

000 BEYOND VISUAL RECONSTRUCTION QUALITY: OB- 001 JECT PERCEPTION-AWARE 3D GAUSSIAN SPLATTING 002 FOR AUTONOMOUS DRIVING 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Reconstruction techniques, such as 3D Gaussian Splatting (3DGS), are increas-
014 ingly used for generating scenarios in autonomous driving system (ADS) research.
015 Existing 3DGS-based works for autonomous driving scenario generation have,
016 through various optimizations, achieved high visual similarity in reconstructed
017 scenes. However, this route is built on a strong assumption: that higher scene
018 similarity directly translates into better preservation of ADS behaviour. Unfor-
019 tunately, this assumption has not been effectively validated, and ADS behaviour
020 is more closely related to objects within the field of view rather than the global
021 image. Thus, we focus on the perception module—the entry point of ADS. Pre-
022 liminary experiments reveal that although current methods can produce recon-
023 structions with high overall similarity, they often fail to ensure that the perception
024 module outputs remain consistent with those obtained from the original images.
025 Such a limitation can significantly harm the applicability of reconstruction in the
026 ADS domain. To address this gap, we propose two complementary solutions: a
027 perception-aligned loss, which directly leverages the output differences between
028 reconstructed and ground-truth images during the training process; and an ob-
029 ject zone quality loss, which specifically reinforces the training on object loca-
030 tions identified by the perception model on ground-truth images. Experiments
031 demonstrate that both of our methods improve the ability of reconstructed scenes
032 to preserve consistency between the perception module outputs and those from the
033 ground-truth inputs.

034 1 INTRODUCTION

036 3D Gaussian Splatting (3DGS) is an efficient 3D reconstruction technique that has rapidly advanced
037 in recent years (Kerbl et al., 2023). By enabling photorealistic scene reconstruction from multi-view
038 images, it can accurately capture complex details, directly meeting the scene generation require-
039 ments in the field of autonomous driving (Zhou et al., 2024; Peng et al., 2025).

040 Existing 3DGS methods for traffic scenario generation in autonomous driving still follow optimiza-
041 tion objectives similar to those in other domains. Specifically, they focus on improving overall image
042 similarity through metrics such as SSIM, PSNR, and LPIPS (Yan et al., 2024; Zhou et al., 2024).
043 However, in the context of autonomous driving, the goal is for ADS to make the same decisions
044 and take the same actions in reconstructed scenes as it would in the original scenes. Only such re-
045 constructions are truly useful for system development and testing. Consequently, the objectives of
046 existing works rely on a strong implicit assumption: that higher image similarity will lead to more
047 consistent behaviour from the autonomous driving system.

048 However, this assumption presents a notable gap in the context of autonomous driving. In ADS, the
049 positions, scales, and categories of objects within the sensor’s field of view—especially non-player
050 characters (NPCs)—have the most significant influence on system behaviour. Yet these objects often
051 occupy only a small portion of the frame or scene, leading global similarity metrics to underempha-
052 size their importance during reconstruction inevitably. Some prior works (Huang et al., 2024; Wei
053 et al., 2025) have also recognized this issue and attempted to specifically enhance NPC character-
054 istics, which can partially improve perception recognition of NPCs in reconstructed scenes. Never-

Figure 1: We enhance perception stability in 3D reconstruction by introducing perception-based loss and object zone quality loss, ensuring that the reconstructed images produce perception results consistent with the ground truth for reliable autonomous driving applications. The red box is the bounding box detected by the perception model.

theless, these approaches do not directly address the underlying gap. Even with ground-truth inputs, perception modules can make errors. Therefore, it is not enough to ensure that reconstructed scenes reproduce only the correctly recognized objects; we also need to reproduce the errors that already exist. For example, as shown in the Figure 1, the reconstruction produced by the EMD(+OmnirRe) method can even enable the perception model to detect more objects than in the ground-truth input. However, this is not necessarily a desirable outcome for developers who aim to enhance perception performance through scene reconstruction. Reproducing existing errors is, in fact, aligned with our broader goal for reconstruction techniques in ADS: to efficiently reveal the limitations and issues of ADS perception, enabling more effective system testing and improvement.

This gap inspires us to move beyond the quality of visual reconstruction. We introduce the concept of perception stability, which requires that the same perception model produce consistent outputs on both the ground truth and reconstructed images. By adopting perception stability as an optimization objective, reconstruction methods can better align with the ultimate goal of supporting ADS development and testing.

To validate this gap, we first conduct a preliminary study of multiple 3DGS methods for ADS traffic scene reconstruction, using different perception models. The results show that while existing methods achieve high scores on visual metrics, these improvements do not translate into higher perception stability. This observation highlights the limitations of optimizing solely for visual metrics and motivates us to design improvements with perception stability as the objective. To this end, as shown in Figure 2, we propose two approaches to improve perception stability during reconstruction. The first directly aligns reconstructions with perception outputs by penalizing inconsistencies in object detection results. The second focus is on the visual fidelity of task-relevant object regions, encouraging accurate reconstruction of object zones detected by the perception model, even if the detection is incorrect.

108 Through extensive experiments, we demonstrate that both of our proposed improvements not only
 109 significantly enhance the perception stability of 3DGS reconstructions—ensuring that perception
 110 module outputs on reconstructed scenes remain consistent with those on the original images—but
 111 also maintain, or in some cases even improve, the overall visual quality. This highlights that it is pos-
 112 sible to design reconstruction methods that are both visually accurate and functionally meaningful,
 113 supporting the development and testing of autonomous driving systems.

