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Abstract
Comprehensively understanding and accurately001
predicting the performance of large language002
models across diverse downstream tasks has003
emerged as a pivotal challenge in NLP research.004
The pioneering scaling law on downstream005
works (Hu et al., 2024; Isik et al., 2024) demon-006
strated intrinsic similarities within model fam-007
ilies and utilized such similarities for perfor-008
mance prediction. However, they tend to over-009
look the similarities between model families010
and only consider design factors listed in the011
original scaling law. To overcome these limita-012
tions, we introduce a novel framework, Collab-013
orative Performance Prediction (CPP), which014
significantly enhances prediction accuracy by015
leveraging the historical performance of var-016
ious models on downstream tasks and other017
design factors for both model and task. We018
also collect a collaborative data sourced from019
online platforms containing both historical per-020
formance and additional design factors. With021
the support of the collaborative data, CPP not022
only surpasses traditional scaling laws in pre-023
dicting the performance of scaled LLMs but024
also facilitates a detailed analysis of factor im-025
portance, an area previously overlooked.026

1 Introduction027

Large Language Models (LLMs) (Brown et al.,028

2020; Ouyang et al., 2022) have emerged as one of029

the most important AI research powered by large-030

scale parameters, high computational resources,031

and massive training data. With the substantial032

increase in model sizes, the evaluation cost of033

LLMs’ performance becomes even more signifi-034

cant. For example, testing a single LLM on cer-035

tain benchmarks often requires $10K+ and 4K+036

GPU hours (Liang et al., 2023). Therefore, un-037

derstanding the behaviors and predicting the capa-038

bilities of LLMs across scales under various tasks039

becomes a vital question (Ganguli et al., 2022a;040

Owen, 2024; Finnveden, 2020; Hu et al., 2024) for041

both researchers and engineers.042

Scaling laws (Kaplan et al., 2020; Hoffmann 043

et al., 2022; Hernandez et al., 2022; Gordon et al., 044

2021; Bahri et al., 2024; Muennighoff et al., 2023) 045

have been powerful tools for predicting the capabil- 046

ities of LLMs. It indicates a power-law correlation 047

between the model performance and design factors 048

such as computational measure (FLOPs) utilized 049

during training. Although the scaling law was orig- 050

inally proposed as a strong intuitive guide for de- 051

signing LLM, researchers (Hu et al., 2024; Ruan 052

et al., 2024; Isik et al., 2024) have extended its 053

utility into predicting model performances on vari- 054

ous metrics, such as BLEU in Machine Translation, 055

and different tasks. These works can accurately 056

predict model performances by utilizing the simi- 057

larity within each model family, e.g., models within 058

each family are usually trained on the same dataset. 059

However, there are several issues rooted in their 060

methods: the performance prediction 1) requires 061

transparent design factors that consume substantial 062

training resources to fit the curve, 2) is only tailored 063

to a certain model family and a specific task metric, 064

and 3) neglects the connections among different 065

models and tasks. 066

The aforementioned limitations motivate us to 067

design more effective methods for predicting the 068

performance of LLMs on downstream tasks. Two 069

observations sparked our attention. Firstly, A 070

strong similarity exists between model families, 071

e.g., LLama-family and GPT-family. Models from 072

different families behave similarly in prediction 073

distribution (Shrivastava et al., 2023) and emergent 074

phenomenon (Wei et al., 2022). Secondly, with 075

the emerging LLM models and the increasingly 076

diverse tasks, the cost of enumerating and bench- 077

marking models with tasks increases exponentially. 078

Therefore, we aim to utilize the similarities across 079

model families in order to collaboratively predict 080

the model performance over diverse tasks in an 081

accurate yet efficient way. 082

To incorporate the aforementioned intuitions, we 083

1



Academic paper

Technical Report

Leaderboard

Model Card

LLM 𝒋 Task 𝒊

History

Collaborative Data

𝑒𝑡𝑎𝑠𝑘

𝑒𝑀𝑜𝑑𝑒𝑙

Embedding

Function

Predicted Score 𝒔𝒊𝒋 

+

𝑣𝑖
1

𝑣𝑖
𝑇

𝑣𝑗
1

𝑣𝑗
𝑀

…

…

Collaborative Prediction

Collaborative 

Score Matrix

Model 

Feature

Task 

Feature

MLP Task Vector

… …

MF Task VectorMLP Model Vector MF Model Vector

MLP Layer GMF Layer

Linear Layer

……

Figure 1: Framework for Collaborative Performance Prediction of Large Language Models. This schematic
delineates two principal components: (1) Collaborative Data, which encompasses a score matrix illustrating the
performance of various LLMs across downstream tasks, along with external descriptive factors of both models
and tasks; (2) Collaborative Prediction Method, given the model and task IDs to leverage this collaborative data,
enabling accurate score prediction.

propose a new scheme, Collaborative Performance084

Prediction (CPP), to efficiently predict the perfor-085

mance of LLMs on evaluation tasks. This scheme086

learns the latent representations of LLMs and tasks,087

which captures the intrinsic similarity among dif-088

ferent models and tasks. The interaction (e.g., in-089

ner product) between the latent representations of090

LLMs and tasks can be utilized to predict the per-091

formance of LLMs on certain tasks. To fulfil the092

proposed scheme, we collect the LLM performance093

data from academic papers, technical reports, and094

open leaderboards covering 72 models and 29 tasks.095

To summarize, our scheme has several advantages:096

• Low Training Cost: Compared with meth-097

ods (Hu et al., 2024) that extend scaling law to098

various downstream tasks, no pre-training or fine-099

tuning of LLM is required in our scheme.100

• Prediction over proprietary model: Unlike pre-101

vious methods (Ruan et al., 2024), our scheme102

supports prediction over proprietary models with-103

out knowing key design factors, such as compu-104

tational measures.105

• Prediction from small to large: By utilizing106

cross-family information, our scheme can accu-107

rately estimate model performance, e.g., emer-108

gent ability, of large models on downstream tasks109

given the information from small models.110

• Beyond Scaling Laws: Our scheme is more gen-111

eral and can incorporate diverse factors, such as112

task description factors.113

• Factor-level Interpretability: Our scheme can114

provide interpretability by analyzing the factors115

importance of LLMs.116

Under our scheme, multiple customized pre-117

diction methods (e.g., COLLABORATIVE FITER-118

ING (Koren et al., 2022)) can be incorporated to pre-119

dict the performance of LLMs, further validating120

the feasibility and generality. Our method enables 121

more diverse factors as input, ranging from tradi- 122

tional LLM design factors to task design factors, 123

e.g., targeted ability and few-shot setting. 124

Upon extensive experimentation within the open- 125

released core leaderboard of HELM (Liang et al., 126

2023) and our collected historical matrix, our pre- 127

dictive performance demonstrated exceptionally 128

well. Specifically, even without any input of model 129

factors or task factors: in HELM, we use 50% 130

of the scores to predict the other 50%, the pre- 131

dictive ranking (derived from predicted scores) 132

achieves Accuracy =10%, and MAE@2 =39%; 133

in our collected matrix (characterized by a 44% 134

sparsity level) achieves an Accuracy =45%, and 135

the MAE@2 =84%. Notably, the accuracy of 136

our prediction from small to large LMs signifi- 137

cantly exceeded that predicted by scaling laws. 138

Using an analysis method similar to SHAPLEY- 139

VALUES (Lundberg and Lee, 2017; Shapley, 1952), 140

we elucidate the importance of different factors, 141

which surprisingly does not fully align with scaling 142

law (Kaplan et al., 2020). Therefore, our method is 143

undoubtedly more versatile. 144

2 Related Work 145

2.1 Downstream Scaling Law and 146

Performance Predictability of LLM 147

Scaling laws (Kaplan et al., 2020; Hoffmann et al., 148

2022; Hernandez et al., 2022; Bahri et al., 2024; 149

Muennighoff et al., 2023) for LLMs have increas- 150

ingly become a focal point in understanding and 151

guiding critical design decisions, such as model 152

size and the characteristics and volume of pre- 153

training data. Traditionally, most research in this 154

area has concentrated on how measures like cross- 155

entropy loss or perplexity scale. Subsequent stud- 156
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ies have extended these efforts to the scaling be-157

