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Abstract

Even though neural networks have been long deployed in applications involving
tabular data, still existing neural architectures are not explainable by design. In
this work, we propose a new class of interpretable neural networks for tabular data
that are both deep and linear at the same time (i.e. mesomorphic). We optimize
deep hypernetworks to generate explainable linear models on a per-instance basis.
As a result, our models retain the accuracy of black-box deep networks while
offering free lunch explainability for tabular data by design. Through extensive
experiments, we demonstrate that our explainable deep networks have comparable
performance to state-of-the-art classifiers on tabular data and outperform current
existing methods that are explainable by design.

1 Introduction

Tabular data are arguably the most widely spread traditional data modality arising in a plethora of
real-world application domains (Bischl et al., 2021; Borisov et al., 2022). There exists a recent
trend to deploy neural networks for predictive tasks on tabular data (Kadra et al., 2021; Gorishniy
et al., 2021; Somepalli et al., 2022; Hollmann et al., 2023). In a series of such application realms,
it is important to be able to explain the predictions of deep learning models to humans (Ras et al.,
2022), especially when interacting with human decision-makers, such as in healthcare (Gulum et al.,
2021; Tjoa & Guan, 2021), or the financial sector (Sadhwani et al., 2020). Heavily parametrized
models such as deep neural networks can fit complex interactions in tabular datasets and achieve high
predictive accuracy, however, they are not explainable. In that context, achieving both high predictive
accuracy and explainability remains an open research question for the Machine Learning community.

In this work, we introduce mesomorphic neural architectures1, a new class of deep models that are
both deep and locally linear at the same time, therefore, offering interpretability by design. In a
nutshell, we propose a new architecture that is simultaneously (i) deep and accurate, as well as (ii)
linear and explainable on a per-instance basis. Technically speaking, we learn deep hypernetworks
that generate linear models that are accurate concerning the data point we are interested in explaining.

Our interpretable mesomorphic networks for tabular data (dubbed IMN) are classification or regression
models that identify the relevant tabular features by design. It is important to highlight that this work

1The etymology of the term mesomorphic is inspired by Chemistry as "pertaining to an intermediate phase of
matter". For instance, a liquid crystal qualifies as both solid and liquid.
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tackles explaining predictions for a single data point (Lundberg & Lee, 2017), instead of explaining a
model globally for the whole dataset (Ras et al., 2022). Similarly to existing prior works (Alvarez-
Melis & Jaakkola, 2018; Chen et al., 2018), we train deep models that generate explainable local
models for a data sample of interest. In contrast, we train hypernetworks that generate linear models
in the original feature space through a purely supervised end-to-end optimization.

We empirically show that the proposed explainable deep models are both as accurate as existing black-
box classifiers for tabular datasets and achieve better performance compared to explainable end-to-end
prior methods. At the same time, IMN is as interpretable as explainer techniques. Throughout this
work, explainers can be categorized into two groups: i) interpretable surrogate models that are trained
to approximate black-box models (Lundberg & Lee, 2017), and ii) end-to-end explainable methods by
design. Concretely, we show that our method achieves comparable accuracy to competitive black-box
classifiers and manages to outperform current state-of-the-art end-to-end explainable methods on
the tabular datasets of the popular AutoML benchmark (Gijsbers et al., 2019). In addition, we
compare our technique against state-of-the-art predictive explainers on the recent XAI explainability
benchmark for tabular data (Liu et al., 2021) and empirically demonstrate that our method offers
competitive interpretability. As a result, our method represents a significant step forward in making
deep learning explainable by design for tabular datasets. Overall, this work offers the following
contributions:

• We present a technique that makes deep learning explainable by design via training hyper-
networks to generate instance-specific linear models.

• We offer ample empirical evidence that our method is as accurate as black-box classifiers,
with the benefit of being as interpretable as state-of-the-art prediction explainers.

2 Proposed Method

2.1 Shallow Interpretability through Deep Hypernetworks

Let us denote a tabular dataset consisting of N instances of M -dimensional features as X ∈ RN×M

and the C-dimensional categorical target variable as Y ∈ {1, . . . , C}N . A model with parameters
w ∈ W estimates the target variable as f : RM × W → RC and is optimized by minimizing the
empirical risk argminw∈W

∑N
n=1 L (yn, f(xn;w)), where L : {1, . . . , C} × RC → R+ is a loss

function. An explainable model f is one whose predictions ŷn = f(xn;w) for a data point xn are
interpretable by humans. For instance, linear models and decision trees are commonly accepted to be
interpretable by Machine Learning practitioners (Ribeiro et al., 2016; Lundberg & Lee, 2017).

In this work, we rethink shallow interpretable models f(xn;w) by defining their parameters w ∈ W
to be the output of deep non-interpretable hypernetworks w(xn; θ) : RM × Θ → W , where the
parameters of the hypernetwork are θ ∈ Θ. We remind the reader that a hypernetwork (a.k.a. meta-
network, or "network of networks") is a neural network that generates the parameters of another
network (Ha et al., 2017). In this mechanism, we train deep non-interpretable hypernetworks to gen-
erate interpretable models f in an end-to-end manner as argminθ∈Θ

∑N
n=1 L (yn, f(xn;w(xn; θ))).

2.2 Interpretable Mesomorphic Networks (IMN)

Our method trains deep Multi-Layer Perceptron (MLP) hypernetworks that generate the param-
eters of linear models. For the case of multi-class classification, we consider linear models
with parameters w ∈ RC×(M+1), denoting one set of weights and bias terms per class, as
f (xn;w)c = ez(xn;w)c/

∑C
k=1 e

z(xn;w)k , with z (xn;w)c =
∑M

m=1 wc,mxn,m + wc,0 represent-
ing the logit predictions for the c-th class. For the case of regression the linear model is simply
f (xn;w) =

∑M
m=1 wmxn,m + w0 with w ∈ RM+1.

Let us present our method IMN by starting with the case of multi-class classification following
the hypernetwork mechanism explained in Section 2.1. The hypernetwork w(xn; θ) : RM ×Θ →
RC×(M+1) with parameters θ ∈ Θ is a function that given a data point xn ∈ RM generates the
predictions as:
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f (xn;w(xn; θ))c =
ez(xn;w(xn;θ))c∑C

k=1 e
z(xn;w(xn;θ))k

, z (xn;w(xn; θ))c =

M∑
m=1

w (xn; θ)c,m xn,m + w (xn; θ)c,0

(1)

Instead of training weights w as in a standard linear classification, we use the output of an MLP
network as the linear weights w(xn; θ). We illustrate the architecture of our mesomorphic network
in Figure 1. In the case of regression, our linear model with hypernetworks is f(xn;w(xn; θ)) =∑M

m=1 w (xn; θ)m xn,m + w (xn; θ)0. We highlight that our experimental protocol (Section 4)
includes both classification and regression datasets.

Ultimately, we train the optimal parameters of the hypernetwork to minimize the following loss in an
end-to-end manner: argmin

θ∈Θ

∑N
n=1 L (yn, f (xn;w(xn; θ))) + λ||w (xn; θ) ||1.

