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Abstract
In this study, we introduce a novel de Bruijn graph (dBG) based framework for feature engineering
in biological sequential data such as proteins. This framework simplifies feature extraction by
dynamically generating high-quality, interpretable features for traditional AI (TAI) algorithms.
Our framework accounts for amino acid substitutions by efficiently adjusting the edge weights in
the dBG using a secondary trie structure. We extract motifs from the dBG by traversing the heavy
edges, and then incorporate alignment algorithms like BLAST and Smith–Waterman to generate
features for TAI algorithms. Empirical validation on TIMP (tissue inhibitors of matrix
metalloproteinase) data demonstrates significant accuracy improvements over a robust baseline,
state-of-the-art PLM models, and those from the popular GLAM2 tool. Furthermore, our
framework successfully identified Glycine and Arginine-rich motifs with high coverage,
highlighting it is potential in general pattern discovery.

1. Introduction

A recent paper estimates that there are as many as 1012 microbial species alone on our planet [1]. This
profoundly large number remains, certainly, a lower bound on all organisms that are universally related in
some general way through information biomolecules: DNA, RNA, and proteins (figure 1 Left top).
Interestingly, these biomolecules can be described by their primary (linear) form as a string or, in the
parlance of biology, a sequence over small alphabets. A portion of DNA that is transcribed into RNA and
perhaps forms either the final or intermediary template of a protein is called a gene [3]. By identifying and
understanding genes, humankind can understand life. From an artificial intelligence (AI) perspective, genes
can be considered as a kind of feature. Used in an unsupervised approach, clustered genes can be used to
build a taxa that might be used to better understand evolutionary processes (figure 1 Left bottom). From a
supervised approach, genes might elucidate function through pathways [4].

In section 2, we elaborate on a complex pipeline for engineering these features. Figure 1 (Right) shows
two of possibly many different engineered features obtained from sequence alignment. Here, features are
built as a kind of consensus string. Unlike features that are used to train machine learning models, these
features are operationally related through a threshold on an extended edit distance (in its original
formulation NP-complete), and used to build disparate (possibly gapped) substrings called motifs. Gene
data, in fact, is the one of the most prevalent biological data currently available. In humans, genes exist in
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Figure 1. (Left top) Central Dogma of Molecular Biology shows the flow of information (dotted line shows exceptional
circumstances). (Left bottom) Example from linguistic for the word ‘one’ using Spanish, French, German, English, Chinese, and
English. ‘V’ stands for a family of similar vowel and ∗ for any symbol. The taxa that results is consistent with current linguistic
families. (Right) An example [2] for feature discovery as a motif. Sequence alignment is a pipeline whose parameters can vastly
change the outcome. Dashes denote insertion of blank space. The blank spaces actually denote gaps which can represent either no
significant overlap, spacing requirements, or even impossible matching e.g. match a space with a character.

Figure 2. (Left) Schematic Overview of the Feature Engineering Pipeline for Sequence Data. Initially, both training and test
datasets are inputted into the feature engineering block (Step 1). Subsequently, a de Bruijn Graph (dBG) is constructed from the
training data, facilitating the generation of proto-features (Fp) (Step 2.a). These proto-features, along with the test data, are
utilized to endow the test data with numerical features (Step 2.b). The is followed by the application of a Traditional Artificial
Intelligence (TAI) model(s) (Step 3), culminating in classification. The process demonstrates the efficacy of translating sequence
data into actionable insights for TAI applications. (Right) Illustration of dBG construction steps over small protein. We iterate
over a sequence with a sliding window of width k= 3 generating a series of unique tuples. These tuples are transformed into a
weighted directed graph where the edge weights represents the occurrence count of the corresponding tuple, as illustrated on the
bottom.

sizes ranging from hundreds to millions of characters and the average length is in the range of 214 characters.
When treated as conventional features, motifs present the same problems, as encountered with traditional
features: apparently arbitrary lengths, characters, non-transitive distance and so on.

This work focuses on how traditional AI (TAI) can be partnered with unstructured data, specifically,
functional or non-functional biomolecules, for binary classification. The principle challenge is that no
apparent features exist. To that end, the problem studied here is: given a set of unstructured data representing
biomolecules, efficiently construct a feature space that, when added to the data, can be used to train
downstream TAI algorithms.

