
Mirage or Method? How Model–Task Alignment
Induces Divergent RL Conclusions

Haoze Wu1∗ Cheng Wang2∗ Wenshuo Zhao1 Junxian He3
1Zhejiang University 2National University of Singapore 3HKUST

waithz@zuaa.zju.edu.cn wangcheng@u.nus.edu junxianh@cse.ust.hk

Abstract

Recent advances in applying reinforcement learning (RL) to large language models
(LLMs) have led to substantial progress. In particular, a series of remarkable yet
often counterintuitive phenomena have been reported in LLMs, exhibiting patterns
not typically observed in traditional RL settings (e.g., spurious rewards, one-shot
RL). However, the precise conditions under which these observations hold remain
unclear. In this work, we identify a key factor that differentiates RL observations:
whether the pretrained model already exhibits strong Model-Task Alignment, as
measured by pass@k on the target task. Through systematic experiments across
diverse models and tasks, we find that while standard RL remains robust, many
counterintuitive results emerge only under strong model-task alignment.

Strong Model-Task Alignment Weak Model-Task Alignment

Before RL

Standard RL

Spurious reward

Test-Time RL

One-shot RL

Negative-

sample tra
ining

x Math

Before RL

Standard RL

Spurious reward

Test-Time RL

One-shot RL

Negative-

sample tra
ining

x Counterfactual

x Operation

x Puzzle

x Math

x Cipher

pa
ss

@
k

k

pa
ss

@
k

k

Figure 1: Model-task alignment, which is measured by pass@k accuracy on the evaluated task, drives
distinct outcomes from the same series of RL approaches.

1 Introduction

While RL yields significant performance improvements in LLM reasoning [7, 5, 20, 19]—mirroring
the success of RL in traditional domains such as games [16, 17]—we also observe several remarkable
yet often counterintuitive empirical phenomena. These effects appear to be unique to LLMs and
would be considered unexpected in traditional RL settings. For instance, single training examples

∗Equal Contribution. Work done during visit to HKUST.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

can match or rival full-dataset training performance [21], ground-truth reward may be surprisingly
dispensable [15], and training with negative samples alone can match sophisticated reward-based
methods [1]. While these findings have sparked considerable interest, the conditions under which
they hold remain underexplored—particularly concerning, given their potential implications for RL
practice, as existing conclusions rely heavily on limited settings dominated by Qwen models [14]
trained on mathematical tasks.
To this end, we conduct a systematic empirical study of several prominent RL claims, rigorously
validated across diverse model architectures and task domains—including both Qwen and non-
Qwen models on mathematical and non-mathematical tasks. Our controlled experiments reveal that
Model-Task Alignment, defined as the degree to which a model’s inherent capabilities match task
requirements and measured by pass@k accuracy, is a key predictor of when counterintuitive RL
phenomena arise. Our findings challenge the notion that spurious rewards work solely due to data
leakage. While concurrent work [22] attributes their efficacy to test-set contamination in Qwen
models, we show that spurious rewards remain effective even in clean settings—provided strong
model-task alignment is already present. This supports our broader hypothesis: alignment, not
reward fidelity, often governs success in LLM-based RL, especially as we scale to more challenging,
low-alignment regimes.

2 Hypothesis: Model-Task Alignment Dependency

Most counterintuitive RL findings arise from Qwen on math tasks [14, 23], casting doubt on gener-
alization—e.g., spurious rewards fail with Llama [13] on the same tasks [15]. Rather than viewing
“Qwen+math” as an outlier, we propose Model-Task Alignment Dependency: the efficacy of these
phenomena depends on how well a model’s capabilities match task demands, quantified via pass@k
accuracy, which we use to classify settings as aligned or misaligned.

Strategic Model and Task Selection. To operationalize our hypothesis, we quantify alignment
via pass@k across all model-task pairs (Figure 2; full results in Appendix A), identifying strong
alignment (e.g., Qwen2.5 on math; both models on KOR-Bench’s Operation/Counterfactual subsets)
and weak alignment (e.g., Llama3.1 on math; both models on most other logical tasks). This enables
us to test whether counterintuitive RL phenomena stem from alignment-specific conditions or reflect
fundamental RL properties. We describe these models and tasks in Appendix B.

1 2 4 8 16 32 64 128256512
Number of Samples

0

0.2

0.4

0.6

0.8

1

Pa
ss

@
k

Qwen demonstrates
superior mathematical
reasoning capabilities

AIME 2024

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128256512
Number of Samples

0

0.2

0.4

0.6

0.8

1
Both models exhibit
limited inherent logical
reasoning abilities

Puzzle (KOR-Bench subset)

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128256512
Number of Samples

0

0.2

0.4

0.6

0.8

1

Both models demonstrate
strong inherent reasoning
capabilities

Operation (KOR-Bench subset)

Qwen2.5-7B
Llama-8B-Instruct

Figure 2: Pass@k for different tasks. Different LLMs have significantly different abilities on different
tasks, which will affect how the RL techniques perform across model-task combinations.