havior on translation (Isik et al., 2024; Ghorbani158

et al., 2021; Zhuocheng et al., 2023) and other159

downstream tasks modeling (Caballero et al., 2023;160

Henighan et al., 2020). The high predictability161

in LLMs capability has directly spurred extensive162

research work (see Survey Anwar et al. (2024))163

exploring whether LLMs can demonstrate pre-164

dictability on downstream tasks, which are consid-165

ered highly unpredictable in traditional ML knowl-166

edge (Ganguli et al., 2022a). Particularly, the167

“emergence” phenomenon (Suzgun et al., 2022; Wei168

et al., 2022) has challenged predictability, where169

models suddenly exhibit striking capabilities at170

specific training reources. Recent studies (Scha-171

effer et al., 2023) have made remarkable achieve-172

ments in breaking the discontinuities in perfor-173

mance brought about by emergence, and Ganguli174

et al. (2022a); Owen (2024); Finnveden (2020)175

demonstrated the predictability on downstream176

tasks, for instance, Hu et al. (2024) directly fits177

a curve of training resources and downstream task178

performance by repeatedly pretraining a specific179

model. Furthermore, Arora and Goyal (2023) pre-180

dicted the performance through decomposing the181

complex capabilities of LMs to some base skills.182

Given that predictability has now been estab-183

lished, we reassess the underlying premises that en-184

able this predictability: the prevailing similarities185

across multiple models and various downstream186

tasks (Liu et al., 2023; Perlitz et al., 2024; Polo187

et al., 2024; Torregrossa et al., 2020; Ilić, 2023).188

Based on this, we step beyond the limitations de-189

fined by scaling laws and propose a new methodol-190

ogy to predict the performance of LLMs on various191

downstream tasks.192

2.2 Collaborative Filtering193

Collaborative filtering (CF) (Koren et al., 2022) is a194

widely used technique in recommendation systems195

that predicts users’ preferences by collecting the196

historical preferences of many other users. The un-197

derlying assumption of CF is that similar users will198

share similar preferences on similar items. A sem-199

inal method in CF is matrix factorization (Koren200

et al., 2009) (MF). It reduces the dimensionality of201

the user-item matrix by learning the latent factors202

associated with users and items, respectively. This203

approach helps handle sparse data and improves204

scalability. The factorization of the user-item ma-205

trix R can be represented as 206

R ≈ P⊤ ·Q , (1) 207

where each column vector in P and Q represents 208

a specific user or item, respectively, with hidden 209

dimension d. The latent representations of users 210

and items capture the user preferences and item 211

properties in the latent space, and the inner product 212

· can be utilized to predict the interaction between 213

users and items. To optimize the latent feature 214

vectors, the following loss function is employed: 215

min
P,Q

∑
(u,i)∈Ω

(rui − p⊤
u · qi)

2 , (2) 216

which measures the squared differences between 217

the observed ratings rui and the ratings predicted 218

by the model p⊤
u · qi for each user-item pair (u, i) 219

in the set Ω of observed interactions. 220

Here, Yang et al. (2019) transferred the collabo- 221

rative filtering for ML model selection by predict- 222

ing the cross-valided errors, which demonstrates 223

CF’s adaptability and efficiency in diverse applica- 224

tion areas. 225

3 Background and Pilot Demonstration 226

3.1 Scaling Law on Downstream Tasks 227

For classic scaling laws, researchers propose a 228

hypothesized power-law relationship between a 229

model’s computational measures Cm (e.g., train- 230

ing FLOPs) and their performance loss Lm (e.g., 231

perplexity). Specifically, for a model m within a 232

family f (e.g., Llama-2 7B, 13B, and 70B), the 233

relationship is hypothesized as 234

log(Lm) ≈ ωf log(Cm) + bf , (3) 235

where ωf and bf are scaling coefficients cus- 236

tomized for each model family. Researchers fit 237

this formula through repeated scaling experiments, 238

then use it to accurately predict performance when 239

larger-scale (C ′ > C). Some studies (Finnveden, 240

2020; Owen, 2024) have adapted scaling laws to 241

specific downstream task metrics, proposing that 242

sigmoidal functions are more suitable for predic- 243

tions, as follows: 244

σ−1(Sm) ≈ ωf log(Cm) + bf , (4) 245

where Sm refers to the normalized downstream 246

scores of models within the range [0, 1]. How- 247

ever, applying scaling laws across different model 248
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Figure 2: Error Distribution of Predictions (Normalized Score and Rank Derived by Score) Based on the
HELM Lite Leaderboard Using Matrix Factorization: We evaluate the effectiveness of Matrix Factorization
(MF) using two latent factors, 7 and 10, across 2 training/validation split percentages. Accuracy is defined as the
percentage of instances where the predicted rank equals the actual rank. MAE@2 is defined as the percentage of
instances where the absolute difference between the predicted rank and the actual rank is 2.

families on various specific tasks presents a trade-249

off: fitting unique coefficients for each evaluation250

scenario (e.g., Llama 2 on MMLU) is a resource-251

intensive endeavor (Hu et al., 2024); alternatively,252

estimating these coefficients using a limited num-253

ber (3-5) of models within the same family may254

compromise the accuracy of the predictions. More-255

over, the recent work (Ruan et al., 2024) extends256

scaling law by incorporating latent variables to cap-257

ture the patterns across model families and tasks.258

3.2 Pilot Demonstration on HELM259

Scaling laws reveal that models from any family260

exhibit a similar performance trend as computa-261

tional measures increase. This insight suggests262

there are commonalities and connections between263

different models. These motivate us to employ264

the MF method to explore more similarities be-265

yond computational measures, e.g., the relationship266

among the different model families and tasks.267

We perform the aforementioned MF on the268

benchmark matrix to observe the error gap between269

predicted and truth (normalized) scores. Specifi-270

cally, we select the core leaderboard provided by271

HELM for our exploratory experiments with only272

model name, task name and performance scores.273

This leaderboard, 68 models and 16 tasks, pre-274

sented in a score matrix with a density of 82.5%,275

which includes both open-source and proprietary276

models, e.g., GPT-4 and Jurassic-2. Our method 277

treats all models and tasks as independent enti- 278

ties without introducing any prior similarity factors. 279

We hope to observe whether MF can predict the 280

remaining scores, giving a small part of the matrix, 281

where we evaluate two training/validation sets split 282

strategies: 10%/90%, 50%/50%. As illustrated in 283

Figure 2, MF can accurately predict most of the 284

missing scores within a low error range, which 285

proves that it can encode the similarity across the 286

model and the task without regression depending 287

on explicit computational measures variable. 288

4 Collaborative Performance Prediction 289

4.1 Definition 290

Motivated by pilot experiments, here we introduce 291

the concept of “Collaborative Performance Predic- 292

tion” (CPP) to facilitate the performance prediction 293

of LLMs. 294

Definition 1. Let M = {M1,M2, . . . ,Mn} be 295

a set of n LLMs, and T = {T1, T2, . . . , Tm} be 296

a suite of m tasks. Define the Score Matrix S, 297

which is an n×m matrix where each element sij 298

represents the performance score of model Mi on 299

task Tj . sij is defined as 300

sij =

{
score if tested,
unknown otherwise.