114 In summary, this paper makes the following contributions:

- 116 • We introduce perception-aware reconstruction, a principle that reconstructed scenes should
 117 maintain visual realism while preserving perceptual stability.
- 118 • We propose two approaches: a perception-aligned loss and an object-zone quality loss,
 119 which could improve perception stability when integrated into the training process.
- 120 • We validate our methods using large-scale experiments, demonstrating that they improve
 121 perception stability without compromising overall visual quality.

122 More broadly, the proposed perception-aware reconstruction principle, along with the two methods
 123 we introduce, establishes a foundation for task-consistent reconstruction in other domains, such
 124 as robotics and AR/VR, which require perception outputs as the basis for downstream modules.
 125 Our approach demonstrates how reconstruction can be made both visually realistic and practically
 126 helpful for real-world applications.

127 2 BACKGROUND

130 **Traffic Scene Reconstruction** Traffic scenario generation is an important research direction for
 131 autonomous driving development and testing, while reconstruction techniques enable more flexible
 132 and realistic scenarios (Nalic et al., 2020; Zhong et al., 2021). In the early stages of research, a
 133 series of NeRF-based works (Mildenhall et al., 2021), such as Block-NeRF (Tancik et al., 2022),
 134 Mega-NeRF (Turki et al., 2022), and EmerNeRF (Yang et al., 2023), explored and attempted to
 135 capture the characteristics of traffic scenes. With the emergence of 3DGS, techniques represented
 136 by StreetGaussian (Yan et al., 2024), DrivingGaussian (Zhou et al., 2024), and DeSiRe-GS (Peng
 137 et al., 2025) have rapidly proliferated. To date, methods like S^3 Gaussian (Huang et al., 2024),
 138 OmniRe (Chen et al., 2025), and EMD (Wei et al., 2025) lead the field in terms of reconstruction
 139 performance and scalability.

140 **Perception Robustness in AI Systems** As the first stage in many AI systems, perception plays a
 141 critical role, and its robustness and stability are essential for overall system reliability. Dong et al.
 142 (2023) proposed a robustness benchmark for autonomous driving system (ADS) perception modules
 143 based on Waymo (Sun et al., 2020), KITTI (Geiger et al., 2013), and nuScenes (Caesar et al., 2020)
 144 datasets, finding that motion-level noise has the most significant impact on perception robustness.
 145 NLTE (Liu et al., 2022) highlighted the importance of interactions between image noise and multi-
 146 scale features for perception stability. Gupta et al. (2024) further showed that changes in weather
 147 conditions can also pose significant challenges to object detection results. Additionally, works such
 148 as Song et al. (2024) et al. have jointly evaluated perception models in terms of accuracy, latency,
 149 and robustness, revealing that current methods still leave substantial room for improvement in safe
 150 and stable operation. Overall, perception robustness remains an unsolved challenge. Therefore,
 151 for reconstruction tasks, minimizing noise that could affect perception outcomes is crucial and a
 152 necessary condition for practical deployment.

153 3 PRELIMINARY STUDY

154 3.1 PROBLEM DEFINITION

155 Given an input scene S , a 3DGS model \mathcal{R} reconstruct a 3D representation of the scene. A percep-
 156 tion module(in this work, specifically a detection model, since it is generally considered a core and
 157 indispensable perception module in ADS systems (Gog et al., 2021; Wang et al., 2025)) \mathcal{P} produces
 158 necessary outputs for downstream modules in ADS. In typical 3DGS tasks, the goal of reconstruc-
 159 tion is typically to minimize the difference between the ground truth image $x \in S$ and the rendered

162 image of the reconstructed model $\mathcal{R}(x)$. This objective can be expressed as
 163

$$\mathcal{L}_{\text{recon}} = d_{\text{img}}(\mathcal{R}(x), x) \quad (1)$$

165 where $d_{\text{img}}(\cdot, \cdot)$ measures the visual quality(e.g. SSIM, PSNR).
 166

167 However, in the ADS testing task, the reconstruction should also keep the key information, especially
 168 the location of objects. To ensure the representation could be effectively used for ADS, the problem
 169 we address is to ensure **perception stability**: the outputs of the perception model $\mathcal{P}(\cdot)$ applied to
 170 the reconstructed model should remain consistent with those obtained from the ground truth scene,
 171 defined as

$$\mathcal{L}_{\text{perc}} = d_{\text{perc}}(\mathcal{P}(\mathcal{R}(x)), \mathcal{P}(x)) \quad (2)$$

172 where $d_{\text{perc}}(\cdot, \cdot)$ measures the discrepancy at the semantic or perception level.
 173

174 Formally, we formulate the problem as a constrained optimization: the reconstruction quality must
 175 be sufficiently preserved, while minimizing the perception discrepancy.

$$\begin{aligned} \min_{\mathcal{R}} \quad & \mathbb{E}_x [d_{\text{perc}}(\mathcal{P}(\mathcal{R}(x)), \mathcal{P}(x))] \\ \text{s.t.} \quad & \mathbb{E}_x [d_{\text{img}}(\mathcal{R}(x), x)] \leq \varepsilon, \end{aligned} \quad (3)$$

180 3.2 PRELIMINARY STUDY

182 Based on the problem definition, we would like first to explore the limitations of existing 3DGS
 183 methods in the traffic scene reconstruction task.
 184

185 3.2.1 EXPERIMENTS SETUP

186 **3DGS approaches** We select three state-of-the-art 3DGS approaches: S^3 Gaussian (Huang et al.,
 187 2024), OmniRe (Chen et al., 2025), and EMD (Wei et al., 2025). In practice, EMD is built upon
 188 either S^3 Gaussian or OmniRe as its base, and we conduct separate experiments for each base.
 189 Furthermore, all reconstruction training processes consist of 5,000 steps in the coarse stage, followed
 190 by 30,000 steps in the fine stage.
 191

192 **Perception Model** To avoid the influence of the perception model’s architecture, we evaluate
 193 perception performance using three popular detection models with different architectures:
 194 YOLOv8 (Varghese & M., 2024), Faster R-CNN (Ren et al., 2015) and RT-DETR (Zhao et al., 2024).

