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Abstract

A key goal in stochastic contextual linear bandits is to efficiently learn a near-
optimal policy. Prior algorithms for this problem learn a policy by strategically
sampling actions and naively (passively) sampling contexts from the underlying
context distribution. However, in many practical scenarios—including online con-
tent recommendation, survey research, and clinical trials—practitioners can actively
sample or recruit contexts based on prior knowledge of the context distribution.
Despite this potential for active learning, the role of strategic context sampling in
stochastic contextual linear bandits is underexplored. We propose an algorithm that
learns a near-optimal policy by strategically sampling rewards of context-action
pairs. We prove instance-dependent theoretical guarantees demonstrating that our
active context sampling strategy can improve over the minimax rate by up to a
factor of v/d, where d is the linear dimension. We also show empirically that our
algorithm reduces the number of samples needed to learn a near-optimal policy, in
tasks such as warfarin dose prediction and joke recommendation.

1 Introduction

In many applications, algorithm designers seek to leverage reward feedback to develop contextual-
ized decision policies. For example, in healthcare, clinical trial outcomes may be used to design
medication dosages adapted to patients’ demographics and health conditions [39}43]]. Similarly, in
recommendation systems, user interaction data from a small sub-population can help inform content
recommendations tailored to specific users’ preferences [2,136]. Personalized decision-making may
also aid in Al alignment, as preference data could steer models to become more widely useful [6, 30].

Contextual bandits offer a natural framework to formalize such decision-making problems. In a
contextual bandit, we have a finite context set X’ and a finite action set .A. Contexts are drawn from a
distribution p € A% (for any k € Z~, A is the k-dimensional simplex.) Each context-action pair
yields a (stochastic) reward r(x, a). In applications, contexts correspond, for example, to patients or
users, while rewards might reflect medical outcomes, user engagement, or preference alignment.

In the exploration setting, or experiment design setting [[13} 24} 28| 146], the goal is to design an
exploration algorithm which observes sampled rewards {r(x,a;)},_, of T context-action pairs
{(z¢,a;)}E_; and uses these to learn a policy 7. We measure the quality of 7 by its (simple) regret,

R(7r) = max Elr(z, n(2))] - Elr(z, #(2))], Q)]

where IT := {7 : X — A} is the space of (deterministic) policies. To design efficient exploration
algorithms with theoretical regret bounds, prior works often consider the setting where the rewards
are generated by a noisy d-dimensional linear model. This is known as the stochastic contextual
linear bandits (SCLBs) setting [I1,[13) 24} 26, |33} |46]]. Prior works on SCLBs learn a near-optimal
policy by sampling rewards of context-action pairs, where the contexts are sampled randomly from
the distribution p (what we call passive context sampling) and actions are sampled strategically.
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However, in many real-world applications, practitioners may already know the context distribution p
and can leverage the fact that p is known a-priori to strategically select both observed contexts and
observed actions using this knowledge. This approach (which we call active context sampling) is
naturally examples in clinical trial design [12,|14] and consumer marketing [25]]. In such settings,
one might hope that by jointly optimizing the observed context and action pairs {(x¢, at)}+e[77s
an exploration algorithm would be able to better leverage existence of context-action pairs that
disproportionately reveal useful information about the underlying reward model. Thus, in this work
we explore the following question: can active context sampling reduce the sample complexity needed
to learn a high performing policy for stochastic contextual linear bandits?

A natural question is: does allowing the exploration algorithm to choose both contexts and actions
reduce the problem to a linear bandit or classic active learning? This is not the case, because, while the
algorithm can select contexts and actions during exploration, at deployment, the environment
produces contexts according to the distribution p. So, we require a context-dependent policy to
achieve low regret, and the problem does not directly reduce to a linear banditm Our techniques build
on prior literature on active learning for regression, but our objective is different. In active learning
for regression, the loss is measured by mean squared error, so continuous convex optimization results
[L5] apply. In contrast, in SCLBs, the loss is the suboptimality of the policy, which is a discontinuous
loss and requires new insights (see Appendix [F). We discuss related work in Appendix

Motivated by practical applications, we design an exploration algorithm which actively samples
contexts and actions to learn a near-optimal policy for an SCLB. (See Figure [3]) We provide a
polynomial-time active context sampling exploration algorithm for SCLBs and prove an instance-
dependent regret bound for our algorithm. We prove that our instance-dependent regret bound
matches the minimax-optimal rate in the worst-case. We demonstrate the power of active context
sampling by constructing a class of SCLBs where our instance-dependent regret bounds provably
improve—by a v/d-factor—over the state-of-the-art rates obtained by other polynomial-time algo-
rithms for this problem. We support our theoretical analysis with numerical experiments on warfarin
dosage prescription and joke recommendations. These show our active context sampling exploration
algorithm significantly reduces the samples needed to learn a good policy, compared to baselines.

2 Our approach and main theoretical results

An SCLB is a tuple B = (X, A, ¢,p,v,0%). Here, X is the context set, A is the action set,
p: X xA— Rdo is a known d-dimensional feature mapping, and p € A% is a known context
distribution. We also have a 1-subgaussian noise distribution v over R and unknown linear pa-
rameter §* € R?. The rewards are modeled as a noisy linear function in the feature mapping,
ie. 7(z,a) ~ ¢(x,a)"6* + n where  ~ v. We assume that the problem is normalized such
that max, q)exx.all¢(z,a)|| < L and max(y oyexx.a Elr(z,a)] € [0,1], where ||-|| denotes the
Euclidean norm. To ensure the problem is well-posed, we always assume the feature mapping is
full-rank, i.e., span({¢(z,a)}) = R%. For SCLBs, the regret (T)) simply reduces to

R(7) = E [maxo(z,a)" 0" — ¢z, 7(2)) " 0"]. @
T~pa

Our goal is to design a way to sample rewards of a set of (x, a) tuples so that the resulting dataset of
context-action-rewards (z, a, ) tuples allows us to learn a near-optimal contextual policy 7. This
policy m would be used for future deployment, when contexts are sampled from a known distribution
p (Recall Figure[3]and see Fig[d]) In this section, we fix A > 0 to be a regularization parameter, 7' > 0
to be a sample budget, and B = (X, A, ¢, p, v, 0*) to be any SCLB. Recall we assume p is known, in
order to inform active context sampling (in Appendix [E| we consider relaxing this requirement).

Notation. For any A € R¥? with A > 0 and 2 € R?, we denote ||z|| 41 := (x| A~ x)V/2.
For any set S C X' x A, we define the covariance matrix Xs := A + >, cs #(@, a)d(z, a)’.
Suppose we use ridge regression to learn a policy 7. A key quantity in the regret is the following:

P(S) = E max|o(z, )3, 3)

'One could treat each context as a separate linear bandit, but this naive approach would introduce a sample
complexity dependence on the number of contexts, which in general can be large relative to the feature dimension.
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Figure 1: Visualization of a 2D instance with two contexts.

It quantifies how the design of the dataset S influences the regret bound. Prior works [1} 46| design
algorithms (RFLinUCB and Planner-Sampler) which construct a set S by passively sampling contexts
x¢ ~ p and strategically sampling actions a; ~ 7;(x;) (where each 7; € A“) such that

I'(S)= E mazc”gb(x, a)||2-: < O(d/T) with high probability. 4)
s~p aE S

Using a standard ridge regression regret bound (restated in Lemma [[.T), [1 46] obtain an overall
minimax-optimal regret bound of O(1/8d/T), where (3 is the usual quantity appeared in ridge
regression defined in (I7). Our following theorem formalizes a sense in which the uncertainty bound
in (@) is tight if one restricts to constructing the dataset S by passively sampling x; ~ p (passive
context sampling) regardless of how the actions a; are chosen.

Theorem 2.1. Let B = (X, A, ¢,p,v,0*) be any SCLB. For each t € [T, let 1y : X — A be
arbitrary. Let S = {(z1,a1),...,(xr,ar)} C X X A such that for each t € [T, x; ~ p and
a ~ w(xt). Then, as A — 0, Eg[T'(S)] > d/T.

In light of this obstacle, one hope is that active context sampling—strategically sampling the contexts
2+ when constructing S—might allow us to leverage the structure of a given SCLB B to obtain a more
fine-grained, instance-dependent analysis than the standard minimax-optimal O(/£d/T") bound.
In particular, we aim to design an algorithm that leverages the existence of any disproportionately
informative context-action pairs (z,a) € X X A to obtain instance-dependent rates that obtain regret
as low as O(4/3/T) in the best-case, yet no higher than O(y//d/T) in the worst-case.

A natural approach is to construct S so that (3) is as small as possible. Although, we might hope
to find the optimal §* = argming -y 5= I'(S), this is NP-hard [844], so we instead consider a

fractional relaxation. We seek an optimal sampling distribution w* with objective value Cg:
w* := argmin E max|é(z,a)||%-: and Cg:= min E max|é(z,a)|* ;. 5
weiXX.A x~p ae.AH(b( )szl 5 WEAXXA x~p aeAH¢( )szl ©)
Theorem [[.4]shows () is a semi-definite program (SDP), enabling polynomial-time solution. Intu-
itively, T - w*(x, a) is the optimal “fraction” of context (x, a) that should be included in S. Such
a fractional sampling procedure is not implementable, but we can simulate by sampling set S as

follows: for each ¢ € [T, let (x, a;) ~ w* i.i.d. . For T sufficiently large we can expect:

_ 2 ~ 2 _
F(S) - xIEp I(?eaj(”(i)(xv a)Hzgl ~ 1/T : zIEp gleaj(”(b(xv a)Hzl—ui = CB/T (6)

If (6) holds, Lemma implies a regret of O(+/Cp3/T)! Indeed, Appendix |C|formally converts
the intuition laid out above into a polynomial-time algorithm (Algorithm [T)) achieving a regret of

O(\/CpB/T). As we discuss further in Appendix [C] the instance-dependent quantity Ci can be
as low as O(1) (indicating that our result can improve the regret bounds of Planner-Sampler and
RFLinUCB by up to a v/d factor) is never worse than d (ensuring our algorithm is minimax-optimal.)

Theorem 2.2. Let B = (X, A, ¢,p,v,0%) be an SCLB, A > 0, § € (0,1), and T > 0 be a sample
budget. Invoke Algorithmwith « < 1/2. Let 3 be as defined in (T7). There exists Ty = O(d?) so
that whenever T' > Ty, with probability 1 — 6, Algorithmoutputs 7 with R(7) < O(\/BCp/T).
This regret bound is always at most O(\ /Bd/T) Moroever, the algorithm runs in polynomial time.

We demonstrate the instance-dependent bound in Theorem [2.2]1eads to quantifiably improved perfor-
mance by the adapting the family of hard instances from [5]]. Details of the family are in Appendix [D]
Figure 1| provides a visualization for a d = 2 example with two contexts, one with high-probability
2 = 1 and one with low-probability x = 2. The high probability context reveals 7 = 0, so either
action is optimal, but only ¢ = 1 is optimal in = 2. As p(1) > p(2), passive context sampling
repeatedly encounters = 1, and requires many samples to learn the best policy. Meanwhile, active
context sampling upsamples z = 2 and learns the best policy more efficiently. Appendix [D|formalizes
this to show our approach is stronger than passive sampling by a v/d factor on instances like Figure
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Figure 2: Real-world datasets. The left plots show regret vs. number of samples (mean + 2 standard
errors over 100 trials); the right plots show the minimum number of samples required for baselines’
mean regret (over 100 trials) to match Active-SCLB’s mean regret for a given sample budget. The
naive baseline of providing a single best arm to all has a regret of 0.382 (Warfarin) and 0.219 (Jester).

3 Numerical experiments

We implement our exploration policy (Algorithm[I)) with & <— 0 (denoted Active-SCLB). We compare
Active-SCLB to RF-LinUCB [[1} 46] and the Planner-Sampler method of [46]. We also compare to
a third baseline (Passive-SCLB), which is a natural passive learning analog of our Active-SCLB,
where in Line [2] we enforce additional constraints to force the contexts to be sampled passively from
p. Appendix [H|includes more detail on each baseline and synthetic experimental results.

