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ABSTRACT

Investigating critical phenomena, i.e., phase transitions, is of high interest in
physics and chemistry. However, Monte Carlo (MC) simulations, a crucial tool
for numerically analyzing macroscopic properties of given systems, are often hin-
dered by the emerging scale invariance at criticality (SIC)—a divergence of the
correlation length, which causes the system to behave the same at any length
scale, as can be shown with renormalization group techniques. Many existing
sampling methods suffer from SIC: long-range correlations cause critical slowing
down in Markov chain Monte Carlo (MCMC), and require intractably large recep-
tive fields for generative samplers. In this paper, we propose a Renormalization-
informed Generative Critical Sampler (RiGCS)—a novel sampler specialized for
near-critical systems, where SIC is leveraged as an advantage rather than a nui-
sance. Specifically, RiGCS builds on MultiLevel Monte Carlo (MLMC) with Heat
Bath (HB) algorithms, which perform ancestral sampling from low-resolution to
high-resolution lattice configurations with site-wise-independent conditional HB
sampling. Although MLMC-HB is highly efficient under exact SIC, it suffers from
a low acceptance rate under slight SIC violation. Notably, SIC violation always
occurs in finite systems, and may induce long-range and higher-order interactions
in the renormalized distributions, which are not considered by independent HB
samplers. RiGCS enhances MLMC-HB by replacing a part of the conditional HB
samplers with generative models that capture those residual interactions and im-
prove the sampling efficiency. Our experiments show that the effective sample
size of RiGCS is a few orders of magnitude higher than state-of-the-art generative
model baselines in sampling configurations for 128× 128 two-dimensional Ising
systems. SIC also allows us to adopt a specialized sequential training protocol
with model transfer, which significantly accelerates training.

1 INTRODUCTION

Monte Carlo (MC) simulations, where samples from a Boltzmann distribution are used to estimate
macroscopic properties, are ubiquitous in many fields of science, ranging from chemistry (Metropo-
lis et al., 1953), statistical physics (Hastings, 1970; Creutz et al., 1983), and quantum field the-
ory (Creutz et al., 1979; Wilson, 1980) to biology (Huelsenbeck et al., 2001) and financial analy-
sis (Doucet et al., 2001). In MC simulations, the ability to effectively sample from unnormalized
distributions in a high-dimensional space poses crucial challenges. Standard algorithms such as
Monte Carlo Markov Chain (MCMC) methods (Metropolis & Ulam, 1949; Robert & Casella, 2004)
are often plagued by, e.g., slow convergence (Cowles & Carlin, 1996), energy barriers and local
minima (Cérou et al., 2012), and critical slowing down (Wolff, 1990; 2004; Schaefer et al., 2011).
This paper specifically tackles the problem of critical slowing down around critical regimes. In
the broader context of physical sciences, the term criticality refers to situations where a system
undergoes a sharp behavioral change, often associated with phase transitions (Nishimori & Ortiz,
2011). At criticality, physical systems typically exhibit self-similarity with respect to the change
of scale, i.e., the physics of the coarse-grained system is similar to that of the fine-grained one.
This phenomenon, called scale invariance at criticality (SIC), requires us to deal with arbitrarily
long-range correlations for which standard MCMC samplers based on local moves undergo critical
slowing down, meaning that the auto-correlation time becomes arbitrarily large with system size.
Although many highly specialized cluster algorithms with non-local moves have been developed in
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the context of spin systems (Wolff, 1989b;a), critical slowing down still represents one of the major
shortcomings of MCMC methods.

For efficient sampling around criticality, MultiLevel (or Multiscale) Monte Carlo with heat bath
(MLMC-HB) algorithms (Schmidt, 1983; Faas & Hilhorst, 1986; Jansen et al., 2020) were devel-
oped, based on Renormalization Group Theory (RGT) (Kadanoff, 1966; Wilson, 1971; Wilson &
Kogut, 1974; Cardy, 1996). RGT systematically analyzes how macroscopic features emerge when
the system is coarse-grained to larger length scales by marginalizing fine degrees of freedom, and
provides crucial insights into critical phenomena in statistical mechanics (Wilson, 1971; Fisher,
1973) and condensed matter physics (Shankar, 1994; Cardy, 1996). Furthermore, RGT also estab-
lished the foundation for lattice quantum field theory (Wilson, 1974; Kogut & Susskind, 1975). An
important outcome of RGT is the emergence of SIC over the coarse-grained and fine-grained lattices.
Adopting the block-spin transformations (Kadanoff, 1966) for lattice site grouping, Schmidt (1983)
proposed MLMC-HB that performs ancestral sampling from the coarsest lattice sites to the finest
ones. The key advantage is that the conditional distributions between consecutive resolution levels
can be factorized into independent distributions under SIC, for which sampling can be efficiently
performed by HB algorithms. In MLMC-HB, the long-range correlations are captured in the low
resolution lattice, which is much easier than capturing them in the original high resolution lattice.

Machine learning techniques are also seen as potential candidates to, either partially or fully, over-
come the shortcomings of MCMC algorithms. In particular, generative models with accessibility to
the exact sampling probability—such as normalizing flows (Rezende & Mohamed, 2015; Kobyzev
et al., 2020; Papamakarios et al., 2021) and autoregressive models (van den Oord et al., 2016c;b;
Salimans et al., 2017)—offer efficient independent sampling and unbiased MC estimation via im-
portance sampling, showing notable success across various domains. Such applications include
statistical physics (Wu et al., 2019; Nicoli et al., 2020), quantum many-body systems (Hibat-Allah
et al., 2020) quantum chemistry (Noé et al., 2019; Gebauer et al., 2019), string theory (Caselle et al.,
2024), and lattice field theory (Albergo et al., 2019; Nicoli et al., 2021; Caselle et al., 2022; Cranmer
et al., 2023; Abbott et al., 2024). However, since capturing long-range interactions in large lattice
systems may require intractably large receptive fields, generative models tend to struggle to generate
samples around criticality, except for a few recent works whose goal was to mitigate critical slowing
down (Pawlowski & Urban, 2020; Białas et al., 2023).

In this work, we propose a Renormalization-informed Generative Critical Sampler (RiGCS), which
enhances MLMC-HB algorithms by mitigating their major weakness—i.e., the HB samplers in
MLMC-HB ignore long-range and higher-order interactions that may exist in renormalized systems
when SIC is slightly violated. RiGCS approximates the renormalized distributions with generative
models with large enough receptive fields that can capture the greater part of those residual interac-
tions. In our experiments, RiGCS drastically improves the sampling efficiency of MLMC-HB, and
achieves an effective sample size a few orders of magnitude better than the previous state-of-the-
art generative sampler (Białas et al., 2023) for the two-dimensional Ising model. Furthermore, we
propose a specialized sequential training procedure with warm starts by transferring model param-
eters between different resolution levels, which substantially improves the training efficiency. Our
contributions include:

• Renormalization-informed Multilevel Sampling: We propose a novel method that lever-
ages both SIC and generative modeling to efficiently draw samples from Boltzmann distri-
butions around the criticality.

• Sequential Training with Warm Start by Model Transfer: We propose a sequential
training procedure starting from solving a small scale system to a (target) large scale sys-
tem, where the model parameters trained for smaller systems are transferred to larger ones
for initialization. This particular warm start strategy accelerates training significantly.

Like most works developing generative neural samplers for simulating physical systems on the lat-
tice, we do not claim that our method outperforms state-of-the-art MCMC samplers, such as cluster
methods for the Ising model, which remain unmatched by any generative neural sampler for general
observable estimation in large scale systems.

Related Work Renormalization Group Theory (RGT) (Wilson, 1971; Wilson & Kogut, 1974;
Kadanoff, 1966) has profoundly influenced the study of critical behavior in statistical systems and
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quantum field theory. Leveraging results of RGT, Schmidt (1983) proposed MLMC-HB for near-
critical systems, which showed notable improvements in sampling efficiency for one- and two-
dimensional Ising models. MLMC-HB adopts a particular partitioning of the lattice sites, called
block-spin transformations (Kadanoff, 1966), and draws samples hierarchically by site-wise inde-
pendent conditional HB sampling, based on the renormalized systems at different scales. Faas &
Hilhorst (1986) further enhanced MLMC-HB by incorporating long-range interactions. Recently,
Jansen et al. (2020) introduced a low variance MC estimator by leveraging the correlations between
the lattices with consecutive resolution levels, which further advanced MLMC-HB.

A variety of generative models, including Generative Adversarial Networks (GANs) (Pawlowski
& Urban, 2020; Singha et al., 2022), Variational Auto Encoders (VAEs) (D’Angelo & Böttcher,
2020), and energy-based models (D’Angelo & Böttcher, 2020; Torlai & Melko, 2016), have been
used as independent MC samplers for lattice systems. Generative models with accessible sampling
probability are particularly useful for MC simulations because they allow for unbiased MC estima-
tion with importance sampling or Metropolis-Hastings rejection (Nicoli et al., 2020). Specifically,
Variational Autoregressive Networks (VANs) (Wu et al., 2019; Nicoli et al., 2020) and normalizing
flows (Albergo et al., 2019) for discrete and continuous systems, respectively, have proven to be
highly effective. Recent works (Singha et al., 2023a;b; Gerdes et al., 2023) introduced conditional
normalizing flows for scalar and gauge theories, and showed that models trained away from critical-
ity can be well interpolated for drawing samples near criticality. Nicoli et al. (2021) demonstrated
that generative models are particularly useful for estimating thermodynamic observables, e.g., free
energy and entropy, which cannot be directly estimated with standard MCMC methods.

