multimodal Models Inspired by the success of large models in single domains, researchers
have increasingly focused on cross-modal large models. CLIP(Radford et al., 2021) aligns image
and text representations via contrastive learning, achieving strong cross-modal generalization with
a simple objective. Building on this, LLAVA(Liu et al., 2023) combines CLIP’s visual encoder with
the Vicuna language model and employs a two-stage instruction fine-tuning strategy to enhance
performance in vision-and-language understanding. In 2023, OpenAI released the multimodal GPT-
4V(Achiam et al., 2023), capable of processing both text and image inputs to generate responses,
further demonstrating the potential of multimodal models for unified understanding and reasoning
tasks. These models not only grasp cross-modal semantics but also exhibit strong capabilities in
complex reasoning and generation. Recently, numerous high-performing multimodal models have
emerged globally(Jia et al., 2018; 2023; Li et al., 2023). The Qwen-VL(Bai et al., 2023; 2025; Wang
et al., 2024) series, as a representative open-source model, combines powerful visual encoding and
language understanding, leveraging large-scale image-text pretraining and instruction fine-tuning to
achieve superior performance in image-text alignment, cross-modal question answering, and visual
reasoning, providing strong support for research in computer vision(Wang et al., 2023), natural
language processing(Zhao et al., 2023), and multimodal learning(Yin et al., 2024).

3 METHOD

Figure 1 illustrates the overall architecture of Clue2Geo.It contains three components:cluemap con-
struction for extracting and modeling visual cues, three-stage localization fine-tuning to enhance
geographic reasoning, and a post-coordinate refinement module to improve predicted coordinates
via RAG. The fine-tuning dataset was described at the end.

3.1 CLUEMAP CONSTRUCTION

Visual Cue Extraction Conventional image geolocation that relies solely on pure image inputs often
fails to capture the most distinctive local details essential for fine-grained localization.By explicitly
extracting visual cues from images and evaluating their localization value, then combining them

3
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with the original image, the model can focus on the most distinctive and informative regions while
retaining overall context, significantly outperforming pure image input in fine-grained localization
tasks.Therefore, we first extract geography-related cues from images using Qwen-QVQ.A structured
prompt is designed that enumerates seven representative categories of geographically relevant cues,
including landmark buildings, natural landscapes, scene types, recognizable text, vehicle character-
istics, typical clothing or activities, and overall environmental context. This categorization in the
prompt is not a restriction but rather guidance, helping the model form a clearer sense of direction
when extracting information. At the same time, the prompt explicitly encourages the model to go
beyond these seven categories and capture any additional cues that may aid geolocation, thereby
ensuring comprehensive and fine-grained cue collection.

However, the existing reasoning of LVLM is not strictly deductive reasoning, but rather relies on
statistical rules, semantic similarity, and retrieval-based memory to ”simulate” reasoning, by ver-
ifying candidate answers rather than deduction.This verifier-style reasoning can cause cascading
errors, where an incorrect initial answer leads all subsequent steps to follow and reinforce the same
mistake.Thus, to prevent errors during the extraction stage that could propagate into comprehensive
mistakes in subsequent reasoning, the content of the cues is strictly constrained. Specifically, the
cues are limited to listing all visually identifiable elements potentially related to geographic loca-
tion, without making any form of location prediction. In other words, the goal of this step is to
maximize the fidelity and completeness of the information rather than directly infer coordinates,
thereby providing a reliable, objective, and interpretable input foundation for subsequent geoloca-
tion reasoning.The formalization of cue extraction is as follows:

C = {c1, c2, . . . , cn} = fextract(p) (1)
f represents an LVLM. Given an input prompt p, f extracts a structured set of visual cues C poten-
tially relevant to geographic location, strictly avoiding any form of location prediction.The content
of the prompt p can be found in the appendix A.1.1.

Cluemap Construction It is worth noting that, due to hallucinations, the cues extracted by LVLM
are not always accurate and do not always contribute to geolocation.To assess which cues are accu-
rate and contribute meaningfully, we introduce local consistency and semantic coherence.