Here we focus on evaluation of our method on two real-world datasets. We report the regret
of a naive baseline, which reports the regret of the naive policy that selects the same action for
each context (Tpaive () = argmax, e 4 Eq/p 7(2’, a) for all z € X). This baseline performs poorly,
which certifies that on these real-world datasets, the contextual information is useful. To more
realistically model real-world settings where context-action pairs would generally be drawn without
replacement, for these real-world datasets we (slightly) modify each of the methods to sample
context-action pairs without replacement (using rejection sampling) when reporting our results.

For Warfarin, we use the Warfarin Pharmacogenetics Consortium dataset in the warfit-learn package,
which is a cleaned clinical dataset of 5650 patients taking blood thinner warfarin [9, [38] (after
removing duplicates). Each patient is associated to 31 features corresponding to demographics and
health history. The task is to select the best dosage (action) of {“low”, “medium”, and “high”} for
a given patient (context), corresponding to 3 actions and 17,223 context-action pairs. The context
distribution p is uniform over contexts. The reward of a context-action (patient-dosage) pair (z, a) is

+1 if the dosage is correct (0 otherwise). The regret of a policy is the fraction of patients mis-dosed.

For Jester, we use the cleaned version [23] of the Jester dataset [[19], which contains ratings of 48,447
users on 100 jokes (we subsample down to 2,000 users to keep experiments tractable.) Similar to
Kong et al. [23], we hold out the top 5 “gold” jokes with the highest average ratings. For each user,
we create a 30-dimensional feature vector by multiplying their 95-dimensional feature vector of joke
ratings (for the remaining jokes) with a 95 x 30 matrix whose entries are iid (0, 1) and applying a
sigmoid to each of the resulting 30 values. The task is to predict the best “gold” joke (action) for
each user (context), resulting in 10,000 context-action pairs. We model the distribution p as uniform
across contexts. The reward of (x, a) is the user s rating of gold joke a.

Figure 2] summarizes findings for A = le-6 (other \ are in Appendix [H]) Active-SCLB consistently
outperforms other baselines (all of which perform similarly.) Active-SCLB often requires 5,000 fewer
samples to achieve similar regret to baselines; on Jester, it sometimes requires 1,500 fewer samples.

Summary. We presented an active context sampling algorithm for SCLBs. Our approach enjoys an
instance-dependent regret guarantee which in the worst-case, matches the minimax-optimal rate and
in the best-case is up to a v/d-factor tighter than comparable works [, 46]]. Two limitations of our
work are that scaling SDPs to massive problems could be computationally expensive and that our
SCLB setting makes a linear realizability assumption. We discuss these further in Appendix [E]
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A Organization of Appendices

We briefly provide an outline of the contents in this appendix. In Appendix [B]we discuss related work.
In Appendix [C] we provide additional description and discussion of Algorithm [T} In Appendix
we provide formal guarantees on active versus passive context sampling on a hard instance. In
Appendix [Ef we discuss how some of the SCLB modeling assumptions in the main body can be
relaxed to still yield interesting results. In Appendix [F] we include a helpful visualization to compare
our setting of active context sampling for contextual bandits with prior work on linear bandits, passive
context sampling for contextual bandits, and traditional active learning for regression. In Appendix [G|
we discuss additional theoretical findings, including an active context sampling version of the
ContextualRAGE algorithm proposed in [28]. In Appendix[H|we discuss additional implementational
details, including additional experiments on Warfarin dosage and Joke recommendation with different
values of the regularization parameter A. In Appendix [I| we present all proofs omitted in the main
body.

Link to code for experiments. We have made code available at the following anonymous repository:
https://anonymous.4open.science/r/ACLB_release-1B6E/README.md. Our code will also
be released publicly in the final version of the paper.

B Related work

Related work on SCLBs. Exploration algorithms for SCLBs are well-studied [[13} 24} 28} 133, 146].
All of these prior works all design algorithms which use passive context sampling. In particular, [46]]
introduced two polynomial-time algorithms, reward-free LinUCB (RFLinUCB) (adapted from the
LinUCB algorithm of [1]]) and the Planner-Sampler algorithm. Both algorithms use I" reward ob-
servations {r (2, a;) }+c[r) to learn a policy 7 such that R(7) < O(y/dB3/T') with high probabi]ityﬂ
Here, 3 is a parameter, which under mild assumptions satisfies v/ = O(v/d) (defined formally in
Lemma|[[.T] (T7)). This rate is known to be minimax-optimal (up to polylogarithmic factors) [[7, 46].

Inspired by practical applications where active context sampling may be beneficial, our work focuses
on leveraging the power of active context sampling to develop a polynomial-time algorithm with
tighter instance-dependent-regret bounds. Li et al. [28]] also studied instance-dependent regret bounds
for SCLBs; however, their algorithm again uses passive context sampling and requires exponential
time. Thus, it does not lend itself well to practical applications. We discuss Li et al. [28] further in
Section[D]and Appendix [G] An orthogonal line of work studies algorithms minimizing the cumulative
regret, for SCLBs; however this is not directly comparable to our exploration setting (see [1} 26] as
well as Appendix [E| for further discussion of the cumulative regret versus simple regret setting.)

Other related work. SCLBs are a type of linear Markov Decision Process (MDP) with effective
horizon of 1, where contexts are the MDP states. Some works [40, |41]] obtain instance-dependent
rates for MDPs, but neither considers actively sampling states/contexts, and their algorithms are
generally computationally hard to implement. Wang et al. [42] and Gheshlaghi Azar et al. [18]
consider MDPs in the generative model setting, where states are sampled actively but rewards are
known a-priori; this is not useful for SCLBs, as the SCLB problem is trivial if rewards are known.

Our work relates to the broad literature on experiment design and active learning (see, [11}131}32}134]),
which seeks to design experiments that best reduce statistical uncertainty in unknown variables. Our
algorithmic techniques are related to active learning for ridge regression [3, 45] and G-optimal
experiment design for linear bandits [26}[31]. Although we are not aware of prior work specifically on
active context sampling for SCLBs, there has been some work on active learning for other contextual
decision making models. Char et al. [4]], Kirschner et al. [22], Li et al. [27] studied contextual
Bayesian optimization, where the reward is modeled as a Gaussian process (as opposed to a linear
reward model). Their guarantees are weaker, requiring either super-linear dependence on the context-
action space [4]], or explicit dependence on the dimension d [27]. Lastly, Das et al. [10] studied active
context sampling in a preference framework with a Bradley-Terry-Luce reward model.

*We use O(-) to hide polylogarithmic factors in the variables d, 1/8 and L.
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C Additional description and discussion of Algorithmic Details

Algorithm 1: Active-SCLB

Input: SCLB B = (X, A, ¢, p, v, 0*), regularization parameter A > 0, sample budget T’ € Z~,
smoothing parameter « € [0, 1].
/I Compute smoothing distribution ¢ (see discussion of implementability below).

Compute ¢ € A**4 such that max , q)ex x4l é(z, a)H;;l < 2d

/I Compute a 2-multiplicative approximation of the solution to ) using an SDP solver.

Compute w € A¥*A such that w(zx,a) > aq(z,a) forall (z,a) € X x A, and
]E»TNP InaXaGA”(ﬁ(xa a) ”;u—)l <2 ]Ezfvp maXaGA”d’(x’ a)”;;i

3 S+ {(z1,a1),..., (xr,ar)} where each (z, a;)~w i.i.d. // Build dataset S of size T
4 Fort € [T} Sample Ty < r(act, at) /I Sample reward observations.
50« Zgl Zte[T] o(xy, ar)ry // Perform ridge regression.

return: 7 (z) < x — argmax,. 4 ¢(z,a)’ 0

First, Line [T computes a distribution ¢ that approximates the G-optimal distribution ¢*, defined as
follows:

Theorem C.1 (Kiefer-Wolfowitz Theorem, Theorem 21.1 of [26], restated). Suppose that
q* = argminquXxA maX(w,a)EXXAH(b(xv CL) HE;I . Then ma‘X(m,a)EXX.A”d)(m7 Cl) ||227*1 =d.

There are various polynomial-time algorithms to find ¢ which is a 2-multiplicative approximation to
q* in the sense of LineE] (e.g., Franke-Wolfe or an SDP solver; see Chapter 21 of [26]]).

Second, in Line [2| for some pre-specified constant « € (0, 1), the algorithm computes a distribution
w, which approximates a “a-smoothed” version of w* (which we denote by w™):

w* = argmin E max||¢(z,a) subject to w(z,a) > a - q(x,a), V(z,a) € X x A. (7)

2

WEAX XA TP a€A HZ’T’“
This optimization problem for w* is identical to the one for w* in (3)), except for the constraint that
w* must dominate «q. This constraint is for a technical reason: it ensures that w* is well-conditioned
so that matrix-concentration arguments carry through without additional dependencies on L and \.
Fortunately, as the next lemma shows, the objective values attained by w, w*, and w* are close; so
we can replace w* with w in the approach outlined in the main body, at the cost only constants in
sample complexity.

Lemma C.2. Let w*, w* be as in ), (7). respectively. Moreover, let w be as in Line 2| Then,
By maoe |00, )2 < 2By maacal o, a) 2 < 2/(1— ) Ca

Theorem[[.4] proves that (7) can be expressed as a semi-definite program (SDP). The proof leverages
properties of Schur complements (Lemma|[[.3]) It is well-known SDPs can be solved to high accuracy
in polynomial time (e.g., [21]). Thus, one can compute a w satisfying Line [2]in polynomial time.
There are also many practical solvers (e.g., [20]). In experiments, we used MOSEK (see Appendix)

Finally, the algorithm draws 7" samples from w to construct S, performs ridge regression, and outputs
a policy using the procedure of Lemma[[.T]

We now highlight some advantageous features of Algorithm

* Choice of parameter «: The choice of « = 1/2 in Theoremis purely to enable a finite-sample
matrix concentration analysis in the proof. In theory, any constant « € (0, 1) would suffice for the
analysis to go through (at the cost of constants in the sample complexity). In practice, we find even
o = 0 works well and avoids the need to ever compute g. Hence, we set o <— 0 in our experiments.

* SDP approximation: The theoretical analysis only requires a 2-multiplicative approximation to
Line 2] but in practice, SDPs can be solved to high accuracy. Tighter approximation would lead to
tighter constants in our regret bound. In our experiments, we solve the SDP to convergence.

« Batching: For ¢ € [T, Algorithm|I|queries rewards for {(z;, a;)} drawn i.i.d. from w in Line[3]
Importantly, the ¢-th pair (z¢, a;) is not dependent on the history {(x;, a;)};c[¢—1]. This ensures
the reward observations can be parallelized. Hence, our algorithm falls under the batch-learning
paradigm in active learning [17]] and non-adaptivity paradigm in SCLBs [46]. This is important



in settings where each reward requires long observation horizons. For example, in drug trials, it
may be unreasonable to run trials iteratively on one subject at a time to inform selection of the next
subject—hence parallelizing reward observations is important.

* Robustness to approximation of p: In some settings, the context distribution p may only be known
approximately, i.e., one replaces p in Algorithm [I] with an approximation p ~ p. For example, in
applications, p might be constructed as an empirical distribution from some historical dataset of
sampled contexts. Note that building such a p only requires context data (no reward data), which we
believe is available in many applicatoons. In Appendix [E] we show that the theoretical guarantees
of Algorithm[I]decay smoothly as a function of the total-variation distance between p and p.

D Formal guarantees on active versus passive context sampling

In this section, we formally demonstrate that the instance-dependent bound in Theorem [2.2]leads to
quantifiably improved performance on an instance-dependent basis. We describe the following family
of SCLB instances (parameterized by A and d) where active context sampling (Algorithm [I)) achieves
quantitatively improved regret bounds compared to the minimax rate. This instance is adapted from
the hard instance for passive learning in maximum likelihood estimation [5].