More specifically, we employ an extension of the de Bruijn graph (dBG) engineering annotated features
providing a simpler, more efficient and effect pipeline (figure 2 Left).
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The key contributions of this work are:

• A novel, automated and efficient pipeline that dynamically discover motifs and builds a feature space, in
which TAI algorithms can be used.
• A novel implementation of the extended de Bruijn (dBG) that allows efficient path discovery.
• Experimental demonstration that feature space is accurate over several disparate TAI algorithms, and
• Empirical analysis to showcase robustness, scalability, and modularity of this approach.

Rest of the paper is organized as follows: section 2 provides a comprehensive background, setting the stage
for our investigation by reviewing relevant literature to situate our work within the current research
landscape. Section 3 describes the methods employed in our study, detailing the algorithmic approaches and
computational techniques foundational to this work. In section 4, we report the experimental results
obtained, offering a thorough analysis to elucidate the efficacy and implications of our findings. The paper
concludes in section 5, where we synthesize the main insights, discuss the broader impacts of our
contributions, and propose directions for future research.

2. Background and related work

Motif discovery (MD), the process of discovering significant patterns in unaligned sequence data, is complex
and context dependent yielding a divers array of techniques that currently yields no universally successful
approach (see [5] for a review). MD can be treated as a kind of optimization problem over the space of an
augmented alphabet. There must be included a scoring scheme that quantifies matches, mismatches, and
penalties for gaps. Generally this is done with a matrix that describes biological relationships using
probabilities and various post-processing to capture changes due to time. Two general approaches exist:
probabilistic where distributions of n-ary substrings are used–called position-specific scoring matrix (PSSM)
or combinatorial where various enumerations of substrings are used. Most variants of motif finding are
NP-hard and, therefore, solutions are approximations. While probabilistic approaches are usually associated
with subtle discovery, combinatoric approaches are generally more efficient algorithmically. Several
approaches are well-known throughout the community [6–12].

We now discuss existing work that is directly relevant to the literature of MD. Multiple EM for Motif
Elicitation (MEME) [13] is based on the Expectation Maximization [14] and now a collection of tools [15]
that includes GLAM2 [16], DREME [17], MEME-ChIP [18] along with other useful tools. GLAM2 is a
computational tool designed for the discovery of gapped motifs in a set of DNA or protein sequences. It
considered as extension of the original MEME algorithm. Unlike MEME, GLAM2 does not pursue the
simultaneous detection of multiple motifs. Instead, it employs a replication procedure, whereby it conducts
repeated attempts to identify the most optimal motif. DREME is a discriminative tool that efficiently
discovers short, ungapped DNA motifs in large collections of sequences. It is particularly useful for
identifying transcription factor binding sites in ChIP-seq data. While DREME uses a computationally
efficient approach, it only identifies motifs that can be expressed in the IUPAC alphabet, which includes the
standard DNA alphabet and eleven wildcard characters. The Gibbs Sampling [19] is an old but powerful
Markov Chain Monte Carlo algorithm used for pattern discovery. Iteratively sampling from the conditional
probability distribution of each variable yields patterns, though it can be computationally intensive to run.
PRATT [20] uses a flexible pattern representation and a greedy algorithm to identify patterns. PRATT
performs a branch-and-bound search and other heuristics to speed up the search.