195 **Metrics** As described, we aim to investigate the performance of reconstruction methods in terms of
 196 both visual quality and perception stability, and we use metrics from both perspectives for compar-
 197 isation accordingly. We utilize *SSIM* to characterize and measure visual quality. Meanwhile, to main-
 198 tain perception stability, we use *mean IoU* to measure detection differences, and *mAP@[0.5:0.95]* to
 199 quantify detection confidence and misclassification. Additionally, we counted the number of missed
 200 detections after reconstruction.

201 **Ground truth** It should be emphasized that the calculation of the perception stability part does not
 202 directly compare against the object information in the ground truth; instead, it is based on the outputs
 203 of the same perception model when fed with the ground truth.
 204

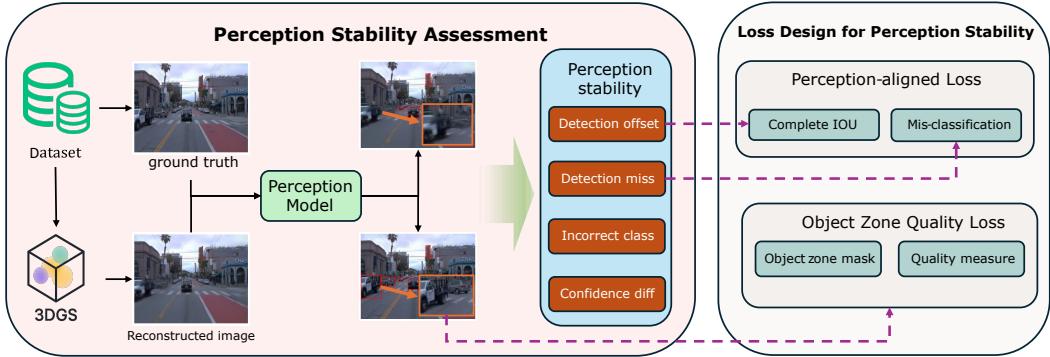
205 **Experiment scenes** We fully reproduced all experimental scenes of S^3 Gaussian and OmniRe. For
 206 the EMD method, experiments were conducted using the scenes corresponding to each respective
 207 base method. To limit space, all results reported in the paper are averages across all scenes.
 208

209 Table 1: Visual Quality and Perception Metrics of Existing Methods (On Average)

	pixel Level			YOLO v8			Faster RCNN		
	SSIM	PSNR	LPIPS	mAP	mean IOU	Miss	mAP	mean IOU	Miss
S^3 Gaussian	0.924	31.27	0.105	0.550	0.803	1.5	0.171	0.620	2.0
OmniRe	0.953	33.77	0.049	0.489	0.832	0.0	0.320	0.718	0.3
EMD(S^3 G)	0.923	31.39	0.104	0.578	0.755	0.0	0.270	0.689	0.5
EMD(OmniRe)	0.962	35.02	0.039	0.452	0.839	0.3	0.348	0.768	0.3

216 Table 2: The statistical correlation between pixel-level metrics(mAP) and detection stability with
 217 Yolo v8. Limited to page size, more data(correlations with meanIOU) will be shown in Appendix.
 218 r denotes the Pearson correlation coefficient, and p denotes the p -value.

Correlation	r_{SSIM}	p_{SSIM}	r_{PSNR}	p_{PSNR}	r_{LPIPS}	p_{LPIPS}
S^3 Gaussian	0.767	2.43E-3	0.658	3.09E-3	-0.721	1.21E-3
OmniRe	0.417	3.11E-3	0.484	1.07E-3	-0.568	2.50E-3
EMD(S^3 G)	0.374	2.14E-3	0.319	1.09E-3	-0.387	2.33E-3
EMD(OmniRe)	0.295	1.41E-3	0.439	1.52E-4	-0.369	3.76E-3



238 Figure 2: Overview of this work. Perception stability is measured by comparing the outputs of the
 239 same perception model when fed with the original frames versus the reconstructed frames. Based
 240 on the perception outputs and the object regions identified by the perception model, we designed a
 241 perception-aligned loss and an object zone quality loss to improve perception stability.

3.2.2 PRILMINARY RESULTS

245 Table 1 shows that existing 3DGS methods generally achieve high visual quality. It can be observed
 246 that existing methods already exhibit high performance in visual metrics —whether in SSIM, PSNR,
 247 or LPIPS- but their perception stability is not satisfactory, yet they are fair to use.

248 To better understand this mismatch, we further examined the statistical relationship between pixel-
 249 level metrics and perception stability, shown as table 2. Although these visual metrics do show
 250 statistically significant correlations with mAP and mean IoU (all $p < 5E - 3$), their Pearson coef-
 251 ficients remain only in the range of 0.3–0.6. This indicates that the connection between the two is
 252 fairly weak: visual improvements tend to move in the same direction as perception stability, but the
 253 effect is limited and far from predictive.