The Contamination Hypothesis. Concurrent work [22] attributes the efficacy of spurious rewards
to pretraining data contamination, confirming leakage in Qwen models on several math bench-
marks. While we acknowledge contamination as a concern, we argue that inherent model-task
alignment—distinct from data leakage—is the more fundamental factor: models can exhibit strong
task performance even without test-set contamination. To verify this, we extend contamination
analysis beyond Qwen-math settings using the partial-prompt method [22] (details in Appendix C),
measuring exact match and ROUGE-L (where 1.0 indicates perfect reconstruction). As shown
in Table 1 and Appendix C, tasks like Operation and Counterfactual from KOR-Bench show no
contamination yet yield high pass@k scores, indicating strong inherent alignment.

2

Model Portion
AMC 23 MATH500 Puzzle Operation

ROUGE EM ROUGE EM ROUGE EM ROUGE EM

Qwen2.5-7B
0.4 63.78 23.91 50.36 8.20 19.56 0.00 21.37 0.00
0.6 64.42 33.73 60.98 21.20 19.62 0.00 24.25 0.00
0.8 73.23 49.39 66.42 40.20 19.24 0.00 20.18 0.00

Llama-3.1-8B
0.4 27.18 0.00 23.09 0.60 18.27 0.00 21.83 0.00
0.6 30.64 0.00 40.56 3.80 17.31 0.00 18.34 0.00
0.8 44.54 4.81 48.33 17.8 15.85 0.00 16.75 0.00

Table 1: Contamination Analysis across model-task combinations. Portion refers to the truncation
ratio of the prompt used to test whether models can complete the remaining content. Red indicates
potential contamination with strong model-task alignment; Gray indicates no contamination with
weak model-task alignment; Green indicates no contamination with strong model-task alignment. We
maintain this color scheme throughout the paper to indicate the categories of experimental settings.

3 RQ1 – Reward Signal: How Critical Is It?

Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B Family
Base 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8

RLVR (External Reward)
Correct 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

Random 10.0+6.7 57.5+16.7 45.7+14.7 10.2+8.7 32.7−12.5 0.0−1.2 53.6+26.4 30.8+13.6 1.2+0.4 6.8−1.2 3.6−1.2

Incorrect 6.7+3.4 57.0+16.2 43.1+12.1 0.0−1.5 30.3−14.9 0.0−1.2 60.8+33.6 12.8−4.4 0.4−0.4 6.4−1.6 3.2−1.6

Format 6.7+3.4 55.3+14.5 48.9+17.9 1.50.0 44.4−0.8 2.4+1.2 37.2+10.0 21.6+4.4 0.80.0 6.8−1.2 4.4−0.4

Self-Rewarded Reinforcement Learning
Vote 13.3+10.0 69.4+28.6 58.2+27.2 2.8+1.3 33.6−11.6 0.0−1.2 56.4+29.2 16.3−0.9 0.80.0 6.8−1.2 3.2−1.6

EM 11.6+8.3 70.8+30.0 57.8+26.8 1.50.0 37.5−7.7 0.0−1.2 67.2+40.0 27.2+10.0 0.80.0 6.8−37.6 3.2−13.6

Llama3.1-8B-Instruct Family
Base 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4

RLVR (External Reward)
Correct 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

Random 3.30.0 26.8−5.7 21.3+1.1 0.0−0.8 32.1−6.5 4.10.0 69.2+8.8 87.2+0.8 0.8−1.2 23.6−5.2 4.4−4.0

Incorrect 2.1−1.2 26.4−6.1 18.7−1.5 0.80.0 30.2−8.4 3.8−0.3 70.0+9.6 83.2−3.2 0.8−1.2 19.2−9.6 4.4−4.0

Format 3.1−0.2 31.5−1.0 18.7−1.5 0.80.0 36.4−2.2 4.10.0 68.8+8.4 85.6−0.8 2.00.0 28.0−0.8 6.4−2.0

Self-Rewarded Reinforcement Learning
Vote 4.6+1.3 37.7+5.2 23.0+2.8 1.5+0.7 35.9−2.7 4.3+0.2 67.2+6.8 83.2−3.2 2.00.0 28.0−0.8 8.8+0.4

EM 5.1+1.8 38.3+5.8 25.0+4.8 0.80.0 34.8−3.8 4.10.0 73.6+13.2 87.2+0.8 2.00.0 23.6−5.2 7.6−0.8

Table 2: Comprehensive evaluation of different reward signals in RL. “Vote” denotes Majority
Voting, “EM” means entropy minimization on self-generated samples only; OP: Operation ; CF:
Counterfactual.

