Under review as a conference paper at ICLR 2025

FROM LOGITS TO HIERARCHIES:
HIERARCHICAL CLUSTERING MADE SIMPLE

Anonymous authors
Paper under double-blind review

ABSTRACT

The structure of many real-world datasets is intrinsically hierarchical, making the
modeling of such hierarchies a critical objective in both unsupervised and super-
vised machine learning. Recently, novel approaches for hierarchical clustering
with deep architectures have been proposed. In this work, we take a critical per-
spective on this line of research and demonstrate that many approaches exhibit
major limitations when applied to realistic datasets, partly due to their high com-
putational complexity. In particular, we show that a lightweight procedure im-
plemented on top of pre-trained non-hierarchical clustering models outperforms
models designed specifically for hierarchical clustering. Our proposed approach
is computationally efficient and applicable to any pre-trained clustering model that
outputs logits, without requiring any fine-tuning. To highlight the generality of our
findings, we illustrate how our method can also be applied in a supervised setup,
recovering meaningful hierarchies from a pre-trained ImageNet classifier.

1 INTRODUCTION

Modeling hierarchical structures in the data is a long-standing goal in machine learning research
(Bengio et al., 2013 Jordan & Mitchell, [2015). In many real-world scenarios, data is inherently
organized in hierarchies, such as phylogenetic trees (Linnzus, |1758; Sneath & Sokal |1962; Penny,
2004}, tumor subclasses (Sgrlie et al.L[2001) and social networks(Ravasz & Barabasi|(2003)); Crockett
et al.| (2017). In unsupervised learning, hierarchical clustering can provide more accurate insights
than flat (i.e. non-hierarchical) clustering methods by introducing multiple levels of granularity and
alleviating the need for a fixed number of clusters specified a priori (Bertsimas et al.| 2021} |Chami
et al.,2020). This aids scientific understanding and interpretability by providing a more informative
representation (Lipton, 2018 [Marcinkevics & Vogt, [2020). The benefits of modeling a hierarchy
in the data extend to supervised scenarios. For example, interpretable methods based on decision
trees (Breiman, 2001; Tanno et al., 2019) hierarchically partition the data so that points in each split
are linearly separable into classes. More recent work leverages hierarchies in the data to improve
supervised methods (Bertinetto et al., |2020; |Goren et al., [2024; Karthik et al., [2021) or for self-
supervision (Long & van Noord, 2023).

Among classic algorithms for hierarchical clustering, agglomerative methods have been the most
widely adopted. These methods compute pairwise distances between data points, often in a lower-
dimensional representation space. Starting from the instance level, a hierarchy is then built based on
the pairwise distances by recursive agglomeration of similar points or clusters together in a bottom-
up fashion (Murtagh & Contreras} [2011). More recently, a revived interest in hierarchical cluster-
ing has sparked novel approaches using deep architectures (Mautz et al.| [2020; |Goyal et al., 2017;
Shin et al., 2019; [Vikram et al.| [2019; Manduchi et al., [2023). However, despite their promis-
ing methodological contributions, recent approaches require specialized architectures and complex
training schemes. Consequently, they cannot be applied to large-scale datasets due to their expensive
computational requirements. Moreover, we find that they often exhibit a lower performance at the
leaf level compared to non-hierarchical models.

In this work, we take a critical perspective on recent research on hierarchical clustering and offer
a simple alternative. Instead of designing specialized hierarchical clustering models, we develop a
lightweight method for hierarchical clustering given a pre-trained flat model. In particular, we show
that a lightweight algorithm implemented on top of (non-hierarchical) pre-trained models markedly



Under review as a conference paper at ICLR 2025

outperforms specialized models for hierarchical clustering. Notably, our algorithm, which we name
Logits to Hierarchies (L2H), only uses logits and requires no fine-tuning of the pre-trained model.
Hence, it generally applies to black-box models even without access to internal representations (e.g.,
API calls to proprietary models) and bypasses the costly computation of pairwise distances between
data points. Moreover, it also applies to supervised models, for which the inferred hierarchy of
classes can aid model interpretability, e.g., for discovering potential biases such as spurious correla-
tions between classes.

In summary, we make the following key contributions:

* In Section |3} we propose a simple algorithm for hierarchical clustering that transforms
the logits from a pre-trained model into a hierarchical structure of classes. Our method
markedly outperforms specialized hierarchical models and has low computational require-
ments. With logits as input, it computes a hierarchical clustering on ImageNet-sized
datasets in a few minutes on a single CPU core.

* In Section4.] our experiments reveal significant limitations of recently proposed methods
for hierarchical clustering, highlighting their weaknesses on large-scale datasets and subpar
performance at the leaf level compared to non-hierarchical approaches.

* In Section f.2] we provide a case study on ImageNet to demonstrate how our method
applies to supervised models, showing how the inferred hierarchy of classes recovers parts
of the WordNet hierarchy and helps discover potential biases of the pre-trained model and
ambiguities in existing categorizations.

2 RELATED WORK

Hierarchical clustering aims to learn clusters of data points that are organized in a hierarchi-
cal structure. The methods used can be broadly categorized into agglomerative and divisive ap-
proaches (Nielsen| 2016). The former tackles the problem with a bottom-up approach and iteratively
agglomerates clusters into larger ones until a full hierarchy is built in the form of a dendrogram, start-
ing with each datapoint being a separate cluster (Murtagh & Contreras},2011). The similarity of data
points is measured according to a distance function, which for high-dimensional data is often de-
fined on a lower-dimensional representation space. Multiple linkage methods have been proposed to
compute the distance between clusters of data points formed at a given step of the algorithm (Sneath),
1957; \Ward, |1963). As examples, single, average, and complete linkage characterize the distance
between two clusters as the minimum, average, and maximum distance between their data points,
respectively. Since these algorithms can be costly, particularly in high-dimensional spaces, approx-
imate versions have been developed for faster computation (Abboud et al., [2019; (Cochez & Mou,
2015)). Notably, linkage methods are still widely applied in many domains, for instance, in medical
research (Nguyen et al., [2024} [Senevirathna et al., 2023 Resende et al., [ 2023).

On the other hand, divisive algorithms start with all objects belonging to the same cluster and recur-
sively split them into subclusters. While early approaches are mostly based on heuristics, Dasgupta.
(2016) proposed the Dasgupta cost: an objective function for evaluating a hierarchical clustering,
with a divisive approach to provide an approximately optimal solution. HypHC introduces a continu-
ous relaxation of Dasgupta’s discrete optimization problem with provable guarantees via hyperbolic
embeddings that better reflect the geometry of trees compared to Euclidean representations (Chami
et al.| (2020); [Liu et al.| (2019). More recently, research has focused on developing deep learning
approaches for hierarchical clustering (Mautz et al., |2020; |Goyal et al.| 2017} |Shin et al., 2019;
Vikram et al., [2019; [Manduchi et al., 2023). Among these, DeepECT learns a hierarchical cluster-
ing on top of the embedding space of a jointly optimized autoencoder (Mautz et al.|[2020). Notably,
TreeVAE not only learns a hierarchical clustering in the latent space but also provides a genera-
tive model that adheres to the learnt hierarchy, thereby enabling sample generation in a structured
manner (Manduchi et al., 2023). However, all these approaches have mostly been tested on simple
datasets, far from realistic settings. As shown in our experiments, they present relevant limitations
when deployed on more challenging datasets, mainly due to their high computational complexity.