Definition D.1. Letd € Z>, A € Z>1. Let B] 4, = (X, A, ¢,p,v,0”) be an SCLB with X = [d],
A =[A],v=N(0,1) and ¢, p, 6* defined as follows, where ¢; is the i-th standard basis vector:

e, ifa=1, 1—95L ifg =1, . 0, ifi=1
¢<x,a>={ | p(a:)z{ 7 | [e},:{

e; otherwise 1/d? otherwise 1, otherwise

This SCLB has one high-probability context = 1 and (d — 1) low-probability contexts. The high
probabilty context always reveals 67, which is 0. Any algorithm can only learn about high-reward
actions when it queries a context = # 1. If an algorithm passively samples contexts, this happens
rarely (only with probability roughly 1/d.) On the other hand, an active context sampling algorithm
can actively upsample these rarer contexts in order to gain information about 8*’s remaining (d — 1)
coordinates—-allowing it to more efficiently determine the best action to sample for these contexts.
This intuition suggests that active context sampling should perform well on By 4. We formalize this
by showing Cp: |, is independent of d and A, as follows.

Lemma D.2. Foranyd € Zxo,A € Z>1, Cpy , < 4.

Thus, on B} 4 Theorem gives a regret bound of O~(\ /3/T). In contrast, the prior polynomial-time
algorithms (RFLinUCB and Planner-Sampler) passively sample contexts and only guarantee a bound
of O(w /Bd/T), which is worse by a factor of v/d [46]]. This illustrates a concrete case where our
result can be stronger than prior work by up to a v/d factor! We validate this improvement empirically
in the next section. In addition, in Appendix we show that this v/d improvement remains even if p
is unknown but approximated from roughly ©(d?) i.i.d. context samples from p.

Comparison to adaptive sampling SCLB bounds. Li et al. [28] use passive context sampling
with a data-adaptive exploration policy to obtain instance-dependent rates, which, in some cases
might be tighter than Theorem[2.2] Their algorithm uses passive context sampling and strategically
sample actions with a reward gap data-adaptively. Li et al. [28] extends prior work on data-adaptive
best-arm identification for stochastic non-contextual bandits to stochastic contextual linear bandits
(SCLBs). However, to our knowledge there is no polynomial-time implementation of the algorithm
from Li et al. [28]]. Motivated by applications, our focus is on designing polynomial-time algorithms.

Nonetheless, introducing active context sampling would still improve over the passive-learning data-
adaptive sampling algorithm in [28]]! Appendix [G]presents a data-adaptive active context sampling
analog of Li et al. [28]]’s exponential-time algorithm and proves this would improve over the regret
bounds attained in [28]—in particular, on the class of SCLBs proposed in Definition [D.1] our active-
context sampling variant of Li et al. [28]]’s original passive-context sampling algorithm tightens the
resulting bound by a factor of v/d, as we find for our polynomial-time algorithm. While we omit this
analysis in the main body (as our focus is on tractable algorithms) our results highlight that active
context sampling has potential to strengthen contextual bandit algorithms more broadly.
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E Discussion of SCLB model, limitations, and relaxations

In this section, we discuss in more detail the role of some assumptions of our SCLB model, and how
some of them can be relaxed under appropriate conditions.

E.1 Relaxing the assumption that the context distribution p is known.

One assumption in our work is that the context distribution p is known a-priori. Although we believe
this to be reasonable for some applications (see for example, the motivating examples presented in
Section|[I)); in other settings p may only be known approximately from prior historical data from the
context distribution.

Consequently, a natural question is the following. Suppose that the exact context distribution p is
unknown a priori and that the learner only has access to an approximate context distribution p € A<,
Suppose that one runs Algorithm [T with p in place of p. How do the theoretical guarantees decay as a
function of the error between p and p?

We address this question below. In Section [E.I.T| we show that the theoretical guarantees of our
algorithm decay smoothly as a function of the total variation distance between p and p, and we
quantify the amount of historical context data needed to control this error. In Section [E.1.2] we show
that on the bandit instance from Definition a coarse approximation of p constructed from a
dataset of Q(d?) sampled contexts is sufficient to maintain the v/d improvement over passive context
sampling.

Lastly, a perhaps another related question is: when constructing w in Line [) is necessary or would
taking w <— ¢* (recall that ¢* does not depend on p) obtain just as strong a rate. This is not the case,
as we discuss in Section[E2]

E.1.1 Theoretical guarantees decay with the total variation distance between p and p

In the following, we use tv(p,p’) := 1/2->_ » |p(x) — p'(x)| to denote the total variation distance
between two discrete distributions over a context set X.

Theorem E.1. Let B = (X, A, ¢,p,v,0%) be an SCLB, A > 0, 6 € (0,1), and T > 0 be a sample
budget. Suppose that p is unknown but that one has access to an arbitrary approximation p € A .
Let B = (X, A, d,p,v,0%) be the corresponding approximate bandit instance and [3 be as defined in
(7). There exists Ty = O(dQ) so that whenever T' > Ty, with probability 1 — 6, Algorithmoutputs

7 such that the regret evaluated on the true bandit instance B satisfies

R(7)= E [ma}r(a:,a) —r(z,7(x))] <O <\/5 ) w"(p’p/)) .

T~p ac T
Moroever, the algorithm runs in polynomial time.

To prove the theorem, we first prove the following helper lemma.

Lemma E.2. Consider the setting of Theorem|[E| Let q be as in Line[I} Let w be the choice that
Lineof Algorithmwould select when invoked on B with o <— 1/2. Then,

E max|¢(z,a)|? 1 < 4Cs + 32dtv(p, p).
r~p a€A W
Proof. For notational convenience, for any bandit B’ = (X, A, ¢,p’, v,0*) and for any distribution
w € ACA define

k(B ,w):= E max|¢(z,a)

/ 2.
z~p’ a€A w

Consider any w which is feasible for (7) for &« = 1/2. Then, by the constraint that w dominates
a - g =1/2¢q we have that 3,, = 1/2 - 3, and consequently,

K(B,w) — K(B,w)) =

2 2
Exrvp[l;neaj‘( ||¢($7 a)HE;l] - E‘TNﬁ[gleajt{ ||¢(LE, a) ||2E1}
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=D Ip() - b)) - max || $(z, a) 15

zeX

<> lpz) — ()| ~max |6z, a)|[3,.

reX

<4d " |p(x) - p

reX

where the second-to-last inequality holds because ¥, = 1/2 - ¥, ensures ||¢(z, a) ||22,1 < 4d and
the last inequality holds by definition of the total-variation distance tv(p, p).

Now, @* and w* be the choices of distributions that (7)) would select when invoked on B and B
respectively. That is,

w* = argmin E maxHqS(x (I)HQE,I7 subject to w(x,a) > a - ¢(x,a), ¥(z,a) € X x A
WEAX XA T~P aEA w

w* = argmin E made)(x a)H;_l7 subject to w(x, a) > a - q(x,a), V(z,a) € X x A.
E w

wEAXXA INP

Then, by the argument above, we have that
K(B, ") < k(B,w*) + 8dtv(p, p) < k(B, w*) + 8dtv(p, p) < k(B,w*) + 16dtv(p,p),

where the first step follows because |« (B, w*) — x(B,w*)| < 8dtv(p, p'), the second step follows be-

cause of the optimality conditions for 1*, and the third step follows because |x(B, w*) — k(B, w*)| <
8dtv(p,p’).

Noting the definition of w, we conclude
K(B,w) < 26(B,w") < 25(B,w") + 32dtv(p, D).
The result now follows by Lemma|C.2] which ensures that (B, w*) < 2Cg. O

Proof of Theorem|E.1} The proof follows identically as that of Theorem [2.2] except that the second-
to-last display instead holds (by Lemma@) with

Z]E,,rfgff||¢($’“)||251 E maxHqS(m a)H2 1 < CB +64d - tv(p, p').

T

We also optain the following useful corollary.

Corollary E.3. Let B = (X, A, ¢,p,v,0) be an SCLB, A > 0, 6 € (0,1), and T > 0 be a sample

budget. Suppose that p is unknown but that one has access to M = ©(|X|d*e~2) historical iid
samples from p. Let p be the empirical context distribution constructed from these M samples.

Let B = (X, A, &, p,v,0%) be the corresponding approximate bandit instance and {3 be as defined in
(T7). There exists Ty = O(d?) so that whenever T > Ty, with probability 1 — 6, Algorithmoutputs
7 such that the regret evaluated on the true bandit instance B satisfies

R(#) = E [maxr(z,a) — r(z,7(z))] < O < 8. CB“) .

z~p a€A T

Moroever, the algorithm runs in polynomial time.

Proof. The proof follows by applying Theorem and noting that M = O(|X |d%€=2) is sufficient
samples such that with high probability, tv(p, p’) < e/d [3]. O

12



E.1.2 Sustained improvement on the bandit instance from Definition

A natural and important question is whether the gains to active context sampling over passive sampling
strategies still persist when we use an empirical estimate of the context distribution. We expect this
to be true, and we now show on the example from Definition 5.1, that optimizing with respect to
an empirical context distribution (instead of the true context distribution) still enables our approach

to recover our \/d-factor improvement over passive context sampling. For the example instance in
Definition 5.1, suppose that we build an empirical estimate p using M samples of only contexts. We
believe it is very common for there to be prior large datasets of contexts — consider recommendation
systems, etc. Recall the multiplicative Chernoff bounds: for X;...;; independent Bernoulli random
variables in (0,1) with mean pg, and € < 1 then

1 —e2Mpy/(2+¢€)
P(H E Xi2(1+6)pk>§€ P
and

1 —e2Mpy /2
P<M;Xi§(1_€)pk>§€ P

Set e = .25. Thus, M} = % log(2/9) is sufficient to ensure the resulting estimate P(p;, >
(1+€)pr) + P(hr < (1 — €)p) < 0, where py, is the empirical estimate - > X;. We use a
union bound to ensure this holds for all d contexts, and chose the minimum probability p; = d%,
M = 32d?log(2d/d). This ensures that with probability at least 1 — §,

P [ o) — 0] < plo)/a].
Condition on the above event in the remainder of this argument. Note that under the above event, we
have that for all x > 1,

. 3 d 5 .
P(1)24(1—d2)>4~d22p(x).

Now, consider the SDP problem we solve in Algorithm 1 if we use p in place of p. Note that the
feature e; can be accessed through the context-action pair (z = 1,a = 1) so we may assume without
loss of generality that w(x, a) is only supported at a = 1. We have

d
S =Y w(z,a)p(z,a)p(z,a)T =" ziee]
i=1

T,a

where z; := w(i, 1) for each 7 € [d]. Then

-1 _ -1, T
X, —E zZ; eie; ,

and consequently,

d
max [[¢(z, a)[3-1 = max ¢(z,a) 'Sy é(x,a) = Y maxz o ()3
i=1

Recall the definition that ¢(x,a) = e, if a = 1 and e; otherwise. Hence, the max becomes
min(z1, z,) ~!. Plugging this in the formulation of SDP gives

1

orp a min(z1, z;)

E meaj(H(b(x,a)H;;l = Zﬁ(m) :

Next, we prove that z; > z; for all ¢ # 1. Indeed, suppose for the sake of contradiction that z; < z;
for some i # 1. Then consider z’ € A% such that 2}, = (21 + 2;) if = lorz = i,and 2}, = 2,
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for z # 1 and = # 4. Note that 2] = z, > z; by this construction. Let w and w’ be the weights
correspond to z and z’. Then

p(1)  p(4) . 1
E m 2 _ P P —_—
ax]6(z, a)|2 +22 4 > ) —

r~p a€A 21 21 oA ook (Zh Za:)
p(1) p(d) " 1
> + p\x) ————~
s(itz) gz +2) #12;‘# (@) min(z1, 2z )
_ (1) | p(i) X 1
7 + 2! + Z p(x) min(zy, 22,)
1 ? £l xA1 1%z
= E 2.,
E maglole, ol

Therefore, such w (and thus such z) cannot be a minimizer of the expectation. Hence, the SDP
reduces to

in S p(e) - =

min . —_

zEAN Pz Zg
rxeX

Using Lagrange multipliers we get the closed form solution, z, = pi, and optimal value
g Lagrang p g >, Vi@ p

x

(57

Moreover, using the guarantee above on the accuracy of the learned p(x) parameters given M prior
contexts, we prove

2 2 5 d 2
(ZW> S(ZW> :<W+1.zs.;;> — o).

reX reX

Therefore, given M = 32d*log(2d/§) samples, with high probability the active context sample
algorithm using the empirically-derived context probabilities will also improve over passive context

sampling by a v/d factor. This shows that at least in some settings, using the empirical distribution to

estimate the context distribution will yield the same v/d improvement in the resulting regret bounds,
compared to passive context sampling methods.