301
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Function: Employ an prediction method F to es-302

timate the unknown elements of S, denoted by ŝij ,303

based on the known values.304

Extention: Accommodate model design factors305

Vm = {V 1
m, V 2

m, . . . , V M
m }, such as common com-306

putational meatures, and task design factors Vt =307

{V 1
t , V

2
t , . . . , V

T
t }, such as targeted capabilities308

and few-shot settings.309

Based on this definition, our framework consists310

of two components: 1) collaborative performance311

data, 2) collaborative prediction methods. We312

anticipate that an accurate score can be predicted313

with the historical performance of various models314

on downstream tasks and other design factors for315

both model and task. Moreover, we can incorporate316

or solely rely on the factors describing the LLM317

and the associated downstream tasks.318

4.2 Collaborative Data319
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Figure 3: Distribution of Testing Coverage Across Mod-
els and Tasks. The left bar shows the number of tasks
each model has been tested on; The right bar illustrates
the number of models tested in each specific task.

Unlike the scaling law approach, which requires320

training resource factors to obtain the correlation321

between metric scores and factors at a high train-322

ing cost, our proposed method makes use of eval-323

uation results and other design factors reported324

from existing studies, referred to as collaborative325

data. Open-source leaderboards, such as Open-326

LLM1, HELM, and OpenCompass2, have made327

tremendous efforts on this issue in fairly evaluat-328

ing different LLMs. Our efforts extend beyond329

merely (Ruan et al., 2024) utilizing data from open-330

source leaderboards with matrix sparsity of 0%.331

We also extract test results from different models’332

papers, technical reports, and model cards. Ulti-333

mately, we have collected a score matrix of n = 72,334

m = 29 with a density of only 56%. Furthermore,335

we collected 12 and 4 detailed design factors for336

models and tasks. These details are listed in Ap-337

pendix B.1. Our data analysis is shown in Figure 3338

1https://github.com/bentoml/OpenLLM
2https://opencompass.org.cn/

and Figure 8. 339

Data Analysis. Based on the collective data, we 340

can make the following observations: a) Uneven 341

distribution of testing resources. We observe 342

significant variability in the deployment of testing 343

efforts, as shown in Figure 3. For instance, models 344

from the LLAMA series have undergone extensive 345

testing across various tasks, in contrast to mod- 346

els like GOPHER, where testing has largely stag- 347

nated. A similar disparity is also evident among 348

tasks, with MMLU and HELLASWAG receiving 349

considerable evaluation, whereas RACE has been 350

relatively underexplored. This trend suggests that 351

as LLMs proliferate and tasks evolve, the distribu- 352

tion of scores across the matrix will increasingly 353

skew, leading to a pronounced long-tail effect in 354

testing coverage for many tasks, barring a few that 355

consistently receive comprehensive evaluations. b) 356

Widespread variations in the scores. It is note- 357

worthy that identical models yield varying scores 358

on the same tasks across different studies (Shrivas- 359

tava et al., 2023; AI@Meta, 2024), a variation often 360

attributed to differences in prompt settings, model 361

versions, and the volume of test samples employed. 362

Typically, these score variations range within 0.1, 363

with scores normalized between [0, 1]. This phe- 364

nomenon underscores the importance of public 365

leaderboards and highlights researchers’ need to ar- 366

ticulate their testing frameworks when performing 367

customized evaluations clearly. When conflicted, 368

we prefer the results from the Open-LLM leader- 369

board in the collective data. c) Missing descrip- 370

tion/model card. We advocate for consistently 371

providing complete model cards for open-source 372

and proprietary models. Such a phenomenon is 373

shown in Figure 8 and, unsurprisingly, a long-tail 374

distribution is witnessed. While it is understand- 375

able that proprietary models might withhold spe- 376

cific details about parameters, they can still divulge 377

information about parameter scale and the extent of 378

pre-training. Furthermore, we recommend a more 379

thorough description of testing tasks, including sug- 380

gested few-shot settings and detailed descriptions 381

of targeted capabilities. 382

4.3 Prediction Methods 383

In Section 2.2, classical collaborative filtering meth- 384

ods are inspired to conduct the performance pre- 385

diction. In principle, most collaborative filtering 386

methods can be applied. Here, in addition to the 387

abovementioned MF, we also leverage neural col- 388
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laborative filtering (He et al., 2017) (NCF) meth-389

ods, which uses a multi-layer perceptron to learn390

the model-task interaction function to predict the391

score ŝij for a model i on a task j, providing a way392

to learn non-linearities in the data:393

ŝij = f(i, j|M, T , [Vi,Vj ], θ)

= MLP(pi, qj , [evi, evj ]),
(5)394

where M and T denote the sets of collaborative395

models and tasks, and their descriptive factors Vi,396

Vj optionally enrich the input data. Here, pj and397

qj are the latent vectors for model i and task j that398

capture the intrinsic properties of models and tasks,399

as well as embeddings [evi, evj ] derived from their400

descriptive factors, and θ represents the parameters401

of NCF.402

Moreover, we further simplify the model to ver-403

ify whether feasible to predict a score when only404

inputting the descriptive factors Vi, Vj into the pre-405

diction model:406

ŝij = f(i, j|Vi,Vj , θ)