Input Features

Input Layer

TabResNet Backbone

TabResNet Block

Interpretable Weights W

Figure 1: The IMN architecture.

Our hypernetworks generate interpretable mod-
els that are accurate concerning a data point of
interest (e.g. "Explain why patient xn is esti-
mated to have cancer f(xn;w(xn; θ)) > 0.5
by analyzing the impact of features using the
generated linear weights."). We stress that our
novel method IMN does not simply train one
linear model per data point, contrary to prior
work (Ribeiro et al., 2016). Instead, the hyper-
network learns to generate accurate linear mod-
els by a shared network across all data points. As
a result, generating the linear weights demands
a single forward pass through the hypernetwork,
rather than a separate optimization procedure.
Furthermore, our method intrinsically learns to
generate similar linear hyperplanes for neighbor-
ing data instances. The outputted linear models
are accurate both in correctly classifying the
data point xn, but also for the other majority
of training instances in the neighborhood (see
proof-of-concept experiment below). The out-
come is a linear model with parameters w(xn; θ)
that both interprets the prediction, but also serves as an accurate local model for the neighborhood of
points.

2.3 Explainability Through Feature Attribution

The generated linear models w (xn; θ) can be used to explain predictions through feature attribution
(i.e. feature importance) (Liu et al., 2021). It is important to re-emphasize that our method offers
interpretable predictions for the estimated target f(xn;w (xn; θ)) of a particular data point xn. Con-
cretely, we can analyse the linear coefficients {w(xn; θ)1, . . . , w(xn; θ)M} to distill the importances
of {xn,1, . . . , xn,M} by measuring the residual impact on the target. The impact of the m-th feature
xn,m in estimating the target variable, is proportional to the change in the estimated target if we
remove the feature (Hooker et al., 2019). Considering our linear models, the impact of the m-th
feature is proportional to the change of the predicted target if we set the m-th feature to zero. In terms
of notation, we multiply the feature vector element-wise with a Kronecker delta vector δmi = 1m ̸=i.

f(xn;w (xn; θ))− f(xn ⊙ δm;w (xn; θ)) ∝ w(xn; θ)m xn,m (2)

As a result, our feature attribution strategy is that the m-th feature impacts the prediction of the
target variable by a signed magnitude of w(xn; θ)m xn,m. In our experiments, all the features are
normalized to the same mean and variance, therefore, the magnitude w(xn; θ)m xn,m can be di-
rectly used to explain the impact of the m-th feature. In cases where the unsigned importance is
required, a practitioner can use the absolute impact |w(xn; θ)m xn,m| as the attribution. Further-
more, to measure the global importance of the m-th feature for the whole dataset, we can compute
1
N

∑N
n=1 |w(xn; θ)m xn,m|.
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Figure 2: Investigating the accuracy and interpretability of IMN. Left: The global decision boundary
of our method that separates the classes correctly. Right: The local hyperplane pertaining to an
example x′ which correctly classifies the local example and retains a good global classification for
the neighboring points.

2.4 Proof-of-concept: Globally Accurate and Locally Interpretable Classifiers

As a proof of concept, we run our method on the half-moon toy task that consists of a 2-dimensional
tabular dataset in the form of two half-moons that are not linearly separable.

Initially, we investigate the global accuracy of our method. As shown in Figure 2 (left), our method
correctly classifies all the examples. Furthermore, our method learns an optimal non-linear decision
boundary that separates the classes (plotted in green). To determine the decision boundary, we perform
a fine-grid prediction on all possible combinations of x1 and x2. Subsequently, we identify the points
that exhibit the minimal prediction distance to a probability prediction of 0.5. Lastly, in Figure 2
(right) we investigate the local interpretability of our method, by taking a point x′ and calculating
the corresponding weights (w (x′) , w (x′)0) generated by our hypernetwork, where we omited the
dependence on θ for simplicity. The black line shows all the points that reside on the hyperplane
w(x′) as {x |w (x′)

T
x+ w0 (x

′) = 0}. It is important to highlight that the local hyperplane does
not only correctly classify the point x′, but also the neighboring points, retaining an accurate linear
classifier for the neighborhood of points.

Table 1: Accuracy of local hyperplanes
for neighboring points.

Number of Neighbors Accuracy

10 0.84
25 0.82
50 0.78

100 0.77
200 0.77

To validate our claim that the per-example (local) hyper-
plane correctly classifies neighboring points, we conduct
the following analysis: For every datapoint xn we take a
specific number of nearest neighbor examples from every
class, and we evaluate the classification accuracy of the
hyperplane generated for the datapoint xn on the set of all
neighbors. We repeat the above procedure with varying
neighborhood sizes and we present the results in Table 1.
The results indicate that the mesomorphic neural network
generates hyperplanes that are accurate in the neighbor-
hood of the point whose prediction we are interested in
explaining.

3 Related Work

Interpretable Models by Design: There exist Machine Learning models that offer interpretability
by default. A standard approach is to use linear models (Tibshirani, 1996; Efron et al., 2004; Berkson,
1953) that assign interpretable weights to each of the input features. On the other hand, decision
trees (Loh, 2011; Craven & Shavlik, 1995) use splitting rules that build up leaves and intermediate
nodes. Every leaf node is associated with a predicted label, making it possible to follow the rules that
led to a specific prediction. Bayesian methods such as Naive Bayes (Murphy et al., 2006) or Bayesian
Neural Networks (Friedman et al., 1997) provide a framework for reasoning on the interactions of
prior beliefs with evidence, thus simplifying the interpretation of probabilistic outputs. Instance-based
models allow experts to reason about predictions based on the similarity to the train samples. The
prediction model aggregates the labels of the neighbors in the training set, using the average of the
top-k most similar samples (Freitas, 2014; Kim et al., 2015), or decision functions extracted from
prototypes Martens et al. (2007). Attention-based models like TabNet (Arik & Pfister, 2021) make
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use of sequential attention to generate feature weights on a per-instance basis, while, DANet (Chen
et al., 2022) generates global importance weights for both the raw input features and higher order
concepts. Neural additive models (NAMs) (Agarwal et al., 2021) use a neural network per feature to
model the additive function of individual features to the output. However, these models trade-off the
performance for the sake of interpretability, therefore challenging their usage on applications that
need high performance. A prior similar work also trains hyper-networks to generate local models by
learning prototype instances through an encoder model Alvarez-Melis & Jaakkola (2018). In contrast,
we directly generate interpretable linear models in the original feature space.

Interpretable Model Distillation: Given the common understanding that complex models are
not interpretable, prior works propose to learn simple surrogates for mimicking the input-output
behavior of the complex models (Burkart & Huber, 2021). Such surrogate models are interpretable,
such as linear regression or decision trees (Ribeiro et al., 2016). The local surrogates generate
interpretations only valid in the neighborhood of the selected samples. Some approaches explain
the output by computing the contribution of each attribute (Lundberg & Lee, 2017) to the prediction
of the particular sample. An alternative strategy is to fit globally interpretable models, by relying
on decision trees (Frosst & Hinton, 2017; Yang et al., 2018), or linear models (Ribeiro et al., 2016).
Moreover, global explainers sometimes provide feature importances (Goldstein et al., 2015; Cortez &
Embrechts, 2011), which can be used for auxiliary purposes such as feature engineering. Most of the
surrogate models tackle the explainability task disjointly, by first training a black box model, then
learning a surrogate in a second step.

