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Abstract
Given the wide spread of inaccurate medical
advice related to the 2019 coronavirus pan-
demic (COVID-19), such as fake remedies,
treatments and prevention suggestions, misin-
formation detection has emerged as an open
problem of high importance and interest for the
NLP community. To combat potential harm of
COVID19-related misinformation, we release
Covid-HeRA, a dataset for health risk assess-
ment of COVID-19-related social media posts.
More specifically, we study the severity of each
misinformation story, i.e., how harmful a mes-
sage believed by the audience can be and what
type of signals can be used to discover high
malicious fake news and detect refuted claims.
We present a detailed analysis, evaluate several
simple and advanced classification models, and
conclude with our experimental analysis that
presents open challenges and future directions.

1 Introduction

While an increasing percentage of the population
relies on social media platforms for news consump-
tion, the reliability of the information shared re-
mains an open problem. Fake news and other types
of misinformation have been widely prevalent in so-
cial media, putting audiences at great risks globally.
Detecting and mitigating the impact of misinfor-
mation is therefore a crucial task that has attracted
research interest, with a variety of approaches pro-
posed, from linguistic indicators to deep learning
models (Bal et al., 2020). Several research en-
deavors tackle key issues, such as mitigating la-
bel scarcity with additional weak social supervi-
sion signals, improving intractability with attention
mechanisms, leverage network, group and/or user
information, etc. (Jin et al., 2016; Ruchansky et al.,
2017; Shu et al., 2019; Wang et al., 2020; Lu and
Li, 2020).

Fake news frequently emerge for certain phe-
nomena and topics, e.g., public health issues, pol-

itics etc. (Allcott et al., 2019; Shin et al., 2018;
Bode and Vraga, 2018). Unsurprisingly, the same
applies for the current global pandemic, where in-
accurate stories are surfacing daily. It is often diffi-
cult for users, that decide to take action based on
health advice found online, to understand the con-
sequences and potential risks from following un-
reliable guidance, especially when all information
spread by influential users is perceived as equally
credible (Morales et al., 2020). This adds to the
worry and anxiety felt by many, already in a diffi-
cult situation (Kleinberg et al., 2020).

While much work has been focused on identify-
ing health-related misinformation, there has been
little attention on making a distinction between
the seriousness of misinformation (Fernandez and
Alani, 2018). Severity varies greatly across each
message: some might be jokes, some might be dis-
cussing the impact of fake news or refute the claim,
others might be highly malicious, or others might
be simply inaccurate information with little impact
that results in no harm. The severity of each mes-
sage can vary depending on its content, e.g., urging
users to eat garlic is less severe than urging users to
drink bleach. Several news articles are posted daily
related to COVID19, which capture weak signals
of misinformation severity. However, identifying
the severity level for each misinformation story
is a challenging task that has not been previously
studied.

To help reduce the impact of COVID19 misin-
formation on potential health-related decisions of
users, we study the severity of misinformation de-
tection. In contrast with previous works that treat
misinformation as a binary classification task, we
build a novel health risk assessment misinformation
benchmark dataset, Covid-HeRA, that contains so-
cial media posts annotated on a finer scale, based
on whether the message content is: a) real news, b)
inaccurate or misinformation or c) refutes/rebuts
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a specific claim or news article. In addition, posts
labeled as misinformation are judged based on their
potential to impact user’s health, assuming the indi-
vidual might be making decisions upon the advice
and suggestions read in the post. In other words,
our goal is to produce a label that reflects the level
of risk factors in the presence of inaccurate claims
and news, conditioned on the worst-case assump-
tion that the user will follow the advice.

We present our data analysis that reveals several
key insights about the most prominent unreliable
news and evaluate several baselines, as well as state-
of-the-art models and variations. We hope to guide
research on developing risk-aware misinformation
deterrence algorithms. To facilitate future research,
the Covid-HeRA data, the data analysis and the
baseline models are open sourced for public usage1.

2 Related Work

Health-related misinformation research spans a
broad range of disciplines including computer sci-
ence, social science, journalism, psychology, and
so on (Dhoju et al., 2019; Castelo et al., 2019; Fard
and Lingeswaran, 2020). While health-related mis-
information is only a facet of misinformation re-
search, there has been much work analysing mis-
information in different medical domains, such
as cancer (Bal et al., 2020; Loeb et al., 2019),
orthodonics (Kılınç and Sayar, 2019), sexually
transmitted disease and infections (Zimet et al.,
2013; Joshi et al., 2018), autism (Baumer and
McGee, 2019), influenza (Culotta, 2010; Signorini
et al., 2011), and more recently COVID-19 (Gar-
rett, 2020; Brennen et al., 2020; Cinelli et al., 2020;
Cui and Lee, 2020).