Local consistency measures whether the content described by cues is supported by the visual infor-
mation in the image, that is, whether the cues are accurate and reliable. Since cues often describe
local regions of an image, directly computing similarity between a cue and the entire image may
not accurately reflect its correctness.We propose two methods of varying complexity to calculate
local consistency . Scheme 1 involves performing semantic segmentation on the image, identifying
the objects corresponding to the cues, and computing the similarity between them as the local con-
sistency. Scheme 2 divides the image into fixed-size patches, calculates the similarity between the
cues and each patch, and takes the maximum value as the local consistency. Since constructing a
cluemap for 70,000 images during subsequent fine-tuning would make semantic segmentation com-
putationally expensive and time-consuming, we adopt the simpler Scheme 2 to approximate the local
consistency of the cues.The cues and patches are encoded separately using CLIP’s(Radford et al.,
2021) text and visual encoders, and the cosine similarity is subsequently calculated.The calculation
process of local consistency is as follows:

Sl(c, I) = max
j∈{1,..,M}

sim(c, Ij) (2)

Here, c denotes a specific extracted cue, I represents the entire image, and Ij denotes the j-th image
patch after dividing the image into M patches. The function sim() is cosine similarity. The local
consistency score Sl of cue c with respect to image I is determined by the maximum similarity
between the cue and all patches.

Semantic coherence is defined as measuring the strength of a cue’s relationships with other cues,
capturing its semantic connectedness within the overall cue set. When multiple cues describe the
same object, their coherence scores tend to be higher, which often indicates richer visual elements,
and thus potentially greater contribution to geolocation. However, low-coherence “isolated cues” are
not assumed to be unimportant; we acknowledge that such cues may still play a critical role. In this
work, we retain all cues to form a complete cluemap structure but use semantic coherence solely
to describe the strength of relationships without assigning additional weights or special treatment
to isolated cues.We employ Sentence-BERT to encode the cues and calculate their pairwise cosine
similarity.The calculation of semantic coherence is formulated as follows:

4
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Ss(ci, C) =
1

|C| − 1

|C|∑
j=1
j ̸=i

sim(ci, cj) (3)

Let C = {c1, c2, . . . , c|C|} denote the set of all cues, where ci ∈ C represents the i-th cue. The
function sim(ci, cj) measures the cosine similarity between cue ci and cue cj . The semantic co-
herence score Ss(ci, C) of cue ci is computed as the average semantic similarity between ci and all
other cues in C.

In order to balance both the reliability and the contribution of each cue, the two scores are jointly
considered to provide a comprehensive assessment of cue value. Specifically, an equally weighted
(0.5 each) average is employed to derive the final relationship strength, which captures not only
the semantic connections between a cue and the other cues but also the alignment between the cue
description and the actual image.The calculation of relationship strength Sr is formulated as follows:

Sr(ci) = αSl(ci) + (1− α)Ss(ci), with α = 0.5 (4)

Finally, based on the final relationship strength, the three highest-scoring cues are selected as pri-
mary nodes. The remaining cues are attached to the corresponding primary nodes according to their
semantic similarity, thereby forming a graph structure termed Cluemap. In this structure, being a pri-
mary node indicates that the cue has comparatively higher and more reliable localization value, while
its associated neighboring cues provide complementary information to that primary node. In other
words, all cues are organized into three clusters centered on the primary cues, offering a structured
representation of the image cues.The constructed Cluemap is subsequently used as supplementary
information during fine-tuning and inference to enhance geolocation accuracy.

3.2 MULTI-STAGE LOCALIZATION FINE-TUNING

Although LVLMs show strong generalization ability, they struggle with fine-grained geolocation
due to insufficient optimization for subtle, domain-specific cues. Fine-tuning on curated data with
explicit geographic information adapts the model to these nuances, improving accuracy and inter-
pretability.More importantly, studies have demonstrated that integrating the reasoning process can
enhance the capabilities of LLMs (Qiao et al., 2022).Therefore, fine-tuning the model with a focus
on reasoning substantially improves its performance in geolocation tasks.

Because geolocation involves hierarchical information ranging from city-level to landmark-level, a
single-stage approach is often insufficient. Therefore, we adopt a three-stage fine-tuning strategy:
first performing reasoning-oriented fine-tuning at the city and landmark levels, and then conducting
location-optimization fine-tuning at the landmark level. This coarse-to-fine adaptation progressively
improves the model’s reasoning ability and accuracy.Qwen2.5-VL-7B is adopted as the base model
for fine-tuning in our framework.

