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Abstract

The cooperative bandit problem is increasingly becoming relevant due to its appli-
cations in large-scale decision-making. However, most research for this problem
focuses exclusively on the setting with perfect communication, whereas in most
real-world distributed settings, communication is often over stochastic networks,
with arbitrary corruptions and delays. In this paper, we study cooperative ban-
dit learning under three typical real-world communication scenarios, namely, (a)
message-passing over stochastic time-varying networks, (b) instantaneous reward-
sharing over a network with random delays, and (c) message-passing with ad-
versarially corrupted rewards, including byzantine communication. For each of
these environments, we propose decentralized algorithms that achieve competitive
performance, along with near-optimal guarantees on the incurred group regret as
well. Furthermore, in the setting with perfect communication, we present an im-
proved delayed-update algorithm that outperforms the existing state-of-the-art on
various network topologies. Finally, we present tight network-dependent minimax
lower bounds on the group regret. Our proposed algorithms are straightforward to
implement and obtain competitive empirical performance.

1 Introduction
The cooperative multi-armed bandit problem involves a group of N agents collectively solving a
multi-armed bandit while communicating with one another. This problem is relevant for a variety
of applications that involve decentralized decision-making, for example, in distributed controls
and robotics [31] and communication [21]. In the typical formulation of this problem, a group of
agents are arranged in a network G = (V, E), wherein each agent interacts with the bandit, and
communicates with its neighbors in G, to maximize the cumulative reward.

A large body of recent work on this problem assumes the communication network G to be fixed [20,
22]. Furthermore, these algorithms inherently require precise communication, as they construct
careful confidence intervals for cumulative arm statistics across agents, e.g., for stochastic bandits,
it has been shown that the standard UCB1 algorithm [3] with a neighborhood confidence interval is
close to optimal [11, 20], and correspondingly, for adversarial bandits, a neighborhood-weighted loss
estimator can be utilized with the EXP3 algorithm to provide competitive regret [7]. Such approaches
are indeed feasible when communication is perfect, e.g., the network G is fixed, and messages are
not lost or corrupted. In real-world environments, however, this is rarely true: messages can be lost,
agents can be byzantine, and communication networks are rarely static [23]. This aspect has hence
received much attention in the distributed optimization literature [35]. However, contrary to network
optimization where dynamics in communication can behave synergistically [17], bandit problems
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additionally bring a decision-making component requiring an explore-exploit trade-off. As a result,
external randomness and corruption are incompatible with the default optimal approaches, and require
careful consideration [33, 25]. This motivates us to study the multi-agent bandit problem under
real-world communication, which regularly exhibits external randomness, delays and corruptions.
Our key contributions include the following.

Contributions. We provide a set of algorithms titled Robust Communication Learning (RCL) for the
cooperative stochastic bandit under three real-world communication scenarios.

First, we study stochastic communication, where the communication network G is time-varying, with
each edge being present in G with an unknown probability p. For this setting, we present a UCB-
like algorithm, RCL-LF (Link Failures), that directs agent i to discard messages with an additional
probability of 1� pi in order to control the bias in the (stochastic) reward estimates. RCL-LF obtains
a group regret of O

⇣⇣PN
i=1(1� p · pi) +

P
C2C(maxiC pi) · p

⌘⇣PK
k=1

log T
�k

⌘⌘
, where C is a

non overlapping clique covering of G, T is time horizon, and �k is the difference in reward mean
between the optimal and kth arm. The regret exhibits a smooth interpolation between known rates for
no communication (p = 0) and perfect communication (p = 1).

Second, we study the case where messages from any agent can be delayed by a random (but
bounded) number of trials ⌧ with expectation E[⌧ ]. For this setting, simple reward-sharing
with a natural extension of the UCB algorithm (RCL-SD (Stochastic Delays)) obtains a regret
of O

⇣
�̄(G) ·

⇣P
k>1

log T
�k

⌘
+
⇣
N · E[⌧ ] + log(T ) +

p
N · E[⌧ ] log(T )

⌘
·
P

k>1 �k

⌘
, which is

reminiscent of that of single-agent bandits with delays [18] (Remark 4). Here �̄(G) is the clique
covering number of G.

Third, we study the corrupted setting, where any message can be (perhaps in a byzantine manner)
corrupted by an unknown (but bounded) amount ✏. This setting presents the two-fold challenge of
receiving feedback after (variable) delays as well as adversarial corruptions, making existing arm
elimination [25, 8, 16] or cooperative estimation [11] methods inapplicable. We present algorithm
RCL-AC (Adversarial Corruptions) that overcomes this issue by limiting exploration only to well-
positioned agents in G, who explore using a hybrid robust arm elimination and local confidence bound
approach. RCL-AC obtains a regret of O

⇣
 (G�) ·

PK
k=1

log T
�k

+N
PK

k=1
log log T

�k
+NTK�✏

⌘
,

where  (G�) denotes the domination number of the � graph power of G, which matches the rates
obtained for corrupted single-agent bandits without knowledge of ✏.