Interpretable Deep Learning via Visualization: Given the success of neural networks in real-
world applications in computer vision, a series of prior works (Ras et al., 2022) introduce techniques
aiming at explaining their predictions. A direct way to measure the feature importance is by evaluating
the partial derivative of the network given the input (Simonyan et al., 2013). CAM upscales the
output of the last convolutional layers after applying Global Average Pooling (GAP), obtaining a map
of the class activations used for interpretability (Zhou et al., 2016). DeepLift calculates pixel-wise
relevance scores by computing differences with respect to a reference image (Shrikumar et al., 2017).
Integrated Gradients use a baseline image to compute the cumulative sensibility of a black-box
model f to pixel-wise changes (Sundararajan et al., 2017). Other methods directly compute the
pixel-wise relevance scores such that the network’s output equals the sum of scores computed via
Taylor Approximations (Montavon et al., 2017).

4 Experimental Protocol

4.1 Predictive Accuracy Experiments

Baselines: In terms of interpretable white-box classifiers, we compare against Logistic Regression
and Decision Trees, based on their scikit-learn library implementations (Pedregosa et al., 2011). On
the other hand, we compare against two strong classifiers on tabular datasets, Random Forest and
CatBoost. We use the scikit-learn interface for Random Forest, while for CatBoost we use the official
implementation provided by the authors (Prokhorenkova et al., 2018). Lastly, in terms of interpretable
deep learning architectures, we compare against TabNet (Arik & Pfister, 2021), a transformer
architecture that makes use of attention for instance-wise feature-selection and NAM (Agarwal et al.,
2021), a neural additive model which learns an additive function for every feature. For TabNet we use
a well-maintained public implementation 2, while, for NAM we use the official public implementation
from the authors 3.

Protocol: We run our predictive accuracy experiments on the AutoML benchmark that includes 35
diverse classification problems, containing between 690 and 539 383 data points, and between 5 and
7 201 features. For more details about the datasets included in our experiments, we point the reader to
Appendix C. In our experiments, numerical features are standardized, while we transform categorical
features through one-hot encoding. For binary classification datasets we use target encoding, where a
category is encoded based on a shrunk estimate of the average target values for the data instances
belonging to that category. In the case of missing values, we impute numerical features with zero

2https://github.com/dreamquark-ai/tabnet
3https://github.com/AmrMKayid/nam

5

https://github.com/dreamquark-ai/tabnet
https://github.com/AmrMKayid/nam


and categorical features with a new category representing the missing value. For CatBoost and
TabNet we do not encode categorical features since the algorithms natively handle them. For all the
methods considered we tune the hyperparameters with Optuna (Akiba et al., 2019), a well-known
hyperparameter optimization (HPO) library. We use the default HPO algorithm (TPE) from the library
and we tune every method for 100 HPO trials or a wall-time limit of 1 day, whichever condition gets
fulfilled first. The HPO search spaces of the different baselines were taken from prior work (Gorishniy
et al., 2021; Hollmann et al., 2023). For a more detailed description, we kindly refer the reader to
Appendix C. Additionally, we use the area under the ROC curve (AUROC) as the evaluation metric.
Lastly, the methods that offer GPU support are run on a single NVIDIA RTX2080Ti, while, the rest
of the methods are run on an AMD EPYC 7502 32-core processor.

4.2 Explainability Experiments

Baselines: First, we compare against Random, a baseline that generates random importance
weights. Furthermore, BreakDown decomposes predictions into parts that can be attributed to
certain features (Staniak & Biecek, 2018). TabNet offers instance-wise feature importances by
making use of attention. LIME is a local interpretability method (Ribeiro et al., 2016) that fits an
explainable surrogate (local model) to single instance predictions of black-box models. On the other
hand, L2X is a method that applies instance-wise feature selection via variational approximations
of mutual information (Chen et al., 2018) by making use of a neural network to generate the
weights of the explainer. MAPLE is a method that uses local linear modeling by exploring random
forests as a feature selection method (Plumb et al., 2018). SHAP is an additive feature attribution
method (Lundberg & Lee, 2017) that allows local interpretation of the data instances. Last but not
least, Kernel SHAP offers a reformulation of the LIME constrains (Lundberg & Lee, 2017).

Metrics and Benchmark: As explainability evaluation metrics we use faithfulness (Lundberg &
Lee, 2017), monotonicity (Luss et al., 2021) (including the ROAR variants (Hooker et al., 2019)),
infidelity (Yeh et al., 2019) and Shapley correlation (Lundberg & Lee, 2017). For a detailed description
of the metrics, we refer the reader to XAI-Bench, a recent explainability benchmark (Liu et al., 2021).

For our explainability-related experiments, we use all three datasets (Gaussian Linear, Gaussian Non-
Linear, and Gaussian Piecewise) available in the XAI-Bench (Liu et al., 2021). For the state-of-the-art
explainability baselines, we use the Tabular ResNet (TabResNet) backbone as the model for which
the predictions are to be interpreted (same as for IMN). We experiment with different versions of
the datasets that feature diverse ρ values, where ρ corresponds to the amount of correlation among
features. All datasets have a train/validation set ratio of 10 to 1.

Implementation Details: We use PyTorch as the main library for our implementation. As a
backbone, we use a TabResNet where the convolutional layers are replaced with fully-connected
layers as suggested by recent work (Kadra et al., 2021). For the default hyperparameters of our method,
we use 2 residual blocks and 128 units per layer combined with the GELU activation (Hendrycks
& Gimpel, 2016). When training our network, we use snapshot ensembling (Huang et al., 2017)
combined with cosine annealing with restarts (Loshchilov & Hutter, 2019). We use a learning rate
and weight decay value of 0.01, where, the learning rate is warmed up to 0.01 for the first 5 epochs, a
dropout value of 0.25, and an L1 penalty of 0.1 on the weights. Our network is trained for 500 epochs
with a batch size of 64. We make our implementation publicly available4.

5 Experiments and Results

Hypothesis 1: IMN outperforms interpretable white-box models in terms of predictive accuracy.

We compare our method against decision trees and logistic regression, two white-box interpretable
models. We run all aforementioned methods on the AutoML benchmark and we measure the
predictive performance in terms of AUROC. Lastly, we measure the statistical significance of the
results using the autorank package Herbold (2020) that runs a Friedman test with a Nemenyi post-hoc
test, and a 0.05 significance level. Figure 3 presents the average rank across datasets based on the
AUROC performance. As observed IMN achieves the best rank across the AutoML benchmark

4Source code at https://github.com/ArlindKadra/IMN
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datasets. Furthermore, the difference is statistically significant against both decision trees and logistic
regression. The detailed per-dataset results are presented in Appendix C.