To enhance the model’s reasoning capability at the city level, coarse-grained city-level reasoning
fine-tuning is first conducted. In this stage, the fine-tuning inputs contain only simple cue reasoning,
aiming to train the model to acquire a foundational pattern of coarse-grained geospatial reasoning.
An example data template for this stage is shown below (format only; detailed content is provided
in the Appendix A.1.2):

[Input]: {Image:Image, Question:Which country and city is the image located in?Explain reason.}
[Output]: {Country:“France”,City:“Paris”,Reason:“French text and the Eiffel Tower.”}

After the model had initially acquired a basic understanding of geographic reasoning, fine-grained
landmark-level reasoning fine-tuning is conducted. In the fine-tuning data, the model was explicitly
provided with structured cues and was guided to perform step-by-step reasoning, further enhancing
its sensitivity to geographic visual cues at the landmark level and its ability to reason from such cues.

The fine-tuning data was built by first constructing cluemaps using the method described in Section
3.1. Geographic visual cues were extracted from images and structured alongside the original images
to form multimodal inputs, enabling the model to access both visual information and structured ge-
ographic cues. Step-by-step reasoning chains were then generated for each sample using an LLM,
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followed by manual review and refinement to ensure the accuracy and logical consistency of the
reasoning process. Finally, the image, cluemap, validated reasoning chain, true location, and coor-
dinates were integrated into a complete training instance, and the prompt was designed to explicitly
instruct the model to reference the cluemap when reasoning, thereby creating a mapping from visual
cues to geographic coordinates. The fine-tuning data template for this stage is as follows:

[Input]: {Image:Image, Question: Predict the location from the image and clues:ClueMap.Explain reason. }
[Output]: {Country:“France”,City:“Paris”,Landmark:“Eiffel Tower”,lat:48.8584,lon:2.2945,

Reason:“French text and the Eiffel Tower.”}

In real world geolocation applications, most use cases require only the final coordinate and ad-
dress rather than a reasoning chain. Therefore, in the final landmark-level location optimization
stage, we remove the reasoning outputs and train the model to directly predict precise coordinates
and addresses. This design encourages the model to internalize the reasoning process it acquired
in the earlier stages and focus on end-to-end geolocation accuracy.The input format from the sec-
ond stage was retained, with both the original image and the structured cluemap provided so that
geographic cues and semantic associations could still be fully leveraged by the model during in-
ference.However, reasoning chains were no longer supplied; instead, the model received the inputs
and directly produced the final predicted location and coordinates.This approach strengthened its
end-to-end geolocation capability, enabling it to continually align with the real world geographic
distribution during training and gradually establish a stable mapping from visual cues to precise
coordinates. The fine-tuning data template for this stage is as follows:

[Input]: {Image:Image, Question: Predict the location from the image and clues:ClueMap.explain reason. }
[Output]: {Country:“France”,City:“Paris”,Landmark:“Eiffel Tower”, lat:48.8584,lon:2.2945}

3.3 POST-PROCESSING COORDINATE REFINEMENT

Because of the inherent randomness in LLM outputs, predicted coordinates can inevitably deviate,
and repeated predictions for the same image may vary, undermining both stability and accuracy.
To address this, we adapt the RAG module proposed in (Jia et al., 2024) as a post-processing step
for Clue2Geo, leveraging a retrieval database with large-scale image–coordinate mapping to more
precisely align predicted results with real geographic locations and thereby enhance fine-grained
geolocation accuracy and robustness.By providing a set of retrieved ‘anchor’ coordinates, the gener-
ative space is constrained to more reliable regions and prediction drift is mitigated. Both the model’s
direct predictions and the retrieval-augmented outputs are leveraged and compared with the image
embeddings to identify the closest match.This process effectively yields multiple independent es-
timates and chooses the most consistent one, which from a statistical perspective reduces variance
and leads to more stable and accurate geolocation results.

The retrieval database consists of a large set of known image–coordinate pairs, with images aligned
to coordinates using a pre-trained CLIP model proposed in (Jia et al., 2024)(hereinafter referred to
as GPSCLIP). Each image is represented as a high-dimensional feature vector capturing both visual
and latent geographic information. The input image is encoded and matched against the database
samples based on feature similarity, selecting the most and least similar coordinates as reference.
Multiple prompts are constructed based on the number of reference coordinates to separately guide
the model’s outputs.The outputs, together with the direct output from the fine-tuning stage , are
encoded using GPSCLIP, and their similarity to the image embeddings is computed to identify the
most similar coordinates as the final prediction. This approach effectively reduces prediction bias
and enhances stability and accuracy in fine-grained localization at both city and landmark levels.