While we were unable to find any comparable work to our own, the bulk of feature engineering relies on
information extrinsic to the simple sequence itself. The taxonomy of feature engineering methods for
biological sequences can be broadly classified into five categories. (I) Sequence-based features encompass
methods such as n-gram analysis, which breaks sequences into continuous overlapping subsequences of size
n [21], or skip-grams, which are non-contiguous sequences that skip k items [22]. Another approach
includes composition, measuring chemical composition, e.g. GC content in DNA [23]. Complexity measures
like entropy or LZ complexity are used to identify significant regions that likely are biologically important
[24]. Combinatoric k-mer analysis counts the occurrences of all possible subsequences of length k in the
sequence, examining overrepresented totals [25]. (II) Structure-based methods consider conformation (2D,
3D, 4D) topologies determined by the original sequence [26]. For example, the 3D tertiary structure
representation of proteins relies on the protein backbone, which consists of a sequence of atoms, including
the alpha carbon, nitrogen, and carbonyl carbon atoms. This backbone forms the core framework of the
protein and can be used to describe the protein structure [27, 28]. There have also been studies that extract
features using the wavelet representation of proteins, which are visual representations that capture spatial
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and frequency information of the protein structure [29]. (III) Evolutionary features incorporate methods
that look at the evolutionary aspects of the sequences [30]. For example, evolutionary info has been used to
locate biologically relevant interfaces of the proteins [31]. PSI-BLAST utilizes a position-specific scoring
matrix [32] to identify distant evolutionary relationships. (IV) Functional features take into account the
function of the sequences. These include gene ontology features providing information about the biological
processes [33], cellular components, and molecular functions associated with a sequence; pathway analysis
features looking at metabolic or signaling pathways; protein-protein interaction; or gene regulatory
networks. (V) AI/ML includes autoencoders [34] and deep learning [35], recurrent neural networks (RNNs)
[36] where order matters, and transformer models, which are advanced models that leverage self-attention
mechanisms to better understand the context of a sequence.

3. Methods

Here, we describe the general notation used in this work. Dtr,Dte are the training sequences, test sequences
data, respectively. Both Dtr and Dte includes a feature {1,0} indicating functioning or non-functioning. The
annotated data (Da) is constructed by aligning proto-features (Fp) with the input sequences. Let
A= {a1,a2, . . . ,an} be an alphabet of size n.Ak for positive integer k ∈ Z+ is the set of words of length
|s|= k. A word is a string of characters defined in A : w= {c1, c2, · · · , ck}, where ci ∈ A. The concatenation of
two words s, t ∈ A is st= s[0] · · · s[|s| − 1]t[0] · · · t[|t| − 1]. A prefix of s is s[0] · · · s[j] and a suffix is s[ j] · · · s[k− 1]
for some 0⩽ j < k. The order-k dBG of a collection of strings D (data) overA is a directed multigraph where
V=Ak−1 and E= {(s, t)|s[0]t= st[k− 2]}. Below, we explain the feature engineering pipeline (figure 2 Left),
and dBG construction is illustrated in figure 2 (Right).
STEP 1. Both Dtr,Dte are fed to the FEB. Dtr is used to build the dBG.
STEP 2.a. The dBG, built from Dtr , is extended in two ways: adding weights and additional nodes. A weight
maps E to a non-negative integer v ∈ Z⩾0. In this study we explore extending the search space by adding
weights. We define the term ‘k-tuple’ as a subsequence of length k extracted from a larger set sequences (Dtr

in our case). As described before, the dBG consists of overlapping k-tuples represented by weighted edges,
where the nodes are constructed from the (k-1)-tuples. The k-tuples contain (k-1)-tuple of the source node
as the prefix and (k-1)-tuple of the target node as suffix in an overlapping way. When a k-tuple is
encountered for the first time, add an edge to the dBG with weight 1, any subsequent occurrences of that
tuple will increment the weight by 1.

The parameter k significantly influences the structure of the resulting graph, as different values can lead to
markedly distinct graphs. Specifically, smaller k values tend to produce denser graphs with a reduced number
of nodes because given the finite alphabet, this limits number of possible k-tuples. This approach may limit
the identification of longer, potentially meaningful patterns. On the other hand, larger k values yield sparser
graphs with an increased node count, due to a greater variety of possible k-tuples and subsequently, less
overlapping edges. This condition allows the detection of complex patterns. Yet, if k is set too high, it might
prevent edge overlap entirely, diminishing the graph’s connectivity and pattern recognition capability. The
optimal value cannot be determined a priori and is a function of |A| as well as the complexity of Dtr ∪Dte.