Finally, the benefits of modeling a hierarchy in the data are not restricted to the unsupervised setup.
In particular, a recent line of research focuses on leveraging a tree structure in the classes to assess
and reduce the severity of misclassification of supervised models (Karthik et al.,|2021)). This can lead



Under review as a conference paper at ICLR 2025

to safer models in cost-sensitive classification scenarios (Bertinetto et al.,[2020) and allow a classifier
to predict at different levels of the hierarchy depending on the required confidence (Goren et al.,
2024). The visualization of hierarchies also provides global explanations of a model’s functionality,
thereby improving a user’s understanding of the model behavior and fostering trust (Chakraborty
et al.,[2017; ILipton, | 2018)).

3 METHOD

In this work, we take a critical perspective on a recent line of research on hierarchical clustering: as
an alternative to designing ad-hoc complex approaches, we focus on adapting pre-trained flat models
to output a hierarchy with minimal overhead. To this end, we introduce a lightweight algorithm to
leverage the information contained in the logits of a pre-trained flat clustering model to output a
hierarchy of clusters. In the following, we describe the proposed procedure and also provide a
graphical illustration as well as detailed pseudocode.

Let D = {x1,...,zy} be a dataset consisting of N data points and fp be a non-hierarchical
model trained to partition D into K clusters. We assume that fy outputs unnormalized log-
its, i.e. the cluster assignment k* for a datapoint x is determined by computing k* =
arg maxye(y, . g3 softmaxy(fp(x)). We define two functions

he(x) = argmax softmaxy(fo(x)) go(x) = max softmaxy(fy(x))
ke{l,....K} ke{l,...,K}

of which hy computes the cluster assignment for a datapoint x, while gg computes the predicted
probability of the cluster assignment for the datapoint .

A key idea behind our method is a simple yet effective way to determine the relatedness of clusters,
or groups of clusters, by iteratively grouping them together to construct a hierarchy. Intuitively, to
assess which group of clusters G’ is most related to a given group GG, we propose the following
strategy. For data points assigned to clusters in G, we determine which group G’ would have the
majority of these data points reassigned to if clusters in G were not availableﬁ’ormally, we define
the following functions to compute cluster assignments and corresponding predicted probabilities,
restricting only to a subset of the total set of clusters.

‘We start with a masked version of the softmax function

explvi) ifi ¢ G
m_softmaxy, (v; G) = { 2ic(1.....khe *Pvi) #
0 ifieG
given a K-dimensional vector v and a set G C {1,...,K}. This function restricts the softmax
operation to the elements of v at indexes in {1,..., K} \ G. Next, we define functions
hy'(x; G) = argmax m_softmaxy(fo(x); G) gg'(x;G) = max  m_softmaxy(fo(x); G)
ke{l,...,.K} ke{l,...,.K}

Note that the hj' and gg* functions correspond to hy and gy, except restricting the choice of viable
clusters to {1,..., K} \ G. In particular, the h}* function computes the cluster assignment for a
datapoint « restricting to clustersin {1, ..., K }\ G, and gj* the corresponding predicted probability.
Lastly, we define

D¢ :={xeD|hy(x)=c}

i.e. the subset of data points assigned to a given cluster ¢ € {1,..., K}. Similarly, we denote as
DY = U.eqD° the subset of data points assigned to a group of clusters G C {1,..., K}.

!'This passage is primarily for intuition and not strictly accurate. To be precise, we look not at reassignments
but at predicted probabilities of reassignments (see Equation @])).



Under review as a conference paper at ICLR 2025

Algorithm 1 Logits to Hierarchies (L2H)

Given aggregation function A, and functions gy, gy* defined as above for pre-trained K -clustering model fy.
Input: Dataset D.
Output: Hierarchy H.
Initialize groups G = {G1, ..., Gk} where G, = {k} # Groups initialized as single clusters
H=[] # Hierarchy initialized as empty list
for step t from 1 to K — 1 do
for group G in G do

Compute s(G) := A:Z:E’DC,CEG go(x) # Compute group scores as in Eqn. |I|
end for
Take G* € argming;5(G) # Select group with lowest score for merging
for cluster cin {1,..., K} \ G* do

Compute rp(c) := T o gp (@ G") # Compute total prcdigtcd prpbubilitﬁ

hggc(i;%*):c per cluster as in Eqn.
end for
Take GT = ArgMaX e g (G Fll > ecc P(C) # Select GT, most related group to G*, for merging
Update G by merging groups G* and G # Update groups
Update H by adding that G* and G are merged at step ¢ # Update hierarchy
end for

We describe our proposed method in Algorithm[T] At the start of the procedure, K groups are initial-
ized as single clusters. E|At each iteration, two groups are merged into a single group, constructing a
tree of clusters up to the root in K — 1 iterations. Each iteration can be split in two stages. In the first
stage, a score is computed for each group. To compute the score for a given group GG we aggregate
the predicted probabilities for the data points assigned to clusters contained in G as

A go(x) (1)
xeDe
ceG

where A is a chosen aggregation function (e.g. sum function). Then, the lowest scored group G* is
selected for merging at this iteration, which concludes the first stage.

In the second stage, we search for the group G that is most related to G* to perform the merging.
To do so, as mentioned above, we look at the subset of data points assigned to clusters in G*: for
these data points we recompute cluster assignments and predicted probabilities, this time restricting
to clusters not contained in G*. More formally, the total reassigned predicted probability to each
cluster not contained in G* is computed as

rp(c) == Z gg' (x; G¥) Vee {1,..,K}\G* 2

zeD”
hg' (z;G*)=c

Note that this quantity can be interpreted as a measure of relatedness between each cluster ¢ €
{1,.., K} \ G*, and the group of clusters G*. The most related group to G* is finally selected as
GT 6 argmaXGeg\ (G} 1G] GI > ccc: Tp(c), i.e. by averaging the total reassigned predicted probability
across clusters in each group and selecting the group with the highest average. Given that cluster
assignments and corresponding predicted probabilities can be computed via simple operations on
the logits, the whole procedure can be executed with as input only the logits for the dataset D
outputted from a pre-trained model fy. To show this, we report an example Python implementation
in Appendix [A] Additionally Figure [T provides an illustration to exemplify the proposed grouping
strategy.

Note that here cluster is used to refer to a single cluster found by the pre-trained model, while group refers
to a set of clusters that are grouped together at a given step of the algorithm.



