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Abstract

Unlike traditional statistical models depending on hand-specified priors, neural
processes (NPs) have recently emerged as a class of powerful neural statistical
models that combine the strengths of neural networks and stochastic processes. NPs
can define a flexible class of stochastic processes well suited for highly non-trivial
functions by encoding contextual knowledge into the function space. However,
noisy context points introduce challenges to the algorithmic stability that small
changes in training data may significantly change the models and yield lower
generalization performance. In this paper, we provide theoretical guidelines for
deriving stable solutions with high generalization by introducing the notion of
algorithmic stability into NPs, which can be flexible to work with various NPs and
achieves less biased approximation with theoretical guarantees. To illustrate the
superiority of the proposed model, we perform experiments on both synthetic and
real-world data, and the results demonstrate that our approach not only helps to
achieve more accurate performance but also improves model robustness.

1 Introduction

Neural processes (NPs) [9, 10] constitute a family of variational approximation models for stochastic
processes with promising properties in computational efficiency and uncertainty quantification.
Different from traditional statistical modeling for which a user typically hand-specifies a prior
(e.g., smoothness of functions quantified by a Gaussian distribution in Gaussian process [25]), NPs
implicitly define a broad class of stochastic processes with neural networks in a data-driven manner.
When appropriately trained, NPs can define a flexible class of stochastic processes well suited for
highly non-trivial functions that are not easily represented by existing stochastic processes.

NPs meta-learn a distribution over predictors and provide a way to select an inductive bias from data
to adapt quickly to a new task. Incorporating the data prior into the model as an inductive bias, NPs
can reduce the model complexity and improve model generalization. Usually, an NP predictor is
described as predicting a set of data (target set) given a set of labeled data (context set). However,
the number of noise in data introduces challenges to the algorithmic stability. In NPs, models are
biased to the meta-datasets (a dataset of datasets), so small changes in the dataset (noisy or missing)
may significantly change the models. As demonstrated in previous work [9, 10, 14, 11], existing NPs
cannot provide stable predictions under noisy conditions, which may introduce high training error
variance, and minimizing the training error may not guarantee consistent error reduction on the test
set, i.e. low generalization performance [2]. In this case, algorithmic stability and generalization
performance have strong connections and an unstable NP model has low generalization performance.

A stable model is one for which the learned solution does not change much with small changes in
training set [2]. In general, heuristic techniques, such as cross-validation and ensemble learning,
can be adopted to improve the generalization performance. Cross-validation needs to sacrifice
the limited training data, while ensemble learning is computationally expensive on training sub-
models. Recently, there are several improved NPs focused on considering model stability and
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improving generalization performance empirically, such as hierarchical prior [27], stochastic attention
mechanism [15], bootstrap [13], and Mixture of Expert [28]. However, most of them are unable to
investigate the theoretical bound of the generalization performance of NPs. It is desirable to develop
robust algorithms with low generalization error and high efficiency.

In this paper, we investigate NP-related models and explore more expressive stability toward general
stochastic processes by proposing a stable solution. Specifically, by introducing the notion of stability
into NPs, we focus on developing theoretical guidelines for deriving a stable NPs solution. We
propose a method to find out subsets that are harder to predict than average, which is a key step for
constructing this optimization problem. Based on it, a new extension of NPs with stable guarantees is
formulated, which can be flexible to work with various NPs and achieves less biased approximation
with theoretical guarantees. Considering the model adaptivity, an adaptive weighting strategy is
proposed. To illustrate the superiority of the proposed stable solution, we perform experiments on
synthetic 1D regression, system identification of physics engines, and real-world image completion
tasks, and the results demonstrate that NPs with our stable solution are much more robust than
original NPs.

2 Related Work
In this section, we briefly review two different areas which are highly relevant to the proposed method,
neural processes, and algorithmic stability.

Neural Processes Neural processes are a well-known member of the stochastic process family by
directly capturing uncertainties with deep neural networks, which are not only computationally
efficient but also retain a probabilistic interpretation of the model [9, 10, 14, 13]. Starting with
conditional neural processes (CNP) [9], there have been several follow-up works to improve NPs in
various aspects [6]. Vanilla CNP combines neural networks with the Gaussian process to extract prior
knowledge from training data. NP [10] introduces a global latent variable to model uncertainty in
a variational manner. Considering the problem of underfitting in the vanilla NP, Attentive NP [14]
introduces the attention mechanism to improve the model’s reconstruction quality. [11] introduced
convolutional conditional neural process (CONVCNP) models translation equivariance in the data.
Wang and Van Hoof [27] presented a doubly stochastic variational process (DSVNP), which combines
both global and local latent variables. Lee et al. [18] extended NP using Bootstrap and proposed the
bootstrapping neural processes (BNP). Kawano et al. [13] presented a group equivariant conditional
neural process by incorporating group equivariant into CNPs in a meta-learning manner. Wang and van
Hoof [28] proposed to combine the Mixture of Expert models with NPs to develop more expressive
exchangeable stochastic processes. Kim et al. [15] proposed a stochastic attention mechanism for
NPs to capture appropriate context information. Although there are many NP variants to improve the
model performance, those do not consider stability to yield high generalization performance.

Algorithmic Stability Stability, as known as algorithmic stability, is a computational learning theory
of how a machine learning algorithm is perturbed by small changes to its inputs [2]. Many efforts
have been made to analyze various notions of algorithmic stability and prove that a broad spectrum
of learning algorithms are stable in some sense [2, 3, 29, 12]. [3] proved that l2 regularized learning
algorithms are uniformly stable and able to obtain new bounds on generalization performance. [29]
generalized [3]’s results and proved that regularized learning algorithms with strongly convex penalty
functions on bounded domains. Hardt et al. [12] showed that parametric models trained by stochastic
gradient descent algorithms are uniformly stable. Li et al. [19] introduced the stability notation to
low-rank matrix approximation. Liu et al. [22] proved that tasks in multi-task learning can act as
regularizers and that multi-task learning in a very general setting will therefore be uniformly stable
under mild assumptions. This is the first work to investigate the stability of NPs from theoretical
guidelines and derive NPs solutions with high stability.

3 Preliminary
Let calligraphic letters (e.g., A) indicate sets, capital letters (e.g., A) indicate scalars, lower-case
bold letters (e.g., a) denote vectors, and capital bold letters (e.g., A) indicate matrices. Suppose
there is a dataset D = (X,y) = {(xi, yi)}Ni=1 with N data points X = [x1,x2, · · · ,xN ]> ∈ RN×D,
and corresponding labels y = [y1, y2, · · · , yN ] ∈ RN . Considering an arbitrary number of data points
DC = (XC ,yC) = {(xi, yi)}i∈C , where C ⊆ {1, 2, · · · , N} is an index set defining context information,
neural processes model the conditional predictive distribution of the target values yT = {yi}i∈T
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at some target data points XT = {xi}i∈T based on the context DC , i.e. P (yT |XT ,DC). Usually,
target set is defined as T = {1, 2, · · · , N}. Only in CNP [9], T ⊆ {1, 2, · · · , N} and T ∩ C = ∅.
In this paper, we define T = {1, 2, · · · , N} for all NPs, i.e. conditional predictive distribution is
P (y|X,DC) =

∏N
i=1 P (yi|xi,DC).

Fundamentally, there are two NP variants: deterministic and probabilistic. Deterministic NP [9],
i.e. CNP, models the conditional distribution as P (y|X,DC) = P (y|X, rC), where rC ∈ Rd is an
aggregated feature vector processed by a function that mapsDC into a finite-dimensional vector space
in a permutation-invariant way. In probabilistic NPs [10], a latent variable z ∈ Rd is introduced to
capture model uncertainty and the NPs infer Pθ(z|DC) given context set using the reparameterization
trick [16] and models such a conditional distribution as Pθ(yi|xi,DC) =

∫
Pθ(yi|xi,DC , z)Pθ(z|DC)dz

and it is trained by maximizing an ELBO: Ez∼Pθ(z|X,y)[logPθ(y|X)]−KL[Pθ(z|X,y)‖Pθ(z|DC)].