3.1. Substitution approximation
Substitution approximation is an optional step that enhances the representational power of the dBG by
adjusting the edge weights [37]. Edge weights are adjusted using the substitution matrix (SB) that refine edit
distance by changing equality {0,1} to R⩾0 where increasingly better matches have greater values. LetM be a
SB matrix (BLOSUM62 [38] in this work), and let e, f ∈ E; e, f are similar if, for some θ ⩾ R⩾0,
M[e[i], f [i]]> θ for 1⩽ i ⩽ |e|. The value of θ is 0 by default, but is adjusted according to properties of the
data and need. To measure similarity between edges, we can use relative similarity score. A relative similarity
score between e, f can be computed as:

sim(e, f) =
k∑

i=1

M [e [i] , f [i]]

M [e [i] ,e [i]]
. (1)

To take into account similarities, edge weights are incremented proportionally to other similar edges. Let
e ∈ E, we be the edge weight, Ee,τ = {d ∈ E|sim(e,d)⩾ τ,τ ∈ R⩾0} be the set of similar edges to e for some
threshold τ . The new edge weight of e is

we← we +κ
∑
f∈Ee,τ

wf · sim(e, f) (2)

4
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Algorithm 1: FindPatterns

input : Graph g, Similarity_Constant K, Threshold_Coefficient C
output : HashMap o
1 Function FindPatterns (g, K, C):
2 T← g.maxEdge.weight×C
3 o← HashMap(string, int)
4 while g.maxEdge.weight⩾ T do
5 s← Traverse(g.maxEdge,K,T)
6 if s in o then
7 sup← o.get(s)
8 o.add(s, sup+ 1)
9 else
10 o.add(s,1)
11 return o

where κ allows changing the overall edge similarity effects. If κ= 0, the extended dGB and classical dGB are
identical. The construction is complete once all weight updates have been computed.
STEP 2.b. In this step, the dBG generates proto-features Fp. Weights reflect pattern frequency, i.e. relevance.
The findPatterns algorithm (algorithm 1), shows the general steps. The Traverse function discovers frequently
occurring patterns with support. Next, we provide the general flow of steps followed by the algorithm:

(i) Identify the heaviest weight in the dBG and set it as the starting point for traversal (Line 2 on algorithm
1).

(ii) Begin traversal of the dBG. At each branch, choose the heaviest available edge that has not been
traversed and exceeds a specified weight threshold. The traversal concludes when no eligible edges
remain (Traverse).

(iii) Go back to the starting edge and reverse the traversal direction to incorporate incoming edges
(Traverse).

(iv) Reduce the weights of all traversed edges by 1. Additionally, adjust the weights of edges similar to the
traversed edges, decreasing them proportionally to their relative similarity score (κ× sim(t, s)), where t
is a traversed edge and s is a similar edge to t (Traverse).

(v) Record the tuple of traversed paths into Fp. (Line 6–10 on algorithm 1).

Search begins with greatest weight and C ∈ [0,1] that determines the significance of weight w.r.t the
threshold T. Smaller C values yield more and longer patterns, but contain increasing false positives;
conversely, greater C values have the opposite effect. The Traverse algorithm reduces the weights of traversed
edges, continuing until all w<T. Algorithm 1 starts from the greatest weight and traverses both forward and
backward. While traversing it chooses heaviest adjacent edge. The forward traversal process extends the
pattern by moving along outgoing edges, expanding it from the end, while the backward traversal is
progresses by following incoming edges, thereby growing the pattern from the start. After threshold T is met
on both ends, the weights of all visited edges are decremented producing a sequence from the path. With Fp
the next steps create the individual proto-features or motifs.

For each motif, we calculate the alignment score using Smith–Waterman (SW) [39] and BLAST [40, 41]
O(|s| · |t|) time for both. SW proves highly effective in our experiments when working with sequences of
equal lengths; however, the results from the SW algorithm are not normalized. When considering sequences
with a diverse range of sizes (which is the real-word scenario most of the time), this approach introduces size
bias, wherein shorter sequences exhibit smaller features and vice versa. To mitigate this, we applied our own
normalization that aims to normalize the selected columns based on the relative importance of the values
within each row, while preserving the scale dictated by the median of the row. Let F be a R|Dte|×|Fp| matrix
where F[i, ] represents the features of s ′i ∈ Da and F[, j] represents a column for scores for a particular tj ∈ Fp.
Then each value in F is normalized by:

xi =

|Fp|∑
j=1

F [i, j] (3)

X=
[
xi1xi2 · · ·xiFp

]t
(4)

m(X) =

{
x(n+1)/2 n is odd
1
2

(
xn/2 + xn/2+1

)
o.w.