Finally, for perfect communication, we present a simple modification of cooperative UCB1 that
provides significant empirical improvements, and also provides minimax lower bounds on the group
regret of algorithms based on message-passing.

Related Work. A variant of the networked adversarial bandit problem without communication
constraints (e.g., delay, corruption) was studied first in the work of Awerbuch and Kleinberg [4], who
demonstrated an average regret bound of order

p
(1 + K/N)T . This line of inquiry was generalized

to networked communication with at most � rounds of delays in the work of [7], that demonstrate
an average regret of order

p
(� + ↵(G�)/N)KT where ↵(G�) denotes the independence number of

G� , the �-power of network graph G. This line of inquiry has been complemented for the stochastic
setting with problem-dependent analyses in the work of Kolla et al. [20] and Dubey and Pentland
[11]. The former presents a UCB1-style algorithm with instantaneous reward-sharing that obtains a
regret bound of O(↵(G) ·

PK
k=1

log T
�k

) that was generalized to message-passing communication with
delays in the latter.

Alternatively, Landgren et al. [22] consider the multi-agent bandit where communication is done
instead using a running consensus protocol, where neighboring agents average their reward estimates
using the DeGroot consensus model [10]. This algorithm was refined in the work of Martínez-Rubio
et al. [29] by a delayed mixing scheme that reduces the bias in the consensus reward estimates.
A specific setting of Huber contaminated communication was explored in the work of Dubey and
Pentland [12]; however, in contrast to our algorithms, that work assumes that the total contamination
likelihood is known a priori. Additionally, multi-agent networked bandits with stochastic communi-
cation was considered in Madhushani and Leonard [26, 27, 28], however, only for regular networks
and multi-star networks.

2



Table 1: Quantity (with notation) for any graph G.
Average degree (d̄) Maximum degree (dmax) Degree of i (di) Independence number (↵)
Message life (�) Minimum degree (dmin) Neighborhood of i (Ni) Domination number ( )
k-power of G (Gk) Diameter (d?) Ni [ {i} (N+

i ) Clique covering number (�̄)

Our work also relates to aspects of stochastic delayed feedback and corruptions in the context of
single-agent multi-armed bandits. There has been considerable research in these areas, beginning from
the early work of Weinberger and Ordentlich [34] that proposes running multiple bandit algorithms
in parallel to account for (fixed) delayed feedback. Vernade et al. [33] discuss the multi-armed
bandit with stochastic delays, and provide algorithms using optimism indices based on the UCB1 [3]
and KL-UCB [13] approaches. Stochastic bandits with adversarial corruptions have also received
significant attention recently. Lykouris et al. [25] present an arm elimination algorithm that provides a
regret that scales linearly with the total amount of corruption, and present lower bounds demonstrating
that the linear dependence is inevitable. This was followed up by Gupta et al. [15] who introduce
the algorithm BARBAR that improves the dependence on the corruption level by a better sampling of
worse arms. Alternatively, Altschuler et al. [1] discuss best-arm identification under contamination,
which is a weaker adversary compared to the one discussed in this paper. The corrupted setting
discussed in our paper combines both issues of (variable) delayed feedback along with adversarial
corruptions, and hence requires a novel approach.

In another line of related work, Chawla et al.[8] discuss gossip-based communication protocols
for cooperative multi-armed bandits. While the paper provides similar results, there are several
differences in the setup considered in Chawla et al compared to our setup. First, we can see that
Chawla et al.do not provide a uniform O( 1

N ) speedup, but in fact, their regret depends on the difficulty
of the first K

N arms, which is a O( 1
N ) speed up only when all arms are “uniformly” suboptimal,

i.e., �i ⇡ �j8i, j 2 [K]. In contrast, our algorithm will always provide a speed up of order ↵(G�)
N

regardless of the arms themselves, and when we run our algorithm by setting the delay parameter
� = d?(G) (diameter of the graph G), we obtain an O( 1

N ) speedup regardless of the sparsity of
G. Additionally, our constants (per-agent) scale as O(K) in the worst case, whereas Chawla et al
obtain a constant between O(K + (logN)�) and O(K +N�) for some � � 1, based on the graph
structure, which can dominate the log T term when we have a large number of agents present.