4 METHOD 1: PERCEPTION-ALIGNED LOSS INTEGRATION

258 As we found in Section 3.2, in the ADS traffic scene generation task, existing 3DGS methods could
 259 achieve high visual quality, but often fail to guarantee stable perception outputs for objects. To ad-
 260 dress this limitation, we first propose a naive yet intuitive solution that integrates detection results
 261 as an additional loss term directly into the 3DGS model training process. This approach would en-
 262 courage the training process not only to focus on visual quality but also to preserve stable perception
 263 results.

264 Formally, we define the perception-aligned loss $\mathcal{L}_{\text{perc}}$ as the sum of the errors in the predicted bound-
 265 ing boxes and their associated class labels as

$$\mathcal{L}_{\text{perc}} = \sum_i (\lambda_{\text{box}} \cdot \mathcal{L}_{\text{box}}(\mathcal{B}(x), \mathcal{B}(\mathcal{R}(x))) + \lambda_{\text{cls}} \cdot \mathcal{L}_{\text{cls}}(\mathcal{C}(x), \mathcal{C}(\mathcal{R}(x)))) \quad (4)$$

266 where $\mathcal{B}, \mathcal{C} \in \mathcal{P}$ refers to the bounding box and classification label in the perception model results,
 267 respectively, and λ is the weight of corresponding items.

In autonomous driving tasks, object bounding boxes not only require sufficient overlap with the ground truth but also accurate center positions, as these factors greatly affect subsequent modules such as tracking and prediction (Yin et al., 2021; Sharath & Mehran, 2021). Meanwhile, the aspect ratio of the bounding box also affects the ADS’s classification of the target type and can influence subsequent decision-making (Luo et al., 2021). **CIoU**(Complete IoU) (Zheng et al., 2021) naturally satisfies both of these requirements by jointly penalizing deviations in overlap, center-point distance, and aspect ratio, making it particularly suitable as a loss function for bounding box regression in ADS scenarios. And the perception-aligned loss is defined as

$$\mathcal{L}_{\text{box}} = 1 - \frac{1}{n} \sum_{i=1}^n \text{CIoU}(\mathcal{B}_i(x), \mathcal{B}_i(\mathcal{R}(x))) \quad (5)$$

where \mathcal{B}_i is the the bounding box of the i -th object in a given frame and n is the total number of objects in the frame.

On the other hand, the classification loss is computed directly based on whether the predicted class labels are the same in the ground truth frame and the reconstruction frame, as

$$\mathcal{L}_{\text{cls}} = 1 - \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\mathcal{C}_i(x) = \mathcal{C}_i(\mathcal{R}(x))) \quad (6)$$

Finally, this perception-aligned loss is integrated into the total training objective

$$\mathcal{L}_{\text{total}} = \lambda_{\text{visual}} \cdot \mathcal{L}_{\text{visual}} + \lambda_{\text{perc}} \cdot \mathcal{L}_{\text{perc}} \quad (7)$$

where $\mathcal{L}_{\text{visual}}$ is the existing visual quality-aware loss function. Note that this loss is only backpropagated during 3DGS training, while the perception model remains frozen and is not updated in any way.

5 EXPERIMENTS FOR METHOD 1

5.1 EXPERIMENTS DESIGN

To evaluate the effect of integrating perception-aware losses into the 3DGS training, we use YOLOv8 as the perception model. We first apply YOLOv8 to the frames of the training data to obtain $\mathcal{P}(x)$. During the 3DGS training process, the same YOLOv8 is then applied to each reconstructed frame to extract $\mathcal{P}(\mathcal{R}(x))$. The perception-aligned loss is computed according to equations 4 and 6 and integrated into the 3DGS training objective in equation 7, guiding the reconstruction to preserve stable perception outputs. Similar to existing work, this loss will be applied only in the fine-stage training.

To simplify the choice of parameters and to focus on the effect of the perception-aligned loss, we set all λ values ($\lambda_{\text{box}}, \lambda_{\text{cls}}, \lambda_{\text{visual}}, \lambda_{\text{perc}}$) to 1. This allows us to clearly see how the perception-aligned loss affects the reconstruction, without the results being influenced by different weighting factors.

All comparison methods, scenes, and metric selections are kept the same as in Section 3.2.1.

5.2 EXPERIMENT RESULTS

Table 3 shows the results of perception-aligned loss integrated into the training process. We can draw the following conclusions: 1) Integrating the perception-aligned loss leads to a significant improvement in mAP and mean IoU, indicating that the reconstructed scenes achieve stronger perception stability; 2) The same trend is observed on Faster R-CNN and RT-DETR, in addition to the YOLOv8 used during training, suggesting that the improved perception stability is not limited to the training model but indeed reflects an enhancement in reconstruction quality; 3) The visual quality loss exhibits only minor fluctuations ($\pm < 1\%$), indicating that adding the perception-aligned loss has a relatively small and acceptable impact on visual quality.