3.4 MAPILLARY DATASET

We collected 70,000 high-quality street-view images along with corresponding metadata from multi-
ple popular cities worldwide using the open street-view platform Mapillary. Leveraging the latitude
and longitude information in the metadata and utilizing Here Maps’ reverse geocoding service, we
geographically annotated each image and organized locations into three hierarchical levels: country,
city, and landmark. Additionally, following the cue extraction method proposed in Section 3.1, we
extracted at least five visual cues from each image to support subsequent image-based geolocation
reasoning and localization studies.

6
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Table 1: Comparison of Clue2Geo with Other Models on the Im2GPS3k and YFCC4K Dataset.

Dataset Method Street(1km) City(25km) Region(200km) Country(750km) Continent(2500km)

Im2GPS3k

[L]kNN, σ = 4 7.2 19.4 26.9 38.9 55.9
PlaNet 8.5 24.8 34.3 48.4 64.6

CPlaNet 10.2 26.5 34.6 48.6 64.6
ISNs 10.5 28.0 36.6 49.7 66.0

TransLocator 11.8 31.1 46.7 58.9 80.1
GeoDecoder 12.8 33.5 45.9 61.0 76.1

G3 14.55 37.80 52.95 70.30 83.52
GeoCLIP 13.31 32.47 48.28 66.67 82.65
PIGEON 11.3 36.7 53.8 72.4 85.3

Plonk 6.17 37.17 51.28 67.00 81.85
Clue2Geo 18.55 41.98 55.56 70.87 84.22

YFCC4K

[L]kNN, σ = 4 2.3 5.7 11 23.5 42
PlaNet 5.6 14.3 22.2 36.4 55.8

CPlaNet 7.9 14.8 21.9 36.4 55.5
ISNs 6.5 16.2 23.8 37.4 55

TransLocator 8.4 18.6 27.0 41.1 60.4
GeoDecoder 10.3 24.4 33.9 50.0 68.7

G3 23.10 33.49 44.49 61.66 76.61
GeoCLIP 9.59 19.29 32.61 54.98 74.67
PIGEON 10.4 23.7 40.6 62.2 77.7

Plonk 6.5 32.05 43.69 59.35 75.24
Clue2Geo 23.39 33.77 44.66 62.46 77.78

4 EXPERIMENTS

4.1 EVALUATION DETAILS

The model was fine-tuned according to the strategy described in Section 3.2. Its performance was
then evaluated on the public datasets Im2GPS3k (Vo et al., 2017) and YFCC4k (Vo et al., 2017),
with all LLM-based methods standardized by replacing their base models with Qwen2.5-VL-7B to
eliminate differences arising from model architectures. For each test image, we computed the great-
circle distance between the predicted and ground-truth coordinates and quantified the proportion of
predictions falling within distance thresholds of 1 km, 25 km, 200 km, 750 km, and 2500 km.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

To validate the effectiveness of Clue2Geo, we conducted comparative experiments against other
state-of-the-art methods on the IM2GPS3K and YFCC4K datasets. Tables 1 present the performance
comparison of Clue2Geo with other methods.GeoReasoner (Li et al., 2024) is not included in our
comparison, as its results could not be reproduced with the provided weights, its fine-tuning data is
unavailable, and the reported metrics were incomplete.

Our approach achieved state-of-the-art performance in fine-grained (street-level) geolocation tasks
on both the Im2GPS3K and YFCC4K datasets, while remaining competitive at broader geographic
scales. On Im2GPS3K, our method reached 18.55%, 41.98%, and 55.56% within the 1 km, 25 km,
and 200 km thresholds, respectively—improving over the second-best method by 4.0%, 4.2%, and
2.6%, with especially notable gains at street and city scales. On YFCC4K, our method achieved
23.39%, 33.77%, and 44.66% on the 1 km, 25 km, and 200 km fine-grained metrics, matching or
slightly surpassing the best-performing method (G3) with gains of 0.29%, 0.28%, and 0.17%, while
maintaining nearly identical performance on the 750 km and 2500 km coarse-grained metrics (dif-
ferences of only 0.2–0.4%). These results demonstrate that our approach advances high-precision,
fine-grained geolocation without sacrificing accuracy at coarser scales (national/continental level),
achieving a stronger balance and greater robustness in multi-scale geolocation tasks.
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Table 2: The ablation results of Clue2Geo on Im2GPS3k (with Coordinate Refinement).