E.2 Using the G-optimal distribution directly is insufficient

A perhaps natural question is the following. When constructing w in Line[2)) is the SDP solution w
truly necessary, or would taking w <— ¢ (which does not depend on p) obtain just as strong a rate?

This is not the case. Indeed, Theorem shows that the G-optimal design ¢ satisfies
max (g q) ||¢(z, a)||_2q1112 = d. By Lemma , this in general yields a bound of \/d3/T. This
gives no improvement over passive context sampling.

As an illustrative example, consider again the bandit instance from Definition[D.I] The G-optimal

design can select (x, 1) with probability 1/d for each x € [d], but that upsamples the rare contexts
too much, causing a d-dependence in the bound. Indeed, we find that

2 —d+1 41
EszHezHQE;l - <d2) A+ o d=9(d),
1=2

and hence, Lemma suggests that even on this simple bandit instance, if one were to modify
Algorithm|I]to use w < ¢ in Line[2} then one would again obtain a worse d-dependence than using
the active context sampling distribution w = a¢ + (1 — @) as in our original Algorithm

14



E.3 Assumption that the reward model is linear.

Our method is immediately amenable to some non-linear reward models in the sense that one could
always lift the feature vector into a higher-dimensional space which captures non-linear relationships
between the original feature entries. To briefly explain why this is the case, recall that one can always
use linear regression algorithms to fit a quadratic regression model just by modifying the feature
vector to include the transformed variable 22 in addition to z as a feature. What is important is just
that the reward is linear (or approximately so) in the lifted space. See, for example, the empirical
section of Kong et al. whom our paper cites.

In principle, the idea of active context sampling could also apply to kernelized contextual bandits.
However, the main challenge is that in these more complex reward models, it is not clear whether the
optimization problem to solve for the optimal sampling distribution is computationally tractable (e.g.,
solvable in polynomial time.) Some prior works (see Line 118) have discussed greedily sampling
contexts for the kernelized settings, but this does not result in tight guarantees that avoid a dependence.
Thus, while developing theoretically-grounded techniques for very general reward models might
be challenging, we hope that our work provides potentially useful insights towards tackling more
sophisticated reward models as future work. Moreover, as discussed in Section [3| our empirical
results on real-world data seem robust to model misspecification, which indicates that our methods
could outperform their theoretical guarantees even if the true reward model is not linear.

E.4 Pure exploration setting and choice of simple regret as the objective function.

In this section, we discuss the motivation for our pure exploration setting as well as our choice of
regret function.

Pure exploration setting. First, we note that if one’s goal is to minimize cumulative regret, alternate
algorithms may be preferable. We do not have bounds on the cumulative regret. The reason we focus
on pure exploration is that it is better aligned with some important settings where a fixed experimental
period is more common. For example:

* Social media companies often run experimental studies on users. A company might be willing to
test out several different strategies (knowing that it may temporarily lose on engagement) in order
to quickly learn a high-quality strategy to deploy in production long-term.

* In medical settings, one might design a monitored clinical trial in which patients are actively
monitored in case of any adverse consequences to the administered treatment. Such monitoring
is not possible long-term or at-scale, however, the willingness to take a measured risk to quickly
explore new treatments during a short-term trial can be valuable for eventually identifying good
treatments to prescribe to the general public.

* Another natural setting where the pure exploration setting is well-suited is applications where we
have the ability to simulate the reward of a particular context-action pair by running an (expensive)
simulation. This may arise in scientific decision making where physical or medical simulations are
available. In such cases, one is unconcerned with the regret during exploration.

To summarize, during the exploration period, our regret may be high, however, this freedom to
explore actions freely enables us to quickly (i.e., with few samples) converge upon a near-optimal
policy which can be deployed at scale after the exploration stage. In contrast, if one tries to balance
exploration and exploitation as in the online bandit setting, convergence to an optimal policy could
be slower. This is precisely what motivates the extensive prior work on the pure exploration model
(13124} /46].

As an important related note, there is a sense in which active context sampling only makes sense in
the pure exploration setting and does not make sense in the cumulative regret minimization setting.
As a thought experiment, suppose we modify the cumulative regret minimization setting to allow
the learner to actively select the context at each round ¢. Then, there is a trivial way to achieve low
cumulative regret: the algorithm could just select the same context x’ in every single round and learn
an optimal action for context z’. This would have low cumulative regret, since the learner only needs
to learn a good action in context 2. However, clearly, this is not a very interesting setting, since the
learner would never learn to perform well on the real-world distribution p.
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D_x,-i-f(x) Dﬂ,'ﬂ'r(x,a) @_",Dﬂ,-ﬁ-r(x,a)

Algorithm Label Algorithm Reward Nature Algorithm Reward

(a) Active context sampling for contextual bandits (center) lies between classic active learning (left),
e.g., for regression, and passive context sampling for contextual bandits (right).

During exploration / data collection During deployment
o x
D Lay 'ﬁ' r(x,a) —~ » #(x) Regret:E,., [max r(x,a) — r(x,n(x))]
a
Algorithm Reward Nature Learned policy

(b) During exploration, active context sampling allows selecting both contexts and actions. However,
the goal is to learn a policy that performs well in deployment, when contexts will be sampled from p.

Figure 3: Active context sampling for contextual bandits.

In contrast, our work allows the learner to actively sample contexts freely during the exploration
phase; however, it must learn a policy that will perform well in the eventual real-world distribution p.
This is diagrammed in Figure [da]

Simple regret vs best arm identification. In PAC-learning for best-arm identification, the goal is
to find the best arm in every context [35]]. That is, the goal would be to identify an approximately
optimal action in every context.

In contrast, in simple regret, we are okay with using a suboptimal arm in some rare contexts as long as
the learned policy performs well on average over the distribution of contexts. In this sense, best-arm-
identification is a very strict “solution concept” which requires strong performance uniformly over
every context. Meanwhile, simple regret is more relaxed and often more realistic in that it only asks
for learning context-to-action policy which performs well (on average) over the context distribution.
In practical scenarios, we are often satisfied with a policy which works very well on average (even
if it is suboptimal in some rare contexts). However, to truly find the best arm in every context as in
best-arm identification, we might need to spend many more samples.

This is why prior works have also looked at simple regret under the SCLB model to better capture
real-world scenarios where average-performance of a policy is the key performance indicator (Zanette
et al., Li et al., Deshmukh et al., Krishnamurthy et al. as cited in our paper).

E.5 Limitations of SDP solving and linear realizability.

One limitation is that SCLBs make a linear realizability assumption [l |46]]. However, on the real-
world Warfarin and Jester datasets, Algorithm [T] performs well even though we expect the reward
models are nonlinear, suggesting our procedure can perform well empirically even if the problem is
misspecified as an SCLB. Misspecification may also explain why the regret is not strictly decreasing
in Figure 2] Another limitation is that, while SDP-solving is fast for moderately-sized SDPs, SDP-
solving could be expensive in massive context-action spaces. Our experiments on Warfarin and
Jester demonstrate our method can easily scale to at least 15,000 context-action pairs. On both
datasets, SDP solving runs in under an hour. To scale to massive problems, one might consider
parallel/GPU-accelerated SDP solvers [16} 29]. Practitioners might also experiment with heuristic
approximations of Line[2](e.g., sub-sampling the context-action pairs prior to solving the SDP); we
conjecture it is nontrivial to provide theoretical guarantees for such heuristics.

F Comparison of active learning settings

In this section, we include a helpful visualizations (Figures[3]and[) to compare linear bandits, active
learning (e.g., for regression), passive learning for SCLBs, and active learning for SCLBs.
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During exploration / data collection During deployment

[ ]
D a T (@) @ _* 5 a Loss: max r(a) — (@)

Algorithm Reward Nature Learned action

(a) Linear bandits

D _*, 'i' £(x) ® N (%) Loss: Exp, [(!(x) - ?(x))z]

Algorithm Label Nature  Learned labeling

(b) Active learning (e.g., for regression)

[ ]
@ —xP D ﬁ’ T Tt a) @ LN 7 (x) Loss: Ex.p [ max r(x, a) —r(x,ﬁ(x))]

Nature Algorithm Reward Nature Learned policy

(c) Passive context sampling for SCLBs

°
x,a r(x,a) ® . 4
- T e s8]

Algorithm Reward Nature Learned policy

(d) Active context sampling for SCLBs

Figure 4: Four learning paradigms. Figure @ describes the typical linear bandit setting, where there
are no contexts and the learner’s goal is to learn a good universal action. Figure ib] shows active
learning for regression, with the mean-squared loss. During exploration, the learner actively samples
data x to learn a label function £ (2); but during deployment, inputs arrive according to the distribution
p. In other settings, such as active learning for classification, this mean-squared loss might be replaced
with another smooth, convex loss function. In contrast, in contextual bandits (Figures ficjand (@d),
the learner needs to learn a policy-to-action mapping. In this case, the loss function function is the
sub-optimality of the policy—which is discontinuous—and consequently, traditional techniques from
continuous optimization do not immediately apply.

G Additional theoretical results

In this appendix, we expand on additional results which were omitted from the main body.

G.1 Probably-approximately-correct guarantee

Here, we state a probably-approximately-correct (PAC)-style version of our main result (Theorem[2.2)).
The following theorem is an immediate corollary of Theorem 2.2} and makes an assumption on 6*, A
in order to more directly compare to the PAC-learning versions reported in [}, 46]].

Corollary G.1 (PAC-learning version of Theorem~. Let B = (X, A, ¢,p,v,0%) be an SCLB
and €,6 € (0,1). Assume ||0*]] < O(1) and A < O(1). When initialized with a sample budget of

T>T = O(CB de 2+ d?)and o = 1/2, Algorithm returns a policy 7 such that with probability
1-9, R(7) <e
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Proof. From the definition of 3 (T7), it is clear that so long as A, ||0*]| < O(1), 8 < O(d). The
corollary now follows immediately Theorem [2.2] O

In comparison, the methods from Zanette et al. [46] and Abbasi-Yadkori et al. [1] (RFLinUCB and
Planner-Sampler) require O(d?¢~2) samples to achieve e regret under the same assumptions.

Recalling that C < d, we see that our sample-complexity guarantee of O(Cgde~2) is always at least
as strong as that of Planner-Sampler and RFLinUCB Abbasi-Yadkori et al. [[1], Zanette et al. [46] and
may be as low as O(d2 + d/€?) when C = O(1) (recall Section D] which gives an example where
this occurs.) Thus, in the PAC-learning setting, we improve over Planner-Sampler and RFLinUCB by
up to a dimension factor.

Remark G.2. Note that our restriction to € € (0, 1) is without loss of generality. Because we assume
that rewards are bounded between [0, 1] in expectation, if € > 1, then any policy has regret at most €,
and consequently, the problem is trivial.