Hypothesis 2: The explainability of IMN does not have a statistically significant negative impact
on predictive accuracy. Additionally, it achieves a comparable performance against state-of-the-art
methods.

123

Decision Tree
Logistic Regression

IMN

CD
Average Rank

Figure 3: The critical difference diagram for the
white-box interpretable methods. A lower rank
indicates a better performance over datasets.

This experiment addresses a simple question: Is
our explainable neural network as accurate as
a black-box neural network counterpart, that
has the same architecture and same capacity?.
Since our hypernetwork is a slight modification
of the TabResNet Kadra et al. (2021), we com-
pare it against TabResNet as a classifier. For
completeness, we also compare against four
other strong baselines, Gradient-Boosted Deci-
sion Trees (CatBoost), Random Forest, TabNet,
and NAMs. Since the official implementation of
NAMs only supports binary classification and regression, we separate the results into: i) results over
18 binary classification datasets (Figure 4 Top), and ii) results over all datasets (Figure 4 Bottom).

123456

NAM
TabNet

Random Forest IMN
TabResNet
CatBoost

CD
Average Rank

12345

Random Forest
TabNet

IMN
TabResNet
CatBoost

CD
Average Rank

Figure 4: Black-box methods comparison with crit-
ical difference diagrams. Top: The average rank
for the binary datasets present in the benchmark.
Bottom: The average rank for all datasets present
in the benchmark. A lower rank indicates a bet-
ter performance. Connected ranks via a bold bar
indicate that performances are not significantly dif-
ferent (p > 0.05).

The results of Figure 4 demonstrate that IMN
achieves a comparable performance to state-of-
the-art tabular classification models, while sig-
nificantly outperforming explainable methods
by design. IMN achieves a comparable perfor-
mance to TabResNet, while outperforming Tab-
Net and NAMs, indicating that its explainability
does not harm accuracy in a significant way.
There is no statistical significance of the differ-
ences between IMN, TabResNet and CatBoost.
However, the difference in performance between
IMNs, Random Forest, TabNet and NAMs is sta-
tistically significant.

Additionally, we investigate the runtime perfor-
mance of the different baselines (NAM is ex-
cluded since it cannot be run on the full bench-
mark). We present the results in Table 2. As
expected, deep learning methods take a longer
time to train, however, both IMN and TabRes-
Net are the most efficient during inference. We
observe that TabResNet takes longer to converge compared to IMN5, however, both methods demand
approximately the same inference time. As a result, the explainability of our method comes as a
free-lunch benefit. Lastly, IMN is 64x faster in inference compared to TabNet, an end-to-end deep-
learning interpretable method. Hypothesis 1 and 2 are valid even when default hyperparameters
are used, for more details we kindly refer the reader to Appendix B.

Table 2: Aggregated training and inference times
for all methods.

Method Name Median Training Time (sec) Median Inference Time (sec)

IMN (GPU) 192 0.025
TabResNet (GPU) 252 0.020
TabNet (GPU) 237 1.60
CatBoost (GPU) 63.2 0.20
Random Forest 42.55 2.20
Logistic Regression 0.23 0.07
Decision Tree 0.4 0.06

Hypothesis 3: IMNs offer competitive levels
of interpretability compared to state-of-the-art
explainer techniques.

We compare against 8 explainer baselines in
terms of 5 explainability metrics in the 3 datasets
of the XAI benchmark (Liu et al., 2021), fol-
lowing the protocol we detailed in Section 4.2.
The results of Table 3 demonstrate that IMN
is competitive against all explainers across the
indicated interpretability metrics. We tie in per-

5The number of training epochs is a hyperparameter.
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Table 3: Investigating the interpretability of IMNs against state-of-the-art interpretability methods.
The results are generated from the XAI Benchmark (Liu et al., 2021) datasets (with ρ = 0).

Metric Dataset Random Breakd. Maple LIME L2X SHAP K. SHAP TabNet IMN

Faithfulness (↑)
Gaussian Linear 0.004 0.645 0.980 0.882 0.010 0.974 0.981 0.138 0.987
Gaussian Non-Linear -0.079 -0.001 0.487 0.796 0.155 0.926 0.970 0.161 0.621
Gaussian Piecewise 0.091 0.634 0.967 0.929 0.016 0.981 0.990 0.058 0.841

Faithfulness (ROAR) (↑)
Gaussian Linear -0.039 0.494 0.548 0.544 0.049 0.549 0.550 0.041 0.639
Gaussian Non-Linear 0.050 0.006 0.040 -0.040 -0.060 -0.010 -0.036 -0.001 0.027
Gaussian Piecewise -0.055 0.372 0.347 0.450 0.015 0.409 0.426 0.072 0.404

Infidelity (↓)
Gaussian Linear 0.219 0.041 0.007 0.007 0.034 0.007 0.007 0.049 0.007
Gaussian Non-Linear 0.075 0.086 0.021 0.071 0.089 0.030 0.022 0.047 0.018
Gaussian Piecewise 0.132 0.047 0.014 0.019 0.070 0.016 0.019 0.046 0.008

Monotonicity (ROAR) (↑)
Gaussian Linear 0.487 0.605 0.700 0.652 0.437 0.680 0.667 0.585 0.785
Gaussian Non-Linear 0.497 0.542 0.645 0.587 0.457 0.670 0.632 0.493 0.637
Gaussian Piecewise 0.485 0.665 0.787 0.427 0.442 0.717 0.797 0.542 0.682

Shapley Correlation (↑)
Gaussian Linear -0.016 0.246 0.999 0.942 -0.214 0.993 0.999 0.095 0.999
Gaussian Non-Linear -0.069 -0.179 0.686 0.872 -0.095 0.974 0.999 0.125 0.741
Gaussian Piecewise -0.078 0.099 0.983 0.959 0.157 0.991 0.999 0.070 0.875

Total Wins 1 0 2 2 0 2 7 0 7
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Figure 5: Performance analysis of different interpretability methods over a varying degree of feature
correlation ρ. We present the performance of all methods on faithfulness (ROAR), monotonicity
(ROAR), faithfulness, and infidelity (ordered from left to right) on the Gaussian Linear dataset for ρ
values ranging from [0, 1].

formance with the second-best method Kernel-SHAP (Lundberg & Lee, 2017) and perform strongly
against the other explainers. It is worth highlighting that in comparison to all the explainer techniques,
the interpretability of our method comes as a free-lunch. In contrast, all the rival methods except
TabNet are surrogate interpretable models to black-box models. Moreover, IMN strongly outperforms
TabNet, the other baseline that offers explainability by design, achieving both better interpretability
(Table 3) and better accuracy (Figure 4).

Table 4: Interpretable method inference times. All
the methods are run on the GPU and the time is
reported in seconds.