Meta Training NP Prediction To achieve fast prediction on a new context set at test time, NPs
meta-learn a distribution over predictors. To perform meta-learning, we require a meta-dataset
(dataset of datasets). We consider an unknown distribution µ on an instance space X × Y , and a
set of independent sample D = {(xi, yi)}Ni=1 drawn from µ: (xi, yi) ∼ µ and D ∼ µN . Suppose
meta-dataset contains M datasets D1:M = {Dm}Mm=1 with Dm = {DCm,DTm}, we assume that all M
datasets drawn from a common environment τ , which is a probability measure on the set of probability
measures on X × Y . The draw of µ ∼ τ indicates the encounter of a specific learning task µ in the
environment τ . For simplicity, we assume that each dataset has the same sample size N . Following
the previous work related to multi-task learning [24] and meta learning [5], The environment τ
induces a measure µN,τ on (X × Y)N such that µN,τ (A) = Eµ∼τ [µN (A)], ∀A ⊆ (X × Y)N . Thus a
datasetDm is independently sampled from a task µ encountered in τ , which is denoted asDm ∼ µN,τ
for m ∈ [M ].

Suppose there exists a meta parameter θ indicating the shared knowledge among different tasks. In
this case, a meta learning algorithm Ameta for NPs takes meta-datasets D1:M as input, and then
outputs a meta parameter θ = Ameta(D1:M ) ∼ Pθ|D1:M

. When given a new test dataset D, we can
evaluate the quality of the meta parameter θ by the following true risk:

Rτ (θ) = ED∼µN,τEU∼Pθ|D1:M
[Rµ(θ)] (1)

where Rµ(θ) = −E(xi,yi)∼µ logPθ(yi|xi,D
C). Usually, τ and µ are unknown, we can only estimate

the meta parameter θ from the observed data D1:M . In this case, the empirical risk w.r.t θ is:

RD1:M (θ) = 1/M
∑M

m=1
Eθ∼P

θ|DC
m
RDm(θ) (2)

where RDm(θ) = −(1/N)
∑N
i=1 logPθ(yi|xi,D

C).

NPs have various strengths: 1) Efficiency: meta-learning allows NPs to incorporate information from
a new context set and make predictions with a single forward pass. The complexity is linear or
quadratic in the context size instead of cubic as with Gaussian process regression; 2) Flexibility: NPs
can define a conditional distribution of an arbitrary number of target points, conditioning an arbitrary
number of observations; 3) Permutation invariance: the encoders of NPs use set property [32] to make
the target prediction permutation invariant. Thanks to these properties, NPs are widely-used in lots of
tasks, e.g., Bayesian optimization [8], recommendation [20, 21], physics engines controlling [27] etc.
While there are many NP variants to improve the performance of NPs [9, 10, 14, 13, 15, 28], those do
not take model’s stability into consider account yet, which is the key to the robustness of the model.

4 Problem Formulation

Stability of NP A stable learning algorithm has the property that replacing one element in the training
set does not result in a significant change to the algorithm’s output [2]. Therefore, if we take the
training error as a random variable, the training error of a stable learning algorithm should have a
small variance. This implies that stable algorithms have the property that the training errors are close
to the testing error [2]. Based on the defined risks, the algorithmic stability of approximate {yi}i∈T
in NPs is defined as follows.
Definition 4.1. (Algorithmic Stability of Neural Processes) For any measure µN,τ on (X ×Y)N such
that µN,τ (A) = Eµ∼τ [µN (A)],∀A ⊆ (X × Y)N , sample M datasets D1:M from µN,τ randomly.
For a given ε > 0, we say that RD1:M (θ) is δ-stable if the following holds:

P (|Rτ (θ)−RD1:M (θ)| ≤ ε) ≥ 1− δ. (3)

3



The above stability for NPs has the property that the generalization error is bounded, which indicates
that minimizing the training error will have a high probability of minimizing the testing error. This
new stability notion makes it possible to measure the generalization performance between different
NP approximations. For instance, for any two meta-datasets D1

1:M and D2
1:M from µN,τ , train NPs on

D1
1:M and D2

1:M are δ1-stable and δ2-stable, respectively. Then RD1
1:M

(θ) is more stable than RD2
1:M

(θ)

if δ1 < δ2. This implies that RD1
1:M

(θ) is close to Rτ (θ) with higher probability than RD2
1:M

(θ), i.e.
minimizing RD1

1:M
(θ) will lead to solutions that are of high probabilities with better generalization

performance than minimizing RD2
1:M

(θ).

Based on the above analysis, we can see that the reliability of data points is crucial to the success of
NPs and frail NPs are susceptible to noise.
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Figure 1: Stability vs. generalization error
with different numbers of replaced noisy
datasets.

Stability vs. Generalization Error The sparsity of the
data, incomplete and noisy introduces challenges to the
algorithm stability. NP models are biased to the quality
of context data and target data, so small changes in the
training data (noisy) may significantly change the mod-
els. In this case, unstable solutions will introduce high
training error variance, and minimizing the training er-
ror may not guarantee consistent error reduction on the
testing dataset, i.e., low generalization performance. In
other words, the algorithm stability has a direct impact
on generalization performance, and an unstable NP so-
lution has low generalization performance. We take
NPs with 1D regression task as an example [9] to inves-
tigate the relationship between generalization performance and stability of NPs. The total number
of training and testing datasets is 200 and 100. We trained the NPs model with curves generated
from the Gaussian process with RBF kernels by replacing the normal data dataset with a noisy
dataset, i.e. the number of replaced datasets is turned in {1, 10, 20, 50, 80, 100}. We quantify stability
changes of NPs with the generalization error when the number of replaced datasets increases from 1
to 100. We compute the difference between training error and test error to measure generalization
error. We define the difference between test error and training error as Rτ (θ) − RD1:M

(θ), and
compute P (|Rτ (θ)−RD1:M (θ)| ≤ ε) with 100 different runs to measure stability. Here we choose ε in
Definition 4.1 as 0.0015 to cover all error differences when the number of replaced datasets is 1. As
shown in Figure 1, the generalization error increases when the number of replaced points increases
since the testing error becomes lower. On the contrary, the stability of NP decreases with the number
of replaced points increases. This indicates that stability decreases with generalization error increases.
This study demonstrates that existing NPs suffer from lower generalization performance due to low
algorithmic stability. Therefore, it is important to develop a stable solution for NPs that offers good
generalization performance.

5 Method

In this section, inspired by the previous work [19], we present a stable solution for NPs with stability
and high generalization. Algorithmic stability provides an intuitive way to measure the changes in
the outputs of a learning algorithm when the input is changed. Various ways have been introduced to
measure algorithmic stability. Following the definition of uniform stability [2], given a stable NP,
the approximation results remain stable if the change of the datasets. For instance, we can remove a
subset of easily predictable data points from D1:M to obtain D′1:M . It is desirable that the solution of
minimizing both D1:M and D′1:M together will be more stable than the solution of minimizing D1:M

only. The following Theorem formally proves the statement.

Theorem 5.1. Let D1:M (M ≥ 2) be a sampled meta-dataset of measure µN,τ . Let Ds ∈ D1:M

be a subset of the meta-dataset, which satisfy that ∀(xi, yi) ∈ Ds, − logPθ(yi|xi,DC) ≤ RD1:M (θ).
Let D′1:M = D1:M − Ds, then for any ε > 0 and 1 > w0 > 0, 1 > w1 > 0 (w0 + w1 = 1),
w0RD1:M (θ) + w1RD′

1:M
(θ) and RD1:M

(θ) are δ1-stable and δ2-stable, respectively, then δ1 ≤ δ2.