Recently, hierarchical sampling approaches have been integrated with generative modeling both for
(discrete) statistical systems (Li & Wang, 2018; Białas et al., 2022) and (continuous) lattice field
theories (Finkenrath, 2024; Abbott et al., 2024). Neural Network Renormalization Group (Neu-
ralRG) (Li & Wang, 2018) uses a hierarchical bijective mapping to learn a renormalization trans-
form, and was applied to the Ising model using a continuous relaxation technique. Hierarchical
Autoregressive Network (HAN) (Białas et al., 2022)—a state-of-the-art generative sampler for dis-
crete physical systems—uses a recursive domain decomposition (Cè et al., 2016), and performs
independent conditional sampling for separate regions with trained VANs. The HAN approach has
shown improved sampling efficiency compared to MLMC-HB in two-dimensional Ising models. We
refer to Appendix A for an extended review of related works.

2 BACKGROUND

This paper focuses on MC simulations of hypercubic lattice systems around criticality. We refer to a
(row vector) sample s ∈ SV to be a configuration on the V = ND grid points in the D dimensional
lattice, where S denotes the domain of the random variable at each site, and N denotes the lattice
size (per dimension). Given a Hamiltonian (or energy) H(s) describing the interactions between the
lattice sites, MC simulations draw samples from the Boltzmann distribution

p(s) = 1
Z e−βH(s), (1)

where β is the inverse temperature and Z is the (typically unknown) partition function. With a suffi-
cient number M of samples, physical observablesO, e.g., energy, magnetization, and susceptibility,
can be estimated by averaging over the sample configurations ⟨O⟩ ≈ 1

M

∑M
m=1O(sm), thus reveal-

ing macroscopic physical properties and phenomena, like phase transitions. Below, we introduce
common sampling methods with and without machine learning techniques.

2.1 MARKOV CHAIN MONTE CARLO (MCMC) METHODS AROUND CRITICALITY

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used to sample from unnor-
malized distributions. Since the partition function is not analytically computable in most physical
systems, MCMC methods are fundamental tools for performing MC simulations, e.g., in statistical
mechanics and lattice quantum field theory. A crucial challenge for MCMC sampling around crit-
icality is to cope with long-range correlations. When distant regions in the lattice become strongly
correlated, the general MCMC methods, relying on local updates, struggle to move from a low-
energy state to another low-energy state. This is because local updates generally ignore the corre-
lations, and thus, the proposed trials tend to be rejected in the Metropolis-Hastings rejection step
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condition sites

sampled sites
condition sites sampled sites

Markov Blanket: RiGCS Markov Blanket: MLMC-HB Markov Blanket: True 

Figure 1: Site partitionings based on the block-spin transformation (Kadanoff, 1966). The ancestral
sampling is performed from the coarsest level (right) to the finest level (left), namely, in the order
of sL−2 (green), sL−1 (blue), and sL (red). In one-dimensional case (upper-low), the marginal dis-
tribution at each resolution level has only NN interactions, and therefore, the true Markov blanket
(yellow shadows) of the highlighted site (by a black circle) contains only NN condition sites, which
allows accurate independent HB sampling. In two-dimensional case (lower row), the marginal distri-
butions also have long-range and higher-order interactions. Therefore, except at the finest level, the
true Markov blanket (yellow shadows) contain all other sites. MLMC-HB with NN Markov blan-
kets (red shadows) can still be used as an approximate trial sampler, but suffers from low acceptance
rates for large lattice sizes. Our RiGCS with wider Markov blankets (purple shadows), induced by
the receptive field of generative models, can capture the long-range and higher-order interactions,
and thus generate more accurate samples. Note that the Markov blankets of RiGCS we used for the
intermediate resolutions are of the size 11× 11 (i.e., much larger than the one shown in this figure).
sL−2 (green) can be further partitioned until the dimension of s0 gets sufficiently small.

due to the increased energy. This results in a long autocorrelation time for the Markov chain—a
phenomenon known as critical slowing down (Wolff, 1990). The two approaches described below
were developed to mitigate critical slowing down.

Cluster algorithms Cluster algorithms (Wolff, 1989a; Swendsen & Wang, 1987) perform global
updates by identifying clusters of correlated lattice sites and flipping them collectively. These global
updates efficiently reduce the autocorrelation time and mitigate critical slowing down. Appendix B
introduces two variants of cluster methods, including the Wolff algorithm (Wolff, 1989a) which we
refer to as the cluster algorithm throughout the rest of the paper. Cluster methods are not seen
as universal remedies against critical slowing down because they are not generally applicable to
arbitrary continuous variable systems, although generalizations to specific continuous systems was
proposed (Kent-Dobias & Sethna, 2018) with less efficiency in reducing autocorrelation times.

Multilevel Monte Carlo with Heat Bath (MLMC-HB) We denote by JNN ∈ RV×V a homoge-
neous 2 ·D nearest neighbor (NN) interaction matrix that satisfies

(JNN)v,v′ =

{
J if (v, v′) are 2 ·D nearest neighbor pairs,
0 otherwise,

(2)

for J ∈ R. In some important physical systems, including the Ising model (Onsager, 1944) and the
XY model (Kosterlitz, 1974), the Hamiltonian can be written as

H(s) = −sJNNs⊤ (3)
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with JNN ∈ RV×V .1 The MultiLevel Monte Carlo with Heat Bath (MLMC-HB) algo-
rithm (Schmidt, 1983)—a protocol inspired by RGT—was developed for sampling in such physical
systems around the criticality.

In MLMC-HB, one partitions the lattice sites into L + 1 levels s = (sL, sL−1, . . . , s0) so that all
2 · D nearest neighbors of each entry of sl (for l = 1, . . . , L) belong to the coarser level groups
(sl−1, . . . , s0). Figure 1 shows examples of site partitionings based on the block-spin transfor-
mations (Kadanoff, 1966) for (D = 1)- and (D = 2)-dimensional lattices, where the sites with
the same color (green, blue, or red) belong to the same groups (sL−2, sL−1, sL). For compact
descriptions, we use inequalities to express subsets of the groups, e.g., s≤l = (sl, . . . , s0), and
s>l = (sL, . . . , sl+1). We denote by Vl the dimension of s≤l, i.e., s≤l ∈ RVl and s>l ∈ RV−Vl .
The marginal distribution of the l-th level lattice is given as

p(s≤l) =
∫
p(s)D[s>l] ≡ 1

Zl
e−βHl(s

≤l), (4)

where the corresponding Hamiltonian Hl(s
≤l) (i.e., a scaled negative log marginal likelihood) is

called a renormalized Hamiltonian. An important result in RGT is that, around the criticality, the
renormalized Hamiltonian for l = 0, . . . , L̃, where L̃ is a few levels smaller than L, can be approxi-
mated as a Hamiltonian with NN interactions, i.e.,

Hl(s
≤l) ≈ H̃l(s

≤l), where H̃l(s
≤l) = −s≤lJNN

l (s≤l)⊤ (5)

with the NN interaction matrix JNN
l ∈ RVl×Vl .2 If Eq. (5) holds exactly, the conditional probability

p(sl|s≤l−1) can be decomposed as

p(sl|s≤l−1) =
∏Vl

v=1 p(s
l
v|s≤l−1), (6)

because the Markov blanket3 (Bishop, 2006) of slv does not contain slv′ for any v′ ̸= v (see the
yellow shadows in Figure 1 top). This makes the sampling from the conditional distribution (6)
extremely easy and efficient—one can apply the HB conditional sampling exactly for the discrete
domain (with a probability table of size |S|), and approximately for the continuous domain (with,
e.g., a one-dimensional Gaussian mixture). Therefore, starting from samples drawn from p(s0)
(which can be efficiently performed by HB or MCMC if L is sufficiently large and hence V0 is
small), the ancestral sampling of the full lattice according to

p(s) =
(∏L

l=1 p(s
l|s≤l−1)

)
p(s0) (7)

can be efficiently performed. Intuitively, MLMC-HB captures the long-range correlations by the
coarse level marginals, i.e., p(s≤l) for small l, which avoids two major difficulties—large lattice
size and long-range correlations—arising at the same time.

For the (D = 1)-dimensional lattice (see Figure 1 upper row), it is known that Eq. (5), and thus
Eq. (6), hold exactly, and therefore, MLMC-HB generates accurate samples from the target Boltz-
mann distribution. For D ≥ 2 (see Figure 1 lower row), Eq. (5) holds only approximately, and
therefore, MLMC-HB should be combined with importance sampling or Metropolis-Hastings rejec-
tion. Namely, we draw samples according to

qNN(s) = p(sL|s≤L−1)
(∏L−1

l=1 qNN(sl|s≤l−1)
)
qNN(s0), (8)

and compensate the sampling bias by using the sampling probability qNN(s), where
{qNN(sl|s≤l−1)}L−1

l=1 and qNN(s0) are approximate distributions with NN interactions to the true

1The whole discussion in this paper can be applied to a slight generalization with the Hamiltonian in the
form ofH(s) = −

∑
v,v′(J

NN)v,v′ψ(sv, sv′), where ψ(s, s′) is a similarity function between two states, e.g.,
ψ(s, s′) = δs,s′ for Potts model (Wu, 1982).

2The corresponding NN interaction coefficient—J in Eq. (2) which we refer to as Jl—can be analytically
computed in RGT (see Appendix C). When N,L → ∞, Jl converges to a limiting value as l decreases, and
thus the scale invariance at criticality (SIC) emerges. Since we consider finite lattices, exact SIC never holds.
Nevertheless, in one-dimensional finite lattices, the renormalized Hamiltonians consist only of NN interactions,
which is sufficient for MLMC-HB to be accurate, as explained in Figure 1.

3The Markov blanket of a random variable sv is a set of other random variables Bsv ⊆ {sv′}v′ ̸=v that
have sufficient information to determine the conditional distribution of sv given the other random variables,
i.e., p(sv|Bsv ) = p(sv|{sv′}v′ ̸=v).
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conditionals {p(sl|s≤l−1)}L−1
l=1 and the true marginal p(s0), respectively. Unfortunately, the ap-

proximation errors accumulate through ancestral sampling, leading to a significantly low acceptance
rate for large lattice sizes. We show in Section 4 that MLMC-HB is not very efficient for D = 2.
Further details on RGT and MLMC-HB are given in Appendix C and Appendix D, respectively.