Method Name Credit-g Adult Christine

IMN 0.01 0.02 0.02
TabNet 0.11 1.30 0.43
SHAP (TabResNet) 17.69 565.11 228.31
SHAP (CatBoost) 4.55 66.89 4317.61

As a result, for all surrogate interpretable base-
lines we first need to train a black-box model.
Then, for the prediction of every data point, we
additionally train a local explainer around that
point by predicting with the black-box model
multiple times. In stark contrast, our method
combines prediction models and explainers as
an all-in-one neural network. To generate an ex-
plainable model for a data point xn, IMN does
not need to train a per-point explainer. Instead,
IMN requires only a forward pass through the
trained hypernetwork to generate a linear explainer. To quantify the difference in runtime between
our method and other interpretable methods we compare the runtimes on a few datasets from the
benchmark with a varying number of instances/features such as Credit-g (1000/21), Adult (48842/15),
and Christine (5418/1637). Table 4 presents the results, where, as observed IMN has the fastest infer-
ence times, being 11-65x faster compared to TabNet which employs attention, 1710-11400x faster
compared to SHAP that uses the same (TabResNet) backbone, and 455-215850x faster compared to
SHAP that uses CatBoost as a backbone.
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Table 5: The feature rank importances for the
Census dataset. A lower rank is associated
with a higher feature importance.

Feature SHAP Decision Tree TabNet CatBoost IMN

Age 2 5 2 3 3
Capital Gain 9 4 3 1 1
Capital Loss 10 9 14 4 5
Demographic 1 2 9 10 6
Education 5 3 5 9 9
Education num. 4 12 6 6 2
Hours per week 6 7 7 7 4
Race 8 10 5 12 7
Occupation 3 6 8 8 10
Relationship 7 1 1 2 8

Lastly, we compare all interpretability methods on 4
out of 5 metrics in the presence of a varying ρ factor,
which controls the correlation of features on the Gaus-
sian Linear dataset. Figure 5 presents the comparison,
where IMN behaves similarly to other interpretable
methods and has a comparable performance with
the top methods in the majority of metrics. The re-
sults agree with the findings of prior work (Liu et al.,
2021), where the performance in the interpretability
metrics drops in the presence of feature correlations.
Although our work focuses on tabular data, in Ap-
pendix A we present an application of IMN in the
vision domain.

Hypothesis 4: IMN offers a global (dataset-wide) interpretability of feature importance.

The purpose of this experiment is to showcase that IMN can be used to analyze the global inter-
pretability of feature attributions, where the dataset-wide importance of the m-th feature is aggregated
as 1

N

∑N
n=1 |w(xn; θ)m xn,m|. Since we are not aware of a public benchmark offering ground-truth

global interpretability of features, we experiment with the Adult Census Income (Kohavi et al., 1996),
a very popular dataset, where the goal is to predict whether income exceeds $50K/yr based on census
data. We consider Decision Trees, CatBoost, TabNet, and IMN as explainable methods. Additionally,
we use SHAP to explain the predictions of the TabResNet backbone.
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Figure 6: Investigating the decrease in AU-
ROC when removing the k-th most important
feature.

We present the importance that the different methods
assign to features in Table 5. To verify the feature
rankings generated by the models, we analyze the
top 5 features of every individual method by investi-
gating the drop in model performance if we remove
the feature. The more important a feature is, the
more accuracy should drop when removing that fea-
ture. The results of Figure 6 show that IMNs have a
higher relative drop in the model’s accuracy when the
most important predicted feature is removed. This
shows that the feature ranking generated by IMN is
proportional to the predictive importance of the fea-
ture and monotonously decreasing. In contrast, in
the case of CatBoost, TabNet, SHAP, and Decision
Trees, the decrease in accuracy is not proportional to
the order of the feature importance (e.g. the case of
Top-1 for Decision Trees, TabNet, SHAP or Top-2
for CatBoost).
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Figure 7: Feature impacts for the mushroom-
edibility task.

We additionally consider the task of predicting mush-
room edibility (Lincoff, 1997). The odor feature
allows one to predict whether a mushroom is edi-
ble or not and basing the predictions only on odor
would allow a model to achieve more than 98.5%
accuracy (Arik & Pfister, 2021). We run IMNs on
the mushroom edibility task and we achieve a perfect
test AUROC of 1. Furthermore, in Figure 7 we in-
vestigate the impact of every feature as described in
Section 2.3, where, as observed, our method correctly
identifies odor as the feature with the highest impact
in the output. Based on the results, we conclude that
IMNs offer global interpretability.
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6 Conclusion

In this work, we propose explainable deep networks that are comparable in performance to their
black-box counterparts but also as interpretable as state-of-the-art explanation techniques. With
extensive experiments, we show that the explainable deep learning networks outperform traditional
white-box models in terms of performance. Moreover, the experiments confirm that the explainable
deep-learning architecture does not include a significant degradation in performance or an overhead
on time compared to the plain black-box counterpart, achieving competitive results against state-
of-the-art classifiers in tabular data. Our method matches competitive state-of-the-art explainability
methods on a recent explainability benchmark in tabular data, offering explanations of predictions as
a free lunch.

7 Limitations and Future Work

One potential limitation of our method is that although interpretable, the per-instance models are
linear. A potential future work can focus on generating other types of non-linear interpretable models,
such as decision trees. More concretely, the hypernetwork can generate the parameters of the decision
splits and the decision value at each node, as well as the leaf weights. Another potential strategy is to
generate local Support Vector Machines, by expressing the prediction for a data point as a function of
the similarity of the informative neighbors.
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A IMN can be extended to image classification backbones
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Figure 8: Comparison of IMN against explainability techniques for image classification.

We use IMN to explain the predictions of ResNet50, a broadly used computer vision backbone. We
take the pre-trained backbone ϕ(·) : RH×W×K → RD from PyTorch and change the output layer
to a fully-connected layer w : RD → RH×W×K×C that generates the weights for multiplying the
input image x ∈ RH×W×K with K channels, and finally obtain the logits zc for the class c. In this
experiment, we use λ = 10−3 as the L1 penalty strength.

We fine-tuned the ImageNet pre-trained ResNet50 models, both for the explainable (IMN-ResNet)
and the black-box (ResNet) variants for 400 epochs on the CIFAR-10 dataset with a learning rate
of 10−4. To test whether the explainable variant is as accurate as the black-box model, we evaluate
the validation accuracy after 5 independent training runs. IMN-ResNet achieves an accuracy of
87.49± 1.73 and the ResNet 88.76± 1.50, with the difference being statistically insignificant.

We compare our method to the following image explainability baselines: Saliency Maps (Gradi-
ents) (Simonyan et al., 2013), DeepLift (Shrikumar et al., 2017), Integrated Gradients (Ancona et al.,
2017) with SmoothGrad. All of the baselines are available via the captum library6. We compare the
rival explainers to IMN-ResNet by visually interpreting the pixel-wise weights of selected images
in Figure 8. The results confirm that IMN-ResNet generates higher weights for pixel regions that
include descriptive parts of the object.
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the entire benchmark of datasets.

In Figure 9, we repeat the experiments from Hypotheses 1 and 2, however, without performing
hyperparameter optimization. Moreover, we consider two additional baselines, DANet (Chen et al.,

6https://github.com/pytorch/captum
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2022) and HyperTab (Wydmański et al., 2023). As observed, our findings are consistent and both
hypotheses are validated even when default hyperparameters are used for all the methods considered.
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Figure 10: The gain distribution of the state-of-the-
art models. The gain is calculated by dividing the
test AUROC against the test AUROC of a decision
tree.