Method Street(1km) City(25km) Region(200km) Country(750km) Continent(2500km)
w/o RC 18.02 41.64 55.39 70.77 84.05
w/o RL 16.35 40.71 54.21 70.20 83.88
w/o OL 15.54 38.07 52.65 69.67 83.52
w/o CM 17.78 40.57 54.02 69.36 83.38
w/o CR 15.45 41.04 55.26 70.47 83.92
Clue2Geo 18.55 41.98 55.56 70.87 84.22

Clue2Geo achieves state-of-the-art performance in geolocation prediction, though its effectiveness
varies across different datasets. On the IM2GPS3k dataset, our approach significantly outperforms
existing models, primarily because the dataset was originally designed for geolocation tasks. Its
carefully curated, high-quality images contain rich visual cues that align closely with the Street
View images used for fine-tuning. Street View provides abundant and consistent geographic signals,
such as architectural styles and road layouts, enabling the model to effectively learn and transfer
fine-grained spatial patterns.In contrast, the YFCC4k dataset, sourced from Flickr, consists of di-
verse and noisy user-uploaded images. Variations in image quality, camera angles, and lighting
conditions, combined with inaccurate location tags and a scarcity of useful geographic cues, create a
pronounced domain shift. This limits the model’s ability to extract generalizable features, resulting
in less pronounced performance gains compared to IM2GPS3k.Despite these challenges, Clue2Geo
demonstrates strong performance on both datasets, highlighting its robust generalization ability and
effectiveness in handling diverse and noisy data.

Clue2Geo demonstrates significant advantages in fine-grained geolocation tasks, primarily due to
high-fidelity cue modeling and multi-stage fine-tuning. By extracting and structurally organizing
geographic cues from images, it constructs a cluemap that is both semantically consistent and lo-
cally sensitive, enhancing the model’s discriminative ability in dense visual feature spaces. The
multi-stage fine-tuning strategy strengthens representation transfer from coarse to fine granularity,
improving discriminability and robustness at the city and landmark levels, while coordinate refine-
ment leverages real-world geographic distributions to further reduce prediction errors. Through
the synergy of these mechanisms, Clue2Geo achieves substantial performance gains over baseline
models at fine-grained thresholds, while maintaining superior generalization and interpretability.

4.3 ABLATION STUDY

We performed ablation experiments on IM2GPS3K to evaluate our methods.

• w/o RC: Remove the city-level reasoning fine-tuning stage.
• w/o RL: Remove the landmark-level reasoning fine-tuning stage.
• w/o OL: Remove the landmark-level location optimization stage.
• w/o CM: Omit the ClueMap and feed only the raw images.
• w/o CR: Remove the post-coordinate refinement.

Table 2 presents the ablation results on Im2GPS3k. When any individual module is removed, perfor-
mance drops to varying degrees, and these declines closely match the expected roles of each module.
Removing RC lowers Street, City, and Region to 18.02%, 41.64%, and 55.39%, respectively, with
the largest drops at street and city levels, confirming its role in building spatial layout awareness and
providing a stable foundation for finer-grained reasoning.Removing RL reduces Street accuracy to
16.35% and City to 40.71%, showing that the model’s fine-grained reasoning capacity is weakened,
underscoring the importance of cues and reasoning processes introduced at this stage for strengthen-
ing multi-level reasoning. Removing OL produces the steepest performance drop, with Street, City,
and Region metrics falling to 15.54%, 38.07%, and 52.65%, respectively, demonstrating that this
module is indispensable for enhancing the model’s direct fine-grained location prediction capability;
by training intuitive localization beyond reasoning, it preserves both high accuracy and high capac-
ity in multi-scale tasks. Removing CM lowers Street,City and Region accuracy to 17.78%,40.57%
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Table 3: The ablation results of Clue2Geo on Im2GPS3k (without Coordinate Refinement).