= MLP(evi, evj),
(6)407

For both settings, where the goal is to predict the408

scores accurately, the loss function can be defined409

as follows:410

L(θ) =
1

N

∑
(i,j)∈D

(ŝij − sij)
2, (7)411

where N is the total number of scores set D for412

training, and sij is the true score for model i and413

task j.414

5 Experiments415

In this section, we evaluate the feasibility of CPP416

from an overall benchmark perspective and a model417

perspective in Section 5.1 and 5.2, respectively;418

we then analyze the importance of factors for both419

models and tasks in Section 5.3. Additionally,420

a substantial amount of ablation and analysis is421

placed in the appendix D, such as sparsity, the cor-422

relations in tasks and models, and which models423

and tasks are more critical for prediction.424

Experimental Setting. Our validation frame-425

work utilizes the aforementioned collaborative426

dataset as the score matrix S. We partition scores427

{sij} into train and validation set, detailed in Ap-428

pendix C.2.429

Evaluation Metric. To accurately evaluate CPP, 430

we adopt two types of metrics: 1) SCORE-LOSS 431

metrics including MSE LOSS and L1 LOSS be- 432

tween predicted scores and true scores (normalized) 433

on downstream tasks and 2) RANK-ACCURACY 434

metrics including ACCURACY and MAE@2 be- 435

tween the rank of predicted scores and true scores. 436

We elaborate on these metrics in Appendix C.1. 437

5.1 Evaluation from Benchmark Perspective 438

In this study, we select the abovementioned meth- 439

ods, MF and NCF, to verify whether sij can be 440

accurately predicted based on the input of model 441

i and task j. To examine whether enhancements 442

is helpful, we modify NCF to support the input of 443

design factors, detailed in Appendix C.2. Based on 444

Figure 4 and Table 1, we can make the following 445

observations: 446

First, all methods accurately predicted model 447

performance, demonstrating that collaborative fil- 448

tering mechanisms can predict model outcomes 449

based on collaborative data across different mod- 450

els and tasks. This prediction is achieved with- 451

out the need for explicit scaling factors or fitting 452

a log-power curve. Second, from MF to NCF, 453

the transformation in interaction mechanisms fur- 454

ther enhances accuracy, suggesting that model im- 455

provements can further augment the efficacy of our 456

methodology. Additionally, we were able to further 457

increase accuracy by incorporating factors, such 458

as model scaling variables and task descriptions, 459

into the NCF framework alongside ID information. 460

This confirms that incorporating explicit factors 461

can enhance model and task similarities. Finally, 462

among all metrics, we particularly noted that the 463

accuracy of the predictive ranking was acceptable. 464

In other words, researchers can use our method to 465

accurately predict the ranking range of their de- 466

veloped models on test tasks, thereby enhancing 467

model performance on specific tasks. 468

Predictability with Only Description Factors. 469

We validate whether high predictive accuracy can 470

still be achieved by only inputting the models’ and 471

tasks’ design factors. As demonstrated in Table 1, 472

the accuracy of predicted rankings (derived from 473

predicted scores) remains high, affirming that our 474

method supports predictions based solely on fac- 475

tors. However, the accuracy is lower compared 476

to other models, suggesting that finer-grained la- 477

tent similarities remain encoded as potential fac- 478

tors within the identity information across different 479
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Figure 4: Comparative visualization of predictive accuracy across various scoring methods. From left to right:
MF, NCF, NCF with Factor Enhancement, and NCF based solely on Factors. Each plot displays the regression
between predicted and actual scores, where the solid line represents the regression fit and the shaded area denotes the
confidence interval (CI). A line closer to the diagonal, which indicates perfect prediction, signifies higher prediction
accuracy. These plots demonstrate the enhanced performance in score prediction achieved through the integration of
factors into the NCF method.

Prediction Method Score-Loss Rank-Acc
MSE Loss ↓ Mean L1 Loss ↓ Mean Prec.(%) ↑ MAE@2(%) ↑

Matrix Factorization 2.16e−2(1.19e−4) 9.47e−2(2.89e−4) 44.33(0.69) 83.16(0.73)

Neural Collaborative Filtering 1.58e−2(4.22e−5) 8.94e−2(3.10e−4) 41.76(1.22) 84.98(0.42)

+ Factor Enhanced 1.25e−2(3.35e−6) 7.88e−2(6.31e−5) 45.45(0.33) 84.54(0.27)

Only Factor 1.75e−2(2.07e−5) 8.57e−2(1.48e−4) 33.47(0.12) 84.08(0.37)

Table 1: Comparison of prediction methods for LLM performance. Bold indicates the best-performed.

models and tasks.480

5.2 Evaluation from Model Perspective481

MSE_Loss@CPP: 0.0280

MSE_Loss@SL: 0.0208

(a) With no prior testing information (CPP-0)
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(b) With prior testing information on 2 tasks (CPP-2)
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MSE_Loss@CPP: 0.0151

MSE_Loss@SL: 0.0201

Predicted Score

0.0 0.2 0.4 0.6 0.8 1.0 Figure 5: Comparison of the predictive performance
of collaborative performance prediction (CPP) versus
traditional scaling laws (SL) for LLMs: (a) CPP-0, with
no prior testing information, and (b) CPP-2, with prior
testing on two tasks.

To mimic the utilization of CPP in the real world,482

this section takes a model perspective to investigate483

the predictive accuracy of CPP upon each model.484

Specifically, we propose two scenarios: (i) pre- 485

diction with no prior testing information and (ii) 486

prediction with prior testing information on 2 tasks. 487

These two scenarios correspond to real-world cases 488

when the model has not been developed or when the 489

model is tested on a few tasks and expects an accu- 490

rate prediction of its ability on other tasks. In both 491

scenarios, we focus on larger LLMs, e.g., LLama2- 492

70b, as they are more computationally expensive 493

to develop and test, requiring an accurate LLM 494

prediction. 495

We report the results of CPP and SL on both sce- 496

narios in Figure 5 and can draw the following con- 497

clusions. Under the CPP-0 scenario, CPP demon- 498

strated greater adaptability across different tasks 499

compared to SL, with points closely aligned along 500

the y = x line (“perfect prediction”) in Figure 5 501

(a). This suggests that CPP has effectively captured 502

task-specific characteristics, such as value ranges, 503

whereas SL, despite achieving a lower MSE-LOSS, 504

tends to concentrate its predictions around 0.5. Un- 505

der the CPP-2 scenario, the distribution of points 506

of CPP is noticeably closer to y = x, as shown in 507

Figure 5 (b), and its MSE-LOSS is also lower than 508

that of SL. This indicates that leveraging perfor- 509

mance data from other tasks considerably enhances 510

the model’s cross-task prediction capabilities, un- 511

derscoring a degree of consistency across tasks for 512

the same model. This approach demonstrates that 513

predictions for scaling LLMs on downstream tasks 514
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can be dynamically improved by evaluating perfor-515

mance on less computationally intensive tasks and516

using those outcomes to predict scores on subse-517

quent tasks more accurately.518

5.3 Factor Importance Analysis via519

SHAPLEY-VALUE520

In this section, we aim to conduct a factor impor-521

tance analysis of each design factor over CPP. The522

Shapley value, a concept derived from cooperative523

game theory (Shapley, 1952), offers a systematic524

approach to measuring individual factors’ contribu-525

tion in predictive models (Lundberg and Lee, 2017;526

Covert et al., 2021). A detailed formulation of the527

Shapley value is shown in Appendix C.3. Visual-528

ization for Shapley values of each design factor is529

shown in Figure 6.530

Figure 6: Mean Shapley Value on Each Factor.