Health Misinformation on Social Media The
web and social media data have been used to mon-
itor influenza prevalence and awareness online
(Smith et al., 2016; Ji et al., 2013; Huang et al.,
2017). Systems such as Google Flu Trends use
real-time signals, such as search queries, to de-
tect influenza epidemics (Ginsberg et al., 2009;
Preis and Moat, 2014; Santillana et al., 2014; Kan-
dula and Shaman, 2019). However, relying solely
on the search queries leads to an overestimation
of influenza, namely because there is no distinc-
tion between general awareness about the flu and
searches for treatment methods (Smith et al., 2016;
Klembczyk et al., 2016). Our work focuses on so-

1Code available at https://github.com/
TIMAN-group/covid19_misinformation

cial media, in particular health misinformation on
micro-blogging sites, such as Twitter. Tomeny et al.
(2017) examined geographical and demographi-
cal trends in anti-vaccine tweets. They analyzed
anti-vaccine tweets with respect to autism spec-
trum disorder, and trained a classifier to predict a
binary label for anti-vaccine using features such as
unigrams, bigrams, word occurrence counts, punc-
tuation, and location. Our work goes beyond such a
binary classification, as our model is able to further
categorize misinformation on a set of fine-grained
severity scale.

Baumer and McGee (2019) apply topic model-
ing to an autism spectrum disorder (ASD) blogging
community dataset with the goal of understand-
ing the representation, delegation and authority of
such a method. In a recent workshop on automatic
classification of influenza (flu) vaccine behavior
mentions in tweets (Weissenbacher et al., 2018),
the top performing system compared deep learning
models with pre-trained language models with an
LSTM classifier and an ensemble of statistical clas-
sifiers with task-specific features which resulted
in comparable performances. An error analysis
showed that vaccine hesitancy was conflicting with
vaccination behavior (Joshi et al., 2018). Huang
et al. (2017) examine the geographic and demo-
graphic patterns of the flu vaccine in social media.
Recent work, has also focused on identifying users
disseminating misinformation, in the case of cancer
treatments (Ghenai and Mejova, 2018), as well as
hybrid approaches combining user-related features
with content features (Ruchansky et al., 2017).

Early works on COVID-19 misinformation
With the threat of COVID-19 misinformation to
public health organizations, there has been several
call-to-actions (Chung et al., 2020; Mian and Khan,
2020; Calisher et al., 2020) to underscore the grav-
ity and impact of COVID-19 misinformation Gar-
rett (2020). Tasnim et al. (2020) outlines several
potential strategies to ensure effective communica-
tion on COVID-19. Among the recommendations
are ensuring up-to-date reliable information, via
identifying fake news, or misinformation.

Brennen et al. (2020) analyse the different types,
sources, and claims of COVID-19 misinformation,
and show that the majority appear on social media
outlets. As the dialog on the pandemic evolves, so
does the need of reliable and trustworthy informa-
tion online (Cuan-Baltazar et al., 2020). Pennycook
et al. (2020) show that, people tend to believe false

https://github.com/TIMAN-group/covid19_misinformation
https://github.com/TIMAN-group/covid19_misinformation
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claims about COVID-19 and share false informa-
tion when they do not think as critically about the
accuracy and veracity of the information.

Kouzy et al. (2020) annotated about 600 mes-
sages containing hashtags about COVID-19, they
discovered that about 25% of messages contain
some form of misinformation and about 17% con-
tain some unverifiable information. Singh et al.
(2020) provide a large-scale exploratory analysis of
how myths and COVID-19 themes are propagated
on Twitter, by analysing how users share URL links.
Cinelli et al. (2020) cluster word embeddings to
identify topics and measure engagement of users
on several social media platforms. They provide
a comparative study of information reproduction
and provide rumor amplification parameters for
COVID-19 on these platforms.