This section examines how reward signal quality affects RL performance in LLMs. Prior work
shows that more accurate rewards do not always improve outcomes [4], and that strong models are
surprisingly robust to noisy rewards, while weaker ones are not [11, 15]. We extend this analysis
across diverse reward signals and model-task combinations (implementation details in Appendix D.1).
We present results in Table 2. From the results, we identify three critical findings regarding the impact
of reward signal quality on model performance (Appendix E.1 provides additional discussion):
Ground Truth Rewards Are Optimal. Across all models and tasks, ground truth rewards consis-
tently yield the strongest gains—e.g., Qwen2.5-7B improves from 3.3 to 14.2 on AIME24 and from
40.8 to 71.0 on MATH500—establishing them as the gold standard for RL in reasoning.
Alignment Governs Noisy-Reward Robustness. Robustness to spurious rewards depends on model-
task alignment. In strong-alignment settings (Red, Green), models tolerate random or inaccurate
rewards—Qwen2.5 maintains math performance, and both models improve on Operation/Counterfac-

3

tual tasks. In weak-alignment settings (Gray), spurious rewards fail (e.g., Llama3.1 on math, both
models on hard logical tasks), confirming alignment—not contamination—as the key factor.
Self-Rewarded Methods Are Limited. Self-rewarded approaches (e.g., majority voting, entropy
minimization) consistently lag behind external rewards. Though majority voting reaches 69.4 on
MATH500 with Qwen2.5, it falls short of ground truth rewards and generalizes poorly to logical
reasoning across models. Test-Time Reinforcement Learning (TTRL) [26] is essentially no different
from Self-Rewarded Reinforcement Learning when majority voting is employed. Thus, we are also
curious whether TTRL remains effective for different models and in domains beyond mathematics.
The results can be seen in Appendix E.2.

4 RQ2 – Is One-shot Enough for RL to Work?

Dataset

Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B

∅ 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8
full set 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

random-1 10.7+7.4 58.7+17.9 53.1+22.1 0.8−0.7 40.2−5.0 0.0−1.2 60.4+33.2 36.8+19.6 0.80.0 6.4−1.6 4.4−0.4

random-2 12.5+9.2 63.0+22.2 55.7+22.7 2.4+0.9 43.1−2.1 1.20.0 67.2+40.0 56.8+39.6 2.0+1.2 3.2−4.8 4.80.0
selected-1 12.3+9.0 65.2+24.4 55.2+24.2 0.8−0.7 39.9−5.3 0.0−1.2 69.2+42.0 38.4+21.2 0.80.0 8.00.0 6.4+1.6

Llama3.1-8B-Instruct

∅ 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4
full set 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

random-1 3.8+0.5 30.5−2.0 21.1+0.9 0.80.0 35.1−3.5 3.8−0.3 73.6+13.2 85.6−0.8 1.2−0.8 28.0−0.8 8.8+0.4

random-2 2.7−0.6 33.1+0.6 21.1+0.9 0.80.0 36.7−1.9 4.10.0 70.0+9.6 86.40.0 2.8+0.8 27.2−1.6 8.40.0
selected-1 3.7+0.4 30.3−2.2 22.3+2.1 0.80.0 34.4−4.2 3.8−0.3 69.2+8.8 88.8+2.4 2.00.0 19.2−9.6 6.8−1.6

Table 3: One-shot RL Results. OP: Operation; CF: Counterfactual. We only observe the effectiveness
of one-shot reinforcement learning in settings with strong model-task alignment (red and green).

Existing work [21] showed that training on a single carefully selected question can match full-
dataset performance, challenging conventional RL data requirements. They select samples using
reward-variance-based criteria, denoted as mselected (math) and lselected (logic). For comparison,
we also use one or two randomly chosen samples: (mrandom, lrandom) and (m′

random, l′random).
Specific examples are in Appendix H; all other settings follow Appendix D, with 300 training steps.
We present results in Table 3. Based on the experimental results, we identify two critical findings
regarding the effectiveness of one-shot RL (Appendix F provides additional discussion):
One-shot RL succeeds only under strong model-task alignment. In aligned settings (Red, Green),
models generalize well from a single example: Qwen2.5-7B nearly matches full-dataset performance
on MATH500 (65.2 vs. 71.0), and both models improve significantly on Operation/Counterfactual
tasks (e.g., Llama on Operation: 69.2 vs. baseline 60.4). In weak-alignment settings (Gray), gains
are minimal, indicating one-shot RL is effective only when strong foundational capabilities exist.
Sample selection strategy has limited impact. The reward-variance-based selection offers little
consistent advantage over random sampling: on MATH500, Qwen2.5 achieves 65.2 (selected) vs.
58.7–63.0 (random); for Llama3.1, differences are negligible across tasks—challenging the presumed
superiority of sophisticated selection.

5 RQ3 — Does RL Work with Only Negative Samples?
Recent work [25] has demonstrated that training exclusively on negative samples can be surprisingly
effective for model reasoning. However, these findings are primarily observed in scenarios with
strong model-task alignment. We investigate whether negative-only training generalizes to weak
model-task alignment scenarios, where models lack strong foundational capabilities.
Table 4 summarizes the performance of NSR and PSR relative to the full-signal DAPO baseline
across our three experimental categories. It reveals distinct patterns based on model-task alignment
(more discussion can be seen in Appendix G):