2.2 GENERATIVE MODELING FOR MC SIMULATIONS

In recent years, deep generative models have gained significant traction in the field of physics
for their efficient modeling of complicated probability distributions. In particular, normalizing
flows (Kobyzev et al., 2020) and autoregressive neural networks (van den Oord et al., 2016c) became
very popular in the context of computational physics due to their intrinsic capability of providing the
exact sampling probability qθ(s), which allows asymptotically unbiased MC estimation. Notably,
well-trained generative models can provide independent samples from an approximate distribution,
and asymptotically unbiased estimates of physical observables can be computed by importance sam-
pling (Nicoli et al., 2020): ⟨O⟩ ≈ 1

M

∑M
m=1

w̃m∑M
m′=1

w̃m′
O(sm), where w̃ = e−βH(s)/qθ(s) is an

unnormalized importance weight. However, naive generative modeling can be problematic for sam-
pling large lattices near criticality because large receptive fields are required to capture long-range
correlations. Improving the scalability of generative samplers is therefore one of the most crucial
challenges for reaching the same level of efficiency as state-of-the-art MCMC samplers for large
systems.

3 METHOD

In this section, we describe our proposed method that enhances MLMC-HB (see Section 2.1) with
generative modeling (Section 2.2). We focus on (D = 2)-dimensional lattice systems with (V =
N ×N) grid points.

3.1 RENORMALIZATION-INFORMED GENERATIVE CRITICAL SAMPLER (RIGCS)

Higher-order RGT (Maris & Kadanoff, 1978) shows that, for D = 2, the Hamiltonian of the
marginal distribution (4) consists not only of the NN interaction terms but also of long-range and
higher-order interaction terms:

Hl(s
≤l) = −s≤lJNN

l (s≤l)⊤ − s≤lJLR
l (s≤l)⊤ −

∑
v,v′,v′′

(J HO
l )v,v′,v′′s≤l

v s≤l
v′ s

≤l
v′′ + · · · , (9)

where JLR
l and J HO

l denote the matrix and the tensor that express the long-range and high-order
interactions, respectively.4 Instead of approximating the renormalized Hamiltonian (9) with the
Hamiltonian (5) with NN interactions, our method, called Renormalization-informed Generative
Critical Sampler (RiGCS), approximates the long-range and higher-order interactions with genera-
tive models. Specifically, RiGCS performs ancestral sampling according to

qθ(s) = p(sL|s≤L−1)
(∏L−1

l=1 qθl
(sl|s≤l−1)

)
qθ0

(s0), (10)

where qθl
(sl|s≤l−1) for l = L− 1, . . . , 1 and qθ0

(s0) are conditional and unconditional generative
models that approximate p(sl|s≤l−1) and p(s0), respectively. Here, θ = (θL−1, . . . ,θ0) denotes all
model’s trainable weight parameters. Similarly to the configuration variable s, we use inequalities
to express subsets of the parameters, e.g., θ≤l = (θl, . . . ,θ0). Note that, at the finest level, the con-
ditional distribution p(sL|s≤L−1) has only NN interactions by assumption, and therefore, the exact
HB algorithm can be efficiently applied without generative modeling. Therefore, θ = θ≤L−1—as
there is no model parameter at the L-th level.

3.2 RECEPTIVE FIELD DESIGN

It is known that the long-range and higher-order interactions decay between lattice sites with longer
distances (Maris & Kadanoff, 1978). Therefore, we can tune the accuracy of approximating the

4Note the difference between the “interactions” and the “correlations.” The former mean the direct cross
dependent terms in the Hamiltonian, while the latter means statistical dependence in the Boltzmann distribution.
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Figure 2: Illustration of sequential training of (L = 6)-layered RiCGS for the 16× 16 lattice, where
the marginal model qθ0(s

0) is first trained on the smallest 2 × 2 target Boltzmann distribution,
and then larger RiGCS with conditional models are trained sequentially on the target Boltzmman
distributions with larger lattices. The red arrows indicate the model transfer initializations. Note
that the parameters without incoming red arrow are randomly initialized. For larger lattices, we
continue the last step until the target size is reached.

marginal Hamiltonian by controlling the receptive fields of conditional generative models, i.e., the
larger the receptive field is, the more accurate the approximation to the marginal Hamiltonian (9)
is. Compared to vanilla generative models (without multilevel sampling), where the receptive field
needs to cover the whole correlation range in the original finest-level lattice, our RiGCS approach
allows us to keep the receptive field of each conditional model small. In particular, if we set the
number L of levels proportional to the lattice size N (per dimension), we can keep the receptive
field size constant for different N . This is because our RiGCS captures the long-range interactions
in the coarser level models—the coarsest generative model qθ0(s

0) with the receptive field size α×α
effectively amounts to the receptive field size αL/2×αL/2 in the original finest lattice. In principle,
an optimal receptive field size for each level l should exist such that the accumulated approximation
error is minimized for a given computational cost. However, this work uses the same architecture
for the conditional models for l = L − 1, . . . , 1, which enables efficient model transfer in training,
as explained below. Besides, this choice makes the model complexity of RiGCS linear to L.

3.3 SEQUENTIAL TRAINING WITH MODEL TRANSFER INITIALIZATION

We train our RiGCS by minimizing the reverse Kullback-Leibler (KL) divergence, i.e.,

min
θ

KL(qθ(s)∥p(s))=
∑

s∈SV qθ(s) log
qθ(s)
p(s) ≈ 1

Mtr

∑Mtr

m=1 log
qθ(sm)
p(sm) , (11)

which is estimated from the generated samples {sm ∼ qθ(s)}Mtr
m=1—training data drawn from the

target distribution are not required. However, training all parameters θ from scratch, e.g., with
random initialization, tends to suffer from long initial random walking steps. This is because the
randomly initialized RiGCS, qθ(s), generates random samples, for which the stochastic gradient of
the objective (11), rarely provides useful signal to train the model. We tackle this problem with a
specific training procedure with model transfer, again based on RGT.

We choose L to an even number, and consider a set of sequential target Boltzmann distributions
pL′(s≤L′

) ∝ e−βH̃L′ (s≤L′
) for L′ = 0, 2, 4, . . . , L, where {H̃l(s

≤l)}Ll=0 are the approximate renor-
malized Hamiltonians with NN interactions, defined in Eq.(5), and H̃L(s

≤L) = H(s). For each
target pL′(s≤L′

) in the increasing order of L′, we train a RiGCS qθ≤L′−1(s≤L′
) that shares the

same coarsest lattice size V0 as the final model qθ≤L−1(s≤L) = qθ(s). This allows us to initialize
the RiGCS parameters for learning pL′(s≤L′

) to the corresponding parameters already trained on
pL′−2(s

≤L′−2)—an easier (smaller lattice size) system. Figure 2 illustrates this procedure, where
the initializations are indicated by the red arrows. Thanks to SIC, the models connected by the
red arrows are similar to each other, as detailed in Appendix E.1. Note that all parameters except
θ0,θ1,θ2—which are trained on the three smallest lattice sizes with random initializations—can be
warm started. Pseudocode of sampling and training routines of RiGCS is given in Appendix E.2.
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4 NUMERICAL EXPERIMENTS

We evaluate our proposed RiGCS, and compare it with several baselines. Below we describe the
experimental setting.

Target Physical Systems We adopt the two-dimensional Ising model, for which the Hamiltonian
is given by Eq. (3) with the 2-dimensional binary lattice, i.e., s ∈ SV = {−1, 1}N×N , and J = 1.
This commonly used benchmark system is suitable for our evaluation, because it exhibits a second-
order phase transition, and is exactly solvable (Onsager, 1944)—the ground-truth is analytically
computed. We set the inverse temperature to β = 0.44, which corresponds to the critical (inverse)
temperature where the phase transition occurs by spontaneous symmetry breaking in the limit of an
infinite lattice. The lattice sizes are set to N = 8, 16, 32, 64, 128.

Generative models Since we focus on the binary domain, we use autoregressive neural networks
(ARNNs)

qθ(s) =
(∏V

v=2 qθ(sv | sv−1, . . . , s1)
)
qθ(s1) (12)

for unconditional and conditional generative models at each level of RiGCS. More specifically, we
adopt PixelCNNs (van den Oord et al., 2016c;b), which allow us to control their receptive fields by
setting the convolution kernel sizes. We provide details on ARNNs in Appendix F.

Baselines We compare our method against three multilevel/generative model baselines: MLMC-
HB, VAN (plain ARNN without multilevel sampling) (Wu et al., 2019), and HAN (Białas et al.,
2022). We also evaluate the Wolff cluster method (see App. B), which is widely recognized as a very
efficient sampler for the Ising model, and no generative model has yet exceeded its performance.
In our experiments, RiGCS achieved comparable (although still worse) performance to the cluster
method on large lattices, outperforming the previous state-of-the-art (Białas et al., 2022) as well
as other baselines, such as VAN (Wu et al., 2019) and naive MLMC-HB (Schmidt, 1983; Faas &
Hilhorst, 1986; Jansen et al., 2020).

Model Architecture: We set the number of levels to L = N/2 − 2, such that the coarsest lattice
size is always V0 = 2 × 2. Our RiGCS (10) consists of a PixelCNN5 with a three masked con-
volutional layers (12 channels) with the half kernel size of 6 as the coarsest level (unconditional)
generative model qθ0

(s0), and CNNs with two convolutional layers (12 channels) with the half ker-
nel sizes of 5 and 3 as the intermediate level conditional generative models {qθl

(sl|s≤l−1)}L−1
l=1 .