(5)
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Figure 3. Illustration of trie-based search for identifying edges analogous to NRT in a de Bruijn Graph (dBG) using a mock
substitution matrixM. Beginning at the root, the search progresses through trie branches that meet the substitution score
threshold (θ= 0) at each index. The search culminates at leaf nodes representing sequences that, collectively, correspond to dBG
edges similar to the input edge NRT, excluding the input edge itself from the resultant set. This process exemplifies the efficient
filtering of edges based on substitution scores.

F [i, j]← m(Xt)
F [i, j]

xi
. (6)

BLAST is among the most popular tools for alignment, leveraging a database of sequences. Using blastp
the resulting normalized bitscores (overall alignment quality) are treated as features. The highest E-value
(number of expected hits of similar quality) is used. For multiple matches per sequence-motif pair, the best
alignment (lowest E-value) is selected. Although, this method proved to be sufficient in smaller data sets,
larger data sets, on the other hand, were too sparse to be effective.
STEP 2.c.Here for each s ∈ Dte, a datum is constructed: s ′ ∈ Da includes both the sequence ID and label {0,1}
from s with a vector of scores σ1, . . . ,σ|Fp| for σ ∈ R⩾0 from aligning s to each t ∈ Fp.

3.2. Complexity details
Construction of the dBG isO(nℓ) where |Dtr|= n and ℓ=

∑
i |si| for s ∈ Dtr. The space complexity is

O(E+V). The most computationally heavy part of the approximation algorithm is finding similar edges. A
trie is built from edges that allow for the early elimination of non-similar edges during construction. The
structure also allows multi-trie search based on substitution scores (figure 3). Algorithm 2 defines a search
algorithm that identifies tuples that are similar to a specified (key) tuple using this trie structure. The search
algorithm starts at the root of the trie (defined in line 3) and compares the similarity scores between every
possible trie path and the corresponding key index at lines 8–9. The algorithm only traverses the edges that
fit the θ similarity constraint, reducing the number of edges that needed to be checked at every index.
Building the trie takesO(Ek) time where k is the tuple length andO(m) space. Searching through similar
edges for every edge in the graph takesO(Ekm) time, wherem (m⩽ ℓ) is the edge count in the trie. The next
step traverses the graph to extract proto-features. We can find the heaviest edge inO(logE) time by
maintaining a heap. In total, a single traversal of the graph takesO(E logE) time. The number of iterations
adds only a small constant and can be ignored. In total, the entire process takesO(nℓ+ E(km+ E logE)) time
andO(E+V+m) space, which is quite efficient.
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Algorithm 2: FindSimilar

input : tupleKey, sub, θ, current= NULL, index= 0
output : Set of similar tuples to sub
1 Function FindSimilar(tupleKey, sub, θ, current, index):
2 if current= NULL then
3 current← root
4 if current.leaf then
5 return {(tupleKey, current.weight)}
6 similar←∅
7 for each child in current.children do
8 score← sub.getScore(tupleKey[index], child.char)
9 ifscore⩾ θ then
10 newKey← tupleKey[: index] + child.char+ tupleKey[index+ 1 :]
11 childTuples← FindSimilar(newKey, sub, θ, child, index+ 1)
12 similar← similar∪ childTuples
13 return similar

4. Data and overview of experiments

4.1. Dataset details and background
We evaluate the dBG feature extraction technique by training TAI models on features extracted from TIMP
(tissue inhibitors of matrix metalloproteinase (MMPs)) data [42]. TIMP data is widely used for finding
variants (sequence with mutations) that bind to MMPs, thus potentially regulating MMP functionality [43].
However, the data is relatively small and consists of only 307 protein sequences, of which the majority (289)
are functional. The skewed class distribution induces class imbalance, and makes it difficult to train models
with traditional handcrafted features. To overcome this, researchers are starting to use protein language
models (PLMs) as a first step to extract protein embedding (vector representation of protein sequences on
continuous scale) [44]. Downstream tasks further perform dimension reduction on protein embedding to
extract low-dimensional features used for training TAI models.