Under review as a conference paper at ICLR 2025

Iteration 1

4 Mostreassigned

predicted probability

Figure 1: Illustration of the L2H algorithm. The four depicted clusters represent dogs in blue,
cats in yellow, horses in red, birds in green respectively. In the first iteration (bottom), where
groups correspond to single clusters, the dog cluster is selected for merging (shaded in grey). When
recomputing predicted probabilities for samples in the dogs cluster, restricting to the remaining
clusters, the cluster of cats has the highest predicted probability of reassignment. Note how, after
merging, these two clusters are considered as a single group in the next iteration (top).

4 EXPERIMENTS

In this section we showcase the experimental results obtained with our proposed approach. In the
first part, we focus on the task of hierarchical clustering. We demonstrate that existing specialized
models for hierarchical clustering present major limitations when applied in realistic settings. In
contrast, our proposed approach achieves convincing results in challenging vision datasets, markedly
outperforming alternative methods. In the second part of this section, we present a case study where
we discuss the application of the L2H algorithm on top of a pre-trained ImageNet classifier, demon-
strating its value for model interpretability and the discovery of spurious correlations. Additional
experimental details on datasets, implementations and metrics can be found in Appendix B}

4.1 HIERARCHICAL CLUSTERING

In this section, we compare the performance of our proposed method for hierarchical clustering
with recent specialized approaches on three challenging vision datasets: namely the CIFAR-10,

CIFAR-100 (Lake et all [2015) and Food-101 (Bossard et al.,[2014)) datasets. We report our results

in Table [T} For each dataset, we implement our algorithm on top of two pre-trained flat clustering
models, namely TURTLE (Gadetsky et al, [2024) and TEMI (Adaloglou et al.l 2023). These are
two state-of-the-art clustering methods (see Appendix [B.2]for more details), both of which are not
designed to produce a hierarchy of clusters. In our evaluation, we report both metrics to evaluate
models at the flat level and metrics to evaluate the quality of the produced hierarchy. For comparing
models at the flat level, we report Normalized Mutual Information (NMI), Adjusted Random Index
(ARI), Accuracy and Leaf Purity (LP). To assess the quality of the hierarchical clustering, we report
two metrics: Dendrogram Purity (DP) and Least Hierarchical Distance (LHD). The former was
introduced in |Kobren et al.| (2017) and extends the notion of purity, normally evaluated at the leaf
level, to assess the quality of a tree clustering: higher purity corresponds to higher quality of the
hierarchy. Note that this metric was recently adopted in[Manduchi et al.| (2023)) to benchmark deep
hierarchical clustering models. Least Hierarchical Distance, on the other hand, measures the average




Under review as a conference paper at ICLR 2025

minimal log-distance in the hierarchy between any pair of data points that have the same true label
but different cluster assignments. A better hierarchy corresponds to a lower LHD. More details
about our metrics can be found in the Appendix

The results in Table [T] uncover the aforementioned limitations of recent deep learning methods
(DeepECT, TreeVAE). In particular, these models do not scale well in terms of the depth of the
hierarchy, thereby producing overly shallow hierarchies for datasets with a large number of classes
(CIFAR-100, Food101). We find this to be linked to their high computational complexity, which
we discuss later in Table For instance, TreeVAE learns a hierarchical generative model with
leaf-specific decoders: this choice helps its performance in a generative scenario but impacts its
scalability to large-scale datasets. Importantly, the comparison in terms of flat clustering metrics
highlights that ad-hoc hierarchical models produce clusterings at the leaf level that are much less
accurate than those obtained with non-hierarchical models. The results for DP and LHD highlight
the shortcomings in these tasks. Note that we notice the presence of artifacts, underlined in Table[T}
for the LHD metric, due to overly shallow hierarchies that degenerate to having only two to three
leaves.

Flat Hierarchical Inference
# leaves on
|NMI (1) ARI(T) ACC (1) LP(1)|DP (1) LHD (})| festset

CIFAR-10 \
Agglomerative | 0.074 0.038 0.211  0.246 | 0.121  0.549 10 X
HypHC| 0.019 0.009 0.134  0.359 | 0.104  0.569 10 X
DeepECT | 0.006 0.002 0.110  0.110 | 0.101 0.369 2-3 v
TreeVAE | 0.414 0.313 0.497  0.523 | 0.341 0.410 10 v
L2H-TEMI | 0.901 0.906 0.956 0.958 | 0.902 0.348 10 v
L2H-Turtle | 0.985 0.989 0.995 0.995 | 0.988 0.277 10 v

CIFAR-100 \
Agglomerative | 0.223 0.020 0.090 0.131 | 0.019 0.428 100 X
HypHC| 0.072 0.004 0.031  0.560 | 0.011 0.499 100 X
DeepECT | 0.016 0.005 0.070  0.070 | 0.052  0.121 2-3 v
TreeVAE | 0.199 0.098 0.228 0.242 | 0.103  0.484 20 v
L2H-TEMI| 0.778 0.565 0.682  0.698 | 0.502  0.298 100 v
L2H-Turtle | 0.917 0.831 0.896 0.896 | 0.803  0.235 100 v

Food-101 |
Agglomerative | 0.082 0.004 0.039  0.045 | 0.011 0.438 101 X
HypHC | 0.035 0.002 0.022  0.630 | 0.011 0.573 101 X
DeepECT | 0.003 0.000 0.011  0.011 | 0.010 0.333 2-3 v
TreeVAE | 0.114 0.017 0.057 0.058 | 0.016  0.483 20 v
L2H-TEMI | 0.917 0.841 0.904 0.881 | 0.801 0.270 101 v
L2H-Turtle | 0.894 0.800 0.876  0.843 | 0.758  0.297 101 v

Table 1: Quantitative comparison of hierarchical clustering performance on three datasets (CIFAR-
10, CIFAR-100, Food-101). We report as a baseline Agglomerative clustering, deep hierarchical
specialized models (DeepECT, TreeVAE), and our L2H method applied on top of two state-of-the-
art flat models (TEMI, TURTLE). We also indicate the number of leaves in the hiearchy modelled
by each approach, and whether a given method can perform inference on a hold-out test set. We
bold best results for each metric and underline results that are artifacts of degenerate solutions with
shallow hierarchies. Results are averaged over five runs.

In contrast to alternative approaches, our proposed algorithm recovers high-quality hierarchies for
all three datasets, when implemented on top of both TEMI and TURTLE models. Looking at both
hierarchical metrics, our method markedly outperforms other approaches, with a consistent margin
over costly deep learning specialized methods. These findings demonstrate that L2H can leverage
the information embedded in the logits of a pre-trained flat clustering model to model an accurate
hierarchy of the clusters, outperforming ad-hoc hierarchical models, even without having access



Under review as a conference paper at ICLR 2025

to internal representations. Note as well that our method does not require any fine-tuning of the
pre-trained model and, by construction, retains its clustering performance at the leaf level, which
matches state-of-the-art in our results. Finally, the efficacy of our proposed procedure is not hindered
by the presence of a large number of the classes in the dataset, as we witness for other methods. In
particular, in Appendix [C| we show that our method can achieve remarkable hierarchical clustering

results on datasets as large as ImageNet1K (Deng et al., [2009).