The receptive field of qθ0(s
0) covers the whole coarsest level lattice, while the receptive field of

qθl
(sl|s≤l−1) for l = 1, . . . , L− 1 is 11× 11—it captures the long-range and higher-order interac-

tions up to 5-steps distant sites. Note that RiGCS performs the exact independent HB sampling with
p(sL|s≤L−1) at the finest level, and is trained sequentially from a small lattice size to the larger
lattices with N = 4, 8, ..., 128, as described in Section 3.3. We again refer readers to Appendix G
for more details.

4.1 FREE ENERGY ESTIMATION

We first evaluate the sampling methods in terms of the bias and the variance in estimating the free
energy—a thermodynamic observable. We combine the cluster method with annealed importance
sampling (AIS) (Neal, 2001) to estimate the free energy (Caselle et al., 2016). For generative sam-
plers, i.e., VAN, HAN, and our RiGCS, we use the asymptotically unbiased estimator (Nicoli et al.,
2020) for the free energy:

F̂ = − 1
β log Ẑ, where Ẑ = 1

M

∑M
m=1 e

−βH(sm)/qθ(sm), sm ∼ qθ(s), (13)

where M is the number of generated samples. We can use this estimator also for MLMC-HB
because we can compute all factors in Eq. (8) including the normalization constants. This is because
all conditionals {qNN(sl|s≤l−1)}Ll=1 are products of independent distributions, and the lowest level
marginal qNN(s0) is the Boltzmann distribution with only 22×2 states.

5We used the PixelCNN implementation by Wu et al. (2019).
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Figure 3: Left: Relative estimation error for the free energy. Only RiGCS provides estimates for
N = 128 that are comparable to those of Cluster-AIS. Note that the vanilla VAN cannot be trained
for N ≥ 64 in reasonable time. Right: Comparison between vanilla training and the proposed
sequential training for RiGCS for N = 64 in terms of the achieved ESS. The plot for the sequential
training starts at the time ≈ 2.3 hours when the pre-training for smaller lattice systems is finished.
ESS at each training epoch is computed with M = 16 samples, and the markers at “final” show the
ESS computed with M = 106 samples after training finished.
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Figure 4: EMDM (left) and ESS (right). The vanilla VAN cannot be trained for N ≥ 64 in reason-
able time. The inset in the left hand side plot zooms around the region of w̄ = 1.0, showing that
RiGCS does not suffer from mode dropping even for large N = 128. Similarly, the ESS displayed
in the plot on the right indicates that RiGCS achieves the closest performance to Cluster-AIS among
the generative neural samplers for large systems.

Figure 3 left shows the relative estimation error (F̂ − F )/|F | by our RiGCS and the baselines,
where F is the analytically computed free energy (Onsager, 1944), and each error bar show one
standard deviation of the statistical error. We observe the following. MLMC-HB performs poorly
for N ≥ 32, exhibiting strong biases (results are out of the range for N ≥ 64). The other four
methods provide compatible (unbiased) estimation up to N ≤ 32, but Cluster-AIS and our RiGCS
outperform VAN and HAN in terms of the variance. For N = 128, only Cluster-AIS and our RiGCS
can perform compatible estimation to the true free energy value with reasonable computation time.
More specifically, the vanilla VAN cannot be trained for N ≥ 64 because its wall-clock training time
exceeds several weeks. HAN gives highly biased estimate that is incompatible with the ground-
truth. These results proved the superiority of our RiGCS to the existing generative models for
thermodynamic observables estimation.

4.2 QUALITY MEASURES FOR GENERAL OBSERVABLE ESTIMATION

Next, we evaluate the samplers in terms of quality measures related to the bias and variance for
general (non-thermodynamic) observables. We use a recently proposed Effective Mode-Dropping
Measure (EMDM) (Nicoli et al., 2023) and the commonly used Effective Sample Size (ESS) as
indicators of bias and variance, respectively. EMDM is defined as EMDM = w̄ = Eq̃θ [w(s)],
where w(s) = p(s)

qθ(s)
, and q̃θ is the renormalized density of qθ(s) with the very low density areas—

in which no sample appears with high probability—eliminated from its support.6 Nicoli et al. (2023)
showed that the bias of the importance-weighted estimators for general observables can be bounded

6The threshold for the “very low density area” depends on the number M of samples, and q̃θ(s) = qθ(s)
for M → ∞.
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with EMDM. Note that EMDM ∈ [0, 1], and EMDM = 1 indicates no effective mode-dropping.
ESS (per sample) is defined as ESS = 1

Eqθ
[w(s)2] , and is known to be inversely proportional to

the variance of general unbiased estimators. Note that ESS ∈ [0, 1] and ESS = 1 implies that
qθ(s) = p(s).

Figure 4 left shows the EMDM of our RiGCS in comparison with the baseline generative models,
i.e., VAN and HAN. The vanilla VAN can be trained only up to N = 32, as explained above.
We observe that, for N ≤ 64, the EMDMs of HAN and RiGCS are compatible with EMDM ≈
1, indicating no effective mode-dropping. However, for N = 128, the EMDM of HAN drops
significantly, implying that it is affected by effective mode-dropping. This result is consistent with
the biased free energy estimation by HAN in Figure 3 left. Our RiGCS does not show a sign of mode-
dropping for N = 128, demonstrating its robustness in accurately modeling the target distribution
without suffering from mode collapse in high dimensions.

Figure 4 right compares the ESS of RiGCS, and the baseline methods. Our RIGCS outperforms all
baselines except the cluster method, which is known to be a powerful state-of-the-art method for
general observable estimation. Notably, for N = 128, RiGCS improves the ESS of HAN, a state-
of-the-art generative model, by a few orders of magnitute, becoming the only generative model with
non-vanishing ESS.

4.3 COMPUTATION COSTS

Training Costs Generative modeling approaches, i.e., VAN, HAN, and our RiGCS require train-
ing. For the N = 64 lattice, wall-clock training time for VAN, HAN, and RiGCS are approximately
60 days, 2.8 hours, and 3.8 hours respectively. We also evaluated the advantage of the sequential
training with model transfer for RiGCS, introduced in Section 3.3. Figure 3 right compares the
achieved ESS by the sequential training (warm start) and random initialization (cold start), where
significant advantage is observed. Note that the sequential training (purple curve in Figure 3) starts
at the time ≈ 2.3 hours to account for the pre-training time for smaller lattice systems.

Sampling Costs For N = 64, sampling costs for MLMC-HB, VAN, HAN, and RiGCS are ap-
proximately 14, 27, 0.2 and 0.4 seconds, respectively, for generating a batch of 100 samples.

Empirical sampling and training costs are shown in Appendix H.

5 CONCLUSIONS

Critical behavior such as phase transitions are important phenomena of high relevance in many
fields of physics, where Renormalization Group Theory (RGT) plays a central role for theoretical
analysis. Insights from RGT were also used for improving tools for numerical analysis, leading to
the MultiLevel Monte Carlo (MLMC) methods based on the emerging scale invariance at critical-
ity (SIC). In this paper, we further enhanced such tools by leveraging machine learning techniques.
Specifically, we adopted conditional generative models with appropriate size of receptive fields—
instead of the nearest-neighbor heat bath conditional samplers—such that they capture long-range
and higher-order interactions that exist under slight violation of SIC. With this modification, our
Renormalization-informed Generative Critical Sampler (RiGCS) outperforms state-of-the-art gen-
erative samplers. We, furthermore, specialized its training procedure with model transfer, again
inspired by SIC, and significantly reduced the training cost. Although many machine learning ap-
plications for sciences have been proposed, where general domain knowledge, e.g., invariances,
equivariances and preservation laws, is incorporated for model design, this work is one of the few
applications where the knowledge of critical phenomena, i.e., SIC, is incorporated for the architec-
ture design of machine learning models, as well as its training procedure. We envision this work
as a first step towards specialized machine learning methods for critical regimes, which facilitates
further developments of efficient algorithms. Our future work includes the application of RiGCS to
other physical models, e.g., Potts models and lattice gauge theories, and develop methods combining
RiGCS and related methods, e.g., HAN.
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A EXTENDED RELATED WORK

Renormalization Group Theory (RGT) has significantly impacted the study of statistical systems,
especially in analyzing critical phenomena and phase transitions. The pioneering works by Wil-
son, Kogut, and Kadanoff laid the foundational principles of RG theory (Wilson, 1971; Wilson &
Kogut, 1974; Kadanoff, 1966). Subsequent advancements have expanded the application of RGT-
inspired methods to disordered systems, random ferromagnetic chains, and Monte Carlo simula-
tions (Aharony, 1973; Fisher, 1973; Swendsen, 1979; Derrida, 1980; Butera & Comi, 2002). These
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developments have enriched the understanding of critical phenomena and further established the
applications of RGT techniques in both theoretical and computational contexts.

In computational physics, substantial research has focused on RGT-inspired sampling methods for
lattice simulations. For example, early studies on the Ising model (Schmidt, 1983; Faas & Hilhorst,
1986) achieved notable success in small systems in one dimension yet faced limitations as the lat-
tice sizes increased. More recently, Jansen et al. (2020) introduced a new theoretical framework
of low variance estimation, showing promising results for one-dimensional quantum systems. In
lattice gauge theory, the application of RGT concepts led to the development of several algorithms,
including multigrid (Cahill & Kogut, 1982; Goodman & Sokal, 1986; Hulsebos & Hockney, 1989),
multiscale thermalization techniques (Endres et al., 2015), and decimation maps (Matsumoto et al.,
2023).