Based on Figure 6 (a), we can make the follow-531

ing observations regarding model factors. First,532

we have discovered that in addition to tradition-533

ally important factors such as training data size534

and parameter size mentioned in scaling law (Ka-535

plan et al., 2020), other design factors significantly536

influence predictive outcomes. These include the537

model family, context window size, and batch size.538

Second, the importance of the model family cannot539

be overlooked, as it may relate to differences in 540

data quality across models, including proprietary 541

data or specific architectural details. For instance, 542

using a particular model family might mean adopt- 543

ing architectures or optimization techniques better 544

suited to specific tasks. Moreover, the size of the 545

context window also significantly affects model 546

performance. A larger context window allows 547

the model to better understand the context in long 548

texts, which is particularly crucial for long-context 549

LLMs (Xiong et al., 2023). Experience (Google, 550

2024) has shown that such models perform better 551

across a variety of tasks. Batch size, as another cru- 552

cial factor, affects the stability and speed of model 553

training. An appropriate batch size ensures a bal- 554

ance between the accuracy of gradient estimation 555

and computational efficiency during training. 556

As for the importance of task factors, results in 557

Figure 6 (b) show that the target ability among 558

all factors is more important. This also implies 559

that similarities between the domains of different 560

tasks can help predict outcomes. This conclusion is 561

consistent with previous observations (Ruan et al., 562

2024; Perlitz et al., 2024; Polo et al., 2024) 563

In summary, these findings indicate that LLMs 564

performance prediction should not rely solely on 565

traditional design factors limited by scaling law but 566

also on other key factors that might impact overall 567

model performance. 568

6 Conclusion and Discussion 569

Advancing beyond traditional scaling laws on 570

downstream tasks, we propose a collaborative per- 571

formance prediction framework for large language 572

models. It offers significant advantages, including 573

easy deployment, low training costs, and superior 574

predictive accuracy. Uniquely, it enables the incor- 575

poration of additional design factors and supports 576

an in-depth analysis of their impact, including fac- 577

tor importance and correlations in models and tasks. 578

For prediction, we collect a collaborative data con- 579

taining a large number of historical performance 580

and factors. 581

The predictive accuracy of our method is ex- 582

pected to improve as it benefits from an expanding 583

pool of collaborative data. Moreover, this approach 584

highlights the potential to identify neglected but 585

vital factors beyond traditional scaling laws, such 586

as task design factors, thereby enriching our com- 587

prehension of LLM performance predictability on 588

downstream tasks. 589
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Limitations590

“Single-source-of-truth”. When collecting the591

collaborative data, we hypothesize that each592

model’s performance on each task is identical.593

However, in the real world, the detailed testing set-594

ting, for instance, the testing prompt writing, can595

influence LLM’s performance variance. Although596

we observed this, we only saved one score from597

different sources. How to incorporate the setting598

of testing as an additional dimension remains to be599

solved in future works.600

Susceptibility to data quality. The prediction601

accuracy of CPP highly depends on the quality602

of collaborative data. The current version pas-603

sively collects collaborative data from online re-604

sources. Should information from either of these605

data sources be incorrect, the prediction capability606

of CPP would decrease correspondingly. To over-607

come such a limitation, jointly considering passive608

information collected from data sources and active609

information, such as performances of models tested610

on some tasks by the user, might be a solution.611

Utilizing techniques such as efficient benchmark-612

ing (Perlitz et al., 2024; Polo et al., 2024) could613

alleviate the cost of obtaining active information.614

Ethics Statement615

The data we use are collected from public papers,616

technical reports, open leaderboards, and model617

cards on GitHub.618
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B Collaborative Data 903

B.1 Data Description 904
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all the models and tasks we have collected. 906
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Accuracy: 0.02005
MAE@2: 0.10401

MSE Loss: 0.0316
L1 Loss: 0.13353

MSE Loss: 0.01135
L1 Loss: 0.06840

Accuracy: 0.07261
MAE@2: 0.29668

Training/Validation=10%/90%

Training/Validation=50%/50%

MSE Loss: 0.0210
L1 Loss: 0.1073

Accuracy: 0.03132
MAE@2: 0.1152

MSE Loss: 0.0070
L1 Loss: 0.0552

Accuracy: 0.09029
MAE@2: 0.3769

Latent Factor=7 Latent Factor=10

Figure 7: Error Distribution of Predictions (Normalized Score and Rank Derived by Score) Based on the HELM Lite
Leaderboard Using Neural Collaborative Filtering: We evaluate the effectiveness of Matrix Factorization (MF) using two
latent factors, 7 and 10, across 2 training/validation split percentages. Accuracy is defined as the percentage of instances where
the predicted rank equals the actual rank. MAE@2 is defined as the percentage of instances where the absolute difference
between the predicted rank and the actual rank is 2.

Models Tasks

’LLama-2-7B’, ’LLama-2-13B’, ’LLama-2-70B’, ’Llama 3 8B’, ’Llama 3 70B’,
’GLM-130B’, ’LLaMA-7B’, ’LLaMA-13B’, ’LLaMA-33B’, ’LLaMA-65B’,

’GPT-3-175B’, ’PaLM-540B’, ’Claude-V3 Haiku’, ’Claude-V3 Sonnet’,
’Claude-V3 Opus’, ’GPT-4’, ’gpt-3.5’, ’BLOOM-176B’, ’Luminous Base-13B’,

’Luminous Extended-30B’, ’Luminous Supreme-70B’, ’OPT-175B’,
’GPT-NeoX-20B’, ’GPT-J-6B’, ’sheared llama-2.7B’, ’sheared llama-1.3B’,

’INCITE-Base-3B’, ’INCITE-Base-7B’, ’TinyLlama-1.1B’, ’OpenLLaMA-3B-v1’,
’OpenLLaMA-3B-v2’, ’Pythia-1.4B’, ’Pythia-2.8B’, ’Falcon-7B’,

’Falcon-40B’, ’Falcon-180B’, ’Mistral 7B’, ’MPT-30B’, ’MPT-7B’,
’chinchilla’, ’Pythia-70M’, ’Pythia-160M’, ’Pythia-410M’, ’Pythia-1B’,

’Pythia-6.9B’, ’Pythia-12B’, ’Gopher - 280B’, ’Gopher - 44M’,
’Gopher - 117M’, ’Gopher - 417M’, ’Gropher - 1.4B’, ’Gopher - 7.1B’,

’MT-NLG 530B’, ’GLaM’, ’Phi-1.5-1.3B’, ’Phi-2-2.7B’, ’Yi-6b’, ’Yi-9b’,
’Baichuan 1-7B’, ’Baichuan 1-13B-Base’, ’Baichuan 2-7B-Base’,

’Baichuan 2-13B-Base’, ’InternLM2-7B’, ’InternLM2-20B’, ’Skywork-13B’,
’BlueLM-7B’, ’Qwen-7B’, ’Qwen-14B’, ’TigerBot-13b’, ’TigerBot-70b’,

’Gemma-2b’, ’Gemma-7b’

’BoolQ(0-shot)’, ’BIG-bench hard(3-shot)’,’WinoGrande(0-shot)’,’WinoGrande(1-shot)’,
’Winogrande(5-shot)’,’PIQA(0-shot)’,’SIQA(0-shot)’,’HellaSwag(0-shot)’,’HellaSwag(10-shot)’,

’ARC-e’,’ARC-c(0-shot)’,’ARC-c(25-shot)’,’OBQA(zero-shot)’,’MMLU(5-shot)’,
’HumanEval(pass@1)’,’MBPP(3-shot)’,’GSM8K(4-shot)’,’MATH(4-shot)’,

’TriviaQA(5-shot)’,’NaturalQuestions(0-shot)’,’NaturalQuestions(1-shot)’,’NaturalQuestions(5-shot)’,
’NaturalQuestions(64-shot)’,’LAMBADA(0-shot)’,’AGIEval English (3-5 shot)’,’RACE-m’,

’RACE-h’,’LogiQA’,’WSC’