2 Preliminaries

Notation (Table 1). We denote the set a, ..., b as [a, b], and as [b] when a = 1. We define the indicator
of a Boolean predicate x as 1{x}. For any graph G with diameter d?(G), and any 1  �  d?(G),
we define G� as the �-power of G, i.e., the graph with edge (i, j) if i, j are at most a distance �.

Problem Setting. We consider the cooperative stochastic multi-armed bandit problem with K arms
and a group V of N agents. In each round t 2 [T ], each agent i 2 V pulls an arm Ai(t) 2 [K]
and receives a random reward Xi(t) (realized as ri(t)) drawn i.i.d. from the corresponding arm’s
distribution. We assume that each reward distribution is sub-Gaussian with an unknown mean µk

and unknown variance proxy �2
k upper bounded by a known constant �2. Without loss of generality

we assume that µ1 � µ2 . . . � µK and define �k := µ1 � µk, 8k > 1, to be the reward gap (in
expectation) of arm k. Let � := mink>1 �k be the minimum expected reward gap. For brevity in
our theoretical results, we define g(⇠,�) := 8(⇠ + 1)�2 = o(1) and f(M,G) := M

P
k>1 �k +

4
PN

i=1 (3 log(3(di(G) + 1)) + (log (di(G) + 1))) ·
P

k>1 �k = o((M +N logN) ·
P

k>1 �k).

Networked Communication (Figure 1). Let G = (V, E) be a connected, undirected graph encoding
the communication network, where E contains an edge (i, j) if agents i and j can communicate
directly via messages with each other. After each round t, each agent j broadcasts a message mj(t)
to all their neighbors. Each message is forwarded at most � times through G, after which it is
discarded. For any value of � > 1, the protocol is called message-passing [24], but for � = 1 it is
called instantaneous reward sharing, as this setting has no delays in communication.

Exploration Strategy (Figure 2). For Sections 3 and 4 we use a natural extension of the UCB1
algorithm for exploration. Thus we modify UCB1 [3] such that at each time step t for each arm k
each agent i constructs an upper confidence bound, i.e., the sum of its estimated expected reward
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For t = 1, 2, ... each agent i 2 V

1. Plays arm Ai(t), gets reward ri(t), computes mi(t) = hAi(t), ri(t), i, ti.
2. Adds mi(t) to the set of messages Mi(t), broadcasts all messages in Mi(t) to its neighbors

and receives messages M0
i(t) from its neighbors.

3. Computes Mi(t+ 1) from M0
i(t) by discarding all messages sent prior to round t� �.

This is called instantaneous reward sharing for � = 1 (no delays), and message-passing for � > 1.

Figure 1: The cooperative bandit protocol with delay parameter �.

For t = 1, 2, ..., each agent i 2 V

1. Calculates, for each arm k 2 [K], Qi
k(t�1) = bµi

k(t�1)+�
q

2(⇠+1) log(t�1)

Ni
k(t�1)

, where N i
k(t�1)

is the number of reward samples available for arm k at time t.
2. Plays arm Ai(t) = argmaxk Q

i
k(t� 1)

Figure 2: Cooperative UCB1 which uses additional arm pulls from messages.

bµi
k(t � 1) (empirical average of all the observed rewards) and the uncertainty associated with the

estimate Ci
k(t� 1) := �

q
2(⇠+1) log t
Ni

k(t�1)
where ⇠ > 1, and pulls the arm with the highest bound.

Regret. The performance measure we consider, group regret, is a straightforward extension of pseudo

regret for a single agent. Group regret is the regret (in expectation) incurred by the group V by pulling
suboptimal arms. The group regret is given by RegG(T ) =

PN
i=1

P
k>1 �k ·E

⇥
ni
k(t)

⇤
, where ni

k(t)
is the number of times agent i pulls the suboptimal arm k up to (and including) round t.

Before presenting our algorithms and regret upper bounds we present some graph terminology.
Definition 1 (Clique covering number). A clique cover C of any graph G = (V, E) is a partition of
V into subgraphs C 2 C such that each subgraph C is fully connected, i.e., a clique. The size of the
smallest possible covering C? is known as the clique covering number �̄(G).
Definition 2 (Independence number). The independence number ↵(G) of G = (V, E) is the size of
the largest subset of V↵ ✓ V such that no two vertices in V↵ are connected.
Definition 3 (Domination number). The domination number  (G) of G = (V, E) is the size of the
smallest subset V ✓ V such that each vertex not in V is adjacent to at least one agent in V .