Table 3: Perception-aligned Loss Integration, use YOLOv8 as guidance model, test Faster RCNN and RT-DETR as black-box model

	Pixel-Level			YOLOv8		
	SSIM↑	PSNR↑	LPIPS↓	mAP↑	mean IoU↑	Miss↓
S^3 Gaussian	0.924	31.27	0.106	0.550	0.803	1.5
S^3 Gaussian+ $\mathcal{L}_{\text{perc}}$	0.920	31.53	0.106	0.593	0.840	0.83
OmniRe	0.953	33.77	0.049	0.489	0.832	0.0
OmniRe+ $\mathcal{L}_{\text{perc}}$	0.954	33.75	0.048	0.507	0.845	0.0
EMD(S^3 G)	0.923	32.89	0.057	0.578	0.755	0.0
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}$	0.951	33.37	0.046	0.583	0.857	0.0
EMD(OmniRe)	0.962	35.02	0.039	0.452	0.839	0.3
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}$	0.954	35.42	0.035	0.497	0.846	0.0

	Faster R-CNN			RT-DETR		
	mAP↑	mean IoU↑	Miss↓	mAP↑	mean IoU↑	Miss↓
S^3 Gaussian	0.171	0.620	2.0	0.494	0.829	0.0
S^3 Gaussian+ $\mathcal{L}_{\text{perc}}$	0.229	0.632	0.7	0.509	0.829	0.0
OmniRe	0.320	0.718	0.3	0.519	0.789	0.0
OmniRe+ $\mathcal{L}_{\text{perc}}$	0.360	0.722	0.0	0.526	0.792	0.0
EMD(S^3 G)	0.270	0.689	0.5	0.518	0.770	0.0
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}$	0.307	0.701	0.0	0.674	0.875	0.0
EMD(OmniRe)	0.348	0.768	0.3	0.542	0.852	0.0
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}$	0.352	0.779	0.0	0.542	0.842	0.0

6 METHOD 2: OBJECT ZONE QUALITY LOSS FOR RECONSTRUCTION

6.1 REVIEW OF PERCEPTION-ALIGNED LOSS INTEGRATION

In the experiments presented in Section 5, we have demonstrated the positive effect of the perception-aligned loss on perception stability. However, this approach still has two limitations: 1) the improvement in perception is derived from the perception model’s outputs, which limits interpretability; 2) during training, inference through the perception model is required at every iteration, significantly increasing training time and memory consumption. Therefore, we proceed to further analysis based on the existing results.

Through a study of numerous cases where the perception model is affected after reconstruction, we observed two typical phenomena, as shown in Figure 3. The first, illustrated in I, shows discontinuities in object regions, which mostly occur in static objects. The second, shown in II, exhibits blurring in object regions, and this is most pronounced in dynamic objects. Both issues point to a common problem: current 3DGS methods for traffic scene reconstruction tend to produce a larger shortfall in object regions compared to other layers, such as the sky or buildings. Previous studies have shown that, due to its reliance on LiDAR or other point cloud data, 3DGS often lacks fine-grained reconstruction at object edges (Chelani et al., 2025; Lu et al., 2025), resulting in blurred object edges and perceptual changes. Furthermore, in most scenes, object regions occupy a much smaller area than other layers. Under existing methods, the reconstruction quality of object regions is even less reliably guaranteed.

6.2 OBJECT ZONE QUALITY LOSS

Based on the analysis in Section 6.1, we believe that a core reason for the instability of perception after reconstruction is the relatively low reconstruction quality of object regions. Thus, we propose

Figure 3: Comparison of reconstructed for S^3 Gaussian, the perception model fails to maintain original outputs, whereas integrating the perception-aligned loss leads to improved perception consistency. I: modelling fractures; II: object zone blur

a more intuitive solution: we design a custom **object zone quality loss** that computes a separate visual quality loss for the object regions identified by the perception model.

$$\mathcal{L}_{\text{obj-vis}} = d_{\text{vis}}(\mathcal{R}(x) \odot \mathcal{B}(x), x \odot \mathcal{B}(x)) \quad (8)$$

where \odot applies the mask to extract the object zones, and d_{vis} is a visual similarity metric. Then, similar to perception-aligned loss integration, the object zone quality loss is utilized as

$$\mathcal{L}_{\text{total}} = \lambda_{\text{visual}} \cdot \mathcal{L}_{\text{visual}} + \lambda_{\text{obj-vis}} \cdot \mathcal{L}_{\text{obj-vis}} \quad (9)$$

By introducing the proposed object-zone quality loss, the reconstruction process is clearly guided to emphasize regions that the perception model deems critical in the ground-truth frames (i.e., the detection zone). This targeted enhancement improves the fidelity of object regions, thereby improving perception stability. Furthermore, since the training procedure relies solely on offline ground-truth perception results, this approach offers improved computational efficiency compared to Method 1, which requires direct incorporation of perception-aligned loss for each iteration.

7 EXPERIMENTS FOR METHOD 2

7.1 EXPERIMENT DESIGN

When evaluating reconstruction quality, this experiment introduces a new metric, the object zone loss, which measures reconstruction quality specifically within the object regions identified by the perception model in the ground-truth images. In addition, as mentioned in Section 6.2, the object zone quality loss reduces computational complexity compared to the perception-aligned loss. We also record and compare the time cost during the reconstruction training process to quantify this efficiency difference.