In recent years, RGT-inspired approaches have been combined with machine learning to develop
more scalable samplers. Notable examples include applications in U(1) (Finkenrath, 2024) and
SU(3) gauge theories (Abbott et al., 2024) where a renormalization group (RG) scheme has been
combined with normalizing flows. Similarly to our approach, Białas et al. (2022) proposed a Hier-
archical Autoregressive Network (HAN) for sampling configurations of the 2D Ising model. This
latter leverages a recursive domain decomposition (Cè et al., 2016) technique in which different
regions of the configurations are sampled in parallel using the same autoregressive network, thus
replacing the traditional scaling with the system’s linear extent L. Białas et al. (2022) demonstrated
the effectiveness of HAN on the two-dimensional Ising model, with simulations on lattices up to
128 × 128 spins. However, this method has several shortcomings, particularly in terms of perfor-
mance on larger lattices. We refer to Appendix H and Section 4 for a thorough discussion. On a side
note, we emphasize that our multilevel approach and the domain decomposition proposed in Białas
et al. (2022) are not mutually exclusive. In fact, those methods could in principle be combined
leading to more powerful sampling protocols. We defer this investigation to future work.

Besides the development of enhancing sampling methods other recent works have leveraged the idea
of RG in different ways. In their work, Li & Wang (2018) focused on neural network renormaliza-
tion group, investigating the capability of neural networks to perform hierarchical feature extraction
and hierarchical transformations. Koch-Janusz & Ringel (2018) propose a machine learning ap-
proach to identify the relevant degrees of freedom and extract Ising critical exponents in one and
two-dimensional systems. Efthymiou et al. (2019) leverage the idea of image super-resolution and
train convolutional neural networks that invert real-space renormalization decimations, and show
that it is possible to predict thermodynamic quantities for lattice sizes larger than those used in
training. Lenggenhager et al. (2020) draw a connection between real-space RG and real-space mu-
tual information. From an information-theoretic standpoint, they investigate the information loss
at arbitrary coarse graining of the lattices through the lenses of RG. Another important work (Li
& Wang, 2018) propose to use techniques allowing relaxation to continuous variable to enhance
HMC sampling for the Ising model. To this end, they use bijective transformation to learn hier-
archical maps to automatically identify mutually independent collective variables. While inspired
by RGT, their work does not focus on multilevel sampling, e.g., the approach does not scale and
in the paper only results on a 162 lattice are shown. A more recent study (Marchand et al., 2023)
introduce the wavelet-conditional renormalization group (WCRG) where fast wavelet transforms
are used to build an RG transformation across scales. While similar in spirit, their approach is
substantially different compared to ours, as it trains the model by using a contrastive divergence
loss and requires a lot of training samples drawn from the target distributions. Hu et al. (2020)
use the neural network renormalization group (Li & Wang, 2018) as a universal approach to design
generic exact holographic maps (EHM) for interacting field theories. Chung & Kao (2021) use Re-
stricted Boltzmann Machines (RBM) to learn a valid real-space RG transformation without prior
knowledge of the physical system, establishing a solid connection between the RG transformation
in physics and statistical learning theory. Ron et al. (2021) and Bachtis et al. (2022), instead, use
modified block-spin transformations—to improve convergence in the Monte Carlo (MC) renormal-
ization group trajectory—and inverse RG transformations, respectively, to extract critical exponents
of a given physical theory.

Recently, a so-called machine-learning renormalization group (MLRG) algorithm has been devel-
oped to explore and analyze many-body lattice systems in statistical physics (Hou & You, 2023). In
a recent work by Di Sante et al. (2022), the authors propose a data-driven dimensionality reduction
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and use a Neural ODE solver in a low-dimensional latent space to efficiently learn the functional
RG dynamics. The authors showed promising results in the context of the Hubbard model.

Lin et al. (2017) pointed out that convolutional neural networks, in supervised learning tasks, can
act as a “coarse-graining” procedure, isolating relevant macroscopic features from irrelevant mi-
croscopic noise. In recent years, RG-inspired machine learning applications have emerged in the
context of variational inference (Ahn et al., 2018), regularization techniques (Wang et al., 2024),
transfer learning (Redman et al., 2022), and multi-scale semantic manipulation of images (Hu et al.,
2022). While all these related works leverage the concept of renormalization group (RG) in different
ways—such as for extracting critical exponents, or interpreting RG as coarse-graining procedures in
machine learning—they suffer from a few shortcomings when it comes to efficient sampling. First,
they often lack the access to a tractable probability density and, second, do not allow for data-free
training of a neural sampler as well as rapid and effective sampling at multiple scales—as RiGCS
does.

RG ideas have also been used in the context of Tensor Networks (TN) to construct an emergent scale
invariant description for critical systems. TN describe the wave function or the partition function of a
system as a contraction of a network of smaller tensors. This approach can be shown to be efficient
as long as the entanglement in the system is moderate (Bridgeman & Chubb, 2017). Blocking
tensors together and coarse gaining the system allow for (numerically) obtaining a description of the
system at a larger length scale. Prominent algorithms for coarse graining the partition function of a
critical system are the Tensor Network Renormalization group (TNR) (Evenbly & Vidal, 2015) and
loop TNR (Yang et al., 2017) for square lattices, as well as Graph-Independent Local Truncations
(GILT) for arbitrary graphs (Hauru et al., 2018). The Multi-scale Entanglement Renormalization
Ansatz (MERA) (Vidal, 2008; Evenbly & Vidal, 2014) leverages the hierarchical structure of RG to
efficiently represent quantum states for critical systems in 1+1 dimensions that are described by an
underlying conformal field theory. Generalizing on this idea, and understanding holographic duality
as a generalization of the RG flow, Qi (2013) and Lee & Qi (2016) propose an exact holographic
mapping which is a one-to-one unitary mapping between boundary and bulk degrees of freedom.
In comparison to MC methods, TN approaches enable the direct computation of expected values of
observables, as they provide an approximation for the wave function or the partition function of a
system. However, although the numerical algorithms for TN methods, which allow for recovering
exact scale invariance at the critical point, scale polynomially with respect to both system size and
tensor size, the computational cost remains challenging due to large degree in the tensor size χ (the
leading order cost of TNR is O(χ6), and of MERA up to O(χ9)).

Furthermore, Cotler and Rezchikov have also uncovered intriguing connections between RG theory
and optimal transport (Cotler & Rezchikov, 2023a), and diffusion models (Cotler & Rezchikov,
2023b), highlighting promising new directions for further investigation.

B MARKOV CHAIN MONTE CARLO AND CLUSTER METHODS

B.1 MARKOV CHAIN MONTE CARLO

MCMC methods produce a sequence of configurations {s1, s2, . . . } following a distribution p
through a Markov chain. To this end, starting from a configuration si a new configuration s′ is
proposed that is either accepted or rejected. In case it is accepted, it becomes the next member of
the Markov chain si+1. If it is rejected, one continues to propose trail configurations starting from
si until one is eventually accepted. In order to ensure that the configurations produced follow the
traget distribution, the transition probability T (s→ s′) from configuration s to s′ has to fulfill∑

s

p(s)T (s→ s′) = p(s′) (14)

One way of guaranteeing the condition above fulfilled is to ensure that the transition probabilities of
the Monte Carlo scheme fulfill the detailed balance condition

p(s)T (s→ s′) = p(s′)T (s′ → s). (15)

Together with ergodicity, i.e. the possibility of reaching any configuration from another one with a
succession of trail moves, this assures that after equilibrating, the configurations produced by the
Markov process follow the target distribution p(s).
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Algorithms such as the Metropolis-Hastings and Heatbath algorithms are widely used to efficiently
generate samples in these simulations. Once enough configurations are sampled, physical observ-
ables such as energy, magnetization, and correlation functions can be computed by averaging over
the configurations:

⟨O⟩ ≈ 1

M

M∑
m=1

O(sm),

where M is the number of sampled configurations.

MCMC samples are inherently correlated, because each new configuration depends on the previous
one. This correlation is measured by the autocorrelation time, which indicates the extent to which
samples remain correlated. As one approaches the critical point, the relaxation time τ of thermody-
namic properties diverges as a power law of the correlation length ξ, i.e.,

τ ∝ ξz, (16)

where z is the dynamical critical exponent. As a result, also the autocorrelation time of the MCMC
method diverges close to the critical point, because ξ →∞ as one approaches SIC, which is known
as critical slowing down (Wolff, 1990). For the finite hypercubic lattices we consider, the correlation
length in lattice units is bounded by the extent N of the lattice in each dimension, hence one finds

τ ∝ Nz, (17)

as one goes close to the critical point. Eq. (17) shows that depending on the value of z, creating
independent configurations becomes increasingly challenging close to criticality for growing lattice
sizes. For local update schemes, as for example Metropolis-Hastings, one typically obtains values of
z ≈ 2. This increase in autocorrelation necessitates a larger number of samples to achieve accurate
statistical estimates, thereby raising the computational cost (Schaefer et al., 2011). In contrast,
cluster algorithms can yield dynamical critical exponents close to zero, thus avoiding critical slowing
down.

B.2 CLUSTER ALGORITHMS

In the following, we briefly review two cluster algorithms for the Ising model, which allow for
efficient simulations close to the critical point. In particular, the Wolff algorithm, combined with
AIS, was used as the Cluster-AIS baseline in the main text.

B.2.1 SWENDSEN-WANG ALGORITHM

The basic principle of the Swendsen-Wang algorithm is to flip entire clusters of spins instead of
a single one (Swendsen & Wang, 1987). To this end, a given spin configuration is divided into
clusters by assigning bonds between the spins. A cluster then consists of all spins connected directly
or indirectly via a bond. Subsequently, all the spins belonging to a cluster are flipped collectively.
More specifically, the algorithm consists of the following steps starting from a given configuration
s:

1. Inspect all nearest neighbors si, sj in s. If si and sj are aligned in the same direction,
a bond is formed in between them with probability pij = 1 − exp (−2βJ). If they are
antiparallel, no bond is formed.

2. Identify all clusters, i.e., all sets of spins connected either directly ore indirectly by a bond.
3. Flip all spins within each cluster collectively with a certain probability pflip, resulting in a

spin configuration s′.
4. Delete all bonds and and repeat the steps for the new spin configuration s′.