The coronavirus pandemic has lead to several
measures enforced across the globe, from social
distancing and shelter-in-place orders to budget
cuts and travel bans (Nicola et al., 2020). In addi-
tion, news circulate daily advice for the public, with
suggestions that help prevent the spread and precau-
tions to keep the infection and mortality rates low.
Some articles, however, contain fake remedies that
reportedly cure or prevent COVID19, promote false
diagnostic procedures, report incorrect news about
the virus properties or urge the audience to avoid
specific food or treatments that might make symp-
toms worse or the reader more likely to contract
the virus3. With such information overload, any de-
cision making procedures based on misinformation
have high likelihood of severly impacting one’s
health (Ingraham and Tignanelli, 2020). Therefore,
we aim to predict the severity of incorrect infor-
mation released on social media, as well as detect
any posts that refute or rebut unreliable claims and
suggestions on coronavirus misinformation.

In the next sections, we first describe our data
collection and annotation methodology. We present
statistics and examples of our dataset (Section 3).
Subsequently, in Section 4 we present experimental
results with several baseline and state-of-the-art
machine learning models. Finally, we conclude
with a discussion and possible future extensions
(Section 5).

3https://www.cmu.edu/
ideas-social-cybersecurity/research/
coronavirus.html

3 Dataset

We introduce our data source and annotation strat-
egy. Moreover, we present detailed statistics and
data analysis that shows key insights on the most
prevalent harmful misinformation online.

3.1 Data Construction

The goal of creating a new misinformation bench-
mark dataset is two-fold. First, we want to high-
light the importance of understanding the impact
of COVID-19 misinformation in health-related de-
cision making and which behavioral aspects are
affected by the digital spread of inaccurate harmful
advice. More importantly, we aim to flag unreli-
able posts based on the potential risk and severity
of the statements, so that users stay informed on
the consequences of incorrect health advice when
making decisions.

Thus, we seek to target misinformation on a
finer annotation scale, based on whether it has
the potential to guide the audience towards health-
related decisions or behavioral changes with high
risk factor, i.e., high likelihood of severely im-
pacting one’s health. To this end, we frame the
task as a multi-class classification problem, where
each social media post is categorized as: a) Real
News/Claims, i.e., reliable correct information, b)
Refutes/Rebuts, i.e., refutation or rebuttal of an
incorrect statement, c) Not severe, i.e., misinfor-
mation but unlikely to result in risky behavioral
changes or harmful decisions, d) Possibly severe
misinformation, with possible severe health-related
impact and e) Highly severe misinformation with
increased potential risks for any individual follow-
ing the advice & suggestions expressed in the social
media post content.

These categories enable researchers to study the
impact of coronavirus health misinformation at
a finer granular level, to develop algorithms that
caution the audience on the potential risks and to
design systems that present unbiased information,
i.e., both the original - potentially unreliable - post,
along with any possible rebutting claims expressed
online. In Table 1, we present example posts for
each category and further describe our annotation
process in the following paragraphs.

We make use of CoAID, a large scale healthcare
misinformation data collection related to COVID19
with binary ground truth labeled news articles and
claims, accompanied with associated tweets and
user replies (Cui and Lee, 2020). This dataset pro-

https://www.cmu.edu/ideas-social-cybersecurity/research/coronavirus.html
https://www.cmu.edu/ideas-social-cybersecurity/research/coronavirus.html
https://www.cmu.edu/ideas-social-cybersecurity/research/coronavirus.html
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COVID-19 tweets by category
Category Tweet Reasoning

Real
News/Claims

“What is a coronavirus? Large family of
viruses. Some can cause illness in people
or animals. In humans, it’s known to cause
respiratory infections”

This category includes correct facts and
accurate news.

Not severe “Vatican confirms Pope Francis and two
aides test positive for Coronavirus”

This is misinformation, but behavioral
changes of are less likely to occur.

Possibly severe “Vitamin C Protects Against Coronavirus” Although an individual may decide to take
daily doses of vitamin C, it is unlikely to
be harmful and potential risks are less sig-
nificant than for other actionable items.

Highly severe
“Good News: Coronavirus Destroyed By
Chlorine Dioxide _ Kerri Rivera”

These tweets either promote specific
behavioral changes and fake remedies 2

with increased health risks, or may result
in increased exposure for certain
socioeconomic groups.

“Flu Vaccine Increases Coronavirus Risk
36% Says Military Study”
“People of color may be immune to the
Coronavirus because of Melanin black-
mentravels”

Refutes/Rebuts
Misinf/tion

“For those who think COVID-19 is just
like the flu: In the 2018-19 flu season,
there were 34,000 deaths over a period
of months and months. In contrast, there
have been over 40,000 COVID-19 deaths
in a little more than a month and half even
with social distancing.”