Proof. Let’s assume that Rτ (θ)−RD1:M (θ) ∈ [−a1, a1] and Rτ (θ)− (w0RD1:M (θ) + w1RD′
1:M

(θ)) ∈
[−a2, a2] are two random variables with zero mean, where a1 = sup{Rτ (θ) − RD1:M (θ)} and a2 =
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sup{Rτ (θ)− (w0RD1:M (θ) +w1RD′
1:M

(θ))}. Based on Markov’s inequality1, for any t > 0, we have

P (Rτ (θ)−RD1:M (θ) ≥ ε) ≤
E
[
et(Rτ (θ)−RD1:M

(θ))
]

etε
. (4)

Based on Hoeffding’s lemma2, we have E[et(Rτ (θ)−RD1:M
(θ))] ≤ e

1
2
t2a21 , i.e. P (Rτ (θ)−RD1:M (θ) ≥

ε) ≤ e
1
2
t2a21

etε
. Similarly, we have P (Rτ (θ) − RD1:M (θ) ≤ −ε) ≤ e

1
2
t2a21

etε
. Combining those two

inequalities, we have P (|Rτ (θ)−RD1:M (θ)| ≥ ε) ≤ 2e
1
2
t2a21

etε
, i.e.

P (|Rτ (θ)−RD1:M (θ)| ≤ ε) ≥ 1− 2e
1
2
t2a21

etε
. (5)

Similarly, we have

P
(
|Rτ (θ)− (w0RD1:M (θ) + w1RD′

1:M
(θ))| ≤ ε

)
≥ 1− 2e

1
2
t2a22

etε
. (6)

In this case, the relationship between a1 and a2 is

a2 = sup
{
Rτ (θ)−RD1:M (θ) + w1

(
RD1:M (θ)−RD′

1:M
(θ)
)}

= sup {Rτ (θ)−RD1:M (θ)}+ w1 sup
{
RD1:M (θ)−RD′

1:M
(θ)
}

= a1 + λ1sup
{
RD1:M (θ)−RD′

1:M
(θ)
} (7)

Since ∀(xi, yi) ∈ Ds, − logPθ(yi|xi,DCs ) ≤ RD1:M (θ), we have −(1/N)
∑N
i=1 logPθ(yi|xi,D

C
s ) ≤

RD1:M (θ). Then, since D1:M = Ds ∪ D′1:M . This means that sup{RD1:M (θ)−RD′
1:M

(θ)} ≤ 0. Thus,

we have a2 ≤ a1. This turns out that 2e
1
2
t2a22

etε
≤ 2e

1
2
t2a21

etε
, i.e. δ1 ≤ δ2.

Theorem 5.1 indicates that, if we remove a subset that is easier to predict than average from D1:M

to form D′1:M , then w0RD1:M (θ) + w1RD′
1:M

(θ) has higher probability of being close to Rτ (θ) than
RD1:M (θ). Therefore, minimizing w0RD1:M (θ) + w1RD′

1:M
(θ) will lead to solutions that have better

generalization performance than minimizing RD1:M (θ).

However, Theorem 5.1 only proves that it is beneficial to remove an easily predictable dataset from
D1:M to obtain D′1:M , but does not show how many datasets we should remove from D1:M . Actually,
removing more datasets that satisfy − logPθ(yi|xi,DC) ≤ RD1:M (θ) can obtain better D′1:M , as shown
in following Theorem 5.2.
Theorem 5.2. Let D1:M (M ≥ 2) be a sampled meta-dataset of measure µN,τ . Let Ds1 and Ds2
be two subsets of D1:M , which satisfy Ds2 ⊂ Ds1 ⊂ D1:M . Ds2 and Ds1 satisfy that ∀(xi, yi) ∈
Ds1, − logPθ(yi|xi,DC) ≤ RD1:M (θ). Let D1

1:M = D1:M − Ds1 and D2
1:M = D1:M − Ds2, then

for any ε > 0 and 1 > w0 > 0, 1 > w1 > 0 (w0 + w1 = 1), w0RD1:M (θ) + w1RD1
1:M

(θ) and
w0RD1:M (θ) + w1RD2

1:M
(θ) are δ1-stable and δ2-stable, respectively, then δ1 ≤ δ2.

Proof. Let’s assume thatRτ (θ)−(w0RD1:M (θ)+w1RD1
1:M

(θ)) ∈ [−a1, a1] andRτ (θ)−(w0RD1:M (θ)+

w1RD2
1:M

(θ)) ∈ [−a2, a2] are two random variables with 0 mean, where a1 = sup{Rτ (θ) −
(w0RD1:M (θ) + w1RD1

1:M
(θ))} and a2 = sup{Rτ (θ)− (w0RD1:M (θ) + w1RD2

1:M
(θ))}.

Then, based on Markov’s inequality and Hoeffding’s lemma, we have

P
(∣∣∣Rτ (θ)− (w0RD1:M (θ) + w1RD1

1:M
(θ)
)∣∣∣ ≤ ε) ≥ 1− 2e

1
2
t2a21

etε
,

P
(∣∣∣Rτ (θ)− (w0RD1:M (θ) + w1RD2

1:M
(θ)
)∣∣∣ ≤ ε) ≥ 1− 2e

1
2
t2a22

etε
.

(8)

Since ∀(xi, yi) ∈ Ds1, − logPθ(yi|xi,DC) ≤ RD1:M (θ) and Ds2 ⊂ Ds1 ⊂ D1:M , we have RD1
1:M

(θ) ≤
RD2

1:M
(θ). Thus, we have sup{RD1

1:M
(θ) − RD2

1:M
(θ)} ≤ 0 since a1 = a2 + w1sup{RD1

1:M
(θ) −

RD2
1:M

(θ)} and a1 ≤ a2. Then, we can conclude that δ1 ≤ δ2.

1(Extended version of Markov’s Inequality) Let x be a real-valued non-negative random variable and ϕ(·) be
a nondecreasing nonnegative function with ϕ(a) > 0. Then, for any ε > 0, P (x ≥ ε) ≤ E[ϕ(x)]

ϕ(ε)
.

2(Hoeffding’s Lemma) Let x be a real-valued random variable with zero mean and p(x ∈ [a, b]) = 1. Then,
for any z ∈ R, E[ezx] ≤ exp

(
1
8
z2(b− a)2

)
.
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Theorem 5.2 indicates that removing more data points that are easy to predict will obtain more stable
NPs. Therefore, it is desirable to choose D′1:M (i.e. D1:M −Ds) as the whole set which is harder to
predict than average, i.e. the whole set satisfying ∀(xi, yi) ∈ D′1:M , − logPθ(yi|xi,DC) ≤ RD1:M (θ).
Without loss of generality, we can extend Theorem 5.2 by considering several harder predicted sets to
obtain a more stable solution by minimizing them all together. In this case, we need to prove that
the stability of a model with K subsets is better than the model with K − 1 subsets, as shown in
Theorem 5.3.
Theorem 5.3. Let D1:M (M ≥ 2) be a sampled meta-dataset of measure µN,τ . Let
Ds1,Ds2, · · · ,DsK ⊂ D1:M be K subsets and satisfy ∀(xi, yi) ∈ Dsk(k ∈ [K]), − logPθ(yi|xi,DC) ≤
RD1:M (θ). Let Dk1:M = D1:M − Dsk for all k ∈ [K], then for any ε > 0 and 1 > wk > 0 for all
k ∈ [K], (w0 + w1 + · · ·+ wK = 1), w0RD1:M (θ) +

∑K
k=1 wkRDk1:M

(θ) and (w0 + wK)RD1:M (θ) +∑K−1
k=1 wkRDk

1:M
(θ) are δ1-stable and δ2-stable, respectively, then δ1 ≤ δ2.