Table 2: List of Models and Tasks

as the corresponding embedding methods, as listed912

in Table 3:913

Note that during data collection, not all factors914

are available. For these missing factors, such as915

CO2 and GPU hours, we replace them as zero val-916

ues when entering data.917

B.2 Data Analysis918

We conducted a statistical analysis of the data we919

collected, specifically examining the number of920

models tested for each task, the number of tasks921

tested for each model, and the number of models922

described by each factor. Since each task is con-923

sistently associated with four factors, we did not924

create a distribution chart for this aspect.925

C Experimental Setup 926

C.1 Evaluation Metrics 927

Apart from visualization, we also evaluate the 928

method based on two types of metrics: 1) SCORE- 929

LOSS Metric: we calculate MSE LOSS and L1 930

LOSS between predicted scores and true scores 931

(normalized) on downstream tasks; 2) RANK- 932

ACCURACY Metric: researchers are sometimes not 933

concerned with detailed scores but rather the rank- 934

ings the model is in, so we calculate the accuracy 935

of rank derived from the predicted scores, ACCU- 936

RACY and MAE@2. ACCURACY refers to the 937

percentage of instances where the predicted rank 938

equals the true rank, and MAE@2 refers to the per- 939

centage of instances where the absolute difference 940

between the predicted rank and the true rank is in 941

2, the formulation as below: 942
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Model
Factors Description Embedding

Model Family Type of model family, e.g., LLAMA 2, PYTHIA Categorical Embedding
Pretraining Dataset Size (B) Data size in miilons of tokens Numerical Embedding

Parameter Size (M) Number of model parameters in millions Numerical Embedding
GPUh GPU hours consumed Numerical Embedding
FLOPs Floating-point operations count Numerical Embedding

Context Window Max context size in tokens, e.g., 1024, 2048 Categorical Embedding
Batch Size (M) Size of batches in millions,e.g., 1M, 2M Categorical Embedding

Layers Number of layers in the model Numerical Embedding
Number Heads Number of attention heads Numerical Embedding
Key/Value Size Size of key/value in attention mechanism Numerical Embedding

Bottleneck Activation Size Size of activation in bottleneck layers Numerical Embedding
Carbon Emission (tCO2Eq) Carbon footprint of training Numerical Embedding

Task
Ability Type of targeted cognitive ability, e.g., reasoning Categorical Embedding

TaskFamily Related task family ,e.g., ARC Categorical Embedding
Output Format Format of task output, e.g., binary Categorical Embedding

Few-Shot Setting Description of few-shot learning setting,e.g., zero-shot, 32-shot Categorical Embedding

Table 3: Design Factors of Models and Tasks

Accuracy =

(∑N
i=1 1(ri = r̂i)

N

)
× 100%, (8)943

MAE@2 =

(∑N
i=1 1(|ri − r̂i| ≤ 2)

N

)
× 100%,

(9)944

where N is the total number of validation instances,945

ri is the true rank, r̂i is the predicted rank derived946

by the predicted score; 1(·) is the indicator function947

that evaluates to 1 if the argument is true and 0948

otherwise; | · | denotes the absolute value.949

C.2 Detailed Setting of Validation Prediction950

Accuracy Experiments951

In this section, we details the setup of each experi-952

ment in 5.953

Different Prediction Methods. Due to the 44%954

sparsity of the collected collaboration matrix, we955

used 5% of the known data as the validation set,956

with the remaining data serving as the observed957

training set. Through random splitting, we trained958

each model five times, deriving an average perfor-959

mance and variance. We configured our models960

with latent factors = 10, learning rate = 0.01, and961

iteration = 250, 000. The Figure 4 is the results962

when random_seed = 1.963

Predicting from Small to Large LMs. The fo-964

cus here is on how to derive the scaling law ap-965

plicable to specific task metrics. Undeniably, tra-966

ditional methods do not provide a directly usable967

scaling law across all downstream tasks for com- 968

parative analysis. However, we observed in the 969

literature (Ruan et al., 2024) that a sigmoidal curve 970

with a single coefficient and a single bias value 971

represents the scaling law for downstream tasks. 972

Moreover, we noticed that this curve’s coefficients 973

and bias values have a general range across all tasks, 974

w = [0.5, 2], b = [−10,−3]. Consequently, we set 975

this range of coefficients and bias for this curve 976

and then used the normalized scores of smaller 977

models within the same model family and their cor- 978

responding parameter sizes to fit the scaling law 979

curve for each task. This approach generally fol- 980

lows a “pretrain-finetune” methodology. Addition- 981

ally, CPP-2 refers to randomly selecting two scores 982

from the observed performances of the model to 983

be included in the training data. In this experiment, 984

we use factor-enhanced NCF (setting is same as 985

above). 986

C.3 Detailed Setting of Analysis Experiments 987

Shapley-Value for Factor Importance Analysis. 988

Given a predictive model f and a set of factors 989

N , the Shapley value of a factor i is computed as 990

follows: 991

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

· [v(S ∪ {i})− v(S)] ,

(10) 992

where: 993

• N is the total set of factors. 994
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Scaled LLMs Prior Tasks Score-Loss Rank-Acc
MSE Loss Mean L1 Loss Mean Prec.(%) MAE@2(%)

LLaMA 2-70B
CF-0 1.34e−2 8.83e−2 16.7 50.0
CF-2 1.79e−2(1.3e−3) 1.79e−2(5.6e−4) 9.1(7.5e−3) 54.5(5.7e−4)

LLaMA 3-70B
CF-0 5.63e−2 19.27e−2 14.3 71.4
CF-2 1.7e−2(1.41e−4) 10.7e−2 (1.68e−3) 20.0(4.0e−2) 90.0(9.0e−2)

LLaMA-65B
CF-0 1.73e−2 9.78e−2 24.0 80.0
CF-2 1.88e−2(1.42e−5) 10.02e−2(4.1e−4) 17.3(1.9e−3) 71.7(4.7e−4)

Luminous Supreme-70B
CF-0 6.06e−2 20.14e−2 27.27 63.63
CF-2 1.45e−2(1.1e−5) 10.79e−2(6.4e−7) 16.7(3.1e−3) 83.3(3.5e−3)

Pythia-12B
CF-0 2.19e−2 11.2e−2 21.42 71.42
CF-2 1.57e−2(2.1e−6) 10.88e−2(4.6e−8) 33.3(2.7e−2) 66.7(6.9e−3)

Yi-9b
CF-0 3.20e−2 14.66e−2 44.4 100.0
CF-2 0.9e−2(3.1e−4) 8.1e−2(5.1e−6) 71.4(9.1e−2) 100(0)

Baichuan 2-13B-Base
CF-0 2.70e−2 12.84e−2 57.14 100.0
CF-2 1.0e−2(4.9e−4) 7.5e−2(4.7e−4) 40.0(6.2e−4) 100.0(0)

Qwen-14B
CF-0 1.05e−2 7.96e−2 33.3 100.0
CF-2 3.1e−2(1.8e−3) 11.1e−2(6.6e−3) 25.0(7.1e−3) 91.7(6.9e−3)

TigerBot-70B
CF-0 8.02e−2 19.26e−2 12.5 75.0
CF-2 4.4e−2(2.9e−6) 15.3e−2(6.6e−5) 25.0(6.9e−3) 83.3(6.1e−3)

Gamma-7B
CF-0 4.94e−2 17.62e−2 15.79 47.36
CF-2 10.2e−2(3.2e−5) 25.9e−2(1.6e−4) 26.4(8.6e−4) 58.8(1.4e−2)

Falcon-180B
CF-0 5.00e−2 17.91e−2 14.58 57.14
CF-2 3.2e−2(2.1e−5) 10.42e−2(7.8e−5) 23.94(8.5e−2) 63.6(2.1e−5)

Gopher-280B
CF-0 14.48e−2 30.76e−2 15.38 61.53
CF-2 10.87e−2(3.6e−5) 23.59(4.2e−4) 27.33(1.8e−3) 66.49(6.8e−3)

Table 4: The accuracy of Predicting Scaled Large LMs in CPP-0, CPP-2.