Organization. In this paper, we study three specific forms of communication errors. Section 3
discusses the case when, for both message-passing and instantaneous reward-sharing, any message
forwarding fails independently with probability p, resulting in stochastic communication failures.
Section 4 discusses the case when instantaneous reward-sharing incurs a random (but bounded)
delay. Section 5 discusses the case when the outgoing reward from any message may be corrupted
by an adversarial amount at most ✏. Finally, in Section 6, we discuss an improved algorithm for the
case with perfect communication and present minimax lower bounds on the problem. We present all
proofs in the Appendix and present proof-sketches highlighting the central ideas in the main paper.

3 Probabilistic Message Selection for Random Communication Failures
The fundamental advantage of cooperative estimation is the ability to leverage observations about
suboptimal arms from neighboring agents to reduce exploration. However, when agents are commu-
nicating over an arbitrary graph, the amount of information an agent receives varies according to its
connectivity in G. For example, agents with a large number of neighbors receive more information,
leading them to begin exploitation earlier than agents with fewer neighbors. This means that well-
connected agents exhibit better performance early on, but because they quickly do only exploiting,
agents that are poorly connected typically only observe exploitative arm pulls, which requires them
to explore for longer in order to obtain similarly good estimates for suboptimal arms, increasing
their regret. The disparity between performance in well-connected versus poorly connected agents is
exacerbated in the presence of random link failures, where any message sent by an agent can fail to
reach its recipient with a failure probability 1� p (drawn i.i.d. for each message).
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Indeed, it is natural to expect the group regret to decrease with decreasing link failure probability, i.e.,
increasing communication probability p. However, what we observe experimentally (Section 7) is
that this holds only for graphs G that are regular (i.e., each agent has the same degree), or close to
regular. When G is irregular, as we increase p from 0 to 1, the group performance oscillates. While,
in some cases, the improved performance in the well-connected agents can outweigh the degradation
observed in the weakly-connected agents (leading to lower group regret), it is prudent to consider an
approach that mitigates this disparity by regulating information flow in the network.

Information Regulation in Cooperative Bandits. Our approach to regulate information is straight-
forward: we direct each agent i to discard any incoming message with an agent-specific probability
1� pi, while always utilizing its own observations. For specific values of pi, we can obtain various
weighted combinations of internal versus group observations. Our first algorithm RCL-LF (Link
Failures) is built on this regulation strategy, coupled with UCB1 exploration using all selected observa-
tions for each arm. Essentially, each agent runs UCB1 using the cumulative set of observations it has
received from its network. After pulling an arm, it broadcasts its pulled arm and reward through the
network, but incorporates each incoming message only with a probability pi. Pseudo code for the
algorithm is given in the appendix. We first present a regret bound for RCL-LF when run with the
instantaneous reward-sharing protocol.
Theorem 1 (RCL-LF Regret with instantaneous reward-sharing). RCL-LF running with the instanta-

neous reward-sharing protocol (Figure 1, � = 1) obtains cumulative group regret of

RegG(T )  g(⇠,�)

 
NX

i=1

(1� pi · p) +
X

C2C

(max
iC

pi) · p
! 

X

k>1

log T

�k

!
+ f(5N,G)

where C is a non-overlapping clique covering of G.

Proof sketch. We follow an approach similar to the analysis of UCB1 by [3] with several key
modifications. First, we partition the communication graph G into a set of non-overlapping cliques
and then analyze the regret of each clique. The group regret can be obtained by taking the summation
of the regret over each clique. Two major technical challenges in proving the regret bound for
RCL-LF are (a) deriving a tail probability bound for probabilistic communication, and (b) bounding
the regret accumulated by agents by losing information due to communication failures and message
discarding. We overcome the first challenge by noticing that communication is independent of the
decision making process thus E

⇣
exp

⇣
�
Pt
⌧=1 X

i
⌧1
�
Ai
⌧ = k

 
� µkN i

k(t)�
�2�2

k
2 N i

k(t)
⌘⌘

 1

holds under probabilistic communication. We obtain the tail bound by combining this result with
the Markov inequality and optimizing over � using a peeling type argument. We address the second
challenge by proving that the number of times agents do not share information about any suboptimal
arm k can be bounded by a term that increases logarithmically with time and scales with number of
agents, G, and communication probabilities, as