.
suouda®
preoake
uoISIA3IRY
clock
lamp
up
wi
e

o
o
@27
a0t
yead

Colored ranges

[ People

[ Fumiture

[[] Fruiits & vegetables
D Electronic devices
[] Food containers
[ venicles 2

[[] vehicles 1

o

B B

“ [[] Large natural outdoor scenes
o
X [] Large man-made outdoor things

[ Trees
pridge [ mnsects

castle [] Non-insect invertebrates

aoud

awyscree’

house [[] Large omnivores and herbivores

forest [[] Large camivores

pine tree ] small mammals

Willow tree [ Medium-sized mammals
Flowers

Fish

W Large aquatic mammals

[[] Reptiles

jowed
oWe?
oo
pe
o

Jeydaje:
gezuedwiud

Figure 2: Visualization of the hierarchical clustering produced by L2ZH-TURTLE on the CIFAR-100
dataset. The inferred hierarchy is represented as a circular tree. On the lowest level, the leaves are
annotated by reporting the most frequent label for the samples in each leaf. Leaves are color-colored
according to the 20 superclasses in the dataset.

In practice, hierarchical clustering results are often used as a visualization tool, and to analyze the
structure of a dataset at different levels of granularity. Hence, to evaluate our proposed approach
we visualize and inspect the hierarchy obtained with L2ZH-TURTLE on the CIFAR-100 dataset in
Figure2] Note that given the absence of leaf labels, we associate a class label to each leaf by looking
at the most frequent label among the data points in the given leaf. While an off-the-shelf ground-
truth hierarchy is not available for the CIFAR-100 dataset, the authors organize the 100 classes in
20 superclasses. Hence, we color-code the inferred leaf labels in the hierarchy by superclasses and
check if the hierarchical clustering recovers this global structure. Notably, the global structure of
the superclasses is largely reflected in the visualized hierarchy. Most interesting is that the outliers,
for which the color does not coincide with the neighboring leaves, still reflect meaningful seman-
tic associations. For instance, whale and dolphin—despite being aquatic mammals—are grouped
with fish species. However, this is not surprising, given their adaptation exclusively to aquatic en-
vironments and the presence of similar traits to fishes, like streamlined bodies. On the contrary,
mammals such as otter, beaver, and seal, which are only semi-aquatic, are grouped with other small
to medium-sized terrestrial mammals, emphasizing size and communal characteristics like the pres-
ence of limbs and fur. Another example is the characterization of worm and snake alongside in the
hierarchy. Although snakes are reptiles, their elongated, limbless bodies visually resemble those of
non-insect invertebrates like worms. This showcased analysis confirms the efficacy of our method
in recovering a tree structure that follows meaningful semantic associations. The results indicate



Under review as a conference paper at ICLR 2025

that our method produces hierarchies that enable detailed exploration of the structure in the data at
varying levels of granularity. Inspecting the hierarchy gives valuable insights for interpretability,
revealing underlying associations by the model.

Finally, we end this section with a comparison in terms of the computational cost of our method
compared with alternative models, and in particular with specialized deep learning approaches for
hierarchical clustering. As the results in Table [2] show, our proposed L2H algorithm is extremely
lightweight. For completeness, we also measure the overall runtime to perform hierarchical clus-
tering with our method, including the runtime to train the TURTLE model, as an example model
used to compute logits as input. Our approach allows to perform hierarchical clustering extremely
efficiently even on large-scale datasets such as ImageNet-1K, with a total training time of a few
minutes. Note that, due to the combined efficiency of our method and state-of-the-art flat clustering
models, the overall runtime scales seamlessly with dataset size and number of leaves in the hier-
archy. Conversely, alternative hierarchical deep learning approaches exhibit a significantly higher
computational cost. Moreover, a large dataset size and number of classes markedly increase the
computational burden.

\ Dataset
CIFAR-10  CIFAR-100 Food-101 ImageNet1K
K =10 K =100 K =101 K = 1000
Ny = 50000 Ny =50000 Ny =T75750 N, = 1281167
L2H| <0.01 < 0.01 < 0.01 0.47
Agglomerative 0.1 0.1 0.9 -
HypHC 163.7 153.3 195.3 -
DeepECT 24.1 26.2 67.5 -
TreeVAE 364.1 756.3 2293.7 -
L2H-TURTLE 1.6 1.6 1.7 5.27

Table 2: Training time (in minutes) for our proposed method compared to baselines for hierarchical
clustering on CIFAR-10, CIFAR-100, and Food-101 datasets. At the top, we report the runtime
for the L2H algorithm alone. Below, we report the runtime of the TURTLE model plus our L2H
algorithm to produce a hierarchy, compared with the runtime of each baseline model. Results are
averaged over three runs.

4.2 CASE STUDY: PRE-TRAINED IMAGENET CLASSIFIER

Next, we demonstrate how our method can be used in a supervised setup to produce a hierarchi-
cal clustering given the logits of a pre-trained classifier. Specifically, we use the ImageNet-1K
dataset (Deng et al.| 2009), which comprises over a million images and a thousand distinct classes
with an underlying hierarchical structure. We apply L2H on the logits of a pre-trained ImageNet
classifier to determine the hierarchy of classes. As a pre-trained classifier, we use the Internlmage
model (Wang et al.| 2022)). The resulting hierarchical clustering is visualized in Figure

Figure [3a] shows the inferred dendrogram for the thousand ImageNet classes. The colors indicate
whether a leaf node corresponds to the superclass “artifact” or “organism”, which we determine
based on the corresponding WordNet hypernyms of each class. Overall, we observe a distinct sep-
aration between the two superclasses in the inferred dendrogram. Figure [3b] zooms into a subtree
of the inferred dendrogram that comprises different bird species. Specifically, it shows 58 of the 60
classes of birds found in the ImageNet dataset. The leaf nodes are colored by different clades of
bird species (based on the WordNet hierarchy), showing that the inferred hierarchy groups together
related species. For example, the group “aquatic bird” is almost completely represented in one of
the two main branches, which further splits into a separate cluster for “parrots” and another one for
“bird of prey”. The other main branch of the tree subdivides further into “passerine” and “game
bird” forming distinct clusters.