7.2 EXPERIMENT RESULTS

Table 4 shows the results of object zone quality loss integrated into the training process. The experimental results indicate that:

432 Table 4: Object Zone Quality Loss Integration, use YOLOv8 as guidance model, test Faster RCNN
 433 and RT-DETR as black-box model

	Pixel-Level				YOLO v8		
	SSIM↑	Obj SSIM↑	PSNR↑	LPIPS↓	mAP↑	mean IOU↑	Miss↓
S^3 Gaussian	0.924	0.877	31.27	0.106	0.550	0.803	1.5
S^3 Gaussian+ $\mathcal{L}_{\text{perc}}$	0.920	0.897	31.53	0.106	0.593	0.840	0.83
S^3 Gaussian+ $\mathcal{L}_{\text{obj-vis}}$	0.937	0.921	31.89	0.082	0.672	0.862	0.4
S^3 Gaussian+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.941	0.924	32.00	0.083	0.700	0.872	0.0
OmniRe	0.953	0.867	33.77	0.049	0.489	0.832	0.0
OmniRe+ $\mathcal{L}_{\text{perc}}$	0.954	0.876	33.75	0.048	0.507	0.845	0.0
OmniRe+ $\mathcal{L}_{\text{obj-vis}}$	0.949	0.893	33.25	0.046	0.545	0.856	0.0
OmniRe+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.957	0.899	33.75	0.047	0.609	0.870	0.0
EMD(S^3 G)	0.923	0.855	32.89	0.057	0.578	0.755	0.0
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}$	0.951	0.923	33.37	0.046	0.583	0.857	0.0
EMD(S^3 G)+ $\mathcal{L}_{\text{obj-vis}}$	0.952	0.946	33.56	0.043	0.601	0.843	0.0
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.952	0.948	33.49	0.043	0.600	0.860	0.0
EMD(OmniRe)	0.962	0.910	35.02	0.039	0.452	0.839	0.3
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}$	0.954	0.915	35.42	0.035	0.497	0.846	0.0
EMD(OmniRe)+ $\mathcal{L}_{\text{obj-vis}}$	0.965	0.942	35.20	0.034	0.508	0.856	0.0
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.969	0.940	35.33	0.035	0.510	0.856	0.0
	Faster RCNN			RT-DETR			
	mAP↑	mean IOU↑	Miss↓	mAP↑	mean IOU↑	Miss↓	
S^3 Gaussian	0.171	0.620	2.0	0.494	0.829	0.0	
S^3 Gaussian+ $\mathcal{L}_{\text{perc}}$	0.229	0.632	0.7	0.509	0.829	0.0	
S^3 Gaussian+ $\mathcal{L}_{\text{obj-vis}}$	0.271	0.689	0.4	0.603	0.843	0.0	
S^3 Gaussian++ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.269	0.695	0.3	0.610	0.845	0.0	
OmniRe	0.320	0.718	0.3	0.519	0.789	0.0	
OmniRe+ $\mathcal{L}_{\text{perc}}$	0.360	0.722	0.0	0.526	0.792	0.0	
OmniRe+ $\mathcal{L}_{\text{obj-vis}}$	0.343	0.735	0.0	0.524	0.800	0.0	
OmniRe+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.359	0.740	0.0	0.675	0.874	0.0	
EMD(S^3 G)	0.270	0.689	0.5	0.518	0.770	0.0	
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}$	0.308	0.715	0.1	0.674	0.875	0.0	
EMD(S^3 G)+ $\mathcal{L}_{\text{obj-vis}}$	0.308	0.701	0.0	0.666	0.870	0.0	
EMD(S^3 G)+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.311	0.717	0.0	0.677	0.879	0.0	
EMD(OmniRe)	0.348	0.768	0.3	0.542	0.852	0.0	
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}$	0.352	0.779	0.0	0.542	0.842	0.0	
EMD(OmniRe)+ $\mathcal{L}_{\text{obj-vis}}$	0.389	0.778	0.0	0.558	0.862	0.0	
EMD(OmniRe)+ $\mathcal{L}_{\text{perc}}+\mathcal{L}_{\text{obj-vis}}$	0.404	0.783	0.0	0.562	0.879	0.0	

471

472

473

474

- The application of the object zone quality loss explicitly emphasizes these regions as a training focus, leading to a significant improvement in the reconstruction quality of the targeted areas. At the same time, this also has a positive effect on the overall visual quality.
- The perception stability of the reconstructed scenes has been significantly improved, which also implies an enhancement in the reconstruction quality of object regions, with more detailed information such as edges and textures being preserved. This, in turn, benefits the recognition performance of perception models.
- Compared to the naive approach that directly employs a perception-aligned loss, the object zone quality loss provides more stable improvements in reconstruction quality. However, in specific scenarios, the IoU accuracy does not necessarily outperform that of the perception-aligned loss.
- **Optimizing with both losses simultaneously can, in most cases, yield better results compared to using either loss individually, although the improvement is relatively modest.**

486 7.3 RUNTIME ANALYSIS
487
488489 Table 5: Average reconstruction training process time consumption.
490

	per 100 epochs(seconds)			in total (minutes)		
	origin	with $\mathcal{L}_{\text{perc}}$	with $\mathcal{L}_{\text{obj-vis}}$	origin	with $\mathcal{L}_{\text{perc}}$	with $\mathcal{L}_{\text{obj-vis}}$
S3G	25.20	26.67	25.30	204.4	232.2	205.4
OmniRe	34.84	36.07	34.91	282.1	332.2	283.5
EMD(S3G)	32.44	33.94	32.51	262.9	312.9	263.9
EMD(OmniRe)	44.94	46.45	45.00	364.5	413.2	364.9

491
492 As shown in the Figure 5, incorporating perception loss into the training process requires an ad-
493 dditional YOLO inference at each iteration, leading to a noticeable increase in training time. In
494 contrast, the use of object zone quality loss, although introducing an extra loss computation, has
495 only a negligible impact on overall runtime. Note that: 1) these results are obtained on our ex-
496 perimental platform with an RTX A5000 GPU, and the absolute values may vary depending on the
497 computing device; 2) In our experiments, we employ the lightweight YOLOv8n model; using a
498 heavier detector, such as Faster R-CNN, would likely exacerbate this difference.