• S is a subset of factors excluding factor i.995

• |S| is the number of factors in subset S.996

• v(S) is the prediction model’s output when only997

the factors in subset S are used.998

• v(S∪{i}) is the model’s output when the factors999

in subset S plus factor i are used.1000

• The factorial terms |S|! and (|N |−|S|−1)! weigh1001

the contribution of each subset according to the1002

number of factors included or excluded, ensuring1003

a fair allocation across all possible combinations.1004

The Shapley value, ϕi(v), quantifies the average1005

marginal contribution of a factor i across all pos-1006

sible combinations of factors. The formula takes1007

every subset S of the total factor set N that does not1008

include i, calculates the difference in the model’s1009

prediction output with and without factor i, and1010

averages this difference over all subsets. The av-1011

eraging is weighted by the factor |S|!(|N |−|S|−1)!
|N |! ,1012

which corresponds to the number of permutations1013

in which subset S appears as a prefix or suffix of1014

the total set when factor i is added.1015

This approach ensures that each factor’s con-1016

tribution is assessed fairly and comprehensively,1017

accounting for interactions with other factors and1018

its unique impact when combined in different ways.1019

Shapley values are particularly useful in machine 1020

learning for factor importance analysis because 1021

they provide a solid theoretical foundation and are 1022

less biased than simpler importance metrics. 1023

The Shapley value algorithm for analyzing fea- 1024

ture (factor) importance is computationally inten- 1025

sive, which has led to the development of vari- 1026

ous approximation methods (Jethani et al., 2022). 1027

Fortunately, our predictive model involves a man- 1028

ageable number of factors, allowing us to use the 1029

most accurate method of direct computation of 1030

Shapley values. Specifically, we apply an enumer- 1031

ation approach to compute Shapley values on a 1032

pre-trained factor-enhanced neural collaborative 1033

filtering model during the inference stage. This 1034

involves systematically masking factors to assess 1035

their impact. 1036

For the implementation, we mask factors differ- 1037

ently based on their data type as outlined in the 1038

Table 3: 1039

• numerical factors: we set the input factor values 1040

to zero; 1041

• categorical factors: we set the corresponding 1042

embedding layer parameters to zero. 1043

We then compute the difference in validation loss 1044
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Figure 8: The detailed distribution of collaborative data.

with and without each factor present, providing us1045

with each factor’s marginal contribution. This de-1046

tailed approach allows us to quantify precisely how1047

much each factor contributes to the predictive per-1048

formance of the model, providing valuable insights1049

into factor importance and model behavior.1050

D Ablation Study1051

D.1 Ablation on Sparsity Threshold1052

To ascertain whether matrices composed of col-1053

laborative performance data can accurately predict1054

the performance of LLMs, it is essential to con-1055

sider the critical variable: the matrix sparsity. We1056

assessed the impact of sparsity on prediction accu-1057

racy by manipulating the sparsity of the training1058

matrix via masking. This method allowed us to1059

obtain a reliable measure of average accuracy, as1060

illustrated in Figure. 9. It is noteworthy that our 1061

method of controlling sparsity only reduces the 1062

number of training samples. We ensured fairness 1063

in each comparative experiment by maintaining a 1064

consistent validation set throughout. During the 1065

experiment, we maintained the same settings for 1066

the learning rate and number of iterations as in 1067

the main experiment. To ensure the robustness of 1068

our experimental results, each reported outcome 1069

represents the average score after conducting five 1070

random splits. 1071
11     Performance Change with Sparsity 1111  
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Figure 9: Relationship between matrix sparsity and three key
performance metrics: L1 Loss, Accuracy, and MAE@2.

The data we collected inherently has a sparsity 1072

of 44%. Hence, we only have the remaining 46% 1073

of collaborative data. As sparsity levels range from 1074

49.60% to 88.80%(masking 10% to 80% of the 1075

collaborative data), the graph shows a pronounced 1076

increase in L1 Loss and a decrease in Accuracy, 1077

indicating deteriorating model performance with 1078

higher sparsity, especially when sparsity exceeds 1079

60%, where there is a significant drop in accuracy. 1080

Conversely, MAE@2 remains relatively stable ini- 1081

tially before experiencing fluctuations, suggesting 1082

varying impacts on this metric. Interestingly, ac- 1083

curacy even improves when sparsity reaches 50%. 1084

We think the possible reason for this might be the 1085

presence of an optimal level of information reduc- 1086

tion that removes redundant or noisy data without 1087

significantly compromising signal integrity. This 1088

phenomenon suggests that a moderate level of spar- 1089

sity could potentially enhance model performance 1090

by focusing on more relevant factors. 1091

D.2 Ablation on Predicting Performance on 1092

Complex Reasoning and CoT Tasks 1093

From the model perspective, it is crucial for validat- 1094

ing the feasibility of predictive methodologies to as- 1095

sess the predictive accuracy on special tasks poten- 1096

tially exhibiting “emergent” phenomena (Suzgun 1097

et al., 2022; Wei et al., 2022), including complex 1098

reasoning and Chain of Thought (CoT) tasks (Wei 1099

et al., 2023). “Emergent’ phenomena refers to the 1100

challenges associated with predicting performance 1101

from smaller models when the scale of a model ex- 1102
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pands significantly, resulting in discontinuous leaps1103