G.2 Instance-dependent guarantees and comparison to [28]

In this section, we compare in more detail against the instance-dependent rates of [28]] for SCLBs. We
did not discuss this in detail in the main body, because the instance-dependent sample complexity rates
of 28] for SCLBs are obtained using a computationally intractable algorithm (see, e.g., discussion
around Theorem 2.14 of and conclusion of [28]].) In contrast, our goal in this work is to focus
on practical applications where active context sampling may be helpful; hence, our goal was to
design polynomial-time implementable algorithms which obtain instance-dependent rates for SCLBs.
Because it is not known how to implement or even approximately implement the guarantees of [28]]
in polynomial time, note that the result of Theorem 2.14 in [28] may be an unfair comparison to our
result Theorem 2.2

Correspondingly, our goal of this section, is to discuss the result of [28]] in greater detail and show
that their rates can also be improved with active context learning—if we disregard the concerns over
computational tractability. In Section we first state the main result of [28]], which uses passive
context sampling to design an instance-dependent algorithm (ContextualRAGE) for SCLBs. In
Section[G.2.2] we will show that using active context sampling, we can generalize (ContextualRAGE)
to design a new active context sampling algorithm, which we call Active-ContextualRAGE. Finally,
in Section|[G.2.3|we show that our family of SCLBs from Definition [D.I|remains an instance where
Active-ContextualRAGE outperforms ContextualRage by a v/d factor in its regret bound (which
corresponds to a d factor in the PAC-learning sample complexity).

The main takeaway for the results in this section is (1) theoretically, we can prove that active context
sampling improves over the rates of Li et al. 28], however, the algorithm achieving this improved rate
is not computationally intractable; and (2) even if we consider computationally intractable algorithms
as in [28], active context sampling improves over the rates achieved by passive context sampling on
the family of SCLBs proposed in Section D}

G.2.1 Restating the main result of [28] for SCLBs

To aid in the statement of the main result of [28]], we first introduce some additional notation. For any
policy € II, we denote ¢ := E,., ¢(x, 7(z)) .

Theorem G.3 (Theorem 2.14 of [28]], restated). Let B = (X, A, ¢, p,v,0*) be an SCLB, ||6*|| < 1,
and €,9 € (0,1). Define
F = {w e AVA yr e X, Zw(m,a) :p(m)}.
acA
Let m* : X — A be the optimal policy given by
7" (x) := argmax ¢(x, a) ' 6*. 8)

acA
Define

. 6 — 6212
PR ‘= N max =

> wWEF mimHAT* maX(e, <¢7r - ¢7r* ) 9*>)2 '
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Moroever, let

A, = max (e, min  (Prr — Py 9*)) . 9)

mell:m#mn*

Then, with probability at least 1 — §, ContextualRAGE (Algorithm 1 of [28)]) returns a policy & such
that R(7) < € after making at most

O (s 1og(min{dlog(1/e),log T1]} + log(1/6)) log(A; 1)) (10)

reward observations. Moreover, it is always the case that (I0) is upper bounded by O(d2 /€2).

This result gives a fine-grained PAC-learning guarantee, which may be much stronger than the
minimax-rate of O(d?/e?) when pji"; < d® /€.

However, as discussed in Section 3.3 and Section 4 of Li et al. [28]], the ContextualRAGE algorithm
presented in [28]] is computationally ineffcient because it requires maintaining a set of policies 11,
from round to round. Because |TI| = X4, even maintaining II; at the start of the algorithm requires
exponential-time. Thus, while Theorem[G.3]is very interesting information theoretically, it does not
directly lend itself well to practical applications of contextual bandits.

Nonetheless, in the following section, we show that if we disregard computational implementability,
we can obtain a similar result to our Theorem|[G.3} in particular, we present a new active-learning
variant of [28]’s ContextualRAGE that achieves an even tighter instance-dependent rate than Theo-

rem[G3]

G.2.2 Developing tighter instance-dependent rates using active context sampling

Here, we propose an algorithm that takes advantage of active context sampling to achieve a better
instance-dependent PAC learning guarantee than the passive instance-dependent sample complexity
bound stated in [28]. The pseudocode is shown in Active-ContextualRAGE (Algorithm [2). As
with the ContextualRAGE algorithm (Theorem|[G.3)), Active-ContextualRAGE is computationally
infeasible for the same reason that ContextualRAGE is infeasible: it requires explicitly maintaining a
set of policies which could be as large as II in every iteration.

Algorithm 2: Active-ContextualRAGE
Require: ¢: X' x A — R4, § € (0,1)
1: Initialize II; = II
2: for { =1,2,--- [logy(1/€)] do
30 e =271 6, :=6/(20%|))
4:  Let ny be the minimum value s.t.:

I Eonpl(z, m(2)) — ¢(, 7' (2))]|I3- 1 log(1/d¢)

min max < ¢
wWEA xx A T, €Il Ny

[

with argmin given by w(®).
5:  Foreacht € [ng], pull (¢;,at) ~ w®, observe reward r;
6:  Compute O; = E;(lg)gb(ct, ag)ry
7. Form, 7' €1l

Ag(m,7") = Cat({( E [¢(x, 7(x)) — ¢(x, 7' (x))], 0i) }i2y)

T~p

8:  Update
Moy =1L\ {7 €11} | max Ag(m, ') > €}
well,

9: end for
10: return I,
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We first state a lemma that guarantees the optimal policy is inside the candidate policy set 11, after
elimination, and all policies in II, have small gaps. The following lemma is the same as Lemma 3.1
in [28] and the proof follows the identical argument as in [28]].

Lemma G.4 (Lemma 3.1 of 28], restated). In the execution of Algorithm[2] with probability at least
1—=9, forallt > 1, m, € Iy and max,cr, V(r*) — V(1) < 4ep.

Next, we state a theorem that gives a PAC upper bound for Algorithm P]using active context sampling.
Note that the upper bound O(d?/€?) in this theorem is quite loose, and we show in Section that
the active complexity bound can be much smaller than the passive one.

Theorem G.5 (Active-ContextualRAGE). Let €,6 € (0,1), ¢ : X x A — RY, ||0*]| < 1, and let
A, 7 be as in [§) and ), respectively. Define

A% |2
p%t = min  max ¢ QSW”ZZ“I
s€ 7

WEAX XA imAux max(e, <¢7r - ¢7r*79*>)2 .

Then, with probability at least 1 — 0, Active-ContextualRAGE (Algorithm[2) returns a policy 7 such
that R(7) < ¢ after making at most

O (pisc(min{dlog(1/e), log [TI[} + log(1/6)) log(A; ")) (11

reward observations, which is itself upper bounded by O(d2 /€2).

Proof. For notational convenience, for any 7 € II, let

V() = mIEp oz, m(x)) 6.

Define Sy = {m € I : V(7*) — V(7) < 4¢;}. Lemma|[G.4]implies that with probability at least
1 — & we have (,=,{II; C S¢}. Observe that if for any V C II we define

2

E [(b(x,ﬂ(x)) - (b(x,?‘f'/(l‘))]

Tr~p

p(w® V):= min  max

WEAxx A m,m €L, ’

oLt

then
p(wD 1)) = min  max || E [p(z,n(z)) —¢(CC77T/(9U))]||QE;1

WEAxx A T, €Il TP

< i E — ! 2 = p(Sy).
< Juin - max || B (o, m(x)) — ¢z, 7 (2))]50 = p(Se)
By line 4 of Algorithm we know that for each ¢, ny = [p(w'®,TI;) log(1/3,)e, ?]. Also, for
0 > [log,(4A71)] we have for all € Sy, V(%) — V(7) < € (by Lemma|G.4and Definition of S,
and €;), thus the sample complexity to identify any 7 in Sy is

[og,(4A71)] Mog,(4A71)]
ne= Y [ae; 2p(w”, I0,) log(26%11|/5))
=1 =1

Mogs(4A71)]
<Y (S0 log (2211 /6) + 1
(=1
[log,(4A71)]
< clog(log(A, VIT/8) S 2p(S0)

=1
for some absolute constant ¢ > 0. We now note that
. [Eanpld(@, m(2)) — ¢z, 7*(2))]| 51
min max 5
welxxare\n (B, p[p(z, 7 (2)) — d(z, m())], 0%)" V €2
. |Eanpld(@, m(2)) — dla, 7 (2))]| 51
= min max

max 2
WD a 1< logy (107 )] 751 (Eqrp @, (7)) — Bla, 7(2))], 6%)2 V €2
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1 el |Eonplé (e, m(x)) = $la, 7 @))][13,:
2 ————7— Iin Z max 5 5
[logy(4Ac )] webaxa = 7€5 (Byp[d(z, (7)) — d(2,7(2))], 0%)" Ve
(max lower bounded by average)

Mogy (44, 1)1

1 Z (4¢)™% min max| E [(ﬁ(%ﬂ'(@)—¢($,7T*(x))]||2231

o |_10g2(4A€_1)—| = WEAxx A TESy  xT~P
(m € Sy implies that gap less than €, and 4ep > ¢€)
[og, (4A71)]

Y. ¢ min  max | E [¢(z,7(2)) - ¢z, 7 (2))] 5

1 WEAxx A T, ESy  T~D

Mogy (4A71)]

1 _
aier v BEPURILRCS

> _ 1
T 64 flog2(4A§1ﬂ

where for the last inequality, we have used the fact that for any 7, 7’ € S,

I E [¢(z,7(z)) — ¢(a, 7' (@))]l[z=1 = [l6n — dwll5r

Tvp
= (¢n — ¢x) 55" (br — bmr)

= (¢ = Orv + b = On) 2L (G — G + Dre — D)

= (pr = brr) '3, (I — b ) + (Pre — brr) '35 (dre — D) + 2 — b ) T B0 (e — D)
< 2 max [|¢nr — b [3-1 + 2(6r — 6r) T 2LV (G — )

'’ €Sy
<2 nax |@rr — Pre ||QE;1 +2[¢x — Gr g1 lldne — Pr -1 (Cauchy-Schwarz)
<dmax| E [p(x, 7(2)) - ¢z, 7" (2))][I5:-
TES  ®~Pp w
Therefore,
[log, (447 1)1
> e < 6dclog(log(A)|TT|/6)[logy (44 )] pige. (12)
=1
We now use a discretization argument to show the bound in (I0). Define e-ball 7 := {r :

vV, {px — ¢nr,0%) < €} and let T be a cover for IT using those balls, i.e. T := {’7;1}51 Since
0* € RY, the covering number | 7| < O((1/€)%). Let Tl := {m; : m € To.:}\_| be a collection of
policies where we take one policy from each e-ball in the cover 7. Then |II+-| = |T| < O((1/¢€)4).
The exact argument holds for identifying the optimal policy in Ilr, i.e. it takes at most

G4clog(log(A71)[II7|/6) [logy (4A71)1pis’e = O((dlog(1/€) + log(1/5)) logy (AT 1) pig’e) (13)

samples to identify 77 € II. However, note that the global optimal policy 7* must lie in some
ball 7 ;,, s0 V(1*) = V(n3) < V(7*) — V(my,) < €, 50 75 is an e-optimal policy. The first part
of the statement follows by taking the minimum of (12) and (13). As for the inequality bounding
the sample complexity by O(d?/€?), note that P is upper bounded by p%af:, so this upper bound
follows directly from the second part of Theorem 2.14 of [28]]. O

Theorem|[G.5|improves over Theorem[G.3]in the following sense. Note that because the minimization
in g . is over a strictly larger distribution class (A% *“)than the minimization in pj > (which is only
minimized over F), we have that

act pas
PB.e < pB,e’

In the following section, we demonstrate that that on the hard instance for passive context sampling
described in Section|§| (Definition |D. 1), we have that pi’t is indeed a ©(d)-factor smaller than pj7.
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G.2.3 Demonstrating the power of active context sampling

The main result of this section is the following.
Lemma G.6. Let A,d € 7. Let B} 4 be the SCLB instance from Definition Then, for any
€ € (0,1) we have that