Although, the approach has shown promise in building better models, it requires a dimension reduction
on protein embeddings that runs in the 1000s. In contrast, our dBG workflow can extract a small set of
high-quality motifs in a short amount of time. More specifically, our classification experiments on TIMP
data are run on only 34 motifs. Moreover, in comparison to the traditional, but widely used tool like
GLAM2, dBG offers some unique advantages. For instance, GLAM2 requires the exact number of consensus
motifs for the program to work. In contrast, dBG does not mandate the user to specify number of motifs.
Instead, a default weight threshold is used to extract all motifs above the threshold. Also, unlike GLAM2,
dBG extracts non-gapped motifs. This is important because alignment algorithms like BLAST cannot work
with gaps, forcing the use of the SW algorithm, which can process gaps but is slower. Moreover, experimental
results (section 4) indicate that, when class distribution is balanced, both dBG and GLAM2 have good
performance. However, on data with disproportionate class distribution, models trained with dBG motifs
performs reasonably better than GLAM2. Taken together, dBG, GLAM2 and PLMs significantly improves the
performance of novel MD algorithms, with dBG showing early promise for adapting to data with skewed
class distribution.

We train several TAI classifiers on the extracted motifs and show that dBG extracted motifs outperforms
the classification models shared in a recent study on TIMP data [44]. Furthermore, while PLM extracts
features that are black box to biologists, motifs generated by our feature engineering pipeline are
interpretable and allows alignment with biologist domain knowledge and intuition. The extracted features
can be presented to biologists, enabling them to identify, validate and fine-tune biologically relevant features,
thereby completing the feedback loop and improving the overall accuracy and relevance of the results

4.2. Overview of experiments
I. Comprehensive study of TAI modelsWe train 166 [45] different classification models, including logistic
regression, tree and ensemble-based models, random forest, and deep learning models, to showcase the
suitability of dBG motifs for classifying TIMP sequences. Two alignment algorithms, SW and BLAST, are
used to check whether motifs are biased w.r.t the algorithm. For robust evaluation, we perform two different
experiments, and compare dBG motifs with a random baseline, and also the state of the art in sequence
based motif extraction i.e. embeddings based on PLMs [44] and GLAM2 motifs. Since, PLM embeddings are
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shown to outperform traditional handcrafted and structure/biophysical features (k-mer, n-gram) [46], so we
only consider GLAM2 motifs.

In the first experiment, we mitigate the impact of highly skewed class distribution by up sampling the
low-frequency class, followed by model training on train set, and prediction on the test set. For comparison,
we construct a baseline by extracting random motifs of the same length as the dBG motifs from each
sequence, and generating the count matrix for the random motifs. The process is repeated 100 times, and the
final count matrix is taken to be the average of 100 trials. The second experiment aims to replicate the
difficult yet more frequently encountered case, i.e. prediction under skewed class distribution. In this case,
we evaluate the models trained on dBG motifs with PLM based embedding and GLAM2 motifs. Additional
results are found in the supplementary materials.
II. Applying dBG beyond classification As an extension of dGB, we use dBG to find Glycine-Arginine

(GA) rich motifs, and verify our findings with results published in a recent study [47]. We find that dBG
motifs have reasonable overlap with the motif reported in [47]. This use case provides an early validation of
dBG approach as a more general framework for feature extraction.
Implementation note In experiment I and II, we use k-fold cross validation (k= 5) to partition the data

and train models on each fold. Additionally, 5 trials are done, and model hyperparameters are selected based
on accuracy on the validation fold across the trials. To address the skewed class distribution, minority class is
up sampled [48] and distribution of functional and non functional sequences is balanced. In experiment II,
up sampling was done only on train set, and test set was kept as usual. This helps to evaluate performance
under a more practical scenario of encountering skewed class distribution. BLAST alignments are not
possible for GLAM2 because it produce gapped motifs, so only SW alignment is done for GLAM2 motifs.

5. Results

5.1. Training TAI models on dBG generated features
Figures 4 and 5 demonstrate the results of the top 10 models (out of 166) that performed best in classifying
the sequences.

5.1.1. Prediction under balanced class distribution
The results show that the models trained on dBG are significantly better than models trained on randomly
sampled motifs. For the dGB motifs, the top models have balanced accuracy and an F1 score of 1, indicating
perfect classification on test data. For random motifs, though models show good performance on validation
data, quality degrades on test data due to over fitting and lack of generalization. Tree-based models emerge as
the best classifiers for dBG motifs; for random motifs, deep neural networks performed the best. Observe
that performance is unaffected across SW and BLAST, possibly indicating the robustness of dBG motifs to
different alignment algorithms. Notably, as shown in table 1, models trained on dBG and GLAM2 motifs
have significantly better classification accuracy than current state of the art that reported a mean AUC-ROC
of 0.80− 0.95 from the best model trained via a low-dimensional representation of protein embedding [44].
The result show that, when proportion of classes is balanced, dBG and GLAM2 motifs do better in
identifying specific motifs characteristic of functional versus non-functional TIMP sequences.