Overall, our results suggest that the inferred hierarchy recovers a significant portion of the global
and local hierarchical structure of the ImageNet dataset given the logits of a pre-trained ImageNet
classifier trained with non-hierarchical labels. Yet, the inferred dendrogram also reveals interest-



Under review as a conference paper at ICLR 2025

ing outliers. For example, in Figure [3a there is a distinct subtree for snow-related artifacts (e.g.,
dogsled, snowmobile, bobsled) within a large branch of the tree that comprises organisms. Fur-
ther investigation shows that this group of artifacts is merged with arctic animals (e.g., malamute,
Siberian husky, Eskimo dog), which reveals an intuitive correlation between classes and highlights
potential biases of the pre-trained model. Likewise, in Figure [3b] we see potential outliers such as
“peacock” among the group of parrots or “bustard” among game birds. While the WordNet hierar-
chy classifies “bustard” as a wading bird, hence among aquatic birds, the inferred hierarchy places
it among game birds. Interestingly, common definitions of bustards as terrestrial game birds support
the inferred categorization.

white storg.

(a) Complete tree (1K classes) (b) Subtree of birds (58 classes)

Figure 3: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the ImageNet-
1K dataset. The inferred hierarchy is represented as a circular dendrogram, where the leaf nodes are
organized in a circle. Figure[3a]shows the complete tree colored by the corresponding WordNet hy-
pernyms “artifact” and “organism”, which are the largest two superclasses in the ImageNet dataset.
Figure [3b] shows the subtree of birds colored by different bird species if they comprise more than
one class. The results show that our method recovers a significant portion of the global and local
hierarchical structure of the ImageNet dataset.

5 CONCLUSION

In this work, we propose a lightweight yet effective procedure for hierarchical clustering based on
pre-trained non-hierarchical models. Notably, our solution proves to be markedly more effective and
significantly more computationally efficient than alternative methods. Different from existing mod-
els for hierarchical clustering, our method can successfully handle large datasets of many classes,
taking an important step in deploying hierarchical clustering methods in challenging settings. More-
over, we show that the usefulness of our approach extends to supervised setups, by implementing
it on top of a pre-trained classifier to recover a meaningful hierarchy of classes. A case study on
ImageNet shows that this approach provides relevant insights for interpretability, and can reveal
potential biases of the pre-trained model and ambiguities in existing categorizations.

While we provide extensive results on image datasets, in this work we do not explore other data
modalities. However, our procedure is general and may be applied to different data types, which we
leave for future work. Hierarchical clustering presents important advantages over non-hierarchical
clustering by simultaneously capturing the structure in the data at multiple levels of granularity.
However, inspecting the hierarchy is still necessary to extract valuable insights. An important focus
for future work is to investigate strategies to partly bypass this process, automatically selecting levels
of the hierarchies that provide the most meaningful clustering.



Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We share a Python implementation of our L2H algorithm both in Appendix[A]and in the supplemen-
tary material. To ensure the reproducibility of our experimental results, in Appendix [B| we provide
detailed insights on datasets and metrics, as well as on the implementation of our method and the
compared baselines.

REFERENCES

Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-dimensional
hierarchical clustering. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Nikolas Adaloglou, Felix Michels, Hamza Kalisch, and Markus Kollmann. Exploring the limits of
deep image clustering using pretrained models. In 34th British Machine Vision Conference 2023,
BMVC 2023, Aberdeen, UK, November 20-24, 2023. BMVA, 2023.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.

Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A. Lord.
Making better mistakes: Leveraging class hierarchies with deep networks. In CVPR, 2020.

Dimitris Bertsimas, Agni Orfanoudaki, and Holly Wiberg. Interpretable clustering: an optimization
approach. Machine Learning, 2021.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 —mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Supriyo Chakraborty, Richard Tomsett, Ramya Raghavendra, Daniel Harborne, Moustafa Alzantot,
Federico Cerutti, Mani Srivastava, Alun Preece, Simon Julier, Raghuveer M Rao, et al. Inter-
pretability of deep learning models: A survey of results. In 2017 IEEE smartworld, ubiquitous
intelligence & computing, advanced & trusted computed, scalable computing & communications,
cloud & big data computing, Internet of people and smart city innovation (smartworld/SCAL-
COM/UIC/ATC/CBDcom/IOP/SCI), pp. 1-6. IEEE, 2017.

Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous embed-
dings and back: Hyperbolic hierarchical clustering. In Advances in Neural Information Process-
ing Systems, 2020.

Michael Cochez and Hao Mou. Twister tries: Approximate hierarchical agglomerative clustering
for average distance in linear time. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015.

KA Crockett, D Mclean, A Latham, and N Alnajran. Cluster analysis of twitter data: A review of
algorithms. In Proceedings of the 9th International Conference on Agents and Artificial Intel-
ligence, volume 2, pp. 239-249. Science and Technology Publications (SCITEPRESS)/Springer
Books, 2017.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Artyom Gadetsky, Yulun Jiang, and Maria Brbic. Let go of your labels with unsupervised transfer.
In International Conference on Machine Learning, 2024.

10



Under review as a conference paper at ICLR 2025

Shani Goren, Ido Galil, and Ran El-Yaniv. Hierarchical selective classification. arXiv preprint
arXiv:2405.11533,2024.

Prasoon Goyal, Zhiting Hu, Xiaodan Liang, Chenyu Wang, and Eric Xing. Nonparametric varia-
tional auto-encoders for hierarchical representation learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2017.

M. L. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science,
349(6245):255-260, 2015.

Shyamgopal Karthik, Ameya Prabhu, Puneet K. Dokania, and Vineet Gandhi. No cost likelihood
manipulation at test time for making better mistakes in deep networks. In International Confer-
ence on Learning Representations, 2021.

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. A hierarchical algo-
rithm for extreme clustering. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 17, pp. 255-264, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098079.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Carl Linnaus. Systema naturcee per regna tria naturce, secundum classes, ordines, genera, species,
cum characteribus, differentiis, synonymis, locis, volume 1. Salvius, Holmi, 10 edition, 1758.
Editio decima, reformata.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3):31-57, 2018.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In Advances in
Neural Information Processing Systems, 2019.

Teng Long and Nanne van Noord. Cross-modal scalable hyperbolic hierarchical clustering. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, and Julia Vogt. Tree variational autoencoders.
In Advances in Neural Information Processing Systems, 2023.

Ricards Marcinkevi¢s and Julia E Vogt. Interpretability and explainability: A machine learning zoo
mini-tour. arXiv preprint arXiv:2012.01805, 2020.

Dominik Mautz, Claudia Plant, and Christian Bohm. DeepECT: The deep embedded cluster tree.
Data Science and Engineering, 5(4):419-432, 2020.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39—41, November
1995. ISSN 0001-0782.

F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview. WIREs Data
Mining and Knowledge Discovery, pp. 86-97, 2011.