PN
i=1(1� pi · p) +

P
C2C(maxiC pi) · p. ⇤

Remark 1 (Regret bound optimality). Under perfect communication (p = 1) and no message
discarding, i.e., pi = p = 1, 8i 2 [N ] the dominant term in our regret bound scales with �̄(G),
obtaining identical performance to deterministic communication over G [11]. Alternatively, when
pi = p = 0, there is no communication, and hence, the regret bound is O(N log T ). Theorem
1 quantifies the benefit of communication in reducing the group regret under probabilistic link
failure and when agents incorporate observations with an agent-specific probability. Note that
PN

i=1(1� pi · p) +
P

C2C(maxiC pi) · p = N � p ·
⇣PN

i=1 pi �
P

C2C(maxiC pi)
⌘
. Since the

clique covering is non-overlapping, the results show that agents obtain improved group performance
for any communication probability p > 0 for any nontrivial graph as compared to the case with no
communication in which each agent learns on its own.
Remark 2 (Controlling information disparity). In order to regulate the information disparity across
the network we set pi =

dmin(G)
di(G) . Thus, the agent(s) with minimum degree dmin incorporate each

message they receive with probability 1 and we have that the expected number of messages for each
agent is the same, i.e., T · dmin(G). Therefore, every agent receives the same amount of information
(in expectation), providing a large performance improvement for irregular graphs (see Section 7).

Message-Passing. Under this communication protocol each agent i communicates with neighbors
at distance at most �, where each hop adds a 1-step delay. Our algorithm RCL-CF obtains a similar
regret bound in this setting as well, when all agents use the same UCB1 exploration strategy (Figure 2).
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Theorem 2 (RCL-LF Regret with message-passing). Let C be a minimal clique covering of G� . For

any C 2 C and i, j 2 C let �i = maxj2C d(i, j) be the maximum distance (in graph G) between

agents i and j. RCL-LF running with the message-passing protocol (Figure 1) with delay parameter

� obtains cumulative group regret of

RegG(T )  g(⇠,�)

✓
NP
i=1

(1� pi · p�i) + �̄(G�) · (max
iN

pi · p�i)
◆✓P

k>1

log T
�k

◆
+ f((� + 4)N,G�).

Proof sketch. We partition the graph G� into non-overlapping cliques, analyze the regret of each clique
and take the summation of regrets over cliques to obtain group regret. In addition to the challenges
encountered in Theorem 1 here we are required to account for having different probabilities of failures
for messages due to having multiple paths of different length between agents and to account for the
delay incurred by each hop when passing messages. We overcome the first challenge by noting that
agent i receives each message with at least probability p�i . We overcome the second challenge by
identifying that regret incurred by delays can be upper bounded using

⇣PN
i=1 �i �N

⌘P
k>1 �k. ⇤

Remark 3. Finding an optimal observation probability {pi}N1=1 for RCL-LF with message-passing is
difficult due to the delays added by each hop when forwarding messages. If messages are forwarded
without a delay, optimal performance can be obtained by using pi =

dmin(G�)
di(G�)

. For dense G� , the
above choice of observation probability provides near-optimal performance. When � = d?(G)

we have that G� is a complete graph, pi =
dmin(G�)
di(G�)

= 1, and agents do not discard any message.
However, when � < d?(G), the graph G� is not complete. Therefore agents receive different amounts
of information which are approximately proportional to the degree distribution of G� . As explained
earlier this information disparity leads to a performance disparity among agents. As a result group
performance decreases. In this case we design the algorithm such that each agent i discards messages
with 1� pi where pi =

dmin(G�)
di(G�)

. This regulates the information flow mitigating the bias introduced
by information disparity. As a result the group obtains near-optimal performance.

4 Instantaneous Reward-sharing Under Stochastic Delays
Next, we consider a communication protocol, where any message is received after an arbitrary (but
bounded) stochastic delay. We assume for simplicity that each message is sent only once in the
network (and not forwarded multiple times as in message-passing), and leave the message-passing
setting as future work. We assume, furthermore that the delays are identically and independently
drawn from a bounded distribution with expectation E[⌧ ] (similar to prior work, e.g., Joulani et al. [18],
Vernade et al. [33]). For this setting, we demonstrate that cooperative UCB1, along with incorporating
all messages as soon as they are available, provides efficient performance, both empirically and
theoretically. We denote this algorithm as RCL-SD (Stochastic Delays), and demonstrate that this
approach incurs only an extra O(

p
N log T + log T ) overhead compared to perfect communication.

Theorem 3 (RCL-SD Regret). Let Dtotal = N · E[⌧ ] + 2 log T + 2
p
N · E[⌧ ] log T denote an upper

bound on the total number of outstanding messages. RCL-SD obtains, with probability at least 1� 1
T ,

cumulative group regret of

RegG(T )  g(⇠,�) · �̄(G) ·
 
X

k>1

log T

�k

!
+Dtotal ·

 
X

k>1

�k

!
+ f(5N,G).