5.1.2. Testing in the wild with skewed class distribution
Table 2 compares the classification performance of top models on test set in the wild. Result show that dBG
and GLAM2 motifs outperform PLM based feature embeddings. Specifically, models trained on dBG motifs
did notably better than those trained on GLAM2 motifs. The performance of dBG motifs is evidently better
across different types of models for example, random forest, logistic regression etc. Moreover, performance
improvement is conserved in BLAST and SW based alignments, whereas GLAM2 can only be aligned via SW.
The analysis emphasize that dBG can provide a reliable feature extraction framework with minimal
supervision, and performs well under best and worst case scenarios.

5.2. Extending the dBG to extract GARmotifs
In addition to using dBG features for training TAI models, we wanted to study the application of dBG as a
broader feature mining framework. To observe it‘s usefulness, we employ dBG for finding Glycine and
Arginine-rich (GAR) motifs; the objective is to study the overlap between the set of motifs discovered by dBG
and the existing baselines for finding GAR motifs [49]. We refer to a recent work in this area [47] called
glycine motif finder (GMF), which is designed to find GAR-rich motifs. Note that GMF is fine-tuned for a
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Figure 4. Comparing the F1 score of models built with dBG versus randomly sampled motifs from TIMP data. Models trained on
dBG motifs have significantly better classification accuracy.

specific purpose, but dBG provides a more general approach. The same sequences as used in [47] are used as
input to dBG for extracting the motifs, and results are given in table 3.

Since, dBG depends on a SB matrix for expanding the graph search space by adjusting the weights, we
used different SB matrices (BLOSUM45, 50, 62, 80, 90 and PAM 30, 70, 250) to evaluate the sensitivity of
different matrices for finding GAR motifs. Additionally, a baseline was constructed by setting κ= 0 (no
approximation) for comparison with the results obtained by using approximate dBG search via different SB
matrices. We observed that matrices BLOSUM80, BLOSUM90, and PAM30 are noticeably effective in
detecting a higher number of GAR motifs, as reported by [47]. Interestingly, the baseline dGB (κ= 0) is able
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Figure 5. Comparing the balanced accuracy of models trained on dBG motifs versus randomly sampled motifs (of same length)
from TIMP data. dBG motifs surpass prediction accuracy of models trained on randomly sampled motifs.

to detect GAR motifs, but to a lesser degree, which shows that the dBG approach assisted by approximate
search is better for finding GAR motifs. In table 3, ‘#Total Motifs’ denote total number of motifs found by
dBG, ‘#GMF Motifs’ denotes the number of GAR motifs (found by GMF) [47]. Among the different
matrices, BLOSUM90 performed the best by finding the most GAR motifs while minimizing the false
positive rate. Both PAM30 and BLOSUM80 discovered the same number of GAR motifs. However, PAM30
did not yield any non-GAR patterns.
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Table 1. (Experiment 1) Comparison of best models (trained on dBG motifs) with SOTA PLM and GLAM2.

(A) SW aligned dBG motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

svmRadialCost SVM with Radial Basis Function 1 svmRadialCost 1
svmRadial SVM with Radial Basis Function 1 svmRadial 1
ada Regularized Discriminant Analysis 1 ada 1
ranger Random Forest 1 ranger 1
dwdRadial Discriminant with Radial Basis Function 1 dwdRadial 1
LogitBoost Logistic Regression 1 LogitBoost 1

(B) Blast aligned dBG motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

wsrf Weighted Subspace Random Forest 1 wsrf 1
rf Random Forest 1 rf 1
ranger Random Forest 1 ranger 1
parRF Parallel Random Forest 1 parRF 1
naive_bayes Naive Bayes Classifier 1 naive_bayes 1
LogitBoost Logistic Regression 1 LogitBoost 1