These type of posts are useful in identi-
fying fake claims, as well as presenting
opposing views.

Table 1: COVID-19 example tweets labeled on a severity scale, alongside with a brief explanation of each category.

vides us with a large amount of reliable twitter
data and alleviates the need for labeling tweets as
real or fake. Furthermore, it has the potential to
be updated automatically with additional instances,
enabling Covid-HeRA semi-supervised models as
future work.

To obtain annotations based on our defined sever-
ity categorization, all tweets labeled in CoAID as
misinformation are shuffled and distributed to two
different annotators. Each annotator is asked to
judge whether any decisions or other actionable
items can be taken based on the expressed content,
and whether those could result in harmful choices,
risky behavioral changes or other severe health im-
pacts.

Additionally, we asked annotators to flag any
post that expresses an opinion or argument against
the unreliable claims, i.e., refutes or rebuts misin-
formation (see Figure 1 for a screenshot of our an-
notation interface). To assess agreement levels, an
external validator was asked to annotate a random

Figure 1: A screenshot of a tweet example and possible
annotation options.

sample of the labeled tweets. The kappa score be-
tween the annotators and the validator was 0.7037,
which shows good agreement on the task (Hunt,
1986). A final round was introduced as an addi-
tional step, in order to resolve conflicts on ambigu-
ous instances. The total number of tweets labeled



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Category #Tweets #Tokens (Vocab)

Not severe 1,851 3,324
Possibly severe 439 11,171
Highly severe 568 16,328

Refutes/Rebuts 447 2,244
Real News/Claims 57,981 51,478

Total 61,286 84,545

Table 2: Covid-HeRA Dataset Statistics

per category, alongside with the number of unique
words, are presented in Table 2.

3.2 Data Analysis

We first identify the most frequent discriminative
terms per category, i.e., terms that appear very of-
ten in a category but are infrequent in the remaining
categories. We use a document frequency thresh-
old of 0.5% to discard terms that are very com-
mons across the whole data collection, for example
“COVID19” or “virus” appearing in more than half
of the tweets. In Figure 2, we visualize the top-
30 terms per category, with each term weighted
by its representativeness. When comparing the
“Not severe” category with the other severe cate-
gories, we see that many of the terms here refer
to conspiracies about COVID-19, such as “artifi-
cially”, “labmade”, “bioweapon” which pertains
to the conspiracy that COVID-19 is a man-made
virus. The top terms for the “Highly severe” cat-
egory seem to be about treatments and are more
risky words such as “risk”, “mask”, “cure”, “vac-
cines”, and “hydroxychloroquine”. The top terms
for the “Refutes/Rebuts” contains terms such as
“myths”, “weaponized”, “lying”, and “antibiotics”
as the messages in this category addressed and
debunked conspiracies and misinformation, while
the top terms for the “True News/Claims” are “re-
sources”, “symptoms”, “testing”, and “guidance”,
as these messages are generally informative and
provide advice about COVID-19.

We visualize the compactness of each category
in Figure 3. We use pre-trained BERT embeddings
(Devlin et al., 2018) to measure how close each
tweet is by the centroid of its corresponding cate-
gory, based on their document vectors. We hypoth-
esize that compact categories are more likely to be
well-formed and thus easier to classify. We com-
pute the skewness and kurtosis for each distribution.
Each distribution shows a positive skewness, and

as we can see, they are right-tailed distributions.
The “Possibly severe” category is the most skewed
and the “Highly severe” category is the least. The
negative kurtosis of both the “Highly severe” and
“Refutes/Rebuts” categories shows that these cate-
gories have less of a peak and appear more uniform,
which we is also evident by the flatness of these
curves. This may be due to the broad range to top-
ics covered in both of these categories compared to
the rest.

In Figure 4, we analyze the top-10 frequent hash-
tags per category. We remove common hashtags
such as “#covid_19”, “#coronavirus”, etc. The
length of each bar indicates how frequently the
hashtag appears. We find that the “Not severe”
category follows a similar pattern to Figure 2, in
that the top hashtags are pertaining more to ru-
mors and conspiracies, such as the “#pope” tested
positive for COVID-19, or that COVID-19 is a
“#bioweapon”. This maybe attributed to the fact
that those susceptible to misinformation, are less
likely to think critically about news sources and
thus tend to believe more false claims (Pennycook
et al., 2020). Both severe categories focus on
remedies, e.g. “#vitaminc” and vaccination. In-
terestingly, the Refutes/Rebuts top hashtags had
terms associated to computation such as “#dataviz”,
“#tableau”, as well as hashtag to promote social
distancing “#stayhome”. These hashtags may be
evidence of several infographics and data visual-
izations shared in social media, often used as argu-
ments against misinformation.