Yann Nguyen, Gaétane Nocturne, Julien Henry, Wan-Fai Ng, Rakiba Belkhir, Frédéric Desmoulins,
Elisabeth Bergé, Jacques Morel, Aleth Perdriger, Emmanuelle Dernis, Valérie Devauchelle-
Pensec, Damien Séne, Philippe Dieudé, Marion Couderc, Anne-Laure Fauchais, Claire Larroche,
Olivier Vittecoq, Carine Salliot, Eric Hachulla, Véronique Le Guern, Jacques-Eric Gottenberg,
Xavier Mariette, and Raphaele Seror. Identification of distinct subgroups of Sjogren’s disease by
cluster analysis based on clinical and biological manifestations: data from the cross-sectional
paris-saclay and the prospective assess cohorts. The Lancet Rheumatology, 6(4):e216—e225,
2024/09/13 2024.

Frank Nielsen. Hierarchical clustering. Introduction to HPC with MPI for Data Science, pp. 195—
211, 2016.

11



Under review as a conference paper at ICLR 2025

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

David Penny. Inferring Phylogenies.—Joseph Felsenstein. 2003. Sinauer Associates, Sunderland,
Massachusetts. Systematic Biology, 53(4):669-670, 08 2004.

Erzsébet Ravasz and Albert-Laszl6 Barabdsi. Hierarchical organization in complex networks. Phys-
ical review E, 67(2):026112, 2003.

Vivian Resende, Diamantis I. Tsilimigras, Yutaka Endo, Alfredo Guglielmi, Francesca Ratti, Luca
Aldrighetti, Hugo P. Marques, Olivier Soubrane, Vincent Lam, George A. Poultsides, Irinel
Popescu, Sorin Alexandrescu, Ana Gleisner, Guillaume Martel, Tom Hugh, Itaru Endo, Feng
Shen, and Timothy M. Pawlik. Machine-based learning hierarchical cluster analysis: Sex-based
differences in prognosis following resection of hepatocellular carcinoma. World Journal of
Surgery, 47(12):3319-3327, 2023.

Angela M. Senevirathna, Andrew J. Pohl, Matthew J. Jordan, William Brent Edwards, and Reed
Ferber. Differences in kinetic variables between injured and uninjured rearfoot runners: A hier-
archical cluster analysis. Scandinavian Journal of Medicine & Science in Sports, 33(2):160-168,
2024/09/13 2023.

Su-Jin Shin, Kyungwoo Song, and I1-Chul Moon. Hierarchically clustered representation learning.
In In AAAI Conference on Artificial Intelligence, 2019.

P. H. A. Sneath and Robert R. Sokal. Numerical taxonomy. Nature, 193(4818):855-860, 1962.
Peter HA Sneath. The application of computers to taxonomy. Microbiology, 17(1):201-226, 1957.

T Sorlie, C M Perou, R Tibshirani, T Aas, S Geisler, H Johnsen, T Hastie, M B Eisen, M van de
Rijn, S S Jeffrey, T Thorsen, H Quist, ] C Matese, P O Brown, D Botstein, P E Lgnning, and AL
Bgrresen-Dale. Gene expression patterns of breast carcinomas distinguish tumor subclasses with
clinical implications. Proceedings of the National Academy of Sciences of the United States of
America, 2001.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, and Aditya Nori. Adap-
tive neural trees. In Internation Conference on Machine Learning, 2019.

Moritz Vandenhirtz, Florian Barkmann, Laura Manduchi, Julia E Vogt, and Valentina Boeva. sctree:
Discovering cellular hierarchies in the presence of batch effects in scrna-seq data. arXiv preprint
arXiv:2406.19300, 2024.

Sharad Vikram, Matthew D. Hoffman, and Matthew J. Johnson. The loracs prior for vaes: Letting
the trees speak for the data. In International Conference on Artificial Intelligence and Statistics,
2019.

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong
Lu, Lewei Lu, Hongsheng Li, et al. Internimage: Exploring large-scale vision foundation models
with deformable convolutions. arXiv preprint arXiv:2211.05778, 2022.

Joe H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58:236-244, 1963.

12



Under review as a conference paper at ICLR 2025

APPENDIX

A CODE IMPLEMENTATION OF THE L2H ALGORITHM

In Figure ] we provide a Python implementation of the L2H algorithm proposed in this work using
standard scientific computing libraries (NumPy, SciPy). As stated in Section [3] our algorithm only
requires the logits as input. It can be executed on the CPU even for large datasets, e.g., with a runtime
of less than a minute for ImageNet. Note that our procedure can be applied to any pre-trained
unsupervised model to perform hierarchical clustering. Further, it can also be applied to logits from
a supervised model to infer a hierarchy of classes. We store the hierarchy as a list comprised of
groups of clusters that are merged iteratively. The aggregation function for computing the score per
group is a design choice (as described in Appendix[B.2) that can be viewed as a hyperparameter.

import numpy as np
from scipy.special import softmax

def L2H (logits):
wnn
L2H Algorithm.
Args:
logits: Logits from model (N x K) where N number of datapoints 1in the dataset
and K is the number of clusters
Returns:
steps: Merging steps characterizing the hierarchy

wnn
# Number of cluster
K = logits.shape[-1

# Initialize groups of clusters to single clusters

s 1s equal to size of last dimension in the logits

groups = [(c,) for c in range (K)]

# Initialize 1list of steps that characterize hierarchy

steps = []

# Given the logits for the whole dataset, compute assignments and predicted probabilities
softmaxed_logits = softmax(logits, axis=-1

assignments = np.argmax (softmaxed_logits, axis=-1)

pred_probs = np.max(softmaxed_logits, axis=-1)

for step in range(l, K):
# Compute score for for each group (which chosen aggregation function)

score_per_gr = {}
for group in groups:
score_per_gr[group] = sum([np.mean(pred_probs[assignments == c]) for c in group])

# Get the group with the lowest score (lsg), will be merged at this iteration
lsg = min(score_per_gr, key=score_per_gr.get)

# Get the logits for datapoints assigned to the lowest score group

logits_1lsg = logits[np.where(np.isin(assignments, 1lsg)) [0]]

# Reassign data I

~apoints 1in

clusters not in 1sg,

and re-cc ite predicted probabilities
msm_logits_lsg = np.zeros_like(logits_1lsg)
cls_not_in_1lsg = [c for c in range(K) if c¢ not in lsg]
cls_in_1lsg = [c for c in range(K) if c¢ in lsg]
msm_logits_lsg[:, cls_not_in_lsg] = softmax(logits_1lsg[:, cls_not_in_lsg], axis=-1)
msm_logits_lsg[:, cls_in_1lsg] = 0.
reassignments = np.argmax (msm_logits_lsg, axis=-1)
re_pred_probs = np.max (msm_logits_1lsg, axis=-1)

# Com e the total reassigned predicted probabi

# clusters in each group.Then select the group witl
re_pp_per_group = {

group: np.mean ([np.sum(re_pred_probs[reassignments == c]) for c in group]) for
group in groups if group != lsg

}

mtg = max (re_pp_per_group, key=re_pp_per_group.get)

# Merge “lsg’ with "mtg’ and update ‘groups-.

groups = [gr for gr in groups if gr not in [lsg, mtg]] + [lsg + mtg]