Proof. For simplicity, we denote w0RD1:M (θ) +
∑K
k=1 wkRDk1:M

(θ) as R1 and (w0 +wK)RD1:M (θ) +∑K−1
k=1 wkRDk

1:M
(θ) as R2. Let’s assume that Rτ (θ)−R1 ∈ [−a1, a1] and Rτ (θ)−R2 ∈ [−a2, a2] are

two random variables with 0 mean, where a1 = sup{Rτ (θ)−R1} and a2 = sup{Rτ (θ)−R2}. Then,
based on Markov’s inequality and Hoeffding’s lemma, we have

P (|Rτ (θ)−R1| ≤ ε) ≥ 1− 2e
1
2
t2a21

etε
, (|Rτ (θ)−R2| ≤ ε) ≥ 1− 2e

1
2
t2a22

etε
. (9)

Similar to the proof of Theorem 5.3, we have RDK
1:M

(θ) ≥ RD1:M (θ), which indicates that
sup{RD1:M (θ) − RDK

1:M
(θ)} ≤ 0. Since a2 = a1 + wKsup{RD1:M (θ) − RDK

1:M
(θ)}, we know that

a2 ≤ a1. Thus we can conclude that 2e
1
2
t2a2

2

etε
≤ 2e

1
2
t2a1

2

etε
, i.e. δ1 ≤ δ2.

Based on Theorem 5.3, we know that optimization on D1:M and more than one hard predictable
subsets of D1:M can achieve more stable prediction. However, how to select data points that are
difficult to predict from D1:M is still a challenging problem, especially, since we need to select K
subsets.

5.1 The Proposed Solution
According to the analysis of stability in NPs, we propose a stable solution for NPs to achieve model
stability with the aid of hard predictable subsets selection. Specifically, we introduce a solution to
obtain those hard predictable subsets based on only one set of easily predicted data points which can
be broken into four steps:
(1) Selecting a existing NP model (e.g., CNP [9], NP[10]) and training it with meta-dataset D1:M ;

(2) Selecting an easily predicted subset Ds ⊂ D1:M , which satisfies that ∀(xi, yi) ∈ Ds,
− logPθ(yi|xi,DC) ≤ RD1:M (θ);

(3) Dividing Ds into K non-overlapping subsets Ds1,Ds2, · · · ,DsK and satisfying ∪Kk=1Dsk = Ds;
(4) Defining K subsets that are difficult to predict, i.e. Dk1:M = D1:M −Dsk for all k ∈ [K];

Thus, a new extension of NPs is given as
L = argmin

θ
w0RD1:M (θ) +

∑K

k=1
wkRDk

1:M
(θ), (10)

where w0, w1, · · · , wK indicate the contributions of each component and satisfy
∑K
k=0 wk = 1.

The whole learning algorithm is given in Algorithm 1. From steps 1 to 12, we obtain K different
hard predictable subsets, and the complexity of lines 1 to 12 is O(MN). The complexity of line 11 is
related to the applied NP models (such as CNP, NP, ANP, etc). Thus, the computational complexity
of NPs with our stable solution is similar to the original NPs. As shown in Algorithm 1, we need to
pre-train the base model to select samples. In fact, the pre-trained model can not only be used for
sample selection but its model parameters can be used as the initialization of the stable version model.
At this time, the training of the stable version can converge faster.

Stability Guarantee Here we give a theoretical guarantee of the proposed stable solution.
Theorem 5.4. Let D1:M (M ≥ 2) be a sampled meta-dataset of measure µN,τ . Let Ds ⊂ D1:M

which satisfies that ∀(xi, yi) ∈ Ds, − logPθ(yi|xi,DC) ≤ RD1:M (θ). By dividing Ds into K subsets
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Algorithm 1 Learning algorithm for stable NPs
Input: Meta-dataset D1:M , β > 0.5 is a predefined probability for data selection. Ds = ∅.

1: Train a NP model with parameter θ based on RD1:M
(θ);

2: for (xi, yi) ∈ D1:M do
3: randomly generate split parameter ρi ∈ [0, 1];
4: if ((− logPθ(yi|xi,DC) ≤ RD1:M (θ)) & ρi ≤ β)
5: or ((− logPθ(yi|xi,DC) > RD1:M (θ)) & ρi ≤ 1− β) then
6: Ds ← Ds ∪ (xi, yi);
7: end if
8: end for
9: divide Ds into Ds1,Ds2, · · · ,DsK with ∪Kk=1Dsk = Ds;

10: for k = 1, 2, · · · ,K do
11: Dk1:M = D1:M −Dsk;
12: end for
13: update parameters by optimizing θ∗ = argminθ w0RD1:M (θ) +

∑K
k=1 wkRDk1:M

(θ);
Output: The learned optimal parameters θ∗.

Ds1,Ds2, · · · ,DsK which satisfy that ∪Kk=1Dsk = D1:M . Let D0
1:M = D1:M −Ds and Dk1:M = D1:M −

Dsk for all k ∈ [K], then for any ε > 0 and 1 > wk > 0 for all k ∈ [K], (w0 +w1 + · · ·+wK = 1),
w0RD1:M (θ) +

∑K
k=1 wkRDk1:M

(θ) and w0RD1:M (θ) + (1− w0)RD0
1:M

(θ) are δ1-stable and δ2-stable,
respectively, then δ1 ≤ δ2.

Proof. For simplicity, we denote w0RD1:M (θ) +
∑K
k=1 wkRDk1:M

(θ) as R1 and w0RD1:M (θ) + (1 −
w0)RD0

1:M
(θ) as R2. Let’s assume that Rτ (θ) − R1 ∈ [−a1, a1] and Rτ (θ) − R2 ∈ [−a2, a2] are two

random variables with 0 mean, where a1 = sup{Rτ (θ)−R1} and a2 = sup{Rτ (θ)−R2}. Then, based
on Markov’s inequality and Hoeffding’s lemma, we have

P (|Rτ (θ)−R1| ≤ ε) ≥ 1− 2e
1
2
t2a21

etε
, P (|Rτ (θ)−R2| ≤ ε) ≥ 1− 2e

1
2
t2a22

etε
. (11)

∀k ∈ [K], Dsk ⊂ Ds and ∀(xi, yi) ∈ Ds, − logPθ(yi|xi,DC) ≤ RD1:M (θ), we have RDk
1:M

(θ) ≤
RD0

1:M
(θ). By combining the above inequalities over all k ∈ [K], we have∑K

k=1
wkRDk

1:M
(θ) ≤

∑K

k=1
wkRD0

1:M
(θ) = (1− w0)RD0

1:M
(M). (12)

Thus, sup{Rτ (θ)−R1} ≤ sup{R1:M (θ)−R2}, i.e. a1 ≤ a2. Thus we have δ1 ≤ δ2.

According to the above theorem, we can achieve model stability by selecting only one easily predicted
subset.

6 Experiments
We started with learning predictive functions on synthetic datasets, and then high-dimensional tasks,
e.g., system identification on physics engines, image completion, and Bayesian optimization, were
performed to evaluate the properties of the NP-related models.

6.1 1D Regression
To verify the proposed stable solution, we combined the stable solution with different baseline NP
classes (CNP [9], NP [10], ANP [14],ConvCNP [11], ConvNP [6], and their bootstrapping ver-
sions [18]) and compared them on 1D regression task. Among them, BCNP, BNP, BANP, BConvCNP,
and NConvNP are recently proposed stable strategies for NPs with Bootstrap. Specifically, the
stochastic process (SP) initializing with a 0 mean Gaussian Process (GP) y(0) ∼ GP (0, k(·, ·)) indexed
in the interval x ∈ [−2.0, 2.0] were used to generate data, where the radial basis function kernel and
Matern Kernel were adopted for model-data mismatch scenario. More detailed information can be
obtained in the Appendix. We investigated the model performance in terms of different noise settings.
We introduced Gaussian noise N (0, 1) and added noise to different proportions of the data, such as
{0%, 5%, 10%, 15%}. Table 1 lists the average log-likelihoods comparison in terms of different noise
proportions. The best result is marked in bold. First, we can see that if we adopt the robust solution
in baselines, the model achieves the best results on all the datasets, showing the effectiveness of the
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Table 1: Average Log-likelihoods over all context and target points on realizations from Synthetic
Stochastic Process on the different percent of added noise. Here we set the context size to 20. (Mean
± Std). Note that adding ‘S’ before the original model name is a model with our stable solution.