in model capabilities. The existence of this phe-1104

nomenon is subject to ongoing debate. Nonetheless,1105

recent efforts (Ganguli et al., 2022b; Hu et al., 2024;1106

Owen, 2024; Ruan et al., 2024; Schaeffer et al.,1107

2023) continue to focus on how scaling laws can1108

be modified to mitigate the “gap” between smaller1109

and larger models. This may involve modifying1110

metrics or incorporating additional data points to1111

linearize the growth curve or alternatively opting1112

for a sigmoidal curve.1113

Theoretically, these challenges are not too dif-1114

ficult for our prediction method, as the underly-1115

ing mechanism of “emergent” abilities reflects a1116

type of similarity—a commonality that manifests1117

when models exceed a certain scale. By analyzing1118

cross-model similarities—how other larger mod-1119

els demonstrate emergent capabilities compared to1120

their smaller counterparts—we can enhance our1121

predictive accuracy for the current model. Overall,1122

these tasks are pivotal for comprehensive valida-1123

tion processes, e.g., GSM8K (Cobbe et al., 2021),1124

BBH (Suzgun et al., 2022), HUMANEVAL (Chen1125

et al., 2021) and MBPP (Austin et al., 2021).1126

In detail, if we want to evaluate the performance1127

of predicting a model on these special tasks, the1128

training data is the performance information from1129

other model families, the smaller model of the same1130

family, and the random-selected two non-special1131

tasks prior performance of this model. In our ex-1132

periment, we tested the 4 models on these tasks,1133

and then we plotted the test results on Figure 10.1134

As illustrated in Figure 10, our predictive scores1135

are more adaptive to each task, where the points1136

are close along the “perfect prediction” line, which1137

means our prediction method captures the similar-1138

ity in the specific task across models. Our proposed1139

method’s MSE Loss is comparable to that of the1140

scaling law, which shows the feasibility of CPP (in1141

CPP-2).1142

D.3 Correlation between Models1143

Experiment. We conducted a “leave-one-out” ex-1144

periment to test the impact of Model A on the pre-1145

dictive performance of Model B. This involved1146

masking Model A and using the performance of1147

other models to train predictive methods, which1148

were then validated on Model B to observe changes1149

in loss. This approach generated a matrix with the1150

masked model names on the X-axis and the vali-1151

dation model names on the Y-axis, with the values1152

N
u

m
b

e
r
 o

f 
M

o
d

e
ls

Number of tested tasks per model

N
u

m
b

e
r
 o

f 
T

a
sk

s

Number of tested models on each task

Number of Models Containing the Feature

N
u

m
b

e
r
 o

f 
M

o
d

e
ls

MSE Loss@CPP = 0. 015121
MSE Loss@SL = 0.015207

MSE Loss@SL = 0.015207

Complex Reasoning and CoT Task Performance

Predicted Score

A
ct

u
a

l 
S

co
re

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.01512113372561584 0.015207895975085945

Figure 10: Comparison of the predictive performance of
collaborative performance prediction (CPP) versus traditional
scaling laws (SL) for Large Language Models (LLMs) in
Complex Reasoning and CoT Tasks.

representing the change in loss. 1153

The “Leave-one-out” experiment is a robust 1154

method commonly used in statistical analysis. To 1155

assess the impact of different models on the pre- 1156

dictive performance of a specific model, we imple- 1157

mented a strategy where we systematically masked 1158

each selected model in the training set. The proce- 1159

dure involved masking each model one at a time 1160

and then training and testing the loss on a validation 1161

model. This process was repeated across all mod- 1162

els, culminating in the creation of a matrix where 1163

axis=0 represents the masked model ID, and axis=1 1164

represents the validation model ID. The values in 1165

the matrix correspond to the loss observed. This 1166

experiment was conducted under three different 1167

random seeds to ensure the stability and reliability 1168

of the results. 1169

Subsequently, each model was used as a vali- 1170

dation set, with the remaining data serving as the 1171

training set to calculate the loss for each model. 1172

This also resulted in a matrix where axis=1 indi- 1173

cates the validation model ID, and the columns[:, 1174

valid model id] represent the corresponding loss 1175

for that validation model. We derived a delta loss 1176

matrix by calculating the difference between these 1177

two matrices. 1178

Given that each validation model has its own 1179

range of loss variations, we normalized the delta 1180

loss matrix. We then performed a row-based cor- 1181

relation analysis on this normalized matrix to as- 1182

sess the impact of each model on predictive perfor- 1183
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mance. The higher the correlation value between1184

the two models, the more similar their effects on1185

predictions.1186

Analysis. Based on this correlation matrix, we1187

further conducted a hierarchical clustering analy-1188

sis (Nielsen, 2016). The results indicate that there1189

exists a set of models that are similar in their im-1190

pact on the predictive performance of the model.1191

Other models are far away from them. (Details in1192

Table 5)1193

This analysis not only helps us understand the1194

specific contributions of each model to predictive1195

performance but also reveals the similarities and1196

differences in functionality among the models, pro-1197

viding a crucial basis for model optimization and1198

selection.1199

We performed a row-wise correlation analysis 131200

on this matrix and discovered that models from1201

the same family tend to have similar impacts on1202

predictions, as do models of the same size. Af-1203

ter conducting a hierarchical distance analysis, we1204

concluded that a group of models exists that, when1205

more performance data is available, can signifi-1206

cantly enhance the accuracy of the predictive mod-1207

els. There are also what might be termed “noise1208

model performances” in our analysis D.3.1209

D.4 Correlation between Tasks1210

We also conducted “leave-one-out” experiments1211

on these tasks and created a heatmap figure. 14 of1212

the correlations. Tasks with similar targeted ability1213

testing capabilities demonstrated similar influences,1214

such as GSM8K, MATH (Hendrycks et al., 2021),1215

ARC (Chollet, 2019), and HUMANEVAL, which1216

all require complex reasoning abilities.1217

E Others1218

E.1 Visualization1219

The figure 15 is the visualization for prediction1220

performance of scaled language models on down-1221

stream tasks.1222
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Figure 11: Instance Distribution of the model factor Shapley
value. X-axis represents the Shapley value, which indicates
the degree of prediction loss change; Y -axis indicates the
factor names in order of importance from top to bottom. Each
point represents an instance.
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Figure 12: Instance Distribution of the task factor Shapley
value. X-axis represents the Shapley value, which indicates
the degree of prediction loss change; Y -axis indicates the
factor names in order of importance from top to bottom. Each
point represents an instance.
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Figure 13: The correlation heatmap of impacts of different models on prediction performance.
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Figure 14: The correlation heatmap of impacts of different tasks on prediction performance.
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Figure 15: Prediction performance of various scaled Language Models on downstream tasks. This figure illustrates regression
plots comparing the predicted versus actual performance normalized scores for a series of large language models, including
Llama-2-70B, Llama-65B, Falcon-180B, Gopher-280B, Pythia-12B, Gemma-7B, TigerBot-70B, Qwen-14B, Luminous Supreme-
70B, and Llama-3-70B. Each subplot displays a regression line with a shaded 95% confidence interval and includes the L1 loss
for each model’s predictions, highlighting the accuracy and variability of predictive capabilities across different models.
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Distance Cluster Models

1

LLama-2-7B, LLama-2-13B, LLama-2-70B, Llama 3 8B,
LLaMA-7B, LLaMA-65B, Claude-V3 Haiku, Claude-V3 Sonnet,

Claude-V3 Opus, GPT-4, BLOOM-176B, Luminous Extended-30B,
Luminous Supreme-70B, OPT-175B, GPT-NeoX-20B, sheared llama-2.7B,

sheared llama-1.3B, INCITE-Base-3B, INCITE-Base-7B, OpenLLaMA-3B-v1, Pythia-1.4B,
Pythia-2.8B, Pythia-70M, Pythia-410M, Pythia-6.9B,

Gopher - 280B, Gopher - 44M, Gopher - 117M, MT-NLG 530B, GLaM,
Baichuan 1-7B, Baichuan 1-13B-Base, Baichuan 2-7B-Base, Baichuan 2-13B-Base,

Skywork-13B, Qwen-7B, Qwen-14B, TigerBot-13b,
Gemma-2b, Gemma-7b

2 gpt-3.5, Falcon-7B, Pythia-1B, Gropher - 1.4B, Yi-9b, TigerBot-70b
3 LLaMA-33B
4 Yi-6b
5 BlueLM-7B
6 Falcon-40B
7 MPT-7B
8 Falcon-180B
9 PaLM-540B
10 Pythia-160M
11 GPT-J-6B
12 GPT-3-175B, Luminous Base-13B
13 Gopher - 417M
14 Llama 3 70B
15 LLaMA-13B
16 TinyLlama-1.1B
17 Phi-1.5-1.3B
18 Gopher - 7.1B
19 InternLM2-20B
20 GLM-130B
21 MPT-30B
22 chinchilla
23 Mistral 7B
24 InternLM2-7B
25 OpenLLaMA-3B-v2
26 Phi-2-2.7B
27 Pythia-12B

Table 5: Distance Cluster of Models
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