8 as

act pas
* < = - Pps .
de,A76 d de,A!E

Proof. For notational convenience, we let B = B} 4 inside this proof. The optimal policy 7 is given
by 7*(z) = 1,Vz € X. From the definitions of pg ., 05,., and B, it is enough to show that

1 _ 2 §. . _ * 2
wdBBu 25 10n = Ol < G g R 10n = Ol (1

Note that due to the structure of the SCLB—wherein all actions besides a = 1 reveal the same feature
e1—one maximizing policy in the inner maximization will be given by 7(z) = 2,Vx € A. Thus,
without loss of generality, we can fix

d d
d—1 1 d—1 1
¢7r_¢7r*:el_<(1_d2>61+d226i>:(pel_ZdQGi. (15)
i=2 i=2
and show that
. * 2 8 . * 2
W in  Néx = drllsg” < o min ¢ — drllss™ (16)
The remainder of the proof is devoted to proving (I6).
Now, consider the right-hand-side of . We need to reason about the optimal choice of w. Note
that all actions for a # 1 reveal the same feature vector—which corresponds to 0 reward; so, without
loss of generality we can restrict the minimizing sampling distribution’s support to a = 1. Moreover,
because w € F constrains the marginal of w with respect to x to be equal to p, this indicates that one
minimizing sampling distribution for the right-hand-side of (I6)) is given by
1-— (al—l)/alz7 r=1a=1
w(z,a) = 1/d> x#1l,a=1.
0 otherwise

. . . . . 2_ . .
In this case, Z;l is a diagonal matrix with d d;l“ in the first entry, and d? on the remainder of the

diagonal. Hence, we have

?—d+1 (d—1) 1
: * 12 _ 2
glelgﬂ%*%”g;l - d2? ’ d4 +d ;E
> —d+1 (d—1)> d-1
R T
1
>77
~2d

where the last inequality uses that d > 1.
Next, we turn to the left-hand-side of (T6). Consider the (active) sampling distribution

%, z=1,a=1
w'(z,a) = ﬁ r#1l,a=1.
0 otherwise

In this case, E;,l is a diagonal matrix with 2 in the first entry, and 2(d — 1) on the remainder of the
diagonal. This distribution is actively sampling contexts in the sense that its marginal with respect to
x is not p. A similar calculation as above shows that

(d—1)? 1
T—F?(d—l)zﬁ

min [léx = @5l12 1 < [l6x — 0531 =2
v i=2

weAXX.A
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(d-1)?  2d— 1)’

=2 d4

4
< o

Thus, we conclude that

2
1,

4 1
: . 2 _q. . >
werggleH(b“_qS“‘E;l = d =8 2d SSqTelgH(bﬁ 2l

as desired. O

Zw

This result shows that from the PAC-learning perspective, Active-ContextualRAGE (Algorithm 2))
once again improves the dimension dependence from [28] on an instance-dependent basis. However,
as neither is known to be implementable in polynomial time, it remains a future work to explore
possible implementations or heuristics to approximately simulate these algorithms. We hope our work
provides insight on how to incorporate active context sampling, if a polynomial-time implementation
or approximation of Contextual-RAGE is eventually developed in future research.
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H Additional experimental details

This appendix contains additional experimental details to aid in reproducing our empirical results. As
an overview, we use each method (Active-SCLB and baselines) and collect a dataset of 7" samples
and train a policy using ridge regression (recall Lemma[D.2) and examine how regret () decays with
T. All experiments were performed on a CPU machine with 12 cores and 36 GB RAM. Additional
details explaining these choice of benchmarks are as follows.

H.1 Overview of passive context sampling baselines

Here, we briefly describe the two baselines against which we compare our empirical results.

Reward-free LinUCB (RFLinUCB). RFLinUCB is a slight modification (proposed in [46])) of
the LinUCB algorithms (proposed by [[1]) in order to adapt it for the pure exploration setting. The
RFLinUCB algorithm implements the standard LinUCB algorithm of Abbasi-Yadkori et al. [[1] with
the reward function set to 0. The original LinUCB algorithm contains the reward function in its
exploration policy because it is designed to minimize the online regret (rather than the simple regret,
which is of interest in the pure exploration setting), and this is an unncessary in the pure exploration
setting [46].

Planner-Sampler Zanette et al. [46]] point out that one limitation of the RFLinUCB algorithm is
that the algorithm is adaptive to the observed context-action pairs, in the sense that the ¢-th observed
context depends on the history {x1, a1}, ..., {¢, a: }. This can be challenging to implement in certain
real-world scenarios, since it requires sequentially querying context-action pairs. To address this, the
planner-sampler algorithm of Zanette et al. [46] is designed to match the regret bound of RFLinUCB
with a fixed, non-adaptive policy. The Planner-Sampler algorithm proceeds in two stages.

First, a “Planner” algorithm observes the features (but not the rewards) of T contexts
{¢(xt,at) }erry],aca for an offline set of contexts drawn independently x; ~ p. The Planner
uses these observed features to design a stochastic exploration policy 7’ : X — A.

In the second stage, a “Sampler” algorithm samples the rewards of T' context-action pairs drawn
according to the Planner’s policy 7’. That is, the Sampler observes r(x}, a}), ..., 7(z/, a’) where
each z}, ~ p and a; ~ 7/(z}) independently. Zanette et al. [46] study various tradeoffs of T and 7.

In our experiments, we generously set 7y = |X'| in order to ensure fair comparison with RF-LinUCB
and our active context sampling approach, which use knowledge of the full feature mapping. We then
measure the regret as a function of the number of reward observations, 71" required by the “Sampler”.

Active-SCLB and Passive-SCLB. Recall that in our experiments, we run Algorithm [T|with v <— 0
and solve the SDP in Line 2] of Algorithm [I]to convergence. In this setting, there is a natural passive
context sampling analogue of our Algorithm: instead of (approximately) solving

w A argmin ||¢(z, a)
A

I%-
WEASX 5"

we can solve the same problem with the additional constraint that the marginal distribution of w with
respect to  must match p. That is, we can define

F = {wGAXXA:VxEX,Zw(I,a) _p(x)}

acA

and solve

. . 2
w = argmlanS(x, a) Hzfl .

wef w
Note that restricting the feasible space to F only requires some additional linear constraints, and
consequently it is easy to see that the problem can still be formulated as an SDP. For completeness,

we include a full pseudocode of the versions used in our numerical experiments in Algorithm 3]and
Algorithm
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Algorithm 3: Active-SCLB

Input: SCLB B = (X, A, ¢, p, v, 0*), regularization parameter A > 0, sample budget T € Z~.
Output: A policy 7 : X — A

/I Approximately solve the following using an SDP solver.

Compute @ = argmin,, e axxa Eznp maxee sl ¢(z, a) [

/I Draw samples and apply ridge regression to compute a policy ;—1 Recall in synthetic experiments, we
sampled with replacement, while in experiments on real-world datasets, we sampled without replacement
using rejection sampling.

S « {(z1,a1), ..., (¥, ar)} where each (x4, a;)~w i.i.d.

0 Egl Z(xt,a,,)es (e, ap)ry
return: 7(z) < x > argmax,c 4 ¢(x,a)’ 0

Algorithm 4: Passive-SCLB

Input: SCLB B = (X, A, ¢, p, v, 0*), regularization parameter A > 0, sample budget T' € Z~.
Output: A policy 7 : X — A

/I Approximately solve the following using an SDP solver.

Compute @ = argmin,, ¢ 7 Eyp maxqe a|¢(z, a) ||22;1

/I Draw samples and apply ridge regression to compute a policy 7. Recall in synthetic experiments, we
sampled with replacement, while in experiments on real-world datasets, we sampled without replacement
using rejection sampling.

S+ {(z1,a1), ..., (¥, ar)} where each (x¢, a;)~w i.i.d.

0 251 Z(wt,at)es gb(zt, at)Tt
return: 7(x) < « — argmax, 4 ¢(z, a)Té

H.2 Implementation details for SDP solving

In all of our experiments, we used CVXPY (an open source Python-embedded modeling language
for convex optimization problems) to model the SDP variables, objectives, and constraints. Within
CVXPY, we used the Mosek (Version 10) SDP solver for solving the SDPs (described further in the
following paragraph.) All solver hyperparameters were fixed to their default values in CVXPY.

MOSEK is a software package for solving structured optimizations such as SDPs. Although it is not
open-sourced, MOSEK is available to academic users for free Additionally, for non-academic users,
MOSEK offers a free trial period.

To ensure numerical stability, when applying the SDP solver, we (1) included a small amount of
numerical regularization for the SDP constraints, on the order of 1le-6, to avoid numerical stability
errors and (2) normalized all features such that ||¢(z,a)||s < 1. For consistency, the feature
normalization was applied to all baselines as well as Active-SCLB in our experiments.

H.3 Synthetic experimental results

We experiment on the SCLB instance in Definition[D.1] We fix A = 1le—6 and vary d € [5, 10, 50].
Figure 5] shows our results. The top row shows the difference in the rate of regret decay between our
method (Active-SCLB) and others is more pronounced as d grows. This is consistent with the O(1/d)
theoretical gap between the regret bound of Active-SCLB and other methods on C+, _, as dicussed in
Section[D} The bottom row of the figure shows that other baselines usually require’%ar more data to
match the performance of Active-SCLB at a given sample budget.

H.4 Experiments with different regularization amounts.

In this section, we include results on our real-world datasets for differing values of the regularizer
A. The choice of A is typically a design choice, which practitioners use to balance bias-variance
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Figure 5: Experiments on Bé,lo (Definition . Top: Regret vs. number of samples (mean + 2
standard errors over 100 trials). Bottom: Minimum number of samples required for baselines’ mean
regret (over 100 trials) to match Active-SCLB’s mean regret for a given sample budget.

trade-offs (see also, the discussion in [46]). Smaller values of A reduce bias at the risk of increased
variance; larger values of \ increase bias (often at the benefit of reduced variance).

Figures [6] and [7] show that our improvements remain largely consistent as we vary A €
{1e-6, le-4, 1e-2}. These results were omitted in the main body for brevity, because the results
are largely consistent across different values of \.

I Omitted proofs

This section contains proofs which are omitted in the main body. Recall that when applied to matrices,
||| always denotes the spectral norm. When applied to vectors, ||-|| denotes the Euclidean norm.

Organization of proofs. In Section[[.3| we collect some established results in SCLBs and PSD
matrix theory, which we use in our analysis. In Section[[.4] we prove Theorem[2.2] In Section [[.35] we
include omitted proofs from Section

Notation. We use [n] to denote the set {1,...,n} and ||-|| to denote the Euclidean norm (when
applied to vectors) and the spectral norm (when applied to matrices). We use [v]; for the i-the entry
of v € R% We use =, - for the Loewner ordering: matrix A satisifes A = 0 (A = 0) if and
only if A is positive semi-definite (positive definite), respectively (see also, Lemma[l.2]) For any
A € R¥™4 with A = 0 and x € R?, we denote ||x|| 41 := (2T A™* )1/2 ForanysetS C X x A,
we deﬁne the covariance matrix ES =M+, pes (@, a)d(z,a)T. Forany w € AXXA et
Y = MNT I +Eq a)w d(x,a) " ¢(z,a) denote the w-weighted covariance matrix of the feature
mapplng ¢. Correspondingly, we also denote the T'-sample empirical covariance matrix as follows

iw,T =XT-I14+1/T Z d(2¢, ar) (s, ar) " where each (x4, a;) ~ w independently.
te[T]

I.1 Ridge regression regret bound.

We first restate a standard result from the SCLB literature. The next lemma bounds the regret of a
learned policy obtained by fitting a ridge regression model to dataset S [26] and is the basis for prior
works which obtain polynomial-time algorithms with minimax-optimal regret for SCLBs [[1} 146]].