500 8 DISCUSSION
501

502 **Loss Weight and Trade-offs:** In our experiments, all loss weights (λ) were set to 1 to demonstrate
503 the effectiveness of the proposed methods to avoid the effect of parameter selection. However, this
504 work does not fully explore the trade-off between maintaining high visual realism and ensuring
505 stable perception outputs by adjusting the loss weights. For example, in our task, the scenes contain
506 many objects, but each occupies a relatively small area. In contrast, robotic manipulation tasks often
507 involve key targets within the robot’s field of view that occupy a larger portion of the scene, but
508 are typically few in number. Clearly, these two scenarios would require different combinations of
509 λ values, a topic not explored in this work. Future work could study adaptive or learned weighting
510 strategies to balance this trade-off more effectively.

511 **Broader Applicability:** While this work focuses on traffic scene reconstruction for autonomous
512 driving systems, the principle of perception-aware reconstruction may not be limited to this do-
513 main. Any modular AI system that relies on perception outputs for downstream tasks—such as
514 robotics, AR/VR, or automated inspection systems—could potentially benefit from our approach.
515 For example, in robotic manipulation, an unstable perception of object positions could result in in-
516 correct grasps or collisions; in AR/VR, inconsistent perception could disrupt object alignment and
517 user experience; in automated inspection systems, unstable detection could lead to missed defects.
518 Our approach enhances reliability and trustworthiness in reconstructed scenes across these domains.
519 From the current perspective, our method does not rely on strong domain-specific knowledge. In
520 principle, it could be easily adapted to these perception-critical tasks.

521 9 CONCLUSION
522

523 We introduced **perception-aware reconstruction**, aiming to ensure 3DGS preserve both visual
524 quality and perception stability in ADS traffic scene reconstruction. Through our experiments, we
525 found that existing methods, while improving visual quality, do not guarantee an increase in percep-
526 tion stability. To address this, we propose two approaches—perception-aligned loss and object zone
527 quality loss—to effectively improve perception stability across multiple 3DGS methods and detec-
528 tion models. Our results demonstrate that both approaches can significantly enhance the perception
529 stability of reconstructed scenes. This work points the way toward 3D reconstructions that are both
530 realistic and practical for safety-critical applications.

540 A REPRODUCIBILITY STATEMENT
541542 We are committed to ensuring the reproducibility of our work. The code and pre-trained models
543 will be publicly released upon acceptance of the paper (after the "proceed" stage), allowing other
544 researchers to fully reproduce our results.
545546 A.1 RECONSTRUCTED SCENES
547548 Our experiments are entirely based on the Waymo dataset, using the same scene selection as in
549 S^3 Gaussian and EMD.
550551 For the experiments of S^3 Gaussian and EMD(S^3 Gaussian), we use scene ids: 003, 019, 021, 022,
552 036, 069, 081, 094, 126, 139, 140, 146, 148, 157, 181, 200, 204, 237, 241, 297, 302, 314, 362, 427,
553 482, 495, 524, 527, 581, 700, 753, 780, 795
554555 For the experiments of OmniRe and EMD(OmniRe), we use scene ids: 014, 016, 021, 022, 023,
556 031, 049, 053, 064, 080, 088, 094, 111, 114, 222, 327, 552, 621, 700, 784, 785, 788, 796
557558 A.2 EXPERIMENTAL ENVIRONMENT
559560 We conduct our experiments primarily on a server with an Intel 10920X and dual NVIDIA RTX
561 A5000 GPUs. In practice, most experiments can be completed with 24GB of VRAM. Few scenes
562 (like 788) would take more VRAM, and we deploy these scene experiments on a server with an
563 NVIDIA V100 with 32 GB of VRAM.
564565 A.3 IMPLEMENTATION DETAILS
566567 Here are some implementation details not mentioned in the main text.
568569 **Perception model weights**
570571 YOLO: yolov8n from ultralytics;
572573 Faster RCNN: fasterrcnn_resnet50_fpn from torchvision
574575 **Image load size** The image load size of the four base approaches is not the same, and we set it to
576 [320, 480] for each camera.
577578 REFERENCES
579580 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
581 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
582 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
583 *recognition*, pp. 11621–11631, 2020.584 Kunal Chelani, Assia Benbihi, Torsten Sattler, and Fredrik Kahl. Edgegaussians-3d edge mapping
585 via gaussian splatting. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision*
586 (*WACV*), pp. 3268–3279. IEEE, 2025.
587588 Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic,
589 Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, Li Song, and Yue Wang. Omnidr: Omni urban
590 scene reconstruction. In *The Thirteenth International Conference on Learning Representations*,
591 2025.592 Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing
593 Wei, and Jun Zhu. Benchmarking robustness of 3d object detection to common corruptions.
594 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
595 1022–1032, 2023.596 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
597 kitti dataset. *The international journal of robotics research*, 32(11):1231–1237, 2013.
598

594 Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew A Wright, Joseph E Gonzalez, and Ion Stoica.
 595 Pylot: A modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles. In
 596 *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 8806–8813. IEEE,
 597 2021.

598
 599 Himanshu Gupta, Oleksandr Kotlyar, Henrik Andreasson, and Achim J Lilienthal. Robust object
 600 detection in challenging weather conditions. In *Proceedings of the IEEE/CVF Winter Conference*
 601 *on Applications of Computer Vision*, pp. 7523–7532, 2024.