To further investigate the results on individual
datasets, in Figure 10 we plot the distribution
of the gains in performance of all methods over
a single decision tree model (with default hy-
perparameters). The gain G of a method m run
on a dataset D for a single run is calculated as
shown in Equation 3.

G (m,DTree,D) =
AUROC(m,D)

AUROC(DTree,D)
(3)

The results indicate that all methods except
NAM achieve a comparable gain in performance
across the AutoML benchmark datasets, while,
the latter achieves a worse performance overall.
We present detailed results in Appendix C.

Additionally, in Figure 11, we present the perfor-
mance of the different explainers for the differ-
ent explainability metrics. We present results for
the Gaussian Non-Linear Additive and Gaussian
Piecewise Constant datasets over a varying presence of correlation ρ between the features. The results
show that our method achieves competitive results against Kernel Shap (K. SHAP) and LIME, the
strongest baselines.
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Figure 11: Performance analysis of all explainable methods on faithfulness (ROAR), monotonicity
(ROAR), faithfulness, and infidelity. The results are shown for the Gaussian Non-Linear Additive
and Gaussian Piecewise datasets where, correlation (ρ) ranges from [0, 1].

Lastly, to investigate how sensitive IMN is to the controlling hyperparameter configuration, we
compare IMN and CatBoost (a method known for being robust to its hyperparameters in the commu-
nity). Specifically, for every task, we plot the distribution of the performance of all hyperparameter
configurations for every method. We present the results in Figure 12, where, as observed, IMN has
a comparable sensitivity to CatBoost with regard to the controlling hyperparameter configuration.
Moreover, in the majority of cases, the IMN validation performance does not vary significantly.
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Figure 12: The distribution of the validation performance of the different hyperparameter configura-
tions per task for CatBoost and IMN.

C Tables

To describe the 35 datasets present in our accuracy-related experiments, we summarize the main
descriptive statistics in Table 6. The statistics show that our datasets are diverse, covering both binary
and multi-class classification problems with imbalanced and balanced datasets that contain a diverse
number of features and examples.

Additionally, we provide the per-dataset performances for the accuracy-related experiments of every
method with the default configurations. Table 7 summarizes the performances on the train split,
where, as observed Random Forest and Decision Trees overfit the training data excessively compared
to the other methods. Moreover, Table 8 provides the performance of every method on the test
split, where, IMN, TabResNet, and CatBoost achieve similar performances. We provide the same
per-dataset performances of every method with the best-found hyperparameter configuration during
HPO for the train split in Table 9 and test split in Table 10.

Lastly, we provide the HPO search spaces of the different methods considered in our experiments in
Table 11, 12, 13, 14, 15, 16.
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Table 6: Statistics regarding the AutoML benchmark datasets.
Dataset ID Dataset Name Number of Instances Number of Features Number of Classes Majority Class Percentage Minority Class Percentage

3 kr-vs-kp 3196 37 2 52.222 47.778
12 mfeat-factors 2000 217 10 10.000 10.000
31 credit-g 1000 21 2 70.000 30.000
54 vehicle 846 19 4 25.768 23.522
1067 kc1 2109 22 2 84.542 15.458
1111 KDDCup09 appetency 50000 231 2 98.220 1.780
1169 airlines 539383 8 2 55.456 44.544
1461 bank-marketing 45211 17 2 88.302 11.698
1464 blood-transfusion-service-center 748 5 2 76.203 23.797
1468 cnae-9 1080 857 9 11.111 11.111
1486 nomao 34465 119 2 71.438 28.562
1489 phoneme 5404 6 2 70.651 29.349
1590 adult 48842 15 2 76.072 23.928
4135 Amazon employee access 32769 10 2 94.211 5.789
23512 higgs 98050 29 2 52.858 47.142
23517 numerai28.6 96320 22 2 50.517 49.483
40685 shuttle 58000 10 7 78.597 0.017
40981 Australian 690 15 2 55.507 44.493
40984 segment 2310 20 7 14.286 14.286
40996 Fashion-MNIST 70000 785 10 10.000 10.000
41027 jungle chess 44819 7 3 51.456 9.672
41138 APSFailure 76000 171 2 98.191 1.809
41142 christine 5418 1637 2 50.000 50.000
41143 jasmine 2984 145 2 50.000 50.000
41146 sylvine 5124 21 2 50.000 50.000
41147 albert 425240 79 2 50.000 50.000
41150 MiniBooNE 130064 51 2 71.938 28.062
41159 guillermo 20000 4297 2 59.985 40.015
41161 riccardo 20000 4297 2 75.000 25.000
41163 dilbert 10000 2001 5 20.490 19.130
41164 fabert 8237 801 7 23.394 6.094
41165 robert 10000 7201 10 10.430 9.580
41166 volkert 58310 181 10 21.962 2.334
41168 jannis 83733 55 4 46.006 2.015
41169 helena 65196 28 100 6.143 0.170

Table 7: The per-dataset train AUROC performance for all methods in the accuracy experiments with
default hyperparameter configurations. The train performance is the mean value from 10 runs with
different seeds. A dashed line ’-’ represents a failure of running on that particular dataset.

Dataset ID Decision Tree Logistic Regression Random Forest TabNet TabResNet CatBoost IMN

3 1.000 0.990 1.000 0.980 1.000 1.000 1.000
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000
31 1.000 0.795 1.000 0.514 1.000 0.963 1.000
54 1.000 0.955 1.000 0.492 1.000 1.000 1.000
1067 0.998 0.818 0.997 0.825 0.928 0.971 0.920
1111 1.000 0.822 1.000 - 0.966 0.899 0.895
1169 0.994 0.680 0.994 0.705 0.697 0.733 0.697
1461 1.000 0.908 1.000 0.947 0.945 0.948 0.942
1464 0.983 0.757 0.978 0.490 0.830 0.934 0.834
1468 1.000 1.000 1.000 0.493 1.000 1.000 1.000
1486 1.000 0.988 1.000 0.995 0.999 0.997 0.998
1489 1.000 0.813 1.000 0.947 0.974 0.982 0.977
1590 1.000 0.903 1.000 0.920 0.920 0.935 0.920
1596 1.000 0.951 1.000 0.949 0.992 0.997 0.995
4135 1.000 0.839 0.998 - 0.890 0.981 0.877
23512 1.000 0.683 1.000 0.820 0.863 0.831 0.853
23517 1.000 0.533 1.000 0.529 0.587 0.703 0.546
40685 1.000 0.999 1.000 0.988 0.999 - 0.994
40981 1.000 0.932 1.000 0.472 1.000 0.996 1.000
40984 1.000 0.983 1.000 0.990 0.999 1.000 0.999
40996 1.000 0.989 1.000 0.997 1.000 0.999 1.000
41027 1.000 0.799 1.000 0.980 0.982 0.989 0.982
41138 1.000 0.992 1.000 0.999 0.999 1.000 0.996
41142 1.000 0.942 1.000 0.951 1.000 0.999 1.000
41143 1.000 0.868 1.000 0.874 1.000 0.992 1.000
41146 1.000 0.967 1.000 0.989 1.000 1.000 1.000
41147 1.000 0.746 1.000 - 0.769 0.827 0.763
41150 1.000 0.938 1.000 0.896 0.985 0.988 0.985
41159 1.000 0.826 1.000 0.840 1.000 0.977 1.000
41161 1.000 1.000 1.000 0.999 1.000 1.000 1.000
41163 1.000 1.000 1.000 1.000 1.000 1.000 1.000
41164 1.000 0.994 1.000 0.968 1.000 0.983 1.000
41165 1.000 1.000 1.000 0.876 1.000 1.000 1.000
41166 1.000 0.889 1.000 0.943 0.978 0.992 0.995
41168 1.000 0.804 1.000 0.911 0.915 0.971 0.921
41169 1.000 0.854 1.000 0.867 0.938 0.998 0.986
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Table 8: The per-dataset test AUROC performance for all methods in the accuracy experiments with
default hyperparameter configurations. The test performance is the mean value from 10 runs with
different seeds. A dashed line ’-’ represents a failure of running on that particular dataset.