4

Math Tasks Logic Tasks

AIME24 MATH500 AMC SynLogic BBH BBEH
KOR Benchmark

OP CF Puzzle Logic Cipher

Qwen2.5-7B 3.3 40.8 31.0 1.5 45.2 1.2 27.2 17.2 0.8 8.0 4.8

DAPO 14.2+10.9 71.0+30.2 62.4+31.4 42.6+41.1 62.7+17.5 6.8+5.6 82.4+55.2 79.6+62.4 16.8+10.0 46.4+38.4 20.4+15.6

NSR 13.9+10.6 68.7+27.9 63.5+32.5 1.50.0 41.2−4.0 1.6+0.4 60.4+33.2 36.8+19.6 2.0+1.2 6.8−1.2 4.80.0
PSR 14.0+10.7 70.3+29.5 63.1+32.1 24.8+23.3 57.1+11.9 4.3+3.1 73.6+46.4 38.4+21.2 9.2+8.4 31.2+23.2 11.2+6.4

Llama3.1-8B 3.3 32.5 20.2 0.8 38.6 4.1 60.4 86.4 2.0 28.8 8.4

DAPO 6.7+3.4 38.6+6.1 25.1+4.9 21.0+20.2 49.1+10.5 4.3+0.2 76.0+15.6 88.8+2.4 15.6+13.6 34.4+7.6 11.6+3.2

NSR 7.9+4.6 36.9+4.4 24.7+4.5 0.0−0.8 34.2−4.4 4.3+0.2 67.2+6.8 86.40.0 2.00.0 28.0−0.8 5.2−3.2

PSR 7.9+4.6 35.7+4.2 23.6+3.4 13.0+11.5 43.3+4.7 4.10.0 69.2+8.8 89.6+3.2 12.0+11.2 34.4+7.6 10.8+2.4

Table 4: Results of NSR and PSR under different settings. When Model-Task alignment is strong,
both NSR and PSR yield pronounced performance gains for all models (Red and Green). Conversely,
under weak alignment, NSR-trained models exhibit no noticeable improvement (Gray).

Strong Model-Task Alignment Enables Effective Negative-Sample Learning. In strong alignment
settings (Red and Green), both negative-sample-only (NSR) and positive-sample-only (PSR) training
recover nearly all the gains of full-signal DAPO. For example, Qwen2.5-7B on MATH500 achieves
68.7 (NSR) and 70.3 (PSR) versus DAPO’s 71.0—demonstrating that when models already possess
strong domain capabilities, either signal alone can effectively drive learning.
Weak Alignment Reveals the Advantage of Positive-Only Signals. In weak alignment settings
(Gray), PSR consistently outperforms NSR across logical reasoning tasks. On SynLogic, PSR yields
substantial improvements (Qwen2.5-7B: 1.5 → 24.8; Llama3.1-8B: 0.8 → 13.0), whereas NSR
provides minimal gains. This indicates that while both approaches work under strong alignment, PSR
is significantly more robust when models lack foundational expertise.

6 Conclusion
This work reveals that Model-Task Alignment strength, measured by pass@k accuracy, serves as
the fundamental determinant of when counterintuitive RL phenomena emerge in language model
reasoning. We demonstrate that remarkable behaviors—including robustness to spurious rewards, one-
shot training effectiveness, and negative-only signal sufficiency—manifest primarily when models
already possess strong foundational capabilities in the target domain, functioning more as capability
elicitation mechanisms rather than genuine learning drivers for unfamiliar tasks.

References
[1] Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable

effectiveness of entropy minimization in llm reasoning, 2025.

[2] AIME. Art of Problem Solving — artofproblemsolving.com. https://
artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions,
2024. [Accessed 26-08-2025].

[3] AMC. Art of Problem Solving — artofproblemsolving.com. https://
artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions,
2023. [Accessed 26-08-2025].

[4] Yanjun Chen, Dawei Zhu, Yirong Sun, Xinghao Chen, Wei Zhang, and Xiaoyu Shen. The
accuracy paradox in rlhf: When better reward models don’t yield better language models. arXiv
preprint arXiv:2410.06554, 2024.

[5] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[6] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

5

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions

[7] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[8] Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q.
Tran, Quoc V. Le, and Orhan Firat. Big-bench extra hard, 2025.

[9] Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong
Weng, Aili Chen, Shiqi Chen, Yunan Huang, Mozhi Zhang, Pengyu Zhao, Junjie Yan, and
Junxian He. Synlogic: Synthesizing verifiable reasoning data at scale for learning logical
reasoning and beyond, 2025.

[10] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl. Link, 2025. Notion Blog.

[11] Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. The climb carves wis-
dom deeper than the summit: On the noisy rewards in learning to reason. arXiv preprint
arXiv:2505.22653, 2025.

[12] Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang, Zhoufutu Wen, Xingwei Qu, Jian
Yang, Jiaheng Liu, Minghao Liu, Xiang Yue, Wenhao Huang, and Ge Zhang. Kor-bench:
Benchmarking language models on knowledge-orthogonal reasoning tasks, 2024.

[13] Meta. The llama 3 herd of models, 2024.

[14] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025.

[15] Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

[16] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm, 2017.

[17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P.
Lillicrap, Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550:354–359, 2017.

[18] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[19] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[20] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025.

[21] Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng,
Xuehai He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large
language models with one training example. arXiv preprint arXiv:2504.20571, 2025.

6

https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

[22] Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan,
Yuhao Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of
reinforcement learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.

[23] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng
Zhou, and Zihan Qiu. Qwen3 technical report, 2025.