Proof sketch. We first demonstrate that the additional group regret due to stochastic delays can be
bounded by the maximum number of cumulative outstanding messages over all agents at any given
time step. Then we apply a result similar to Lemma 2 of [18] to bound the total number of outstanding
messages using the cumulative expected delay N · E[⌧ ], giving the result. ⇤
Remark 4. The Dtotal term is a succinct upper bound on the maximum number of cumulative
outstanding messages over all agents, and when the expected delay E[⌧ ] = o(1), we see that the
contribution of Dtotal is O(

p
N log T + log T ). We conjecture that this cannot be improved without

restricting communication, as each agent will send T messages in total. The result obtained by
Joulani et al. [18] has a similar dependence for a single agent.
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Algorithm 1: RCL-RC: Cooperative Hybrid Arm Elimination
Parameters: Confidence � 2 (0, 1), horizon T , graph G with exploration set I ✓ V . Initialize
Ti(0) = K, 8i 2 I� = 1024 log

⇣
8K (G�)

� log2 T
⌘

and �i
k(0) = 1, 8 k 2 [K] and i 2 I.

for each subgraph N+
i (G�) where i 2 I do

for t = 1, ...,K, each agent j 2 N+
i (G�) do

Play arm K and get reward rj(t).
end
for epoch mi = 1, 2, ..., do

Set ni
k(mi) = �(�i

k(mi � 1))�28k 2 [K].
Ni(mi) =

P
k n

i
k(mi) and Ti(mi) = Ti(mi) +Ni(mi) + 2�.

for agent j 2 N+
i (G�) do

for t = Ti(mi � 1) to s = Ti(mi � 1) + 2� do
if j 6= i then

if t  K + d(i, j) then
Pull random arm.

end
else

Pull Aj(t) = Ai(t� d(i, j)) and get reward rj(t).
end

end
else

Pull Aj(t) = UCB1(t)
end

end
for t = Ti(mi � 1) + 2� to Ti(mi) do

if j 6= i then
Pull Aj(t) = Ai(t� d(i, j)) and get reward rj(t).

end
else

Pull an arm Ai(t) = k 2 [K] with probability ni
k(mi)/Nk(mi).

end
end

end
end

end

5 Hybrid Arm Elimination for Adversarial Reward Corruptions
In this section, we assume that any reward when transmitted can be corrupted by a maximum value
of ✏, i.e., maxt,n |rn(t)� r̃n(t)|  ✏ where r̃n(t) denotes the transmitted reward. Furthermore, we
assume that the corruptions can be adaptive, i.e., can depend on the prior actions and rewards of each
agent. This model includes natural settings, where messages can be corrupted during transmission,
as well as byzantine communication [12]. If ✏ were known, we could then extend algorithms for
misspecified bandits [14] to create a robust estimator and a subsequent UCB1-like algorithm that
obtains a regret of O(�̄(G�)K( log T

� ) + TNK✏). However, this approach has two issues. First, ✏
is typically not known, and the dependence on G� can be improved as well. We present an arm-
elimination algorithm called RCL-AC (Adversarial Corruptions) that provides better guarantees on
regret, without knowledge of ✏ in Algorithm 1.

The central motif in RCL-AC’s design is to eliminate bad arms by an epoch-based exploration, an
idea that has been successful in the past for adversarially-corrupted stochastic bandits [25, 15]. The
challenge, however, in a message-passing decentralized setting is two-fold. First, agents have different
amounts of information based on their position in the network, and hence badly positioned agents in
G may be exploring for much larger periods. Secondly, communication between agents is delayed,
and hence any agent naively incorporating stale observations may incur a heavy bias from delays. To
ameliorate the first issue, we partition the group of agents into two sets - exploring agents (I) and
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imitating agents (V \I). The idea is to only allow well-positioned agents in I to direct the exploration
strategy for their neighboring agents, and the rest simply imitate their exploration strategy. We select
I as a minimal dominating set of G� , hence |I| =  (G�). Furthermore, since V \ I is a vertex cover,
this ensures that each imitating agent is connected (at distance at most �) to at least one agent in I.
Next, observe that there are two sources of delay: first, any imitating agent must wait at most � trials
to observe the latest action from its corresponding exploring agent, and second, each exploring agent
must wait an additional � trials for the feedback from all of its imitating agents. We propose that
each exploring agent run UCB1 for 2� rounds after each epoch of arm elimination, using only local
pulls. This prevents a large bias due to these delays, at a small cost of O(log log T ) suboptimal pulls.
Theorem 4 (RCL-RC Regret). RCL-RC obtains, with probability at least 1� �, group regret of

RegG(T ) = O
✓
KTN�✏+  (G�) ·

P
k>1

log T
�k

log
⇣

K (G�) log T
�

⌘
+N

P
k>1

�k +
P
k>1

N log(� log T )
�k

◆
.