Method Street(1km) City(25km) Region(200km) Country(750km) Continent(2500km)
w/o RC 14.58 40.44 54.35 70.14 83.52
w/o RL 9.34 36.97 53.32 70.00 84.08
w/o OL 5.27 26.33 45.41 67.43 82.65
w/o CM 13.61 36.87 47.81 61.83 76.24
Clue2Geo 15.45 41.04 55.26 70.47 83.92

and 54.02%, respectively, indicating that structured cue modeling and multi-level guided reasoning
provide valuable contextual constraints that stabilize and improve performance at medium to high
granularities. Finally, removing CR leaves City and Region largely unaffected but sharply reduces
Street accuracy to 15.45%, highlighting the retrieval module’s unique role in mitigating prediction
variance, supplying reference coordinates aligned with real-world distributions, and boosting fine-
grained stability and precision.

We found that post-coordinate refinement often acts as a “safety net” in the final results, masking the
true contributions of other modules. To eliminate the stability compensation and smoothing effects
introduced by coordinate refinement, we removed it, allowing the model’s multi-scale geolocation
and reasoning capabilities to be directly evaluated in a “raw output” state. Table 3 presents the
ablation results under this setting.

Without coordinate refinement, removing RC drops accuracy to 14.58% (Street), 40.44% (City),
and 54.35% (Region), indicating that RC helps establish coarse spatial layouts and macro-level
geographic semantics, thereby laying the foundation for subsequent fine-grained localization. In
contrast, removing RL causes a sharp decline to 9.34% (Street) and 36.97% (City), showing that
RL mainly supports fine-grained reasoning and multi-cue integration, greatly enhancing the model’s
ability to recognize complex landmarks and local environments. The removal of OL has the most
pronounced effect, reducing accuracy to 5.27% (Street) and 26.33% (City), which underscores OL as
a key component for maintaining fine-grained performance. Without OL, the model relies primarily
on coarse-grained information, causing fine-level metrics to nearly halve. Similarly, removing CM
leads to noticeable drops across all metrics, falling to 13.61% (Street) and 36.87% (City). This
demonstrates that CM not only provides essential supplementary information for fine-grained street-
level localization but also acts as a stabilizing framework for large-scale reasoning.

These results indicate that Clue2Geo’s design is not a simple stacking of modules but a synergistic
multi-modal and multi-stage system: the cluemap stabilizes multi-scale reasoning, coarse-grained
tuning provides global spatial awareness, landmark-level tuning enhances fine-grained recognition,
fine-grained optimization ensures precise direct prediction, and post-coordinate refinement smooths
errors and improves robustness. Together, these modules enable the model to achieve breakthroughs
in fine-grained geolocation while maintaining coarse-grained accuracy, demonstrating balanced, ro-
bust, and high-precision performance across multi-scale tasks.

5 CONCLUSION

In this study, we propose Clue2Geo, a global image geolocation framework that integrates LVLMs
with structured geographic cues. Unlike previous approaches relying on single visual features
or lacking explicit structural modeling, Clue2Geo systematically extracts cues and constructs a
cluemap to capture their relationships and importance. By introducing local consistency and se-
mantic coherence, it identifies the most representative cues and models their relationships, provid-
ing structured and interpretable inputs for geolocation. We further design a three-stage fine-tuning
strategy, from city-level to landmark-level and optimization, to enhance the model’s multi-scale
reasoning ability. In addition, a post-processing module based on RAG effectively mitigates predic-
tion bias and further improves the stability and accuracy of fine-grained localization. Experimen-
tal results show that Clue2Geo achieves significant performance gains across multiple scales and
scenarios, demonstrating superior generalization, interpretability, and robustness in cross-domain
environments, and offering new directions for global image geolocation research and applications.
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ETHICS STATEMENT

We use publicly available street-view images from Mapillary to fine-tune large models for geoloca-
tion tasks.Although Mapillary has already blurred faces and license plates to protect privacy, private
residences remain visible in the images. All data usage complies with Mapillary’s CC BY-SA li-
cense, with proper attribution provided. Users should be aware of potential geographic or cultural
biases and avoid applications that could infringe on privacy or enable surveillance. Our resources
are intended solely for research purposes.