Step 3 is based on the fact, that the Ising model partition function can be written as a sum over all
possible clusters, where the individual clusters are uncorrelated (Kasteleyn & Fortuin, 1969; Fortuin
& Kasteleyn, 1972). As a result, the spins within each cluster can be flipped independently. If pflip

is chosen to be close to zero, the new configuration s′ will, in general, not differ a lot from s. In
contrast, choosing pflip = 1 will result in a full inversion of the configuration s, which does not
change the energy at all. As both extremal cases do not produce sensible new configurations, pflip is
typically set to 1/2.
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Intuitively, the effectiveness of the Swendsen-Wang algorithm can be understood by the fact that
flipping large clusters allows for efficiently destroying the long-range correlations emerging close to
the critical point. For D > 2, the Swendsen-Wang algorithm becomes less capable, as the majority
of clusters formed tend to be small, with only a few large ones being generated.

B.2.2 WOLFF ALGORITHM

The Wolff algorithm (Wolff, 1989a) is a single-cluster variant of the Swendsen-Wang algorithm.
Instead of dividing the entire configuration in clusters and flipping each of them, the Wolff algorithm
only forms a single cluster and collectively flips the spins inside this cluster. Starting from a given
configuration s, the Wolff algorithm proceeds with the following steps:

1. Choose a random spin si within the configuration.
2. Starting from si, form bonds analogous to the Swendsen-Wang algorithm with probability

pij = 1− exp (−2βJ) with all nearest neighbors sj that are aligned parallel to si.
3. For each neighboring spin sj added to the cluster form bonds with its respective neighbors

that are not in the cluster, according to step 2.
4. Repeat steps 2 and 3 iteratively until no more spins can be added to the cluster.
5. Flip all spins within the cluster and obtain a spin configuration s′.
6. Delete all bonds and and repeat the steps for the new spin configuration s′.

Note that compared to the Swendsen-Wang algorithm, the cluster is flipped with certainty. If the
cluster formed by the Wolff algorithm is large, the long-range correlations are broken up essentially
as effectively as in the Swendsen-Wang algorithm, but without the extra effort of having to form
smaller clusters in the remainder of the system. If the cluster formed by the Wolff algorithm is
small, the configuration does not change significantly, however, at the same time, the computational
effort is also small. Thus, the Wolff algorithm turns out to be even more efficient in decreasing
the dynamical critical exponent z as the Swendsen-Wang approach. Therefore, we used the Wolff
algorithm as the Cluster algorithm in our experiments.

C RENORMALIZATION GROUP

The Renormalization Group (RG) (Wilson, 1971; Cardy, 1996) is a powerful framework in theoret-
ical physics for studying the behavior of systems as they are progressively coarse-grained to larger
length scales. During this process, microscopic degrees of freedom are systematically marginalized,
generating a flow in parameter space known as the RG flow. More formally, given a Hamiltonian H
describing the system at a given length-scale, one can define a RG transformationRl

H ′ = Rl [H] , (18)

which changes the scale of the system and yields a Hamiltonian H ′ describing the system at larger
length scale l with less degrees of freedom. ForRl to be a proper RG transformation, it has to fulfill
the semi-group property, i.e. there is a neutral element Rid that does not change the scale and the
composition of two transformations to different length scales l and l′ has to fulfillRl′ ◦Rl′ = Rl′+l.
This transformation generates a flow on the space of Hamiltonians that can yield crucial insights
into the macroscopic properties of physical systems. In particular, critical points correspond to fixed
points H∗ in the RG flow,

H∗ = Rl [H
∗] , (19)

as the system exhibits scale invariance at criticality. Close to the critical point, one can expres the
Hamiltonian of the system as H = H∗ + δH , where δH is a small perturbation. Expanding the RG
transformation around the fixed point, one finds

Rl [H
∗ + δH] = H∗ + L [H∗] δH +O

(
δH2

)
≈ H∗ + δH ′, (20)

where δH ′ = L [H∗] δH . Applying the transformationRl n-times, we find in leading order

Rn×l [H
∗ + δH] ≈ H∗ + L [H∗]

n
δH. (21)
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Expanding δH in the eigenoperators Mm of L [H∗], one finds that the leading order correction can
be expressed as

L [H∗]
n
δH =

∑
m

cmλn
mMm, (22)

where cm are the expansion coefficients and λm the eigenvalues corresponding to the eigenoperator
Mm. For large n, or equivalently at large length scales, one observes that the λm determine the
behavior of the system: for λm < 1 (λm > 1) the corresponding eigenoperator is called irrelevant
(relevant), for λm = 1 the operator is called marginally relevant. Equation (22) shows that the
relevant and marginal operators determine the macroscopic behavior of the system. Thus, close to
the critical point systems having the same (marginally) relevant operators will show the same behav-
ior at macroscopic scales, regardless of the microscopic degrees of freedom. This gives rise to the
notion of universality classes, i.e. physical systems showing the same scaling behavior at criticality
described by typically a few critical exponents, despite being microscopically different. Thus, in-
formation about a system’s behavior close to criticality can be obtained by studying another model
within the same universality class. Namely, the Ising model, originally developed to describe phase
transitions in ferromagnetic systems, can also be used to study the liquid-gas transition, superfluids,
and the Higgs mechanism (Wilson, 1971; Wilson & Kogut, 1974).

A simple example of an RG transformation is the Kadanoff block spin transformation, which will
be illustrated below. The partition function of the Ising Hamiltonian is given by

Z =
∑
s

exp (−βH(s)) =
∑
s

exp
(
β sJNNs⊤

)
. (23)

For D = 1 this can be rewritten as (Maris & Kadanoff, 1978)

Z =
∑

s1,s3,s5,...

( ∑
s2,s4,s6,...

eK(s1s2+s2s3)eK(s3s4+s4s5) . . .

)
(24)

=
∑

s1,s3,s5,...

[
eK(s1+s3) + e−K(s1+s3)

] [
eK(s3+s5) + e−K(s3+s5)

]
. . . , (25)

where K = βJ , we have separated the sum over the even and odd spins in the first line, and explicitly
performed the sum over the even spins from the first to the second line. Using that the spins can take
values ±1 the following identity holds

eK(s1+s3) + e−βJ(s1+s3) = f(K)eK
′ s1s3 , (26)

where

f(K) = 2
√
cosh(2K),

K ′ = ln(cosh(2K))/2.
(27)

Inserting this into Eq. (25), one finds

Z = f(K)N/2
∑

s1,s3,s5,...

exp(K ′HL−1) = f(K)N/2
∑
sL−1

exp
(
K ′HL−1(s

L−1)
)
. (28)

This demonstrates that the partition function of the system on the fine lattice is related to the one on
a coarser lattice described by the same type of Hamiltonian at a different value of βJ . Moreover,
looking at Eq. (27), the only fixed points K∗ in the recursion relation for the renormalized couplings
are the trivial ones, i.e. K∗ = 0, corresponding to T → ∞, where system is in the paramagnetic
phase, and K∗ =∞, corresponding to T = 0, the system is in the ferromagnetic phase.

For D = 2 one can follow a similar approach by marginalizing at each iteration over the even
(or odd) degrees of freedom in a “checker board” pattern (see Fig. 5). After a single step of the
procedure, one obtains for the partition function (Maris & Kadanoff, 1978)

Z = f(K)N/2
∑
sL−1

exp

K1

∑
⟨ij⟩

sisj +K2

∑
⟨⟨ij⟩⟩

sisj +K3

∑
□

sisjsrst


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where ⟨ij⟩ corresponds to the nearest neighbors on the lattice after summing over one sublattice,
⟨⟨ij⟩⟩ to spins on next-nearest neighbor sites and □ indicates the spin on a plaquette of the coarser
lattice and

K1 =
1

4
ln (cosh (4K)) , K2 =

1

8
ln (cosh (4K)) , K3 =

1

8
ln (cosh (4K))− 1

2
ln (cosh (2K)) .

Note that in this case, the partition function is not just given bye the exponential of the same type
of Hamiltonian as the original model just with different parameters on a coarser lattice (see Fig. 5).
Continuing this procedure one would generate various long-range and multi-body interactions in the
renormalized Hamiltonian, which is captured in the Hamiltonian of Eq. (9).

Figure 5: Illustration of the Kadanoff block spin method on a square lattice, the spheres indicate the
spins and the solid black lines the original lattice. After summing over the configurations the orange
spins, one obtains an renormalized Hamiltonian for the blue spins on a square lattice that is tilted by
45°compared to the original lattice (indicated by the grey dashed lines). The resulting Hamiltonian
on the dashed lattice contains nearest-neighbor interactions, interactions of all four spins along a
square as well as next nearest-neighbor interactions along the diagonal of the squares.

A practical example of RG flow in machine learning is the application of CNNs to a classification
supervised learning problem (Lin et al., 2017). CNNs perform a form of coarse-graining, where
successive convolutional layers progressively filter out microscopic noise (irrelevant operators) and
isolate high-level features (relevant operators) essential for distinguishing the target classes. The
latter example can be tested by training a CNN to classify the phase (ferromagnetic or paramagnetic)
of the Ising model. As shown in (Carrasquilla & Melko, 2017) the output of such CNN is strongly
correlated with the magnetization, indicating that both neural networks and the RG flow capture
the same key parameter—magnetization—as a relevant feature to characterize the phase transition
in the Ising model. A similar behavior can be observed by studying the latent representation of an
autoencoder trained on Ising configurations Alexandrou et al. (2020).

D MULTILEVEL MONTE CARLO WITH HEAT BATH (MLMC-HB)
ALGORITHM

With the site partitioning (see Figure 1) based on the block-spin transformations (Kadanoff, 1966),
MLMC-HB performs ancestral sampling, according to Eq. (8), i.e.,

qNN(s) = p(sL|s≤L−1)
(∏L−1

l=1 qNN(sl|s≤l−1)
)
qNN(s0),

which approximates the target distribution (7):

p(s) =
(∏L

l=1 p(s
l|s≤l−1)

)
p(s0).