Finally, we present the most common claims
and news per category, and their corresponding
frequency (Table 3).

4 Experiments

To showcase the open challenges of risk-based la-
beling of misinformation, we perform experiments
with several baselines and state-of-the-art multi-
class classification models. We pre-process tweets
to filter out reserved tokens, such as RT or retweet,
urls and mentions. We then split the data into 80%
training and 20% testing, keeping the same splits
across all models for fair comparison.

The algorithms we experiment with are the fol-
lowing:
Random Forests with bag-of-words (RF-TFIDF)
or 100-dimensional pre-trained Glove embeddings
(RF-Glove) as text representation
Support Vector Machine with bag-of-words



6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) Not severe (b) Possibly severe (c) Highly severe

(d) Refutes/Rebuts (e) True News/Claims

Figure 2: Most common terms per category

Common COVID-19 Twitter misinformation
Claims/News Category Frequency

COVID-19 testing (viral test procedures and information) Real News/Claims 481
COVID-19 is more contagious than the flu Real News/Claims 466
Coronavirus Hoax Highly Severe 338
COVID-19 is just like the flu Refutes/Rebuts 287
Lab-Made Coronavirus Triggers Debate Not severe 152
Michigan Governor Gretchen Whitmer Bans Buying US Flags
During Lockdown

Not severe 148

Shanghai Government Officially Recommends Vitamin C Possibly severe 102
Flu Vaccine Increases Coronavirus Risk 36% Says Military Study Highly severe 99
Vitamin C Protects Against Coronavirus Possibly severe 79
Coronavirus [is not a] Hoax Refutes/Rebuts 73

Table 3: Most common claims with their corresponding frequency and gold-truth labels.

(SVM-TFIDF) or 100-dimensional pre-trained
Glove embeddings (SVM-Glove)
Logistic Regression with bag-of-words (LR-
TFIDF) or 100-dimensional pre-trained Glove em-
beddings (LR-Glove), same as for SVM and RF.
Bi-directional LSTM model (Schuster and Pali-
wal, 1997) with 100-dimensional pre-trained Glove
embeddings as initial representation (LSTM).
Multichannel CNN convolutional neural network
with multiple kernel sizes and 100-dimensional pre-
trained Glove embeddings as initial representation,
similar to (Kim, 2014) (CNN).
Task-specific BERT fine-tuned on our down-

stream text classification task, initialized with
general-purpose BERT embeddings (Devlin et al.,
2018).

We additionally test whether incorporating addi-
tional sources of information, such as user replies
or news articles with related content can improve
predictive performance. To this end, we train dE-
FEND (Shu et al., 2019), a state-of-the-art fake
news detection model that builds upon a Hierar-
chical Attention Network (Yang et al., 2016), by
adding co-attention between two textual sources;
in our case either tweet replies or corresponding
news content.
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Figure 3: Category compactness, measured by the dis-
tance distribution of twitter posts, relative to its category
centroids

Our evaluation metrics are accuracy, precision,
recall, and F1 score. We train with cross-entropy,
Adam and 50 minibatch size for all models. In
Table 4, we report the average score of 3 indepen-
dent trials, i.e., run each model three times with
different seeds.

In terms of F1 score, CNN and LSTM mod-
els perform slightly better than simpler baselines.
Surprisingly, incorporating user engagement fea-
tures, news content or contextualized pretrained
embeddings did not help 4. We note however that
BERT and dEFEND (co-attending on news con-
tent) have higher recall, suggesting that ensemble
models could further improve performance.

One of the main challenges of health-related mis-
information with finer granularity is that some cate-

4We also performed experiments with COVID-Twitter-
BERT, a Transformer model pre-trained on 22.5M COVID19-
related Twitter messages (Müller et al., 2020), unfortunately
with much lower performance than general BERT. We leave
further analysis on the reasons why fine-tuned embeddings on
COVID-19 posts were not helpful as future work.

gories might be substantially underrepresented, i.e.,
risk assessment in misinformation creates a high
imbalanced problem, especially for some topics,
that is even more difficult to tackle than misin-
formation detection. To test this hypothesis, we
perform the same experiments in a common binary
classification setting. More specifically, we discard
all refutation and rebuttal tweets and collapse all
tweets labeled as misinformation in a common la-
bel, irrespective of the severity label, essentially
backtracking to a real vs. fake traditional frame-
work. We evaluate the same set of algorithms and
present results in Table 5. Compared to the fine-
grained labels of Covid-HeRA, the binary classifi-
cation task produces higher performance across all
evaluation metrics, highlighting the limitations of
our finer categorization setting. Despite being an
important task, i.e., including key goals such as dis-
tinguishing between harmful social media medical
advice and refuted claims, health misinformation
risk-assessment presents many challenges.