# Add merging in current iteration to steps
steps.append((lsg, mtqg))
return steps

Figure 4: Python code implementation for the L2H algorithm presented in Section [3| Note that we
choose the aggregation function when computing the score per group as described in Appendix@

13



Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 DATASETS

In this work, we run experiments on four challenging vision datasets, namely CIFAR-10 and CIFAR-
100 (Lake et al., 2015), Food-101 (Bossard et al., 2014) and ImageNet1K (Deng et al.l [2009).
CIFAR-10 and CIFAR-100 are well-established object classification datasets. The CIFAR-10 dataset
consists of 60000 32x32 colored images with 32x32, divided in 10 classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck. The train/test splits contain 50000 and 10000 im-
ages respectively. Similarly, also the CIFAR-100 dataset consists of 60000 32x32 colored images.
However, they are organized into 100 classes. In addition, the 100 classes are grouped into 20 su-
perclasses. As for CIFAR-10, the train/test splits also contain 50000 and 10000 images respectively.
The Food101 dataset is a fine-grained classification dataset of food images, consisting of 101000
images for 101 classes. Images are high-resolution, up to 512 pixels side length. Images are split
between 75750 training samples and 25250 test images. The ImageNet1K dataset, widely used in
computer vision, consists of 1000 classes organized according to the WordNet hierarchy (Miller,
1995), with 1281167 training and 50000 test samples, respectively.

B.2 IMPLEMENTATION DETAILS

For our hierarchical clustering experiments, to train the TURTLE and TEMI models on all con-
sidered datasets, we use the official code provided by the authors with recommended choices for
hyperparameters (Gadetsky et al.l [2024; |Adaloglou et al.l |2023). In particular, TEMI employs
CLIPViTL/14 representations of the data, while TURTLE employs both CLIPViTL/14 and DINOv2
ViT-g/14 representations. For more details on TURTLE trained using two representation spaces, see
the original paper (Gadetsky et al., [2024). We train both TEMI and TURTLE with a number of
clusters K equal to the true number of classes in each dataset. For each dataset, we train models on
the training set, then report metrics on the test set. Note that the L2H algorithm takes as input logits
from the training set to infer the hierarchy, while metrics that evaluate the quality of the hierarchy
are computed on the test set. As the aggregation function A in the L2H algorithm (see Section [3) we

employ
1
A o) =% g 3 ole)
wceeg c€G xzEDe

which we find to work well experimentally. However, other choices are possible (see also Table [4).
We implement TreeVAE (Manduchi et al.| 2023)) with their contrastive approach using the provided
PyTorch codebase with corresponding defaults. The splitting criterion is set to the number of sam-
ples, an inductive bias that benefits this baseline method, since all datasets are balanced (Manduchi
et al., 2023} 'Vandenhirtz et al., 2024). We set the number of clusters to 10 for CIFAR-10 and to 20
for the rest, due to the computational complexity, as seen in Table[2] as well as memory complexity,
since every additional leaf adds a new decoder. DeepECT (Mautz et al.,[2020)) is also implemented
using their provided codebase with the augmented version. Note that similar to the results shown in
Manduchi et al.| (2023)), for colored datasets, DeepECT fails to grow trees, as they always collapse,
indicating that DeepECT fails to find meaningful splits. We implement agglomerative clustering
using the scikit-learn library (Pedregosa et al.| 2011}, and fit the model using PCA embeddings of
the datasets with 50 components and wards criterion (Ward, [1963)) as the linkage method. Using the
author’s original codebase, we further train Hyperbolic Hierarchical Clustering (Liu et al.,[2019) on
CLIP embeddings of the respective datasets. The authors do not describe how to retrieve cluster as-
signments using their method, so we follow the agglomerative clustering procedure and assume the
leaves of the last k tree nodes created to form a cluster, where k corresponds to the chosen number
of clusters.

B.3 METRICS

Here we provide more details on the metrics reported in our experiments in Section In our
comparisons, we evaluate models both on flat and hierarchical clustering.

Flat clustering To assess model performance in flat clustering, for each model we take the clus-
tering at the level of the hierarchy where the number of clusters corresponds to the true number of

14



Under review as a conference paper at ICLR 2025

classes K in a given dataset. If the number of leaves at the leaf level of the hierarchy is smaller than
K, as is the case for, e.g., TreeVAE and DeepECT on CIFAR-100, we consider the clustering at the
leaf level. For flat clustering comparisons, we resort to well-established metrics, namely NMI, ARI,
Accuracy, and Purity of the clusters (i.e., Leaf Purity). To compute accuracy and leaf purity, we
resort to recent implementations in (Gadetsky et al.| (2024) and [Manduchi et al.[(2023), respectively.

Hierarchical clustering To assess the quality of a learned hierarchy, and compare the results of
different models in hierarchical clustering, we resort to two metrics. Dendrogram Purity (DP), intro-
duced in [Kobren et al.| (2017)), extends the notion of leaf purity to evaluate the purity of hierarchical
clusters, and was recently adopted to benchmark hierarchical clustering models (Manduchi et al.,
2023)). Following the notation of |[Kobren et al.| (2017)), let C* denote the true K -clustering (i.e., true
class labeling) of a dataset D. Then define

P* = {(xi,xj)Vx,;,xj S D,Ij 7é T | C*(JI,) = O*(ltj)}

as the set of pairs of data points that belong to the same true cluster. Dendrogram Purity (DP) is then
defined for a hierchical clustering H as

K
DP(H):lpl*lz > pur(lvs(LCA(w;, 2;)),Cf),

k=1 (z4,2,)€C}

where LCA (21, x2) computes the least common ancestor node of data points z; and xo in H, 1vs(z)
returns the set of leaves of the sub-tree rooted at any internal node z and pur(Sy,S2) = |S1 N
S2]/|S1]. One possible caveat of this metric is its high correlation with Leaf Purity: with a high leaf
purity, most pairs of samples sharing the true label will inevitably fall into the same leaf. To address
this, we introduce an additional metric for evaluation, namely Least Hierarchical Distance. With a
similar notation as above we define

P — {(mi,mg‘)vm,xj €D,z; #a; | C*(ai) = C*(a) Az H) # l(mj;H)}

where the function [(z; ) returns the cluster prediction for datapoint x at the leaf level of {. Hence
P* is the set of all pairs of points sharing the same true label that are not assigned to the same leaf
in H. Least Hierarchical Distance is then defined for a hierarchical clustering H as

1 log, (td(l(zs; H), l(xj;H))) — 1
HIDO = 2 T ) -1

(zi,z;)eP*
where td(l1, l2) computes the number of edges in the shortest path that connects two leaves l1, 5 in
the tree defined by . in the tree defined by H. Different from Dendrogram Purity, Least Hierarchi-
cal Distance only takes into consideration pairs of data points with the same true label that do not
fall into the same leaf. Hence, it does not exhibit strong correlation with Leaf Purity, being more
specific to the quality of the hiearchy, rather than influenced by the clustering at the leaf level.