REPRODUCIBILITY STATEMENT

Due to space constraints in the main text, we are unable to provide detailed implementation details
of Clue2Geo. To ensure reproducibility, we provide the complete implementation details in the
appendix, including the cue extraction methods, prompts used for fine-tuning, the construction of
the cluemap, and the usage of the retrieval database.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 CLUEMAP CONSTRUCTION

For the cue extraction component, we designed the following prompt,as shown in Figure 2.

For the construction of the cluemap, we used CLIP-cn-vit-h-14 as the visual and text encoder for
local consistency , and text2vec-base-chinese as the text encoder for semantic coherence. The
final importance score was assigned a weight of 0.5, meaning the importance was calculated as the
average of local consistency and semantic coherence.

A.1.2 MULTI-SCALE LOCALIZATION FINE-TUNING

For the city-level reasoning fine-tuning,landmark-level reasoning fine-tuning, and landmark-level
location optimization,we designed the JSON format.The example content is shown in the figure 3, 4
and 5.
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Extract and list all visually identifiable cues from the image that may be related to its geographic location:

1) Landmark buildings or distinctive structures — describe their detailed characteristics and quantify them 
when possible;
2) Natural landscape features (e.g., mountains, coastlines, specific vegetation);
3) Scene type (e.g., urban street view, rural field, indoor);
4) Any recognizable text in the image (e.g., road signs, shop signs, billboards — attempt to transcribe the 
text content);
5) Types or characteristics of vehicles (e.g., distinctive taxis or buses);
6) Typical clothing or activities of people;
7) Overall environmental atmosphere and style (e.g., weather, lighting).

The above types are for reference only — do not limit yourself to these categories. Each cue should be 
described in as much detail as possible.
Output format: (cue, detailed description of the cue)

Example:
(Tower structure, A tall tower with a complex metal framework, rectangular base tapering upwards with a
pointed top, symmetrical geometric design resembling the Eiffel Tower)

Extract as many cues as possible — there is no upper limit, but provide at least five.
Even subtle cues that might aid geographic inference should be included.
Output only the cues; do not include control characters or any prediction of the geographic location.

Figure 2: Prompt for extracting cues

"User":"According to the content of the picture, please deduce which country the picture appears in. Please
give the most likely answer and reasons, output in JSON format, e.g. {'country': '','city':" 'Reasons':''}.

"Assitant":{'country': 'US', 'city':"Chicago"'Reasons': 'This map shows some of the even numbered US
interstates that run east-west. The map also highlights that even numbered US interstate highway numbers

gradually increase the further north you travel (I-10 is in the south of the US whilst I-90 in the north). Note'}

Figure 3: The example of city-level reasoning fine-tuning

A.1.3 POST-PROCESSING COORDINATE REFINEMENT

In the post-processing coordinate refinement stage, for each predicted image we retrieved the 15
most similar and 15 least similar coordinates. Following the procedure described in (Jia et al.,
2024), we used three separate prompts, each time providing 5, 10, or 15 of the similar and dissim-
ilar reference coordinates respectively, and generated 1 predicted coordinate per prompt. We then
merged these 3 predicted coordinates with the original predicted coordinate to form a set of candi-
date coordinates. Finally, using the CLIP encoder described in (Jia et al., 2024), we encoded both
the image and the candidate coordinates and selected the coordinate with the highest similarity score
as the final prediction.

B THE USE OF LLMS

We employed LLMs to support our workflow throughout this study. Specifically, we leveraged GPT-
4o to assist in debugging portions of the code, helping to identify errors and suggest corrections;
and to refine and polish sections of the manuscript, improving clarity, sentence structure, and overall
readability.
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"User":"Based on the content of the image, infer the country where the scene appears and provide the most likely
answer. Then, follow these steps for multi-step reasoning using the extracted clues to identify the most probable
city and its landmark:

1.  Consider only the most important clue set 1, and determine a few candidate cities and landmarks it may
point to.

2.  Incorporate the second important clue set 2, and output the candidate cities and landmarks based on
combined reasoning from sets 1 and 2.

3.  Introduce the third clue set 3, integrate all three clue sets, and output the single city and landmark most
likely.

For the predicted location, output the corresponding GPS coordinates.

Notes:

If the city or landmark cannot be determined, fill in null.

Coordinates must be in decimal degrees (DD) format, not degrees-minutes-seconds (DMS) or any other
format, and retain at least four decimal places.