Dataset ID Decision Tree Logistic Regression NAM Random Forest TabNet TabResNet CatBoost IMN

3 0.987 0.990 0.977 0.998 0.983 0.999 0.999 0.999
12 0.938 0.999 - 0.998 0.995 0.999 0.999 0.999
31 0.643 0.775 0.717 0.795 0.511 0.756 0.790 0.751
54 0.804 0.938 - 0.927 0.501 0.968 0.934 0.957
1067 0.620 0.802 0.659 0.801 0.789 0.808 0.800 0.805
1111 0.535 0.816 0.544 0.793 - 0.778 0.843 0.816
1169 0.592 0.679 0.588 0.692 0.699 0.695 0.718 0.695
1461 0.703 0.908 0.827 0.930 0.926 0.931 0.937 0.930
1464 0.599 0.749 0.738 0.666 0.516 0.740 0.709 0.742
1468 0.926 0.996 - 0.995 0.495 0.995 0.996 0.994
1486 0.935 0.987 0.934 0.993 0.991 0.994 0.994 0.993
1489 0.842 0.805 0.806 0.962 0.928 0.949 0.948 0.950
1590 0.752 0.903 0.874 0.917 0.908 0.915 0.930 0.915
1596 0.942 0.951 - 0.997 0.949 0.991 0.996 0.994
4135 0.639 0.853 0.838 0.846 - 0.855 0.883 0.858
23512 0.626 0.683 0.583 0.794 0.803 0.825 0.804 0.823
23517 0.501 0.530 0.505 0.515 0.522 0.529 0.526 0.530
40685 0.967 0.994 - 1.000 0.986 0.995 - 0.993
40981 0.817 0.930 0.918 0.945 0.463 0.919 0.935 0.908
40984 0.946 0.980 - 0.995 0.985 0.994 0.995 0.994
40996 0.886 0.984 - 0.991 0.989 0.994 0.993 0.992
41027 0.792 0.797 - 0.931 0.976 0.979 0.974 0.978
41138 0.861 0.974 0.558 0.989 0.970 0.972 0.992 0.980
41142 0.626 0.742 0.724 0.796 0.713 0.782 0.822 0.775
41143 0.749 0.850 0.831 0.880 0.823 0.860 0.870 0.865
41146 0.910 0.966 - 0.983 0.974 0.982 0.988 0.981
41147 0.606 0.748 0.675 0.762 - 0.765 0.779 0.762
41150 0.867 0.938 0.912 0.981 0.896 0.984 0.984 0.984
41159 0.730 0.712 0.618 0.892 0.754 0.871 0.897 0.841
41161 0.857 0.995 0.972 0.999 0.997 0.998 1.000 0.998
41163 0.873 0.994 - 0.999 0.998 1.000 1.000 1.000
41164 0.786 0.898 - 0.925 0.888 0.913 0.935 0.902
41165 0.579 0.748 - 0.835 0.788 0.838 0.895 0.817
41166 0.699 0.882 - 0.927 0.918 0.952 0.949 0.943
41168 0.633 0.798 - 0.831 0.813 0.868 0.862 0.856
41169 0.554 0.841 - 0.800 0.842 0.883 0.866 0.865
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Table 9: The per-dataset train AUROC performance for all methods in the accuracy experiments
parametrized with the best hyperparameter configuration found during HPO. A dashed line ’-’
represents a failure to run on that particular dataset.

Dataset ID Decision Tree Logistic Regression Random Forest TabNet TabResNet CatBoost IMN

3 0.999 0.995 0.997 - 1.000 1.000 1.000
12 0.986 1.000 0.999 1.000 1.000 1.000 1.000
31 0.820 0.785 0.945 0.982 0.806 0.888 0.813
54 0.930 0.960 0.971 0.988 0.990 1.000 0.968
1067 0.831 0.807 0.819 0.891 0.813 0.875 0.810
1111 0.836 0.829 0.885 - 0.825 0.842 0.844
1169 0.682 0.680 0.690 0.714 0.696 0.754 0.683
1461 0.900 0.907 0.922 0.946 0.947 0.954 0.944
1464 0.796 0.765 0.867 0.835 0.811 0.947 0.763
1468 0.972 1.000 0.996 1.000 1.000 1.000 1.000
1486 0.981 0.988 0.987 0.997 0.998 0.999 0.997
1489 0.908 0.815 0.938 0.993 0.995 1.000 0.998
1590 0.904 0.903 0.911 - 0.920 0.943 0.926
1596 0.931 0.951 0.946 0.952 - 0.998 -
4135 0.833 0.826 0.865 - 0.843 0.995 0.850
23512 0.737 0.684 0.766 0.831 0.869 0.900 0.859
23517 0.529 0.532 0.562 0.523 0.531 0.587 0.535
40685 1.000 0.999 1.000 1.000 1.000 1.000 0.996
40981 0.931 0.932 0.978 - 0.949 0.943 0.947
40984 0.989 0.988 0.996 0.999 0.999 1.000 0.999
40996 0.956 0.988 0.976 0.998 1.000 0.994 -
41027 0.873 0.801 0.905 0.999 0.996 0.989 0.996
41138 0.979 0.989 0.989 0.996 0.992 1.000 0.991
41142 0.786 0.874 0.860 - 0.976 0.952 1.000
41143 0.849 0.872 0.934 0.877 0.977 0.997 0.941
41146 0.966 0.968 0.986 1.000 1.000 0.999 0.994
41147 0.727 0.745 0.746 - 0.768 0.865 0.750
41150 0.946 0.956 0.961 0.968 0.989 1.000 0.989
41159 0.775 0.823 0.878 0.552 1.000 1.000 1.000
41161 0.860 0.999 0.961 0.999 1.000 1.000 1.000
41163 0.901 1.000 0.976 1.000 1.000 1.000 1.000
41164 0.707 0.975 0.901 0.998 0.982 0.999 0.999
41165 0.750 0.936 0.840 0.960 0.995 0.988 -
41166 0.822 0.892 0.867 0.986 0.984 1.000 0.999
41167 0.941 0.997 - 1.000 - - -
41168 0.787 0.804 0.823 0.908 0.900 0.944 0.908
41169 0.791 0.853 0.846 0.879 0.926 0.976 0.961
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Table 10: The per-dataset test AUROC performance for all methods in the accuracy experiments
parametrized with the best hyperparameter configuration found during HPO. A dashed line ’-’
represents a failure to run on that particular dataset.