602 Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
 603 Kurt Keutzer, and Shanghang Zhang. S3gaussian: Self-supervised street gaussians for au-
 604 tonomous driving. *arXiv preprint arXiv:2405.20323*, 2024.

605
 606 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 607 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

608 Xinyu Liu, Wuyang Li, Qiushi Yang, Baopu Li, and Yixuan Yuan. Towards robust adaptive object
 609 detection under noisy annotations. In *Proceedings of the IEEE/CVF conference on computer*
 610 *vision and pattern recognition*, pp. 14207–14216, 2022.

611
 612 Yiren Lu, Yunlai Zhou, Disheng Liu, Tuo Liang, and Yu Yin. Bard-gs: Blur-aware reconstruction
 613 of dynamic scenes via gaussian splatting. In *Proceedings of the Computer Vision and Pattern*
 614 *Recognition Conference*, pp. 16532–16542, 2025.

615 Chenxu Luo, Xiaodong Yang, and Alan Yuille. Exploring simple 3d multi-object tracking for au-
 616 tonomous driving. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 617 pp. 10488–10497, 2021.

618
 619 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 620 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 621 *of the ACM*, 65(1):99–106, 2021.

622 Demin Nalic, Tomislav Mihalj, Maximilian Bäumler, Matthias Lehmann, Arno Eichberger, and
 623 Stefan Bernsteiner. Scenario based testing of automated driving systems: A literature survey. In
 624 *FISITA web Congress*, volume 10, 2020.

625
 626 Chensheng Peng, Chengwei Zhang, Yixiao Wang, Chenfeng Xu, Yichen Xie, Wenzhao Zheng,
 627 Kurt Keutzer, Masayoshi Tomizuka, and Wei Zhan. Desire-gs: 4d street gaussians for static-
 628 dynamic decomposition and surface reconstruction for urban driving scenes. In *Proceedings of*
 629 *the Computer Vision and Pattern Recognition Conference*, pp. 6782–6791, 2025.

630 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 631 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 632 2015.

633
 634 Mysore Narasimhamurthy Sharath and Babak Mehran. A literature review of performance metrics
 635 of automated driving systems for on-road vehicles. *Frontiers in Future Transportation*, 2:759125,
 636 2021.

637 Ziying Song, Lin Liu, Feiyang Jia, Yadan Luo, Caiyan Jia, Guoxin Zhang, Lei Yang, and Li Wang.
 638 Robustness-aware 3d object detection in autonomous driving: A review and outlook. *IEEE Trans-*
 639 *actions on Intelligent Transportation Systems*, 2024.

640 Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
 641 James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
 642 tonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF conference on com-*
 643 *puter vision and pattern recognition*, pp. 2446–2454, 2020.

644
 645 Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Sriniv-
 646 asan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view
 647 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 648 *tion*, pp. 8248–8258, 2022.

648 Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction
 649 of large-scale nerfs for virtual fly-throughs. In *Proceedings of the IEEE/CVF conference on*
 650 *computer vision and pattern recognition*, pp. 12922–12931, 2022.

651

652 Rejin Varghese and Sambath M. Yolov8: A novel object detection algorithm with enhanced per-
 653 formance and robustness. In *2024 International Conference on Advances in Data Engineering*
 654 and *Intelligent Computing Systems (ADICS)*, pp. 1–6, 2024. doi: 10.1109/ADICS58448.2024.
 10533619.

655

656 Renzhi Wang, Mingfei Cheng, Xiaofei Xie, Yuan Zhou, and Lei Ma. Moditector: Module-directed
 657 testing for autonomous driving systems. *Proceedings of the ACM on Software Engineering*, 2
 658 (ISSTA):137–158, 2025.

659

660 Xiaobao Wei, Qingpo Wuwu, Zhongyu Zhao, Zhuangzhe Wu, Nan Huang, Ming Lu, Ningning Ma,
 661 and Shanghang Zhang. Emd: Explicit motion modeling for high-quality street gaussian splatting.
 662 In *Proceedings of the IEEE/CVF international conference on computer vision*, 2025.

663

664 Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
 665 Xiaowei Zhou, and Sida Peng. Street gaussians: Modeling dynamic urban scenes with gaussian
 666 splatting. In *ECCV*, 2024.

667

668 Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che,
 669 Danfei Xu, Sanja Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-temporal scene de-
 670 composition via self-supervision. *arXiv preprint arXiv:2311.02077*, 2023.

671

672 Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking.
 673 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 674 11784–11793, 2021.

675

676 Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
 677 and Jie Chen. Detrs beat yolos on real-time object detection. In *2024 IEEE/CVF Conference*
 678 on *Computer Vision and Pattern Recognition (CVPR)*, pp. 16965–16974, 2024. doi: 10.1109/
 679 CVPR52733.2024.01605.

680

681 Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu, and Wangmeng
 682 Zuo. Enhancing geometric factors in model learning and inference for object detection and in-
 683 stance segmentation. *IEEE transactions on cybernetics*, 52(8):8574–8586, 2021.

684

685 Ziyuan Zhong, Yun Tang, Yuan Zhou, Vania de Oliveira Neves, Yang Liu, and Baishakhi Ray. A
 686 survey on scenario-based testing for automated driving systems in high-fidelity simulation. *arXiv*
 687 *preprint arXiv:2112.00964*, 2021.

688

689

690

691

692

693

694

695

696

697

698

699

700

701