[24] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement, 2024.

[25] Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The
surprising effectiveness of negative reinforcement in llm reasoning, 2025.

[26] Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

7

A More Pass@k Results

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
pa

ss
@

k
AIME24

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
AMC23

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
MATH500

Qwen2.5-7B
Llama-8B-Instruct

Figure 3: Pass@k for math tasks. Qwen demonstrates strong capabilities across all three mathematical
evaluation datasets.

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1

pa
ss

@
k

Cipher
Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
Counterfactual

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
Logic

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1

pa
ss

@
k

Operation
Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
Puzzle

Qwen2.5-7B
Llama-8B-Instruct

1 2 4 8 16 32 64 128 256 512
Number of Samples

0.0

0.2

0.4

0.6

0.8

1
Overall

Qwen2.5-7B
Llama-8B-Instruct

Figure 4: Pass@k for KOR-Bench. Both models demonstrate strong inherent reasoning capabilities
in Operation and Counterfactual subtasks, but exhibit limited inherent logical reasoning abilities in
Cipher, Puzzle and Logic.

B Model and Evaluated Tasks

Building on our Model-Task Alignment Dependency hypothesis, we strategically design model-task
combinations that test the boundaries of current claims in RL for language model reasoning. Our
experimental design is motivated by the critical need to distinguish between findings that represent
universal RL properties versus those that emerge from specific model-task capability alignments. We
evaluate two representative language models from different families: Qwen2.5-7B-Base [14] and
Llama-3.1-8B-Instruct [13], enabling systematic comparison across model architectures with varying
baseline capabilities while controlling for architectural differences at comparable parameter scales.
Our evaluation encompasses mathematical and logical reasoning domains. For mathematical rea-
soning, we employ AIME24 [2], MATH500 [6] and AMC23 [3]. For logical reasoning, we utilize
SynLogic [9] (synthetic puzzles with 35 task types, we use the validation split), BBH [18] (multi-
step reasoning tasks), BBEH [8] (extended-difficulty version), and KOR-Bench [12] (knowledge-
orthogonal reasoning across five categories).

8

C Contamination Evaluation

C.1 Implementation Details

Our contamination analysis follows a systematic prompt truncation methodology to evaluate potential
data leakage across model-task combinations. Original prompts are truncated at varying ratios (0.4,
0.6, and 0.8) while preserving word boundaries, and models are asked to complete the remaining
content using greedy decoding for deterministic outputs. We measure contamination using ROUGE-L
scores between model completions and the actual remaining prompt content, where a perfect score of
1.0 indicates complete reconstruction and potential contamination. The evaluation pipeline employs
distributed processing to handle complex mathematical expressions and prevent evaluation timeouts,
with results aggregated across multiple rollouts to ensure statistical reliability.

C.2 More Contamination Results

Task Type Benchmark Model
Portion=0.4 Portion=0.6 Portion=0.8

ROUGE EM ROUGE EM ROUGE EM

M
at

h
Ta

sk
s AMC 23

Qwen2.5-7B 63.78 23.91 64.42 33.73 73.23 49.39
Llama-3.1-8B 27.18 0.00 30.64 0.00 44.54 4.81

MATH500
Qwen2.5-7B 50.36 8.20 60.98 21.20 66.42 40.20

Llama-3.1-8B 23.09 0.60 40.56 3.80 48.33 17.8

AIME24
Qwen2.5-7B 44.64 10.00 48.69 13.33 60.08 30.00

Llama-3.1-8B 26.08 0.00 30.80 0.00 50.50 13.33

L
og

ic
Ta

sk
s

Puzzle
Qwen2.5-7B 19.56 0.00 19.62 0.00 19.24 0.00

Llama-3.1-8B 18.27 0.00 17.31 0.00 15.85 0.00

Operation
Qwen2.5-7B 21.37 0.00 24.25 0.00 20.18 0.00

Llama-3.1-8B 21.83 0.00 18.34 0.00 16.75 0.00

Counterfactual
Qwen2.5-7B 18.88 0.00 19.96 0.00 18.66 0.00

Llama-3.1-8B 19.02 0.00 19.39 0.00 18.94 0.00

Logic
Qwen2.5-7B 22.08 0.00 27.28 0.00 28.23 0.00

Llama-3.1-8B 21.38 0.00 28.37 0.00 28.42 0.00

Cipher
Qwen2.5-7B 34.61 0.00 41.03 0.00 44.77 0.00

Llama-3.1-8B 29.59 0.00 36.95 0.00 42.93 0.00

Table 5: Extended Contamination Analysis across model-task combinations. Red indicates potential
contamination with strong baseline performance; Gray indicates no contamination with weak baseline
performance; Green indicates no contamination with strong baseline performance.

D Experimental Setup

Training Datasets and Evaluation. Except for the experiments on Test-Time RL (Appendix E.2),
we use DeepScaleR [10] as the training set for mathematical tasks and the training split of SynLogic-
Easy [9] for logical tasks. Evaluation datasets are as described in Appendix B. Following SynLogic [9],
all evaluations are conducted in a zero-shot setting, with avg@8 metrics computed for AIME 2024
and SynLogic to mitigate variance.