If there is no city or landmark, return the center coordinates of the next higher-level region.

Input clues in order of importance:

1. Clue Set 1:

Symmetrical composition: Four statues symmetrically distributed along a central axis, with equal
spacing on both sides, forming a strict geometric layout.

Giant stone sculptures: Four male heads carved into the mountain arranged east-west, from west
to east: a white male with a wig, a bearded white male, a white male with a dome hat, and a black
male with short hair, showing distinct racial features.

Coniferous forest vegetation: Tall fir-like trees in the foreground, with conical crowns and straight
trunks, approximately 3–5 meters high.

2. Clue Set 2:

Historical commemorative style: Sculptures in classical realistic style, focusing on facial muscle
details, characteristic of late 19th-century public art.

3. Clue Set 3:

No man-made buildings: Besides the stone sculptures, no houses, roads, or human constructions,
preserving the natural mountain shape.

Overcast lighting: Sky covered with uniform gray clouds, no direct sunlight, soft mountain
shadows, low contrast.

Granite mountain: Hard gray-white rock with black spots, visible artificial carving marks,
approximately 18 meters high and 24 meters wide.

"Assitant":

'country': 'United States', 'city': 'South Dakota', 'landmark': 'Mount Rushmore', 
'lat': '43.8811', 'lon': '-103.4542',
 'Reasons': 'Based on the provided visual clues, the location can be inferred as Mount Rushmore in South
Dakota, USA: first, the four giant male heads are arranged east-west in a symmetrical composition carved
on a granite mountain approximately 18 meters high and 24 meters wide, matching the distinctive features
of the Rushmore monument; second, the figures from west to east are Washington (with a wig), Jefferson
(bearded), Lincoln (with a dome hat), and Theodore Roosevelt (originally planned as a Native American
figure but actually unfinished; the description incorrectly identifies the fourth as a Black male, yet the
overall layout points to the four US presidents on Mount Rushmore); additionally, the sculptures are in late
19th-century classical realistic style, emphasizing facial muscle details, consistent with Mount Rushmore’s
carving style; furthermore, no man-made buildings are visible, the natural mountain shape is preserved,
the vegetation consists of tall fir-like coniferous trees, and the lighting is overcast with low contrast, all
matching the natural environment of the Black Hills in South Dakota, confirming the scene as Mount
Rushmore.'

Figure 4: The example of landmark-level reasoning fine-tuning
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"User":"Based on the content of the image, infer the country where the scene appears and provide the most likely
answer. Then, follow these steps for multi-step reasoning using the extracted clues to identify the most probable city
and its landmark:

1.  Consider only the most important clue set 1, and determine a few candidate cities and landmarks it may point
to.

2.  Incorporate the second important clue set 2, and output the candidate cities and landmarks based on
combined reasoning from sets 1 and 2.

3.  Introduce the third clue set 3, integrate all three clue sets, and output the single city and landmark most likely.

For the predicted location, output the corresponding GPS coordinates.

Notes:

If the city or landmark cannot be determined, fill in null.

Coordinates must be in decimal degrees (DD) format, not degrees-minutes-seconds (DMS) or any other
format, and retain at least four decimal places.

If there is no city or landmark, return the center coordinates of the next higher-level region.

Input clues in order of importance:

1. Clue Set 1:

Traditional architecture: The buildings feature a typical East Asian style, with red pillars and gray tiled
roofs, decorated with exquisite painted patterns, and have a symmetrical and solemn structure.

Scene type: An outdoor courtyard with a stone-paved ground, surrounded by traditional
buildings and modern signboards, clean and historically atmospheric.

Signboard: A vertical black signboard on the left side of the courtyard with white text and patterns,
though the exact content is unclear.

2. Clue Set 2:

Stone steps and platform: Several wide stone steps in the center of the square leading to a high
platform, with railings on both sides, designed simply and rustic.

Human activity: Several people walking or standing on the open space in front of the building, wearing
modern casual clothes,seemingly visiting or sightseeing

3. Clue Set 3:

Red pillars: The building’s supporting pillars are bright red, with smooth surfaces and stone bases at
the bottom, making them very striking.

"Assitant":'country': 'South Korea', 'city': 'South Korea', 'landmark': '1 street', 'lat': '37.28178572', 'lon': '127.0131513',

Figure 5: The example of landmark-level location optimizarion
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