Here,

qNN(s≤l) =
(∏l−1

l′=1 q
NN(sl

′ |s≤l′−1)
)
qNN(s0)

for l = 0, . . . , L− 1 approximates the true marginal distribution (4):

p(s≤l) =
∫
p(s)D[s>l] ≡ 1

Zl
e−βHl(s

≤l)

with NN interation Hamiltonians, i.e.,

qNN(s≤l) = 1

Z̃l
e−βH̃l(s

≤l) with H̃l(s
≤l) = −s≤lJNN

l (s≤l)⊤.
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Based on RGT (Appendix C), the interaction coefficients {Jl} (J in Eq. (2) for each JNN
l ) are com-

puted by the following recursive equation in the two-dimensional Ising model (Maris & Kadanoff,
1978): for lattice spacing al =

al−1√
2

, i.e., 45 degree rotated lattice,

Kl−1 =
3

8
log{cosh(4Kl)}, (29)

where Kl = βJl for l = L, . . . , 1 with JL = 1.

Thanks to the site partitioning and the approximation with NN interactions, the conditional sampling
probability can be fully decomposed into independent distributions as

qNN(sl|s≤l−1) =
∏Vl

v=1 q
NN(slv|s≤l−1) (30)

(see the Markov blankets shown Figure 1). Sampling from the independent distribution
qNN(slv|s≤l−1) can be easily performed by the heat bath (HB) algorithm. For the Ising models,
where s ∈ {−1, 1}V , slv can be drawn as

qNN(slv|s≤l−1) =
exp

(
− slv

∑
v′(JNN

l )v,v′s<l−1
v′

)
exp

(∑
v′(JNN

l )v,v′s<l−1
v′

)
+ exp

(
−∑v′(JNN

l )v,v′s<l−1
v′

) .
In the 2D Ising model, each site has 4 nearest neighbors, allowing us to easily sample each site using
a probability versus state space table. In the case of MLMC-HB, which involves nearest-neighbor
interactions governed by the recursion relation (29) for Jl, the sampling density can be tuned by
adjusting J at different levels to improve performance.

E ALGORITHMIC DETAILS OF RIGCS

In the following, we provide a detailed description of the sequential training with model transfer
specialized for RiGCS. Furthermore, we also provide pseudocode for both training and sampling
in Algorithm 1 and Algorithm 2, respectively.

E.1 DETAILS OF SEQUENTIAL TRAINING WITH MODEL TRANSFER INITIALIZATION

As mentioned in Section 3.3, we train our RiGCS by minimizing the reverse Kullback-Leibler (KL)
divergence (11), which can suffer from long initial random walking steps if the training parameters
θ are not well initialized, e.g., by randomly initialization. This is because a randomly initialized
RiGCS, qθ(s), generates random samples, for which the stochastic gradient of the objective (11)
rarely provides useful signal to train the model for a large lattice system. We tackle this problem
with a specialized training procedure for RiGCS with model transfer, again based on RGT.

We choose L to an even number, and consider a set of sequential target Boltzmann distribu-
tions {pL′(s≤L′

) ∝ e−βH̃L′ (s≤L′
);L′ = 0, 2, 4, . . . , L}, where {H̃l(s

≤l)}Ll=0 are the approximate
Hamiltonians with NN interactions, defined in Eq.(5), and H̃L(s

≤L) = H(s). Let us consider the
corresponding set of RiGCSs {qθ0(s

0), {qθ≤L′−1(s≤L′
);L′ = 2, 4, . . . , L}} that share the same

coarsest lattice size V0. We train the RiGCSs to the sequential targets in the increasing order of L′,
namely,

At level 0, the 0-layered RiGCS (plain VAN) qθ0
(s0) is trained on p0(s

0) ∝ e−βH̃0(s
0),

At level 2, the 2-layered RiGCS qθ≤1
(s≤2) = p(s2|s≤1)qθ1(s

1|s0)qθ0(s0)

is trained on p2(s
≤2) ∝ e−βH̃2(s

≤2),

At level 4, the 4-layered RiGCS qθ≤3
(s≤4) = p(s4|s≤3)

(
3∏

l=1

qθl
(sl|s≤l−1)

)
qθ0

(s0)

is trained on p4(s
≤4) ∝ e−βH̃4(s

≤4),

...
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At level L′, the L′-layered RiGCS qθ≤L′−1
(s≤L′) = p(sL

′ |s≤L′−1)

L′−1∏
l=1

qθl
(sl|s≤l−1)

 qθ0
(s0)

is trained on pL′(s≤L′
) ∝ e−βH̃L′ (s≤L′

),

...

At level L, the L-layered RiGCS qθ≤L−1
(s≤L) = p(sL|s≤L−1)

(
L−1∏
l=1

qθl
(sl|s≤l−1)

)
qθ0(s

0)

is trained on pL(s
≤L) ∝ e−βH̃L(s≤L).

Figure 2 illustrates this procedure in the case of L = 6 for the 16× 16 lattice, where the parameters
{θl} to be trained are explicitly shown.

Now, assume that SIC approximately holds. Then, the renormalized Hamiltonian should be well
approximated with NN interactions, i.e., Hl(s

≤l) ≈ H̃l(s
≤l) (see Eq.(5)). This means that the

sequential target distributions {pL′(s≤L′
);L′ = 0, 2, 4, . . . , L} have similar marginal distributions

on the sites s≤l (for l ≤ L′). Therefore, once the parameters {θl} of the (L′−2)-layered RiGCS are
trained on the corresponding target pL′−2(s

≤L′
), they are good initializations for the corresponding

components of the L′-layered RiGCS to be trained on the next target pL′(s≤L′
). This justifies the

model transfer initializations depicted as the vertical red arrows in Figure 2. Furthermore, SIC—
stating that the interaction terms in the renormalized Hamiltonians {Hl(s

≤l)} quickly converge to
a fixed point for l < L̃ with some L̃ < L—implies that the renormalized Hamiltonians for different
scales, e.g., Hl−2(s

≤l−2) and Hl(s
≤l), have similar sets of iteraction terms. Therefore, thanks to

our choice of using the same architecture for all conditional models over different levels, we can
also apply model transfer initializations from θl−2 to θl, as depicted as the slanting red arrows in
Figure 2.

Summarizing, our sequential training with model transfer performs the following procedure:

1. Train the (unconditional) generative model qθ0
(s0) to approximate p̃(s0) ∝ e−βH̃0(s

0)

with J̃NN
0 . Set θ̃0 ← θ0.

2. Refine θ≤1 from its initial value θ̃≤1 = (θ̃1, θ̃0), where θ̃1 is set randomly, by training
qθ≤1

(s≤2) = p(s2|s≤1)qθ1
(s1|s0)qθ0

(s0) to approximate p̃(s≤2) ∝ e−βH̃2(s
≤2). Set

θ̃≤1 ← θ≤1.

3. Refine θ≤3 from its initial value θ̃≤3 = (θ̃1, θ̃2, θ̃1, θ̃0), where θ̃2 is set randomly, by train-

ing qθ≤3
(s≤4) = p(s4|s≤3)

(∏3
l′=1 qθl′ (s

l′ |sl′−1)
)
qθ0

(s0) to approximate p̃(s≤4) ∝
e−βH̃4(s

≤4). Set θ̃≤3 ← θ≤3.

4. For L′=6, 8, . . . , L, refine θ≤L′−1 from its initial value θ̃≤L′−1=(θ̃L′−3, θ̃L′−4, θ̃≤L′−3)

by training qθ≤L′−1
(s≤L′) = p(sL

′ |s≤L′−1)
(∏L′−1

l=1 qθl
(sl|s≤l−1)

)
qθ0

(s0) to approxi-

mate p̃(s≤L′
) ∝ e−βH̃L′ (s≤L′

). Set θ̃≤L′−1 ← θ≤L′−1.

Note that all parameters except θ0,θ1,θ2—which are trained on the three smallest lattice sizes
with random initializations—can be initialized to the parameters trained on easier (smaller lattice)
problems, which significantly accelerates the training process, as shown in Figure 3 (right). For
large L and l≪ L, the approximate renormalized Hamiltonian H̃l(s

≤l) with NN interactions might
be significantly different from the true renormalized Hamiltonian Hl(s

≤l) that may have long-range
and higher-order interaction terms. With our training procedure, this gap is reduced step by step by
fine-tuning the generative models with receptive fields beyond the nearest neighbors.
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Algorithm 1 RiGCS training

1: Input:
• Coarsest lattice size N0

• PixelCNN qθ0
• numbers of levels L
• Conditional networks {qθl

(sl|s≤l−1)}
• HB algorithm p(sl|sl−1)

2: Output:
• Trained RiGCS (PixelCNN-based generative model) for sampling sL ∈ SD with D =
2LN0 × 2LN0

3: Train the PixelCNN qθ0 on N0 ×N0 target lattices.
4: Add to the RiGCS’s list of models the conditional VAN qθ1(s

1|s≤0) (randomly initialized) and
the HB p(s2|s≤1).

5: Train the RiGCS on 2N0 × 2N0 lattices.
6: Replace the HB p(s2|s≤1) with the conditional VAN qθ2

(s2|s≤1) randomly initialized.
7: Add to the RiGCS’s list of models the conditional VAN qθ3

(s3|s≤2) initialized with the weights
of the trained model qθ̃1

, and the HB p(s4|s≤3).
8: Train the RiGCS on 4N0 × 4N0 lattices.
9: for l = 5, l < L, l = l + 2 do

10: Replace the HB p(sl−1|s≤l−2) with the conditional VAN qθl−1
(sl−1|s≤l−2) initialized with

the trained model qθ̃l−3
weights.