Training Configuration. Our experiments default to using the DAPO algorithm unless otherwise
specified. We set ϵlow = 0.2, ϵhigh = 0.28,max promt length=2048,max generation length=8192.
We use dynamic sampling, and set max_num_gen_batches = 2. We found that for logical task
training, each sampled batch often contains very few samples with non-zero reward variance. We made
two improvements: (1) When neither of the two generated sampling batches contains any samples

9

with non-zero reward variance (which usually happens in the early stages of SynLogic training when
the model cannot get any questions right), we use the second generated batch as the training batch. (2)
When the number of available samples from the two generations is less than the training batch size,
we duplicate the samples to match the training batch size. We don’t use length penalty. During most
training experiments, we set lr = 1e−6, batch size = 128,mini batch size = 64, temperature = 1.0.

D.1 Implementation Details of RQ1

Following the setting described in Appendix D, we train with different rewards for 300 steps on
mathematical and logical reasoning tasks, respectively. The format reward is different from that of
[15], we use the same template as SynLogic. In addition to this, the definition of the reward functions
is consistent.

D.2 Implementation Details of RQ3

In our implementation, Negative Sample Reinforcement (NSR) masks out all trajectories with reward
1 (correct answers) when computing the policy gradient, leaving only negative-rewarded samples to
drive updates. Conversely, Positive Sample Reinforcement (PSR) ignores trajectories with reward 0
and optimizes only on positively rewarded samples. All other hyperparameters remain identical to
the DAPO baseline described in Appendix D.

E More RQ1 Experimental Result

E.1 Discussion about RQ1

How Different Reward Signals Affect the Behavior of LLMs. In mathematical tasks, employing
ground truth rewards decreases the frequency of code usage in model responses[15]. Their study also
revealed that, in contrast to Qwen2.5-Math [24], the accuracy improvement of the Qwen2.5 Base
model was primarily attributed to a shift from code-based reasoning to language-based reasoning.
As shown in Table 6, we identify analogous trends in mathematical tasks. Specifically, for logic
puzzles, the application of ground truth rewards similarly reduces the incidence of code in responses.
However, other types of rewards, particularly format and random rewards, do not demonstrate a
significant impact on diminishing code usage frequency. We speculate that, throughout the RL
training process, ground truth rewards can steer the model away from its old reasoning pattern (i.e.,
producing reasoning responses with code) and toward a more natural, language-based reasoning
pattern.

Reward Type
MATH500 SynLogic

Before RL After RL Before RL After RL
Correct

89.1

12.4

57.3

21.7
Random 94.2 48.2
Format 96.7 50.7
Incorrect 28.1 28.3

Table 6: Code Usage Count of Qwen2.5-7B before and after RL training with different rewards.

As shown in Table 2, spurious rewards are effective only on the Operation and Counterfactual for the
Llama model; consequently, we also report the frequency of code-based reasoning before and after
training on these two tasks. As shown in Table 7, we observe that, both before and after RL training,
Llama almost never invokes code during the reasoning process. We attribute the sporadic use of code
(0.8) to the fact that some SynLogic tasks explicitly require outputs to be presented as code blocks.
This indicates that Llama and Qwen exhibit distinct reasoning patterns even though they both benefit
from noisy reward signals in these settings.

E.2 Test-Time RL

Test-Time Reinforcement Learning (TTRL) [26] addresses a fundamental challenge in LLM devel-
opment: how to improve model performance on unlabeled test data without access to ground-truth
labels for reward signals. It prompts the model to generate multiple responses to each test question
and use the most frequent answer as the label for reward signals. Although the model is trained on

10

Reward Type
Operation Counterfactual

Before RL After RL Before RL After RL
Correct

0.0

0.8

0.0

0.0
Random 0.0 0.0
Format 0.0 0.0
Incorrect 0.0 0.0

Table 7: Code Usage Count of Llama-3.1-8B-Instruct before and after RL training on two tasks.

the unlabeled test set, this approach is essentially no different from Self-Rewarded Reinforcement
Learning when majority voting is employed. Thus, we are also curious whether TTRL remains
effective for different models and in domains beyond mathematics.
Table 8 shows the results of the Qwen and Llama models on different tasks. Due to the limited scale
of the test dataset, we trained for 30 steps on all test datasets. It could be observed that in settings
where the model–task alignment is strong, TTRL yields substantial improvements, as exemplified by
Qwen on math tasks and Operation subset. For tasks in which the model lacks initial prior knowledge,
TTRL fails to deliver improvements or yields only marginal gains. As discussed by [26], majority
voting is the foundation of TTRL. We also recorded the variation of Maj@16 during the training
process; the results are shown in Table 9. We can observe that, in settings where TTRL yields
substantial improvements, Maj@16 consistently rises throughout training. Especially for Qwen on
Operation subset, it achieves an absolute gain of 16.4 points. This further underscores that TTRL’s
efficacy hinges on strong model–task alignment, rather than on contamination.