Kernel Method Original Noise(+5%) Noise(+10%) Noise(+15%)
context target context target context target context target

R
B

F
CNP 0.8724±0.008 0.4334±0.007 0.8522±0.005 0.4001±0.010 0.8014±0.006 0.3552±0.004 0.7152±0.006 0.2853±0.005

BCNP 0.9042±0.009 0.4589±0.006 0.8774±0.006 0.4278±0.008 0.8316±0.006 0.3767±0.005 0.7487±0.007 0.3017±0.006
SCNP 0.9255±0.008 0.4733±0.004 0.8935±0.005 0.4478±0.006 0.8517±0.004 0.3986±0.005 0.7621±0.005 0.3279±0.006

NP 0.8215±0.004 0.3853±0.005 0.8011±0.004 0.3511±0.006 0.7611±0.005 0.3042±0.008 0.6722±0.005 0.2435±0.007
BNP 0.8722±0.004 0.4211±0.004 0.8321±0.003 0.3876±0.004 0.7922±0.004 0.3389±0.005 0.7189±0.004 0.2776±0.007
SNP 0.8955±0.003 0.4356±0.004 0.8567±0.003 0.4046±0.005 0.8165±0.004 0.3568±0.006 0.7356±0.005 0.2955±0.006
ANP 1.2563±0.002 0.5763±0.004 1.2245±0.007 0.5347±0.006 0.1742±0.005 0.4871±0.007 0.9821±0.005 0.4151±0.004

BANP 1.2722±0.004 0.5887±0.006 1.2411±0.005 0.5471±0.005 0.1886±0.006 0.4917±0.006 1.0642±0.006 0.4327±0.005
SANP 1.2831±0.000 0.5994±0.004 1.2564±0.004 0.5578±0.004 1.2052±0.004 0.5025±0.006 1.1243±0.005 0.4356±0.006

ConvCNP 1.2631±0.002 0.6421±0.002 1.2333±0.005 0.5415±0.005 0.1827±0.004 0.4936±0.005 1.0241±0.006 0.4262±0.005
BConvCNP 1.2761±0.004 0.6531±0.005 1.2476±0.004 0.5533±0.004 0.1931±0.007 0.4986±0.005 1.0716±0.006 0.4396±0.005
SConvCNP 1.3991 ±0.001 0.6793±0.004 1.2651±0.003 0.5623±0.005 1.2126±0.004 0.5096±0.005 1.1331±0.006 0.4461±0.005

ConvNP 1.2874±0.003 0.6503±0.004 1.2371±0.006 0.5451±0.006 0.1865±0.004 0.4965±0.006 0.9915±0.005 0.4335±0.006
BConvNP 1.2922±0.004 0.6627±0.006 1.2505±0.006 0.5583±0.004 0.1971±0.005 0.5025±0.007 1.0731±0.006 0.4436±0.004
SConvNP 1.4036±0.002 0.6831±0.003 1.2671±0.005 0.5675±0.004 1.2188±0.003 0.5157±0.005 1.1389±0.004 0.4505±0.005

M
at

er
n

CNP 0.8531±0.005 0.2431±0.010 0.8231±0.005 0.2144±0.010 0.7761±0.008 0.1784±0.007 0.7052±0.005 0.1452±0.006
BCNP 0.8778±0.005 0.2762±0.009 0.8487±0.006 0.2477±0.009 0.8015±0.007 0.2051±0.007 0.7378±0.005 0.1766±0.006
SCNP 0.8963±0.003 0.2953±0.006 0.8689±0.005 0.2658±0.007 0.8268±0.006 0.2258±0.006 0.7567±0.004 0.1936±0.005

NP 0.7643±0.015 0.2041±0.015 0.7342±0.002 0.1725±0.008 0.6892±0.004 0.1542±0.006 0.6235±0.008 0.1342±0.007
BNP 0.8156±0.005 0.2689±0.007 0.7789±0.004 0.2215±0.005 0.7421±0.005 0.2117±0.007 0.6715±0.006 0.1828±0.006
SNP 0.8368±0.006 0.2844±0.005 0.8036±0.003 0.2483±0.003 0.7635±0.004 0.2325±0.006 0.6973±0.006 0.2016±0.005
ANP 1.2421±0.002 0.6366±0.004 1.2115±0.001 0.6001±0.008 1.1784±0.004 0.1622±0.006 1.1252±0.007 0.5274±0.008

BANP 1.3456±0.003 0.6514±0.005 1.3125±0.005 0.6115±0.002 1.2672±0.004 0.1711±0.005 1.2236±0.006 0.5306±0.006
SANP 1.3721±0.002 0.6653±0.004 1.3461±0.003 0.6256±0.004 1.3011±0.003 0.1782±0.004 1.2457±0.005 0.5356±0.002

ConvCNP 1.2515±0.003 0.6418±0.004 1.2226±0.006 0.6085±0.005 1.1832±0.005 0.1871±0.007 1.1326±0.005 0.5351±0.004
BConvCNP 1.3527±0.005 0.6616±0.006 1.3252±0.005 0.6235±0.007 1.2767±0.006 0.1952±0.005 1.1315±0.006 0.5417±0.006
SConvCNP 1.3852±0.003 0.6731±0.004 1.3364±0.004 0.6335±0.005 1.2831±0.003 0.2037±0.005 1.1521±0.005 0.5557±0.004

ConvNP 1.2746±0.002 0.6557±0.005 1.2345±0.007 0.6015±0.005 1.1865±0.006 0.1943±0.005 1.1358±0.005 0.5397±0.003
BConvNP 1.3356±0.004 0.6787±0.006 1.3305±0.005 0.6383±0.006 1.2851±0.005 0.2015±0.005 1.1415±0.006 0.5338±0.003
SConvNP 1.3878±0.002 0.6836±0.004 1.3435±0.005 0.6417±0.004 1.2866±0.004 0.2025±0.005 1.1521±0.005 0.5363±0.006

stable solution. Besides, performances on all methods become less accurate in more complicated
settings, while our solution has fewer effects. One interesting observation is that the improvements
against the base model on CNP are less significant than NP and ANP. The possible reason is that
CNP only predicts points out of the context set.

Table 2: Experiments on 1D regression data with Periodic
kernel.

Periodic Original Noise(+15%)
context target context target

ANP 0.5730±0.006 -4.2345±0.005 0.3521±0.005 -5.3211±0.007

ConvCNP 0.5983±0.006 -4.0215±0.005 0.3658±0.005 -4.5233±0.008

ConvNP 0.6125±0.005 -3.8952±0.006 0.3756±0.006 -4.3413±0.008

BANP 0.6253±0.003 -3.5413±0.005 0.3651±0.006 -4.2511±0.015

BConvCNP 0.6342±0.005 -3.4142±0.004 0.3712±0.004 -4.1750±0.008

BConvNP 0.6355±0.004 -3.3627±0.005 0.3768±0.008 -4.0116±0.007

SANP 0.6315±0.002 -3.3317±0.004 0.3748±0.004 -4.0515±0.003

SConvCNP 0.6433±0.002 -3.1515±0.004 0.3866±0.005 -3.9851±0.004

SConvNP 0.6551±0.000 -3.1062±0.004 0.3981±0.002 -3.8895±0.004

To investigate the model’s ability to
address model-data mismatch scenar-
ios, we conducted experiments on 1D
regression tasks with Periodic kernel.
Following the setting of BANP and
similar noise settings of our previous
kernels, we list the results on both
original data and noise(+15) data in
Table 2. In this model-data mismatch
data, stable versions still significantly
outperform their corresponding orig-
inal versions.
6.2 Image Completion
Image completion can be regarded as a 2D function regression task and be interpreted as being
generated from a stochastic process (since there are dependencies between pixel values). Following
the setting in previous work [14], we trained the NPs on EMNIST [4] and 32 × 32 CELEBA [23]
using the standard train/test split with up to 200 context/target points at training. Detailed experiment
settings are given in the Appendix. We evaluated average log-likelihoods over all points on realizations
from image completion. Table 3 lists the comparisons between NPs with and without our stable
solution in terms of original setting and noise setting, and the performance demonstrates the superiority
of our stable solution.