C ADDITIONAL RESULTS AND VISUALIZATIONS

In Table [3] we report the results for our L2H method, implemented on top of the TURTLE model,
for hierarchical clustering on the ImageNet1K dataset. These results complement the ones shown
in Table[I] proving that our method can reach remarkable performance for hierarchical clustering in
datasets that are large in size and number of classes. Note that alternative approaches (e.g. DeepECT,
TreeVAE) do not scale to a dataset of this size and number of classes.

NMI(1) ARI() ACC() LP (1) |DP() LHD(J) |
L2H—TURTLE‘ 0.882 0.621 0.726 0.744 ‘ 0.560 0.210 ‘

Table 3: Hierarchical clustering performance of our L2H method applied on top of the TURTLE
pre-trained model on the ImageNet1K dataset.

In Table 4] we provide an ablation that reports the results of LZH-TURTLE on the hierarchical clus-
tering experiments from Section[d.1] with different choices for the aggregation function A in the L2H

15



Under review as a conference paper at ICLR 2025

algorithm. The results indicate that tweaks in the aggregation function alter performance, though
without abrupt changes in the metrics. These results also motivate our designated choice of aggre-
gation function—corresponding to the last row—which works well experimentally.

A CIFAR-10 CIFAR-100 Food-101
DP (1) LHD (}) DP (1) LHD (4) DP (1) LHD (})

S ee Spepe9o(x) | 0988 0258 0801 0244 0758 0.294

L2H-TURTLE| 1671 Zcec 107 2wen- Jo(x)| 0.988 0248 0793 0283 0751 0335

> e B Lwepe 9o(®) | 0.988 0277 0.803 0.235 0758 0297

Table 4: Results for hierarchical clustering, in terms of Dendrogram Purity and Least Hierarchical
Distance, implementing the L2H algorithm with different choices for the aggregation function A, on
top of the TURTLE model.

In Figures[3] [6] [7] we provide additional visualizations for the hierarchies obtained with our proposed
method in our hierarchical clustering experiments, complementing the quantitative and qualitative
evidence shown in Section 4.1l Leafs are matched to the original labels by checking the most
frequent label among data points contained in the leaf. In addition to the matched label, we report
purity of each leaf, in percent.

In Figure 8] we provide additional results for ImageNet with different colorings for the inferred
hierarchy, supplementing our results from Section These visualizations show where the subtree
of birds (used in Figure [3b|is located within the complete tree and in relation to other superclasses,
such as mammals, reptiles, dogs, and clothing.

ship 99.54
—: airplane 99.32

automobile 99.26
—: truck 99.46
frog 99.82

deer 99.58
S bird 99.64
horse 99.80

cat 99.56
— egees
Figure 5: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the CIFAR-10
dataset.

16



Under review as a conference paper at ICLR 2025

32 5,
beave,. 58, %
Seal gg. 52

Shrey 80.65
Mmouse 84.71
porcupine 94.49
skunk 99.58

fox 98.32

possum 93.87
raccoo 9837

1086 Preotkt

lion 98.2;

tiger gg. 17
Wwolf 94,8,

bear 95.26

18°98 UOISINIAY

clock 97.19

leopard 97.34

lamp 84.06

666 ueydal®

00°00T gazuedwiud

Cup 86.71

066 PV
o889

52
sk\le,crave‘ 9

pridge 9197
castle 93.59
house 89.09
forest 77.45
Pine tree 79 3,
Willoy, tree 76.67
Oak tree 66.99
Mapjg tree

o
W e .
Sung, -61

66.53

&r g
00,%1/ . 743
Of%/d -5
%y, % >
9

Figure 6: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the CIFAR-100

dataset.

17



Under review as a conference paper at ICLR 2025

3
I 8 S
s 5 s
3 § % 3 a §
@ =
e 2 3 2 g 3 &
g o = B ¥ o §
S 8 § 2% 5 2 8
S 9 2 5 2 5§ 8 o
8285355258873 @
5% ge 85 2 5 5 S8 &,
e ¥ L o 85§ &S s 8O
o L 8 &5 3dsr &8 S SOy
w B S 5 8§ § O »
] < S & o Y &
S5 £ s L
S Q@ 9O & >
S F o 2 &
TEE
A NS
P ST RN
K & $
) o
& © A
K
& & 4
& [
(9 O S
i
<
R A o
S e%‘lg’
. O ‘\agc‘\
oo v\a\e %
2 o
ecalha CX\Q X (\
e 95 o o098
)
My 9% e
un; 107933
a tartarg 7685 Ao pe T )
By ing 562
©ef tartare 86.12 aread pudding
. 0
Ceviche 86,1, Carrot cake 76.1
Sushi 91.38 Red velvet cake 70.05
Sashimi 92.85 Chocolate mousse 46.61
Beef carpaccio 9341 Tiramisu 73.10
8 Choc
eet salad 91.2¢ olate moysge 3061
Fro,
93.03 Zen yo,
Greek salad o Yogurt o7 gg
5 © Cream gg g
ese L .69
o 45 Obste, .
a5 © 0 g, a"dw,ch o
3 55 51
e . my,
'er,
o o e, ‘9?.59
NO %
W &/75/7 Sany,
= G
& O, g PSge  Ugy
e, Go. ¥/
O, P ¥
& 9, o S
o %, )
X S 2y,
0 % //;0 04.‘9
Z, . ) %
S % % % %
T A W]
©, %
% 0
O A N AN
G T S
R o 0 2% % 3 % %
PN S o n 9 = z & g )
o VS e 0w I g = 2 ©, 0,
o o 95 ° e g 7 %2 F 9% ¢ ©° iy %
g 9 8 5 ¢ 3 2 72 & = B B @
§ 5 ¢ 9% %3 9% 3 % % =
£ § 828283833 %
- B S
g &0 e 2 R i)
E ©

Figure 7: Visualization of the hierarchical clustering produced by L2H-TURTLE for the Food-101
dataset.

18



Under review as a conference paper at ICLR 2025

)

A\ \ \\ ‘\ 47/’/ /’////% "
\\\%

(a) Colored by bird, dog, and clothing (b) Colored by bird, mammal, and reptile

Figure 8: Visualization of the hierarchical clustering produced by L2ZH-TURTLE for the ImageNet-
1K dataset. We show the complete tree of 1K classes colored by the corresponding WordNet hyper-
nyms “bird”, “dog”, and “clothing” (Figure[8a) and by “bird”, “mammal”, and “reptile” (Figure Sb).

19



	Introduction
	Related work
	Method
	Experiments
	Hierarchical clustering
	Case study: Pre-trained ImageNet Classifier

	Conclusion
	Code implementation of the L2H algorithm
	Experimental details
	Datasets
	Implementation details
	Metrics

	Additional results and visualizations