Model MATH500 SynLogic OP Model MATH500 SynLogic OP
Qwen2.5-7B 40.8 1.5 27.2 Llama-3.1-8B-Instruct 32.5 0.8 60.4
+TTRL 62.1+21.3 1.8+0.3 55.6+28.4 +TTRL 41.2+8.7 0.80.0 83.6+23.2

Table 8: Test-Time Reinforcement Learning (TTRL) performance changes. TTRL produces signifi-
cant gains only when model-task alignment is strong (red and green cells).

Step 0 Step 5 Step 10 Step 15 Step 20 Step 25 Step 30

Qwen+Math500 54.2 60.6 64.3 68.2 67.1 69.3 70.5+16.3
Qwen+SynLogic 2.2 3.0 3.7 4.4 4.4 4.4 5.2+3.0
Qwen+OP 46.0 53.6 55.6 57.2 58.8 60.0 60.0+16.4

Llama+Math500 46.3 48.6 51.3 53.2 53.9 55.0 54.7+8.4
Llama+SynLogic 1.5 1.5 2.2 1.5 2.2 2.2 2.2+0.7
Llama+OP 73.6 78.0 79.6 84.0 83.6 86.8 88.4+14.8

Table 9: The variation of Maj@16 as training progresses. In tasks where TTRL brings significant
improvements (red and green), Maj@16 continues to improve with training.

F Discussion of RQ2

Training on a single sample for mathematical tasks can quickly improve the accuracy of that sample
and also lead to improvements on the test set [21]. We attempt to verify this conclusion on logical tasks.
Considering that the initial rollout accuracy of the model on lselected is 0, we additionally sample
two examples whose initial rollout accuracies on Qwen2.5-7B are 5/16 and 1/16 (on Llama-3.1-8B-
Instruct are 3/16 and 1/16), denoted as lsimple and lmid. During training, we track three metrics:
the rollout accuracy of these examples acc1−shot, the accuracy of the subtask to which this example
belongs (in-distribution) accid, and the accuracy of other subtasks in SynLogic (out-of-distribution)
accood. The results are shown in Figure 5.
One-shot RL possesses the ability to generalize within the distribution. When the problem is
relatively simple (with an initial rollout accuracy that is not zero), the model’s rollout accuracy on
that sample quickly increases. Although the initial rollout accuracy of lmid on Qwen is only one-fifth
that of lsimple (on Llama is one-third), it still attains a high rollout accuracy within a few dozen steps.

11

Since GRPO and DAPO compute advantages via intra-group normalization, the model is unable to
derive any informative feedback from samples whose initial rollout accuracy is zero. Moreover, we
observe that the test accuracy for the same subtask also continues to improve, demonstrating effective
within-distribution generalization.
One-shot RL struggles to generalize to other types of logic puzzles. We find that while models can
improve on tasks similar to their training example, they fail to transfer learning to different puzzle
types. This suggests that one-shot learning primarily exploits existing model capabilities rather than
developing new reasoning skills.

0

0.2

0.4

0.6

0.8

1

Q
w

en
 A

cc
ur

ac
y

Train with lsimple

acc1 shot(rollout)
accid

accood

Train with lmid

acc1 shot(rollout)
accid

accood

Train with lselected(hard)
acc1 shot(rollout)
accid

accood

0 30 60 90 120 150 180 210 240 270 300
Steps

0

0.2

0.4

0.6

0.8

1

Ll
am

a A
cc

ur
ac

y

acc1 shot(rollout)
accid

accood

0 30 60 90 120 150 180 210 240 270 300
Steps

acc1 shot(rollout)
accid

accood

0 30 60 90 120 150 180 210 240 270 300
Steps

acc1 shot(rollout)
accid

accood

Figure 5: The changes in two models’ accuracy during the training. If the initial rollout accuracy
is non-zero, both models rapidly fit the employed samples (lsimple, lmid) and exhibit generalization
within the same subtask; however, we observe no generalization to puzzles of other types.

F.1 More Discussion about Difficult Example in One-shot RL

During training with lselected, apart from the rollout accuracy (reward) remaining consistently at 0,
metrics such as entropy and response length also exhibit almost no changes. As shown in Figure 6,
after 300 training steps, the model still maintains a large reinforcement learning exploration space.

10 50 100 150 200 250 300
Step

500

520

540

560

580

R
es

po
ns

e
Le

ng
th

response length

10 50 100 150 200 250 300
Step

1.8

1.9

2.0

En
tro

py

entropy

Figure 6: Training Dynamics of Qwen2.5-7B when trained with lselected. Entropy and response
length exhibit almost no changes.

G Discussion of RQ3
The relationship between positive and negative samples in reinforcement learning is fundamentally
connected to the exploration-exploitation trade-off, with entropy serving as a key mediator. To

12

elucidate these dynamics in our experimental context, we examine how different sample types affect
the exploration-exploitation balance through their impact on training entropy.

Negative Signals Help Maintain Exploration. Figure 7 plots token-level entropy throughout train-
ing. Consistent with [25], NSR slows entropy collapse, especially on mathematical tasks—suggesting
that penalising only erroneous trajectories can preserve output diversity. However, the flatter entropy
curve on logical tasks corresponds to poorer final accuracy.