6.3 System Identification on Physics Engines
The second synthetic experiment focuses on evaluating model dynamics on a classical simulator,
Cart-Pole systems, which is detailed in [7, 27]. The Cart-Pole swing-up task is a standard benchmark
for nonlinear control due to the non-linearity in the dynamics, and the requirement for nonlinear
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Table 3: Average Log-likelihoods over all context and target points on EMNIST and CELEBA.
Dataset Method Original Noise(+5%) Noise(+10%) Noise(+15%)

context target context target context target context target

E
M

N
IS

T

CNP 0.9522±0.023 0.7515±0.0015 0.8977±0.0016 0.6336±0.017 0.8242±0.0018 0.5784±0.009 0.6566±0.0017 0.5341±0.016

BCNP 0.9678±0.010 0.8058±0.008 0.9015±0.008 0.6711±0.009 0.8415±0.007 0.6089±0.009 0.6788±0.006 0.5715±0.006

SCNP 0.9716±0.008 0.8343±0.006 0.9251±0.008 0.6971±0.007 0.8674±0.006 0.6343±0.007 0.6986±0.005 0.5877±0.005

NP 0.9678±0.004 0.7756±0.005 0.9011±0.009 0.6941±0.006 0.8544±0.009 0.6455±0.007 0.7034±0.009 0.5865±0.006

BNP 0.9757±0.005 0.8358±0.005 0.8116±0.007 0.7625±0.006 0.8759±0.007 0.6773±0.007 0.7451±0.005 0.6237±0.005

SNP 0.9847±0.005 0.8562±0.006 0.8368±0.006 0.7844±0.005 0.8984±0.005 0.6984±0.005 0.7653±0.005 0.6456±0.004

ANP 1.1125±0.002 1.0321±0.004 0.9815±0.002 0.6366±0.006 0.9021±0.004 0.7053±0.008 0.8454±0.002 0.7034±0.005

BANP 1.1355±0.003 1.0615±0.005 1.0236±0.002 0.6549±0.005 0.9155±0.004 0.7521±0.006 0.8612±0.003 0.7515±0.005

SANP 1.1531±0.000 1.0877±0.004 1.0421±0.002 0.6776±0.005 0.9321±0.002 0.7843±0.006 0.8732±0.003 0.7657±0.005

ConvCNP 1.1363±0.002 1.0461±0.004 1.0252±0.006 0.6448±0.005 0.9116±0.005 0.7115±0.006 0.8621±0.005 0.7246±0.004

BConvCNP 1.1425±0.004 1.0787±0.006 1.0311±0.005 0.6626±0.005 0.9252±0.006 0.7617±0.006 0.8717±0.006 0.7627±0.005

SConvCNP 1.1631±0.003 1.0894±0.004 1.0563±0.004 0.6778±0.004 0.9356±0.004 0.7885±0.005 0.8813±0.005 0.7692±0.006

ConvNP 1.1415±0.002 1.0563±0.004 1.0286±0.006 0.6536±0.006 0.9168±0.005 0.7171±0.007 0.8675±0.005 0.7368±0.005

BConvNP 1.1526±0.004 1.0837±0.005 1.0415±0.005 0.6684±0.005 0.9285±0.006 0.7762±0.006 0.8742±0.006 0.7727±0.005

SConvNP 1.1753±0.003 1.0934±0.004 1.0641±0.004 0.6837±0.005 0.9402±0.005 0.7925±0.006 0.8923±0.005 0.7853±0.005

C
E

L
E

B
A

CNP 1.0323±0.016 0.7845±0.013 1.0177±0.016 0.7438±0.017 0.8956±0.009 0.7344±0.011 0.7677±0.012 0.6096±0.009

BCNP 1.0452±0.009 0.8015±0.008 1.0275±0.009 0.7726±0.008 0.9351±0.006 0.8376±0.009 0.8015±0.010 0.6816±0.008

SCNP 1.0525±0.008 0.8243±0.006 1.0348±0.008 0.7868±0.006 0.9562±0.004 0.8545±0.008 0.8344±0.006 0.7045±0.005

NP 1.1333±0.004 0.8766±0.005 1.1043±0.015 0.8355±0.015 1.0034±0.008 0.8456±0.006 0.8935±0.009 0.6893±0.006

BNP 1.1732±0.005 0.8901±0.006 1.1378±0.007 0.8678±0.006 1.0411±0.008 0.8711±0.005 0.9256±0.008 0.7671±0.006

SNP 1.1952±0.005 0.9062±0.006 1.1565±0.005 0.8846±0.005 1.0542±0.006 0.8956±0.004 0.9425±0.006 0.7985±0.005

ANP 1.1633±0.002 1.0163±0.004 1.1377±0.004 0.9866±0.006 1.0418±0.004 0.8845±0.006 0.9363±0.004 0.7346±0.008

BANP 1.1751±0.002 1.0389±0.005 1.1488±0.004 1.0155±0.005 1.0602±0.005 0.9255±0.006 0.9489±0.004 0.8415±0.007

SANP 1.1854±0.000 1.0594±0.004 1.1685±0.002 1.0353±0.004 1.0772±0.002 0.9455±0.004 0.9655±0.003 0.8673±0.005

ConvCNP 1.1697±0.004 1.0366±0.004 1.1445±0.006 0.9947±0.006 1.0542±0.005 0.8971±0.007 0.9521±0.005 0.7563±0.006

BConvCNP 1.1822±0.004 1.0467±0.004 1.1511±0.005 1.0271±0.005 1.0686±0.006 0.9317±0.005 0.9542±0.005 0.8527±0.005

SConvCNP 1.1889±0.003 1.0615±0.005 1.1753±0.004 1.0478±0.004 1.0752±0.004 0.9485±0.005 0.9693±0.007 0.8714±0.006

ConvNP 1.1767±0.004 1.0451±0.004 1.1485±0.005 1.0156±0.006 1.0594±0.005 0.9066±0.007 0.9573±0.004 0.7779±0.005

BConvNP 1.1822±0.004 1.0555±0.004 1.1573±0.004 1.0351±0.005 1.0762±0.005 0.9461±0.003 0.9661±0.006 0.8636±0.003

SConvNP 1.1867±0.003 1.0668±0.004 1.1846±0.004 1.0487±0.005 1.0863±0.004 0.9511±0.005 0.9743±0.006 0.8836±0.003

Table 4: Bayesian optimization experiments on data generated by different GP kernels.
Method ANP BANP SANP ConvCNP BConvCNP SConvCNP ConvNP BConvNP SConvNP

RBF 0.1245±0.003 0.1341±0.003 0.1142±0.002 0.1215±0.002 0.1168±0.003 0.1037±0.002 0.1197±0.002 0.1156±0.003 0.1015±0.003

Matern 0.1518±0.003 0.1316±0.004 0.1201±0.002 0.1489±0.003 0.1301±0.002 0.1216±0.002 0.1446±0.002 0.1242±0.003 0.1204±0.004

Periodic 0.1892±0.002 0.1788±0.005 0.1672±0.001 0.1652±0.002 0.1526±0.004 0.1487±0.003 0.1611±0.002 0.1498±0.004 0.1446±0.002

controllers to successfully swing up and balance the pendulum. More detailed experimental settings
are given in the Appendix.
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Figure 2: The predictive Log Likelihood (LL) and Mean
Average Error (MAE) on Cart-Pole state transition testing
dataset.