Proof sketch. Since the dominating set covers V , we can decompose the group regret into the
cumulative regret of the subgraphs corresponding to each agent in  (G�). For each subgraph, we
can consider the cumulative regret incurred when the exploring agent follows UCB1 versus arm
elimination. We have that arm elimination occurs for log T epochs, and since UCB1 runs for 2�
rounds between succesive epochs, we have that in any subgraph of size n, the cumulative regret from
UCB1 rounds is of O(nK log(� log T )). For arm elimination, we can bound the subgraph regret using
a modification of the approach in Gupta et al. [15]: the difference in our approach is to construct a
multi-agent filtration for arbitrary (reward-dependent) corruptions from message-passing, and then
applying Freedman’s bound on the resulting martingale sequence. Subsequently, the regret in each
epoch is bounded in a manner similar to Gupta et al. [15], and finally applying a union bound. ⇤
Remark 5 (Regret Optimality). Theorem 4 demonstrates a trade-off between communication density
and the adversarial error, as seen by the first two terms in the regret bound. The first term (KTN�✏)
is a bound on the cumulative error introduced due to message-passing, which is increasing in �,
whereas the second term denotes the logarithmic regret due to exploration, where  (G�) decreases
as � increases: for � = d?(G), (G�) = 1, matching the lower bound in Dubey and Pentland [11].
This too is expected, as fewer exploring agents are needed with a higher communication budget.
Furthermore, we conjecture that the first term is optimal (in terms of T , up to graphical constants): a
linear lower bound has been demonstrated for the single-agent setting in Lykouris et al. [25].
Remark 6 (Computational complexity). While the dominating set problem is known to be NP-
complete [19], the problem admits a polynomial-time approximation scheme (PTAS) [9] for certain
graphs, for which our bounds hold exactly. However, RCL-RC can work on any dominating set of size
n, and suffer regret of eO(KTN�✏+ n

P
k>1

log T
�k

)1.

6 An Algorithm for Perfect Communication and Lower Bounds
For perfect communication, we present Delayed MP-UCB, a simple improvement to UCB1 with
message-passing where each agent i only incorporates messages originated prior to �̄  � time steps,
reducing disparity in information across agents.
Theorem 5 (Delayed MP-UCB Regret). Delayed(MP)-UCB obtains cumulative group regret of

RegG(T )  g(⇠,�)�̄(G�)

 
X

k>1

log T

�k

!
+ (N � �̄(G�) (� � 1)

X

k>1

�k+ f(5N,G�) + h(G� , �̄)

where h(G� , �̄) =

✓
(N � �̄(G�)�̄ +

PT
t>�̄

log
⇣
1� di(G� )�̄

(di(G� )+1)t)

⌘

log 1.3
1

t
(⇠+1)(1� 0.09

16 )

◆P
k>1 �k.

Proof sketch. Following a similar approach to the proof of Theorem 2 we partition the graph G� into
a set of non-overlapping cliques, analyze the regret of each clique via a UCB1 type analysis and take
the summation of regret over cliques. However, using less information (due to delayed information
usage) in estimates leads to a large confidence bound Ci

k(t) and this reduces the contribution to the
regret from tail probabilities. Note that log

⇣
1� di(G�)�̄

(di(G�)+1)t)

⌘
is negative 8t > �̄, and hence lower

regret achieved due to low tail probabilities is given by the second term of h(G� , �̄). ⇤
1The eO notation ignores absolute constants and log log(·) factors in T .
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Remark 7. Incorporating only the messages originated before �̄ time steps is similar to communi-
cating over G�̄ after a delay of �̄ time steps. When G is connected and �̄ = � = d⇤ this is similar
to communicating over a complete graph with a delay of d⇤. Thus Delayed MP-UCB mitigates the
disparity in information used by each agent, leading to improved group performance.

Lower Bounds. Without strict assumptions, a lower bound of O
�P

k>1
log T/�k

�
has been demon-

strated both for � = 1 (instantaneous reward-sharing, Kolla et al. [20]) and � > 1 (message-
passing, Dubey and Pentland [11]), which both suggest that a speedup of 1

N is potentially achievable.
For a more restrictive class of individually consistent and non-altruistic policies (i.e., that do not
contradict their local feedback), a tighter lower bound of O

�
↵(G2)

P
k>1

log T/�k

�
can be demon-

strated for reward-sharing [20], and consequently O
�
↵(G�+1)

P
k>1

log T/�k

�
for message-passing.