11: Add to the RiGCS’s list of models the conditional VAN qθl
(sl|s≤l−1), initialized with the

trained model qθ̃l−2
weights, and HB p(sl+1|s≤l).

12: Train the RiGCS on 2l+1N0 × 2l+1N0 lattices.
13: end for

Algorithm 2 RiGCS sampling

1: Input:
• Coarsest lattice size N0

• PixelCNN qθ0
• List of conditional models {qθl

(sl|s≤l−1)}L−1
l=1

• Heatbath algorithm for sampling the finest level L: p(sL|sL−1).
2: Output:

• Samples sL ∈ SD with D = 2LN0 × 2LN0

• Exact sampling probability ln qθ(s
L).

3: Sample s0 ∼ qθ0 and compute ln qθ0(s0).
4: for l = 1, l < L, l = l + 2 do
5: Embed the sample sl−1 into a 2Nl−1 × 2Nl−1 with zeros in the lattice sites of the levels

l, l + 1.
6: Sample sl ∼ qθl

(sl|s≤l−1) and compute ln qθl
(sl).

7: if l + 1 ̸= L then
8: Sample sl+1 ∼ qθl+1

(sl|s≤l) and compute ln qθl+1
(sl+1).

9: else
10: Sample sL ∼ p(sL|sL−1) with HB and compute ln qθ(s

L).
11: end if
12: end for

E.2 PSEUDOCODE FOR RIGCS

The pseudocode provided in Algorithm 1 and Algorithm 2 describes the practical steps for training
RiGCS and for sampling from a trained RiGCS.
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F AUTOREGRESSIVE NEURAL NETWORKS

Autoregressive neural networks are a class of generative models used to model conditional prob-
ability distributions. For high-dimensional configurations, each element in the configuration is
predicted based on the previous elements. These models are widely used in time series forecast-
ing (Triebe et al., 2019), natural language processing (van den Oord et al., 2016a), large language
models (Brown et al., 2020), and generative modeling (van den Oord et al., 2016b) as they explicitly
capture the dependencies between elements in a sequence.

In the last decades, autoregressive neural networks have been extensively deployed in different sci-
entific domains including statistical physics (Wu et al., 2019; Nicoli et al., 2020; Wang et al., 2022;
Biazzo, 2023; Biazzo et al., 2024), quantum chemistry (Gebauer et al., 2019; Joshi et al., 2021;
Gebauer et al., 2022), learning wave functions of many body systems (Hibat-Allah et al., 2020),
tensor newtorks (Chen et al., 2023) and quantum computing (Liu et al., 2021).

Relying on the factorizability of arbitrary distributions as

p(s) =

(
V∏

v=2

p(sv | sv−1, . . . , s1)

)
p(s1), (31)

autoregressive models approximate each factor in the right-hand side with neural network models qθ
with the parameters θ to be optimized so that qθ(s) ≈ p(s). The ancestral sampling in the order of
s1, . . . , sV allows sampling and density evaluation at the same time. State-of-the-art architectures
often use convolutional neural networks, leveraging masked filters to ensure that the conditional de-
pendencies are restricted to previous elements in the sequence (van den Oord et al., 2016b; Salimans
et al., 2017).

G IMPLEMENTATION DETAILS FOR VAN, HAN AND RIGCS

G.1 VAN

The two main architectures used to implement VANs are Masked Autoencoder for Distribution
Estimation (MADE) (Germain et al., 2015) and the PixelCNN (van den Oord et al., 2016c;b), which
rely respectively on fully-connected and convolutional layers. In order to ensure the autoregressive
properties required by the models, the weights of these architectures are masked such that the i-th
component of the output ŝi = gθ(s) of the network gθ depends only on the the previous values s<i,
i.e.,

ŝi = gθ(s<i).

In the last layer of the network, a sigmoid function is used such that the ŝi represents the normalized
probability of being 1. The conditional density of the new entry is then computed according to a
Bernoulli distribution with factor ŝi:

σθ(si|s<i) = ŝiδsi,+1 + (1− ŝi)δsi,−1.

In our experiments, we used the PixelCNN implemented by Wu et al. (2019) which leverages masked
convolutional kernels k = K ×K, with K odd and entries ki,j where i, j = 0, 1, · · · ,K − 1 such
that the element i = (K − 1)/2 and j = (K − 1)/2 represents the center of the kernel. The mask
of the PixelCNN layers fixes to 0 the elements k(K−1)/2,j>(K−1)/2 and ki>(K−1)/2,j in order to
ensure the autoregressive properties of the network. In the case that the PixelCNN has more than
two layers, it makes use of residual connection (He et al., 2015) (i.e. the input to the layer is summed
with the output) for each layer, excluding the first and the last. Before each masked convolutional
layer of the residual connections, and at the end of the network (before the sigmoid function), is
added a standard convolutional layer with a kernel size of 1.

The PixelCNN used for pure VAN simulations has 6 masked convolutional layers with 32 channels
and half kernel size (K − 1)/2 = 6

G.2 HAN

The HAN (Białas et al., 2022) model leverages recursive domain decomposition (Cè et al., 2016)
in order to sample in parallel different regions of the lattice configurations. The crucial aspect of
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the domain decomposition is that the domains must be connected through a common boundary,
and, once it is given, each domain can be sampled independently using the same model. In the
HAN implementation, a boundary B0 that divides the lattice in four domains is first sampled using
a standard MADE architecture. Then, each domain is split into four by sampling in parallel four
boundaries Bi using another MADE model conditioned on the boundary B0. This procedure is
repeated until the remaining entries have all the neighbours fixed and therefore can be generated
using HB.

In our experiments, we used the code and hyperparameters provided by the authors of Białas et al.
(2022).

G.3 RIGCS

In our implementation of the RiGCS, at the coarsest level l = 0, corresponding to the (unconditional)
generative model qθ0

(s0), we use a PixelCNN made of 3 masked convolutional layer of 12 kernels
with half kernel size equal to 6.

For the implementation of the conditional models {qθl
(sl|s≤l−1)}L−1

l=1 we defined one ”block” as
two consecutive levels, that correspond to upsampling from lattice size Nl ×Nl to Nl+2 ×Nl+2 =
2Nl × 2Nl with l ∈ 0, 2, 4, 6, ... Each block takes as input a coarse configuration sl of size Nl ×Nl

and embeds it into a 2Nl × 2Nl configuration where all the entries for the levels l + 1 and l + 2 are
fixed to 0. Afterwards, the spins of levels l + 1 and l + 2 are sampled sequentially according to the
output of a standard CNN that takes as input the embedded configuration. Each conditional CNN
(conditional VAN) of the RiGCS has one hidden layer with 12 kernels and kernel sizes of 5 and 3
for the hidden and output layers, respectively. We use the same CNN architecture for both levels
as well as for all blocks except the last. With this kind of conditional network, the autoregressive
properties of the model are ensured and the receptive field is set as explained in 3.2. In the last block
of the model, the level l = L is sampled using the HB algorithms due to the local nature of the target
Hamiltonian.

As for the PixelCNN, the conditional VAN uses a sigmoid activation in the final layer; thus, the
conditional density of the new entry is computed according to a Bernoulli distribution with factor
ŝli:

σθ(s
l
i|sl<i, s

<l) = ŝliδsli,+1 + (1− ŝli)δsli,−1.

During the training procedure described in 3.3, each block is initialized with the weights of the
conditional VAN of the previous block.

Observe that the architectures used for the conditional VAN are reminiscent of the Multi-Scale
PixelCNN introduced in van den Oord et al. (2016c).

G.4 TRAINING

All the generative neural samplers (RiGCS, VAN, HAN) used in our experiments are trained by
minimizing the reverse Kullback-Leibler (KL) divergence:

min
θ

KL(qθ(s)∥p(s)) (32)

with the gradient estimator:
∇θKL(qθ(s)∥p(s)) = Es∼qθ

[(
βH(s) + log qθ(s)

)
∇θ log qθ(s)

]
.

In order to make the variance of the estimator more stable, we leverage a control variates
method (Mnih & Gregor, 2014) as suggested in Wu et al. (2019). We use the ADAM opti-
mizer (Kingma & Ba, 2014) with learning rate 0.001 and standard βs for training all models.

We trained VANs for 50000 gradient updates (epochs) with batch size 100, and HANs for 100000
gradient updates with batch size 1000, respectively. For RiGCS, training is performed for a total of
3000 epochs for each sequential target lattice volume. When training on a target lattice NL = N ,
the pretraining phase involves coarser levels, with the following number of epochs: 2000 epochs for
level L − 2, 1500 epochs for level L − 4, and 1000 epochs for all subsequent levels, except for the
coarsest level, which is always trained for 500 epochs.

All models are trained and evaluated on one NVIDIA A100 with 80 GB.
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Figure 6: Relative estimation error for the internal energy (left) and absolute magnetization (right).
The vanilla VAN cannot be trained for N ≥ 64 in reasonable time. Note that, unlike in Figure 3
right, we used the MC estimators Ucls, mcls by the cluster method as the reference values.
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Figure 7: Total training time (left) and sampling time (right) for different lattice sizes.

G.5 SAMPLING

We evaluate the MC esimtates by Cluster(-AIS), HAN and RiGCS with one million samples, and
those by VAN and MLMC-HB with 100k samples. In the case of Cluster-AIS, for target volume
128 × 128, we sampled only 500k due to the computational costs. Errors are computed using an
automatic differentiation method introduced in Ramos (2019) and implemented by Joswig et al.
(2023).

H ADDITIONAL NUMERICAL RESULTS

Figure 6 shows additional numerical results of estimating the internal energy and the magnetization,
where the estimators by the cluster method are used as the reference values. Consistently with the
EMDM and ESS shown in Figure 4, our RiGCS provides unbiased estimates with lowest variances
compared to other generative neural samplers. Figure 7 shows empirical training (left) time and
sampling (right) time.
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