For each configuration of the simulator
including training and testing environ-
ments, we sampled 400 trajectories of
the horizon as 10 steps using a random
controller. During the testing process,
100 state transition pairs were randomly
selected for each configuration of the
environment, working as the maximum
context points to identify the configura-
tion of dynamics. Figure 2 shows the pre-
dictive Log-Likelihoods (LL) and Mean
Average Error (MAE) on Cart-Pole State
Transition Testing Dataset. We can see that our stable NPs achieve better likelihood and lower
prediction error than the original ones. The variances on the stable one are consistently smaller than
all original baselines.

6.4 Bayesian Optimization

Following the setting in BANP [18], we conducted the Bayesian optimization experiment. Taking
GP data with RBF, Matern, and Periodic prior functions as examples, we gave the results of ANP,
ConvCNP, ConvNP, Boostraping versions, and our stable versions. To maintain consistent comparison,
we standardized the initializations and normalized the results. We reported the best simple regret,
which represents the difference between the current best observation and the global optimum. As
shown in Table 4, we can see that our stable solutions consistently achieve lower regret than other
NPs.
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Table 5: Predator-prey model results.
Method ANP BANP SANP ConvCNP BConvCNP SConvCNP ConvNP BConvNP SConvNP

Simulated-context 2.5801±0.003 2.5912±0.002 2.6127±0.004 2.5912±0.002 2.6068±0.003 2.6164±0.002 2.5925±0.002 2.6125±0.005 2.6231±0.003

Simulated-target 1.8265±0.003 1.8635±0.004 1.8844±0.002 1.8352±0.004 1.8524±0.003 1.9516±0.002 1.9228±0.005 1.9442±0.003 1.9662±0.004

Real-context 1.7234±0.002 1.8496±0.005 1.8412±0.001 1.7956±0.002 1.8026±0.004 1.8744±0.003 1.8342±0.002 1.8476±0.005 1.8796±0.002

Real-target -7.8042±0.002 -5.4836±0.004 -5.2527±0.001 -5.3414±0.005 -5.1526±0.004 -5.3513±0.004 -5.3155±0.002 -5.2615±0.004 -5.2145±0.003

6.5 Predator-prey Models
Following [18] and [11], we consider the Lotka–Volterra model [30], which is used to describe the
evolution of predator–prey populations. We first trained the models using simulated data generated
from a Lotka-Volterra model and tested them on real-world data (Hudson’s Bay hare-lynx data),
which is quite different from the simulated data and can be considered as a mismatch scenario.
Table 5 lists the results on both simulated and real data. Similar to the previous observation, our
stable version still outperforms the original version. Among stable versions, SConvNP achieves the
best performance.

6.6 Ablation Study
The key parameter in our stable solution is the number of hard predictable subsets K. Taking SANP
as an example, we investigated the average log-likelihood in terms of differentK on the 1D regression
task, as shown in Figure 3. We can see that SANP performs better as K increases, reaches the best
value at around K = 4, and then becomes stable in performance as K grows larger. As proved in
Theorem 5.3, optimization on D1:M and more than one hard predictable subset of D1:M can achieve
more stable prediction. We also conducted different experiments to explore the impact of different
wk. Taking the 1D regression task with RBF-GP data as an example, we set K = 3 and different wk
for experiments, as shown in Table 6. It can be seen from the table below that when different weights
are set, the model using a stable strategy is better than the original model, and when the weight is
set to be equal, its performance is optimal. In addition, when the value of wk(k ≥ 1) is significantly
different from w0, such as (0.625, 0.125, 0.125, 0.125) and (0.0625, 0.3125, 0.3125, 0.3125), its
performance is more significantly reduced compared to (0.25, 0.25, 0.25, 0.25), but it still has a
significant improvement compared to the original non-stable model.
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Figure 3: Log-likelihood (SANP) comparisons with different K on 1D regression task.

Table 6: Log-likelihood comparisons with different wk on 1D regression task.
Weights (0.25,0.25,0.25,0.25) (0.4,0.2.0.2,0.2) (0.625,0.125,0.125,0.125) (0.1,0.3,0.3,0.3) (0.0625,0.3125,0.3125,0.3125)
SCNP (0.9255, 0.4125) (0.9127, 0.4019) (0.9035, 0.3998) (0.9149, 0.4086) (0.8927, 0.3991)
SNP (0.8955, 0.3925) (0.8737, 0.3817) (0.8716, 0.3809) (0.8831, 0.3859) (0.8657, 0.3775)

SANP (1.2831, 0.5215) (1.2776, 0.5187) (1.2738, 0.5196) (1.2791, 0.5203) (1.2712, 0.5193)
SConvCNP (1.3991, 0.5996) (1.3916, 0.5933) (1.3841, 0.5915) (1.3934, 0.5946) (1.3854, 0.5919)
SConvNP (1.4036, 0.6015) (1.3991, 0.6004) (1.3931, 0.5992) (1.4012, 0.6015) (1.3957, 0.5995)

7 Conclusion and Future Work
In this paper, we provided theoretical guidelines for deriving stable solutions for NPs, which can
obtain good generalization performance. Experiments demonstrated the proposed stable solution can
help NPs to achieve more accurate and stable predictions. Although the theoretical analysis we give
is based on regression models, it is still open to question whether this conclusion is appropriate for
classification models. Therefore, we are interested in extending our theory, expecting it to apply to
more different types of tasks.
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A Inductive biases

Here, we revisit some properties, which would help us understand NPs. First, we give a concept of
Permutation Invariant Function which is the basic property of stochastic process, e.g., NPs.

Definition A.1. (Permutation Invariant Function) A function f(·) : ×Ni RD → Rd mapping a set of
data points {xi}Ni=1 is Permutation Invariant Function if

x = [x1,x2, · · · ,xN ]→ f = [f1(xπ(1:N)), f2(xπ(1:N)), · · · , fd(xπ(1:N))], (13)

where xi ∈ RD and the function output is a d dimensional vector. Operation π : [1, 2, · · · , N ] →
[π1, π2, · · · , πN ] is a permutation set over the order of elements in the set.

Definition A.2. (Permutation Equivariant Function) A function f(·) : ×Ni RD → RN mapping a set
of data points {xi}Ni=1 is Permutation Invariant Function if

Xπ = [xπ1 ,xπ2 , · · · ,xπN ]→ fπ = π ◦ f(x1:N ), (14)

where the function output contains N elements keeping the order of inputs.

Permutation Equivariant Function keeps the order of elements in the output consistent with that in the
input under any permutation operation π. Permutation invariant functions are candidate functions for
learning embeddings of a set or other order uncorrelated data structure {xi}Ni=1, and the invariant
property is easy to be verified. Here, we give a mean operation structure over the output

F (Xπ(1:N)) =

(
1

N

N∑
i=1

φ1(xi),
1

N

N∑
i=1

φ2(xi), · · · ,
1

N

N∑
i=1

φD(xi)

)
(15)

B Model Architecture

We show the architectural details of the CNP, NP, and ANP models used for the 1D and 2D function
regression experiments. The neural process aims to learn a stochastic process (random function)
mapping target features xi to prediction yi given the context set DC as training data (a realization
from the stochastic process), i.e., learning

logP
(
yT |XT ,DC

)
= logP

(
y|X,DC

)
=

N∑
i=1

P
(
yi|xi,DC

)
. (16)

Conditional neural process (CNP) [9] describes P
(
yi|xi,DC

)
with a deterministic neural network

taking DC to output the parameters of P
(
yi|xi,DC

)
. CNP consists of an encoder fenc(·), an aggre-

gator fagg(·) and a decoder fdec(·); the encoder summarizes DC and xi into latent representations
[r1, · · · , r|C|] ∈ R|

C |×d via permutation-invariant neural network [31], where d is the number of
latent dimensions, and aggregator summarizes the encoded context features to a single representa-
tion rC , and decoder takes as input the aggregated representations rC and xi and output the single
output-specific mean µi and variance σ2

i for the corresponding value of yi.

ri = fenc (xi, yi) , i ∈ C

rC =
1

|C|
∑
i∈C

ri

φ = fagg(r
C)

(µi, σi) = fdec(φ,xi), p
(
yi|xi,DC

)
= N

(
yi;µi, σ

2
i

)
i ∈ T

(17)

where fenc(·) and fdec(·) are feed-forward neural networks. The decoder output µi and variance
σ2
i are predicted mean and variance. We use Gaussian distribution N (yi;µi, σ

2
i ) as predictive

distribution. CNP is trained to maximize the expected likelihood EP (T )[P
(
yi|xi,DC

)
].