Dataset ID Decision Tree Logistic Regression NAM Random Forest TabNet TabResNet CatBoost IMN

3 0.999 0.997 0.977 0.998 - 1.000 1.000 1.000
12 0.960 0.998 - 0.998 0.998 0.998 0.998 1.000
31 0.765 0.852 0.717 0.826 0.741 0.844 0.826 0.863
54 0.844 0.959 - 0.924 0.955 0.966 0.935 0.959
1067 0.777 0.804 0.659 0.813 0.784 0.795 0.834 0.805
1111 0.805 0.814 0.544 0.829 - 0.801 0.839 0.806
1169 0.679 0.678 0.588 0.686 0.702 0.693 0.724 0.680
1461 0.903 0.907 0.827 0.919 0.917 0.932 0.939 0.933
1464 0.647 0.729 0.738 0.679 0.668 0.697 0.678 0.710
1468 0.954 0.999 - 0.988 0.987 0.999 0.994 0.999
1486 0.977 0.986 0.934 0.985 0.989 0.994 0.996 0.992
1489 0.890 0.802 0.806 0.920 0.945 0.958 0.955 0.956
1590 0.901 0.901 0.874 0.908 - 0.913 0.930 0.913
1596 0.931 0.951 - 0.946 0.952 - 0.997 -
4135 0.845 0.854 0.838 0.870 - 0.861 0.909 0.865
23512 0.725 0.681 0.583 0.754 0.803 0.817 0.808 0.817
23517 0.522 0.530 0.505 0.529 0.525 0.527 0.532 0.531
40685 0.908 0.999 - 1.000 1.000 0.999 1.000 1.000
40981 0.905 0.916 0.918 0.933 - 0.916 0.920 0.909
40984 0.981 0.989 - 0.991 0.995 0.994 0.996 0.993
40996 0.954 0.985 - 0.976 0.989 0.994 0.991 -
41027 0.870 0.800 - 0.900 0.999 0.993 0.980 0.991
41138 0.974 0.986 0.558 0.985 0.987 0.986 0.986 0.986
41142 0.744 0.811 0.724 0.794 - 0.814 0.819 0.808
41143 0.843 0.839 0.831 0.871 0.846 0.860 0.871 0.856
41146 0.966 0.962 - 0.975 0.991 0.984 0.987 0.984
41147 0.728 0.748 0.675 0.748 - 0.767 0.786 0.754
41150 0.942 0.954 0.912 0.958 0.967 0.985 0.986 0.984
41159 0.753 0.725 0.618 0.847 0.543 0.871 0.912 0.868
41161 0.849 0.997 0.972 0.950 0.996 0.999 0.999 0.998
41163 0.885 0.996 - 0.969 0.997 1.000 1.000 1.000
41164 0.697 0.914 - 0.877 0.869 0.919 0.937 0.919
41165 0.706 0.822 - 0.804 0.777 0.870 0.875 -
41166 0.811 0.886 - 0.862 0.929 0.954 0.956 0.947
41168 0.768 0.797 - 0.809 0.808 0.866 0.871 0.856
41169 0.762 0.845 - 0.823 0.839 0.884 0.869 0.873
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Table 11: The hyperparameter search space for IMN. TabResNet has the same search space without
weight normalization.

Hyperparameter Type Range Log scale

nr_epochs Integer [10, 500] -

learning_rate Continuous [1e-5, 1e-1] ✓

batch_size Categorical {32, 64, 128, 256, 512} -

weight_decay Continuous [1e− 5, 1e− 1] ✓

weight_norm Continuous [1e− 5, 1e− 1] ✓

dropout_rate Continuous [0, 0.5] -

Table 12: The hyperparameter search space for logistic regression.

Hyperparameter Type Range Log scale

C Continuous [1e− 5, 5] -

penalty Categorical {l2, none} -

max_iterations Integer [50, 500] -

fit_intercept Categorical {True, False} -

Table 13: The hyperparameter search space for a decision tree.

Hyperparameter Type Range Log scale

criterion Categorical {Gini, Entropy} -

max_depth Integer [1, 21] -

min_samples_split Integer [2, 11] -

max_leaf_nodes Integer [3, 26] -

splitter Categorical {Best,Random} -

21



Table 14: The hyperparameter search space for CatBoost.

Hyperparameter Type Range Log scale

learning_rate Continuous [1e− 5, 1] ✓

random_strength Integer [1, 20] -

l2_leaf_reg Continuous [1, 10] ✓

bagging_temperature Continuous [1e− 6, 1] ✓

leaf_estimation_iterations Integer [1, 20] -

iterations Integer [100, 4000] -

Table 15: The hyperparameter search space for Random Forest.

Hyperparameter Type Range Log scale

criterion Categorical {Gini, Entropy} -

max_depth Integer [1, 21] -

min_samples_split Integer [2, 11] -

max_leaf_nodes Integer [3, 26] -

n_estimators Integer [100, 4000] -

Table 16: Hyperparameter search space for the TabNet model.
Hyperparameter Type Range Log scale

n_a Categorical {8, 16, 24, 32, 64, 128} -

learning_rate Categorical {0.005, 0.01, 0.02, 0.025} -

gamma Categorical {1.0, 1.2, 1.5, 2.0} -

n_steps Categorical {3, 4, 5, 6, 7, 8, 9, 10} -

lambda_sparse Categorical {0, 0.000001, 0.0001, 0.001, 0.01, 0.1} -

batch_size Categorical {256, 512, 1024, 2048, 4096, 8192, 16384, 32768} -

virtual_batch_size Categorical {256, 512, 1024, 2048, 4096} -

decay_rate Categorical {0.4, 0.8, 0.9, 0.95} -

decay_iterations Categorical {500, 2000, 8000, 10000, 20000} -

momentum Categorical {0.6, 0.7, 0.8, 0.9, 0.95, 0.98} -
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The results in Section 2.4 and Section 5 validate our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the proposed method are mentioned in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theory in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Sections 2 and 4 we provide all the information regarding our
method/baselines and the preprocessing of the data. We additionally open-source the
code. Lastly, the results are reproducible as the experiments were seeded.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is open-sourced (Section 4) and all of the necessary information
regarding the datasets is provided in Table 6, combined with their online identifier where
they can be easily accessed from OpenML.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The information is provided in Section 4. The code is additionally open-
sourced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Critical difference diagrams that provide statistical significance information
are provided in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar then state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the necessary information is provided in Section 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The impact of our work has been mentioned in the Introduction Section and in
Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Everything that was used from previous work be it a method or dataset has
been properly cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is provided and documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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