0 50 100 150 200 250 300
Step

0.0

0.5

1.0

1.5

2.0

En
tro

py

Logic Tasks

DAPO
PSR
NSR

0 50 100 150 200 250 300
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
tro

py

Math Tasks

DAPO
PSR
NSR

Figure 7: Entropy Dynamics of Qwen2.5-7B during Training. NSR can maintain the exploration
space of RL, but a larger exploration space is not always favorable, as in logical tasks.

13

H Few-shot RL Example Details

Details of example mselected

How many positive divisors do 9240 and 13860 have in common?

Details of example mrandom

The angles of quadrilateral PQRS satisfy ∠P = 3∠Q = 4∠R = 6∠S.
What is the degree measure of ∠P?

Details of example m′
random

Given a finite sequence S = (a1, a2, . . . , an) of n real numbers, let A(S)

be the sequence
(

a1+a2

2 , a2+a3

2 , . . . , an−1+an

2

)
of n−1 real numbers. Define

A1(S) = A(S) and, for each integer m, 2 ≤ m ≤ n − 1, define
Am(S) = A(Am−1(S)). Suppose x > 0, and let S = (1, x, x2, . . . , x100).
If A100(S) =

(
1

250

)
, then what is x? AND If x, 2x + 2, 3x + 3, . . . are in

geometric progression, the fourth term is:

Details of example lselected

Here’s a mathematical expression: ?-?+(6%5)*2-?+?/?/?/4/2 = 2. The
digits on the left side of the equation have been replaced with
question marks. Each question mark corresponds to a digit between 0
and 9. You need to try replacing the question marks with the correct
digits to restore the expression.Please put the complete expression
with the filled - in digits between [[and]] at the end of your
response, with no other content, like this: [[2 + 4 * 3 - 4 = 10]]

Details of example lrandom

Solve this cryptarithm: RRYUU + UYR + U = RYUUU (where RRYUU is a
5-digit number, UYR is a 3-digit number, U is a 1-digit number, and
RYUUU is a 5-digit number). Each letter represents a unique digit.
Find the digit substitution that makes the equation true.

14

Details of example l′random

In this Number Wall puzzle, add walls (marked as ’A’) to divide the
grid into islands. Each island must contain exactly one number, and
its size must equal that number.
Grid:
+––+––+––+
| X | 3 | X |
+––+––+––+
| X | X | X |
+––+––+––+
| X | X | X |
+––+––+––+
Rules:
- Each island must contain exactly one number.
- The total number of cells in an island (including the number cell)
must equal the value of that number.
- All cells within an island must be connected horizontally or
vertically.
- Walls (marked as ’A’) cannot form 2×2 or larger continuous
rectangles.
- All islands must be separated by walls.
AND
In the cryptarithm: MMII + MIXIMM = MMXIIX, each letter stands for a
different digit (MMII is 4 digits, MIXIMM is 6 digits, and MMXIIX
is 6 digits). Determine what each letter represents to make the
equation true.

Details of example lsimple

In this word sorting challenge, you need to rearrange words in
increasing based on a modified alphabet where l,z and a are the first
letters. Words to sort: yachted,coelomic,harateen. Write your
final answer inside: \boxed,like this: \boxedword1,word2,word3.

15

Details of example lmid

You are an expert proficient in Dyck language, where you must
complete all types of unclosed brackets (e.g., [], , <>) in
language sequences. You need to analyze the steps of bracket
pairing according to Dyck language rules. Given an initial Dyck
language sequence and steps for deriving the closed bracket sequence
(presented in a thinking process format), your task is to identify
locations with incorrect reasoning in the Dyck language, and there
may be multiple errors. This could be forgetting to close a bracket,
using the wrong closing bracket, or incorrectly copying a subsequence
of closing brackets in the next step. Task: Check the sequence to
ensure brackets are properly closed. Input: [[(){}]]{}
Thought 1: We should process the input one by one and track the
stack configuration.
Thought 2: Stack: Empty
Thought 3: [; Stack: Empty
Thought 4: [; Stack: [[
Thought 5: (; Stack: [[(
Thought 6:) ; Stack: [[
Thought 7: { ; Stack: [[{
Thought 8: } ; Stack: [[
Thought 9:] ; Stack: [
Thought 10:] ; Stack: Empty
Thought 11: { ; Stack: {
Thought 12: } ; Stack: Empty
Thought 13: Now, we have reached the end. The final stack is empty.
Question: Are there any reasoning errors in this sequence?

16

	Introduction
	Hypothesis: Model-Task Alignment Dependency
	RQ1 – Reward Signal: How Critical Is It?
	RQ2 – Is One-shot Enough for RL to Work?
	RQ3 — Does RL Work with Only Negative Samples?
	Conclusion
	More Pass@k Results
	Model and Evaluated Tasks
	Contamination Evaluation
	Implementation Details
	More Contamination Results

	Experimental Setup
	Implementation Details of RQ1
	Implementation Details of RQ3

	More RQ1 Experimental Result
	Discussion about RQ1
	Test-Time RL

	Discussion of RQ2
	More Discussion about Difficult Example in One-shot RL

	Discussion of RQ3
	Few-shot RL Example Details