(C) SW aligned GLAM2 motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

svmRadialCost SVM with Radial Basis Function 1 svmRadialCost 1
svmRadial SVM with Radial Basis Function 1 svmRadial 1
ada Regularized Discriminant Analysis 1 ada 1
ranger Random Forest 1 ranger 1
dwdRadial Discriminant with Radial Basis Function 1 dwdRadial 1
LogitBoost Logistic Regression 1 LogitBoost 1

(D)a Motifs extracted from SOTA PLMs

Protein Language Model Best Classifier AUC-ROC (Test Data)

Unirep RandomForest 0.80
ESM-1b RandomForest 0.86
ProtT5 Logistic Regression 0.95
a Results reported in [22]. For dBG, AUC-ROC is the average score of 5-fold cross validation.

6. Summary and future work

In this work, we introduced a novel feature engineering pipeline leveraging an extended dBG to process
unstructured biological sequential data for TAI models. Our approach dynamically constructs a traditional
feature space, enabling the effective use of TAI algorithms across diverse datasets. The experimental results
validate that dBG-generated motifs are significant for MD and classification tasks. Furthermore, our
dBG-based MD algorithm outperforms conventional methods, including PLMs and GLAM2 motifs,
particularly in scenarios with skewed class distributions. The robustness of dBG features across different
alignment algorithms (SW and BLAST) and various classification models underscores the versatility and
efficacy of our approach.

Additionally, our extension of dBG to identify GAR motifs further validates the broader applicability of
this method in feature extraction tasks beyond classification. The findings indicate that dBG, especially when
assisted by substitution matrices like BLOSUM and PAM, can effectively detect biologically relevant motifs.

The scalability of our pipeline make it a powerful tool for feature engineering. Future work will focus on
integrating domain-specific information to enhance the biological significance of the features and exploring
hybrid systems that combine dBG with advanced machine learning techniques like deep learning models. We
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Table 2. (Experiment 2) Comparison of best models (trained on dBG motifs) with PLM and GLAM2 motifs.

(A) SW aligned dBG motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

svmRadialCost SVM with Radial Basis Function 1 svmRadialCost 0.97
svmRadial SVM with Radial Basis Function 1 svmRadial 0.97
ada Regularized Discriminant Analysis 1 ada 0.97
ranger Random Forest 1 ranger 0.97
dwdRadial Discriminant with Radial Basis Function 1 dwdRadial 0.97
LogitBoost Logistic Regression 1 LogitBoost 0.97

(B) Blast aligned dBG motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

wsrf Weighted Subspace Random Forest 1 wsrf 0.97
rf Random Forest 1 rf 0.97
ranger Random Forest 1 ranger 0.96
parRF Parallel Random Forest 1 parRF 0.96
naive_bayes Naive Bayes Classifier 1 naive_bayes 0.97
LogitBoost Logistic Regression 1 LogitBoost 0.96

(C) SW aligned GLAM2 motifs

Validation Data Test Data

Model Name Model Type AUC-ROC Model AUC-ROC

svmRadialCost SVM with Radial Basis Function 1 svmRadialCost 0.91
svmRadial SVM with Radial Basis Function 1 svmRadial 0.89
ada Regularized Discriminant Analysis 1 ada 0.92
ranger Random Forest 1 ranger 0.92
dwdRadial Discriminant with Radial Basis Function 1 dwdRadial 0.91
LogitBoost Logistic Regression 1 LogitBoost 0.94

(D) aMotifs extracted from SOTA PLMs

Protein Language Model Best Classifier AUC-ROC (Test Data)

Unirep RandomForest 0.80
ESM-1b RandomForest 0.86
ProtT5 Logistic Regression 0.95
a Results reported in [22]. For dBG, AUC-ROC is the average score of 5-fold cross validation.

Table 3.Motifs in Approximate de Bruijn Graph by Substitution Matrices.

Substitution Matrix # GMF Motifs # Total Motifs

BLOSUM80 11 20
BLOSUM90 13 17
PAM30 11 11
No Approx. (κ= 0) 8 8

Note: GMF refers to Graph Motif Finding. This table compares the

effectiveness of different matrices in motif identification, with κ indicating the

approximation parameter.

also aim to expand the application of dBG to other unstructured data domains, providing a more
general-purpose framework for feature extraction and data analysis.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/parichit/Debruijn_Graph_Classification.
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