Accuracy Precision Recall F1

RF-TFIDF 0.956 0.286 0.236 0.246
RF-Glove 0.963 0.256 0.200 0.200
SVM-TFIDF 0.946 0.243 0.203 0.203
SVM-Glove 0.960 0.330 0.233 0.246
LR-TFIDF 0.946 0.276 0.220 0.230
LR-Glove 0.963 0.313 0.233 0.250

BiLSTM 0.960 0.396 0.273 0.286
CNN 0.946 0.340 0.280 0.290
BERT 0.956 0.370 0.305 0.275
dEFEND w.replies 0.950 0.250 0.220 0.234
dEFEND w.news 0.954 0.350 0.310 0.250

Table 4: Predictive performance of evaluated models on
the Covid-HeRA dataset

Accuracy Precision Recall F1

RF-TFIDF 0.956 0.690 0.580 0.606
RF-Glove 0.960 0.646 0.500 0.493
SVM-TFIDF 0.963 0.713 0.580 0.613
SVM-Glove 0.956 0.690 0.580 0.606
LR-TFIDF 0.950 0.680 0.580 0.633
LR-Glove 0.956 0.712 0.573 0.603

BiLSTM 0.966 0.860 0.580 0.626
CNN 0.966 0.850 0.623 0.670
BERT 0.960 0.850 0.615 0.660
dEFEND w.replies 0.980 0.800 0.540 0.645
dEFEND w.news 0.980 0.920 0.680 0.750

Table 5: Predictive performance of evaluated models on
the Covid-HeRA dataset - binary classification task, i.e.,
with posts labeled as misinformation or not.

Finally, based on the per-class evaluation, we
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(a) Not severe (b) Possibly severe (c) Highly severe

(d) Refutes/Rebuts (e) True News/Claims

Figure 4: Most frequent hashtags and emoticons/emojis used per category

note another challenging difference, apart from
the imbalance discussed above. In Figure 5, we
present the confusion matrix for the best perform-
ing model on the severity multi-class classification
task (CNN). Tweets labeled as “Not severe” and
“Possibly severe” are more likely to be predicted
as “Real News/Claims”, probably due to the true
latent semantics being similar for these categories.
Further research on handling imbalance as well as
integrating auxiliary signals is required. We con-
clude with future directions in the next section.

Figure 5: Confusion matrix for the CNN model trained
on Covid-HeRA dataset.

5 Conclusion

In this work, we release Covid-HeRA, a new bench-
mark dataset for risk-aware health misinformation
on COVID-19 related social media posts. We de-
scribe our data collection and conduct thorough

data analysis and extensive experiments with base-
line methods and state-of-the-art text classification
and misinformation models. Our experimental re-
sults demonstrate the usefulness and challenges of
finer-grained multi-class classification in health-
care misinformation detection. We hope Covid-
HeRA will enable researchers to design advanced
models for risk scoring of misinformation spread
and to develop systems that inform the social me-
dia audience on the respective dangers of following
unreliable advice from inaccurate sources.

There are several possible future directions. First
and foremost, we hope to take into account the sub-
stantial imbalance of misinformation, compared to
the overall number of tweets online. By leveraging
advancements in relevant research, we can build
custom loss functions or data sampling methods
to mitigate the challenges of sparsity in underrep-
resented categories. Additionally, to alleviate the
need of large training sets, future research could fo-
cus on the exploration of weak supervision signals,
semi-supervised and self-supervised algorithms.
Few-shot models can also handle distribution shift
and novel classes with fewer examples,e.g., adding
a scale or category in our annotation set. Finally,
the task of identifying rebuttal and refutation posts,
which present arguments against misinformation
spread, is something we aim to tackle on future re-
search, exploring additional linguistic signals and
auxiliary tasks, e.g., applying controversy detection
algorithms (Lourentzou et al.).
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