Lemma I.1 (Ridge regression regret bound). Let A > 0 be any regularization parameter, S =
{(z1,01), ..., (xp,a7)} C X x A and § € (0,1) be a failure probability. For eacht € [T), let
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Figure 6: Warfarin dataset. Top: Regret vs. number of samples (mean =+ 2 standard errors over 100
trials). Bottom: Minimum number of samples required for baselines’ mean regret (over 100 trials) to
match Active-SCLB’s mean regret for a given sample budget.

re ~ ¢(x4,a;) " 0* + 0y where each ny~v, independently. Let 0 solve the ridge regression problem,
ie, 0 :=%5" > oter) O(@e, ar)ry and = x — argmax ¢ 4 ¢(z, a) T 0. Moreover, define

VB =2 min ( Vdlog (2(1 + TLZ/N)/3) + VX||6%||2, 2v/2\/log (1272 X [JA[/ (x25)) )

tighter when | X X A| large tighter when | X' X A| small
a7
Define the uncertainty measure
I'(S) := E max|¢(z,a)|* 1. 18
(8)i= E max]o(z, )l (18)

Then, with probability 1 — §/2, R(7) < 1/BT(S).
I.2 Omitted proof sketch for Theorem 4.3.

Proof sketch. In light of the regret bound (3) in Lemma|[[I] to prove Theorem[2.2] it suffices to show
that for S as constructed in Line[3] the following holds with high probability:

I'S)=E 2, =8/TCs.
(S) = E max|o(z.a)[}. = 8/TCx
We prove this bound in three stages. First, by construction of S in Line[3] Xs = Tﬁw,T. Inverting

both sides, we have TEgl = f];lT Second, we use matrix concentration guarantees [37] to show
that for T sufficiently large, with high probability,

TS5 =3, 2 1/a- S50 (19)

This concentration argument curcially uses that g is constructed to be well-conditioned to the features,
in that max, o)cxx.All¢(2, a)HzE_l < 2d and that ¥,, > a3, (since w dominates cqg.) Third,
q

setting v «— 1/2 in the above display, we have that for any (z,a) € X X A,
TH¢(£7G')H22§1 =T- ng(x,a)T(ES)*lgb(x,a) <2 d)('raa)TE;lqb(xva) =2- ||¢($,CL)H2E;1
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Figure 7: Jester dataset. Top: Regret vs. number of samples (mean & 2 standard errors over 100
trials). Bottom: Minimum number of samples required for baselines’ mean regret (over 100 trials) to

match Active-SCLB’s mean regret for a given sample budget.
Applying expectation and max to the above display and then invoking Lemma|[C.2] we conclude
2 2
TE maxlé@ a)llyg: <2 E maxlo(@, a)lly;: < 8Ce.
Thus, I'(S) < 8Cp/T as desired, and Lemmayields the regret bound R(#) < O(y/BCs/T).

Finally, to show that Cg < d, we let ¢* be the G-optimal design as in Theorem Then, note that

2 2
Co < B maxlo(r.a)} € max o)y <d O

1.3 Omitted proofs of standard results in SCLBs and PSD matrix theory.

We first prove some standard facts about the Lowener order. We believe the facts in the following
Lemma@ are well-known; however, we collect them here for the sake of completeness.

Lemma 1.2 (Lowener order facts). The following facts hold whenever A, B, C' € R%*? are positive
semidefinite.

(i) A>= Bifandonlyifforall z € R% 2T Az > x " Bx.
(ii) IfA =0, A= = 0.

(iii) If A = (>)B, then for any symmetric F' € R%4 ywe have FAF - (=)FBF.
(iv) IfA>= B >0, then A=' < B~
(v) IfA=B+Cthen A =~ B.

(vi) If |B~Y2(A — B)B=Y/2|| < ¢ for some € € (0,1), then (1 —e€)B < A < (1 +¢)B.

Proof. We prove the facts one-by-one.
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(i) If A = B, then A — B > 0. For any 2 € R?, we have
" (A—B)z >0 implies z'Az>2' Bx.
Conversely, if 27 Az > x T Bz for all x € R, then for any 2 € R?
t"(A-Bz=2"Ar — 2 Bz >0,
and hence A — B > 0—thus, we have A > B.

(i) Since A > 0 (i.e., A is positive definite), it is invertible and its inverse is also positive
definite. This follows because for any = # 0,

et A7 e = (A7) TA(AT ) > 0.
Thus, A~! = 0.
(iii) Suppose A = B. Then for any = € R,

x' Az > 2" Bx.
Now, for any y € R? let = F'y. We have that

x' Az > xTBx,
and consequently using that F' is symmetric, we have

y ' FAFy >y FBFy,

The proof if A > B is identical, replacing the > with >.

(iv) Suppose A = B > 0. Since B > 0, B is invertible. For any nonzero vector z € R?, define
y = B~'/2z. Then, note that

2TA e <2"B7 'z ifandonlyif y'BY2ATIBY2y < ||y|.

Define the matrix M = B'/2A~1B'/2, We aim to show that M =< I, which, by the above
argument, implies A~! < B~

Since A = B = 0, then B~1/24B~1/2 » T, by (iii). This ensures that the smallest
eigenvalue of B~'/2AB~1/2 = [ is at least 1. Consequently, (B~'/2AB~1/2)~1 < I.
Now,

(B™Y24B7Y2)71 < I implies BY2A7'BY2<T.

Therefore, by (i), we have that for all z € R,
2T A e =y " My<y'y=2z"B 'z,

and hence A~ < B~1, as desired.
V) IfA=B+CandC = 0,then A— B=C >0,s0 A > B.
(vi) If [B~'/2(A — B)B~'/2?|| < ¢, then for any = € R?,

—-x'z < mTB_1/2(A — B)B_l/Qa: <e-x'x
Consequently, by (i), we have that
—el < BTY2(A—B)B™Y? < ¢l
Now, applying (iii) we have
—eB=<(A—B)=eB
Rearranging, we obtain

(1—e)B=<A=(1+6B.



Next, we provide a proof of Lemma|[-T} The proof follows the exposition in Section 3 of [46] closely.

Lemma I.1 (Ridge regression regret bound). Let A > 0 be any regularization parameter, S =
{(z1,01), .., (zrya7)} C X X A and 6 € (0,1) be a failure probability. For each t € [T, let

T~ qﬁ(xt, at)TG + n¢ where each ny~v, independently. Let 0 solve the ridge regression problem,
ie, 0= X3 Zte[T] (e, ap)ry and 7t := x > argmax,c 4 ¢(z,a) " 0. Moreover, define

VB :=2-min ( Vdlog (2(1+ TL2/\)/8) + VA||0* |2, 2v21/log (12T2| X || A| / (726)) )

tighter when | X' X A| large tighter when | X' x A| small

17)
Define the uncertainty measure

I'S):=E max||¢ x, a)|| (18)

z~p a€A
Then, with probability 1 — §/2, R(7) < 1/BT(S).

Proof. Recall that by (@),
R(#t) = E [max¢(z,a)’ 0% — ¢(x, 7 (x)) " 60"].

xz~p a€A

Let 7 :  — argmax,¢ 4 #(z,a) ' 6

¢z, 7 () 10" = d(a, 7(2)) 10" = d(a, 7 (2)) 10 — $(x,7(2)) 10" + $(a, 7" (x ))TH* — ¢(z, ()"0
< ¢a, 7(x)) 0 — ¢(a, 7(x)) 0" + d(a, 7 (2)) 10" — $(a, 7" ()) "0
= ¢(a, 7(2)) (0 = 0%) + ¢, 7" (2)) T (6" — 0),
where the inequality follows because by construction of 7, we know that
(. 7(2)) 70 = ¢, 7 (2))70.

By Proposition 1 and 2 of [35] (or Theorem 19.2 of [26]], derived originally from [1]]), we have that
with probability 1 — §/2, for all (z,a) € X X A,

|é(a,a) (0 —0%)] < V/B/2- max||¢(z, a)llss-1-

Condition on this event in the remainder of the proof.

. Now, forany =z € X,

Now, combining the preceding two displays and applying a triangle inequality, we can conclude
R(#) < E ¢(z, #(@)"(0 - 0") + ¢(x,7* ()T (0" = 6)
<2 E max|¢(z,0) (0 - 0] < VB E max|o(e,a)]ls.

T~p a€A

Now, note that Jensen’s inequality ensures

2
<E -~ a>|z-1) < E max|o@. ).

z~p a€A Tz~p a€A

or equivalently,

E max]o(r, )5 < \/JE max6(z, )2 .

r~p ac ~p a

Thus,

<VB- \/E max||<b (z, a)H (20)

x~p a€A

O

The following lemma about Schur complements will later be helpful for justifying the SDP formulation
of Line[2]in Algorithm[I] We believe the following Lemma[[.3]is well-known, but we include the
proof for completeness.
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Lemma L3 (Schur complements). Let M € RUHDX@+Y) pe g symmetric matrix of the form

_fa b7
v-( )
where a € R,b € R%, C € R and C = 0. Then, M > 0 if and only ifa — b"C~'b > 0. The
quantity a — b" C~ b is called the Schur complement of block C.

Proof. First, note that C' > 0 is invertible, and so let

(1 —=pTCt
o5 ),

Note that G is invertible, and in particular, it is easy to verify that

(1 bTC?
e _(O C )

Next, observe that

T f(a=bTC" 0
N )

Now, to prove the claim, first, suppose that A/ > 0. Then, consider any z € R¢ and note that
2TGMG 2= (GT2)TM(GT2) >0,
and hence GMGT > 0. However, GMG is also block-diagonal, so we can conclude that each
block must be positive semi-definite. Thus, a — bTC—1p>0.
On the other hand, suppose that a — bTC~1h > 0. Then, because GM G is block-diagonal and
C = 0, we have that GM G = 0. Then, consider any z € R4 and note that
0< (G HT)TGMGT(G™HT2)=2"Mz.

Thus, we conclude that M > 0. O

1.4 Proof of Theorem[2.2]

In this section, we prove Theorem Throughout this section, we fix B = (X, A, ¢, p, v, 0*) to be
any SCLB instance.

We divide our proof of Theorem [2;2] into two sub-sections. First, in Section |[.4.1| we explain how
to formulate (5) as an SDP in order to implement Line [2of Algorithm[I] This, along with the fact
that Theorem [C.T|can be formulated as an SDP [26] ensures that the algorithm is implementable in
polynomial time.

Second, in Section we carry out the regret analysis, which was sketched in the main body.

14.1 Expressing (5) as an SDP to implement Line 2]

In this section, we show how to express the optimization problem () as an SDP. First, we require the
following technical lemma.

Theorem 1.4 (SDP formulation). Let h € R;(OXA be suchthat 3, ,ycxx .4 (@, a) < 1. Then, the

optimization problem

.. . . 2
minimize: mIEpgléaj{||¢($,a)HZ;17

subject to: w € AYXA 2D
w(z,a) > h(z,a) Y (z,a) € X x A.
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is equivalent to the following semi-definite program (SDP):
minimize: Z t(z) p(x),
zeX
subject to: w € AY*A,
(e m0 v eaxa
a

)
) > h(z,a) V(r,a) € X x A.

(22)

w(x,

Proof. By Lemma|[.3]the optimization problem (22) is equivalent to
minimize: Z t(x) p(x),
reX
subject to: w € AYXA,
t(z) — ¢(x,a) "8 b(x,a) >0 V(x,a) € X x A,
w(z,a) > h(z,a) VY (z,a) € X x A.

Next, note that t(z) — ¢(z,a) 'S ¢(z,a) > 0if and only if t(z) > ||¢(, a)||22,1. Thus, 22) is
further equivalent to

minimize: Z t(z) p(x),

zeX

subject to: w € AYXA,

2
t(z) 2 max|¢(z,a)ll5 . Ve X,
w(z,a) > h(z,a) Y(z,a) € X x A.
From the above display we conclude that (22) is equivalent to

minimize: ;{ p(z) max||é(z, a) 131,
subject to: w € AYXA,
w(z,a) > h(z,a) V(z,a) € X x A.
which is equivalent to (3). O
Remark 1.5. In the special case where ¢ = 0, (1)) is equivalent to (3). Meanwhile, it is also easy to
see that (ZI)) generalizes (7).