To supplement these results, we present a lower bound to characterize the minimax optimal rates for
the problem. We present first an assumption on multi-agent policies.
Assumption 1 (Agnostic decentralized policies). A set of N policies ⇡1, ...,⇡N are termed agnostic

decentralized policies, if for every pair (i, j) of agents that communicate in G and each t 2 [T ], ⇡i(t)

is independent of {⇡j(⌧)}t�d(i,j)
⌧=1 conditioned on the rewards {(Aj(⌧), Xj(⌧))}t�d(i,j)

⌧=1 .

Theorem 6 (Minimax Rate). For any policy A, there exists a K-armed environment over N agents

with �k  1 for any connected graph G and � � 1 such that, for some absolute constant c,

RegG(A, T ) > c
q
KN(T + ed(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K-armed environment over N
agents with �k  1 for any connected graph G and � � 1 such that, for some absolute constant c0,

RegG(A, T ) > c0
q
↵?(G�)KNT.

Here d̃(G) =
Pd?(G)

i=1 d̄=i · i denotes the average delay incurred by message-passing across the

network G, and ↵?(G�) =
N

1+d�
is Turan’s lower bound [32] on ↵(G�).

Remark 8 (Tightness of lower bound). The first minimax bound does not make any assumptions
on the policy A, and hence we only see an additive dependence of the average delay incurred by
communication over G. This dependence generalizes the minimax rate for delayed multi-armed
bandits [30] to graphical feedback. For the latter bound, observe that a variety of cooperative
extensions of single-agent bandit algorithms [20, 11, 7] obey this assumption, where the decision-
making for any agent is independent of any other agent, conditioned on the observed rewards. In
this setting, agents merely treat messages as additional pulls to construct stronger estimators, and
do not strategize collectively. This bound is exact (up to constants) for a variety of communication
graphs G. For instance, for linear and circular graphs, ↵

?(G�)
↵(G�)

= o(1), and for d-regular graphs,
↵?(G�) = ↵(G�) [32].

7 Experimental Results
We consider the 10-armed bandit with rewards drawn from Gaussian distributions with �k = 1 for
each arm, such that µ1 = 1 and µk = 0.5 for k 6= 1, and the number of agents N = 50, where
we repeat each experiment 100 times with G selected randomly from different families of random
graphs. The bottom row of Figure 3 corresponds to Erdos-Renyi graphs with p = 0.7. The top row of
Figure 3 (a), (c) and (d) corresponds to multi-star graphs and (b) and (e) to random tree graphs. We
set ⇠ = 1.1 and � = max{3, d?(G)/2}.

Stochastic Link Failure. Figure 3(a) and Figure 3(b) summarize performance of RCL(RS)-LF
and RCL(MP)-LF, comparing it with the corresponding reward-sharing and message-passing UCB-
like algorithms in which pi = 1, 8i 2 [N ], for different p values. The group regret is given at
T = 500. The results validate our claim that probabilistic message discarding improves performance
for irregular graphs and provides competitive performance for near-regular graphs.

Stochastic Delays. We compare performance of RCL-SD with UCB1. We draw delays from a bounded
distribution with E[⌧ ] = 10 and ⌧max = 50. The results are summarized in Figure 3(c).

Adversarial Communication. We compute the (approximate) dominating set using the algorithm
provided in networkx for each connected component in G� . We draw corruptions uniformly from the
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Figure 3: Experimental results for various imperfect communication settings.

range [0, ✏] for each message, where ✏ is increased from 10�3 to 10�2. The group regret at T = 500
as a function of ✏ is shown in Figure 3(d) and compared against individual UCB1 and cooperative
UCB with message-passing (MP-UCB), which incur larger regret increasing linearly with ✏.

Perfect Communication. We compare the regret curve for T = 1000 for our Delayed(MP)-UCB
against regular MP-UCB in Figure 3(e). We use �̄ = 2. It is evident that delayed incorporation of
messages markedly improves performance across both networks.

8 Conclusions
In this paper, we studied the cooperative bandit problem in three different imperfect communication
settings. For each setting, we proposed algorithms with competitive empirical performance and
provided theoretical guarantees on the incurred regret. Further, we provided an algorithm for perfect
communication that comfortably outperforms existing baseline approaches. We additionally provided
a tighter network-dependent minimax lower bound for the cooperative bandit problem. We believe
that our contributions can be of immediate utility in applications. Moreover, future inquiry can be
pursued in several different directions, including multi-agent reinforcement learning and contextual
bandit learning.

Ethical Considerations. Our work is primarily theoretical, and we do not foresee any negative
societal consequences arising specifically from our contributions in this paper.
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