1.4.2 Regret analysis

In this section we carry out the regret analysis outlined in the main body.

Matrix concentration. Our regret analysis relies on the following standard matrix version of
Hoeffding’s inequality.

Theorem 1.6 (Matrix Hoeffding (Theorem 1.3 of [37]])). Consider a finite sequence of independent,
symmetric, random matrices X1, ..., X7 € R™% and v > 0 such that

E[X,] = 0, and X? < ~*I almost surely.
Then, for allm > 0,

2
n
P < Amax E Xl >n SdeXp(_&yQT)'
te[T]
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In fact, we will only need to use the following (simple) corollary of Theorem [.6]

Corollary 1.7 (Matrix Hoeffding Corollary ). Consider a finite sequence of symmetric matrices
X1, ..., X7 € R and v > 0 such that

E[X:] =0, and || X:|| < 7 almost surely.
Then, for all n > 0,

1 n?T
te[T]

Proof. Note that || X¢|| < ~ implies that X? < 4?I. Thus, for all > 0

1
P >\max ? Z Xt Z n =P /\max Z Xt Z T77
te[T) te(T]

2T2 2T
cimm(-£57)“sen(-3).

where the inequality holds by Theorem[[.6] Applying the same analysis to —X, we have that

1 1 n’T
P < Amax T Z -Xi | > np = P< Amin T Z X | < —n < dexp (_872) .
te[T] te([T)
The corollary now follows by a union bound over the events in the two preceding displays. O

With these concentration inequalities, we are prepared to analyze the concentration of f]w,T to Xyp.

Concentration of EA]w,T to X,,. To aid the analysis, we define some additional notation. Let w*, ¢*
be as in (3, Theorem [C.T|respectively; w* be as in (7), w, ¢ be as in Algorithm [T]and

. y—1/2 —-1/2
M :=3x;?%, 512

We collect some useful properties in the following lemma.

Lemma L8 (Properties to aid concentration analysis). Let w,q be as in Algorithm[I| Then, the
following hold true.

(i) Sy = X,
(ii) M = ol.

(iii) For eacht € [T}, let Z; be a random matrix defined as follows. Draw (x4, ar) ~ w (i.i.d.
for each t) and let

_ _ A _ _
Zy=M"? |:Eq 12 (TI + ¢($t7at)¢(l‘t,at)T> X Y2 M} MR,
Then, E[Z;] = 0.

(iv) || Z:| < 24.

Proof. We prove the claims one-by-one. Recall that w, ¢ € A**“ and consequently, we can write
w = (1 — a)w + aq for some w € AY*A,

(i) By Lemma[[.Z](v), we have that
Yo=01-a)Sz+aX, = aX,.
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(ii) Expanding out M, by Lemma[[.2](v), we have
M =32((1-a)Sg + a2, 12

q

=(1- )2, ?85:5, Y2 +al = o,
where the last inequality used Lemma [[2] (v).

(iii) To see that E[Z;] = 0 note that by linearity,

E {;\1] + ¢(mt7at)¢(xt7at)—r:| =Y.

So, by linearity of expectation and the definition of M, we have

A\ -
]E 2;1/2 (TI + ¢(xt,at)¢(xt, at)T> 2;1/2 — M = O

Applying linearity of expectation once more,

_ _ A _ 1
E |:M 1/2 Eq 1/2 <TI+¢($t7at)¢(It,at)T> Eq 2 Al m-v2) = o,

(iv) Notice that we can expand Z; into three terms as follows.

A
Zy = fM*1/22;1M*1/2 + [MTVES 2 (g, a0)| [M VPSR gy, a)] T - I

We analyze this term by term and apply triangle inequality.
* The spectral norm of the first term is bounded using submultiplicativity:

A iaemt -2l o Ayt o A LT 1
— < — < — == = —,
HTM oM < SIMTHIE < s ==

The last inequality in the display above used the fact that >, > %I and the fact
from part (ii) that M > «al to deduce (using Lemma (iv)) that E;l = %I and
M=t =<1

e Meanwhile, the second term is a rank-one matrix, and hence,

H[M—l/ngl%(xt,at)][M—l/qu—l%(mt,at)]T]H — M2 2wy, a) 2
= ¢(xe,a) 'S PMTIS P (4, an)
= (z¢, ar) " S, by, ar).

However, note that by (i) and Lemma (iv), we know Z;l b))

Lemma[[.2] (i) we have that

IA

B0 TS5 6w ) < (e, a) 5 ol )

1 2d
= aH(b(ﬂCt»at)qu—l < E’

where the last inequality holds by construction of ¢ in Line[T]of Algorithm|[T]
* The last term is —I, whose spectral norm is 1.

Consequently, by triangle inequality,

1 2d _ 4d
1Z:) < = +1+ — < —,
! a @

where the second inequality used that d > 1, < 1 implies 1 4+ 1/ < 2d/av.
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Lemma 1.9 (Application of matrix Hoeffding). Let w, q, o be as in Algorithm|[I| Define Ty =
512 - d?/a? log(4d/6). Then, for any T > Ty, with probabllzty 1-4/2
. 1

||M_1/2[2q_1/22w7T2q_1/2 _ M]M_1/2|| S 5

Proof. Let Z; be as in Lemmall.8] We will apply Corollary [.7]with X; < Z;, v < 4d/o,n  1/2.
Note that

M—1/2[2;1/22w7TZ(1—1/2 _ -1/2 _ Z Zy,
te[T

and hence Lemma [.8|along with Corollary [.7]ensures that
. T
—1/2p51—1/2 —1/2 ~1/2
P{”M PV, rsg V2 = MIM T2 > 1/2} < 2dexp (_3272) .
Whenever T > Ty = 3272 log(4d/§), the right-hand side is at most 6 /2. O

Next, we fill out the proof of Lemma[C.2]

Lemma C.2. Let w*, w* be as in @), (1), respectively. Moreover, let w be as in Line[2] Then,
E;p maxqe 4l o(z, a)||2_1 < 2E;p maxeeal|o(z, a)||2_1 <2/(1-a)- Cg

Proof. The first inequality holds immediately by Line [2| For the second inequality, let w’ = (1 —
a)w* +ag. Note that w’ is feasible for (7). Since ¥, = (1—a) Sy~ implies ¥} < 1/(1—a)X;!

w*?

2 o 2~ . 2
E maxo( )i < E maxé(z )3 <1/0-0) E maxé )i,

where the first inequality is by the optimality of w* and the second inequality is by the Loewner
ordering. The lemma now follows by definition of Cg. O

Finally, we are prepared to prove Theorem[2.2]
Theorem 2.2. Let B = (X, A, ¢,p,v,0%) be an SCLB, A > 0, § € (0,1), and T > 0 be a sample

budget. Invoke Algorithmwith « < 1/2. Let 3 be as defined in (7). There exists Ty = O(dZ) 50
that whenever T' > Ty, with probability 1 — 0, Algorithmoutputs 7 with R(7) < O(/BCs/T).
This regret bound is always at most O(\/Bd/T) Moroever, the algorithm runs in polynomial time.
Proof. Take o = 1/2 and Ty as in Lemma|L.9] Then, by Lemma|[.9} with probability 1 — §/2,

| MY E 28, p 272 — MIM Y2 < 1/2.
Condition on this event in the remainder of the proof. Now, by Lemma [[.2] (vi),

1/2- M 25,1258, 75,12 23/2- M.
Multiplvi 1/2 . .
ultiplying through by ¥, on the left and right and applying Lemma (iii), we have
1/2 1/2 5 ¢ 1/2 1/2

1/2-T2PME)? < 8,0 2 3/2- 21/2M5”.

Substituting in the definition M = X, 1 QZwZ; 1 %, we can simplify the above display to obtain

1/2- 8y < Spr <3/2-5,,.

Consequently, by Lemma|[[.2] (iv), it follows that
a1 B
S =230
Now, note that for S as defined in Line Ys = Tflw,T and hence, TX ¢ 5 E 1 . Thus,

21

¥t = TZ (23)

w -
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Consequently, Lemma|[[.2] (i), (23) ensures that for any (z,a) € X x A, we have

H(b(x?a)szgl = ¢(I7Q)TE§1¢(Z,Q) < ?QS(I’,G,)TE;IQS(:L‘,CL) 7”925(1‘ a’)HZ—l

Taking expectation and max and applying the above display point-wise, we have

gCIEpmeangb(x a)||2_1 < f E max||¢>(x a)||z_1 < CB,

where the last inequality holds due to Lemma|[C.2]
Now, by applying a union bound with the guarantee of Lemma|[.T] we see that with probability 1 — 4,

R(#) < O(\/CsB/T).
Finally, to show that Cg < d, we let ¢* be the G-optimal design as in the Kiefer-Wolfowitz Theorem
(Theorem [C.T). Then, by the definition of C, (recall (6)) we have

< 2 < 2 < d.
Cp < mIEpIaneaj(H(b(m,a)qu* < (z’gleagw\l¢(x,a)\\zq* <d

LI.5 Miscellaneous omitted proofs

Lemma D.2. Foranyd € Z~o,A € Z>1,Cp;, , < 4.

Proof. Consider w(z, a) defined as follows

1-(d-1)/2d), z=1,a=1
w(z,a) = ¢ 1/(2d), x#£la=1,.
0, otherwise

Note that because X = [d], we have

> wewa= Y wen=1-TV @ Lot

(z,0)€X %A z€[d]

Then, we can see that
C= >  wap(a)da),
(z,a)eX XA

is a diagonal matrix with

1—-(d-1)/(2d), i=1

Ci = -

1/(2d), i1

Thus,

where the second-to-last inequality holds because d(d + 1) > d. O

Theorem 2.1. Let B = (X, A, ¢,p,v,0*) be any SCLB. For each t € [T, let 1y : X — A be
arbitrary. Let S = {(z1,a1),...,(xr,ar)} C X X A such that for each t € [T, x; ~ p and
ay ~ w(xt). Then, as A — 0, Eg[T'(S)] > d/T.

36



Proof. Note that
ESs] =+ 3 3 p@) Y r(@)ad(@, a)é(z,a) T,
te[T)zeX acA

and consequently,

TE ES *I—‘r Z Z Z 7Tt (b(‘r’a)T

TEX te [T] acA

:%H S ) %Z[m(m)]a (z, a)p(z,a) T

(z,a)eXxA te(T)
So, for each (z,a) € X x A, let

We then observe that
1 _ _
TE[ES] =%, T(EDs) =3, (24)

Thus, we can observe that
TE max||¢(z a)|| E machZ)(x a)?

z~p acA E[Zs]) ! - z~p a€A ||Z;1

E E [é o)l

TP anT ()

N O

= E ¢(z,0)" 2, ¢(z,a)

(z,a)~w

= > tr(w(z,a)b(,a)é(x,a) T,

(z,a)eX XA

Y

=tr Z w(z,a)o(x,a)p(x,a) L
(z,a)EX XA
where the inequality follows from the simple fact that the expectation is always at most the maximum;
the second-to-last equality uses the cyclic property of the trace; and the last equality uses linearity of
the trace. Substituting in the formula for >J,, and dividing both sides of the above display by T,

1 _

zIEpI;leaX||¢(m a’)” 2,5])_1 Z ?tr Z w(xva)¢(xaa)¢(xaa)TEwl
(z,0)€EX XA
-1
= Ttr Z w(x,a)d(x,a)d(z, a) TI + Z w(z,a)p(z,a)d(x,a)
(z,a)eX XA (z,a)eXx A

L d
A—=0 T

Finally, using that E[X5'] = (E[Es]) " and Lemma(i), we have

2 2
B max][é(@, o)l gy < E max|o(z, 0z
Combining the two above displays, we conclude that
d
2
lim E maxl|o(z, )|y > 7.
as desired. O
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