Neural process [10] further models functional uncertainty using a global latent variable. Unlike CNP,
which maps a context into a deterministic representation r̃i, NP encoders a context into a Gaussian
latent variable z, giving additional stochasticity in function construction. Following [14], we consider
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an NP with both a deterministic path and latent path, where the deterministic path models the overall
skeleton of the function r̃i, and the latent path models the functional uncertainty:

ri = f (1)enc (xi, yi) , i ∈ C

rC =
1

|C|
∑
i∈C

ri

φ = fagg(r)

(µz, σz) = f (2)enc

(
DC
)
, q(z|DC) = N (z;µz, σ

2
z)

(µi, σi) = fdec(φ, z,xi), p
(
yi|xi, z,DC

)
= N

(
yi;µi, σ

2
i

)
i ∈ T

(18)

with f
(1)
enc(·) and f

(2)
enc(·) having the same structure as fenc(·) in Eq.(17). In this scenario, the

conditional distribution is lower bounded as:

logP
(
y|X,DC

)
≥

N∑
i=1

Eq(z|DC)

[
log

P
(
yi|xi, z,DC

)
P (z|DC)

q(z|X,y)

]
. (19)

We further approximate q(z|DC) ≈ P (z|DC) and train the model by maximizing this expected lower
bound over tasks. Furthermore, ANP introduces attention mechanisms into NP to resolve the issue of
under-fitting.

The architectural details of the CNP, NP, and ANP are the same as in [14]. Here we give the detailed
architectures of the encoder and decoder of NPs.

B.1 Encoder without attention

Encoder focuses on learning embeddings for each data point in the context set, and the basic
component is multi-layer perceptron, which is defined by

MLP(l, din, dh, dout) = LINEAR(dh, dout) ◦ (RELU ◦ LINEAR(dh, dh) ◦ · · · )︸ ︷︷ ︸
×(l−2)

◦LINEAR(dh, din)

(20)
where l is the number of layers, din, dh and dout are dimensinalities of inputs, hidden unites and
outputs. Here RELU(·) is adapted as activation function.

The encoder in Vanilla CNP uses a deterministic encoder which focuses on learning embeddings for
each data point in context set.

ri = MLP(le1, dx + dy, dh, dh)([xi, yi]),

rC =
∑
i∈C

ri, φ = MLP(le2, dh, dh)(r
C) (21)

where dx and dy are the dimensionalities of xi and yi.

To follow the encoder structure in NP, we introduce another encoder aligned with original deterministic
encoder to permit the same number parameters, i.e.,

r
(1)
i = MLP(le1, dx + dy, dh, dh)([xi, yi])

r
(1)
C =

∑
i∈C

r
(1)
i , φ1 = MLP(le2, dh, dh)(r

(1)
C )

r
(2)
i = MLP(le1, dx + dy, dh, dh)([xi, yi])

r
(2)
C =

∑
i∈C

r
(2)
i , φ2 = MLP(le2, dh, dh)(r

(2)
C )

φ = [φ1, φ2]

(22)
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The encoder in NP contains a deterministic path and a latent path, i.e.,

r
(1)
i = MLP(lde1, dx + dy, dh, dh)([xi, yi])

r
(1)
C =

∑
i∈C

r
(1)
i , φ = MLP(lde2, dh, dh)(r

(1)
C )

r
(2)
i = MLP(lla1, dx + dy, dh, dh)([xi, yi])

r
(2)
C =

∑
i∈C

r
(2)
i , [µz, σ

′
z] = MLP(lla2, dh, dh)(r

(2)
C )

σz = 0.1 + 0.9 · SIGMOID(σ′z), z ∼ N (µz,diag(σ
2
z)).

(23)

In this case, the encoder outputs deterministic representation φ and latent representation z.

B.2 Encoder with attention

The attention mechanism is widely used in NPs, Specifically, multi-head attention [26] is adapted,
which is defined by

Q′ = {LINEAR(dq, dout)(q)}q∈Q, {Q′i}
nhead
i=1 = SPLIT(Q′, nhead),

K′ = {LINEAR(dk, dout)(k)}k∈K, {K′i}
nhead
i=1 = SPLIT(K′, nhead),

V′ = {LINEAR(dv, dout)(v)}v∈V, {V′i}
nhead
i=1 = SPLIT(V′, nhead),

Hi = SOFTMAX
(
Q′i(K

′
i)
>/
√
dout

)
V′i, H = CONCAT ({Hi}nheadi=1 )

H′ = LAYERNORM(Q′ +H)

MHA(dout)(Q,K,V) = LAYERNORM(H′ + RELU(LINEAR(dout, dout)))
(24)

where dq, dv, dk are the dimensionalities of query Q, key K, and value V, respectively. nhead is
the number of head. Here Layer normalization [1] LAYERNORM(·) is adapted. It is easy to derive
self-attention by setting Q = K = V, i.e.,

SA(dout))(X) = MHA(dout)(X,X,X) (25)

For CNP, the encoder with attention still contains two deterministic paths,

fqk = MLP(lqk, dx, dh, dh)

Q = fqk(xi), i ∈ T
K = {fqk(xi)}, i ∈ C
V = SA(dh).({MLP(lv, dx + dy, dh, dh)([xi, yi])}i∈C)
φ1 = MHA(dh)(Q,K,V)

H = SA(dh) ({RELU ◦MLP(le1, dx + dy, dh, dh)([xi, yi])}i∈C)

φ2 = MLP(le, dh, dh)

(
1

|C|
∑
i∈C

hi

)
φ = [φ1, φ2]

(26)

Similarly, encoder with attention in NP contains a deterministic path and a latent path, i.e.,

fqk = MLP(lqk, dx, dh, dh)

Q = fqk(xi), i ∈ T
K = {fqk(xi)}, i ∈ C
V = SA(dh).({MLP(lv, dx + dy, dh, dh)([xi, yi])}i∈C)
φ = MHA(dh)(Q,K,V)

(27)
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and
H = SA(dh) ({RELU ◦MLP(le1, dx + dy, dh, dh)([xi, yi])}i∈C)

[µz, σ
′
z] = MLP(lla, dh, dh)

(
1

|C|
∑
i∈C

hi

)
σz = 0.1 + 0.9 · SIGMOID(σ′z),

z ∼ N (µz,diag(σ
2
z)).

(28)

B.3 Decoder

The decoder focuses on predicting output for target points based on the encoder’s outputs φ. For
target point {xi}i∈T , the decoder of CNP is defined by

[µi, σ
′
i] = MLP(ddec, 2dh + dx, dh, 2dy)[φ,xi], i ∈ T
σi = 0.1 + 0.9 · SOFTPLUS(σ′i)

yi ∼ N (µi, σi)

(29)

Decoder of NP is defined by

[µi, σ
′
i] = MLP(ddec, dh + dz + dx, dh, 2dy)[φ,xi, z], i ∈ T
σi = 0.1 + 0.9 · SOFTPLUS(σ′i)

yi ∼ N (µi, σi)

(30)

C Implementation Details and Experiments

For CNP [9], BCNP [18], and our SCNP, we apply the encoder with attention described in Eq (26)
and decoder described in Eq (29). For NP [10], ANP [14], BNP [18], BANP [18] and our SNP and
SANP models, we apply encoder with attention described in Eq (27) and (28), and decoder described
in Eq (30).

C.1 1D Regression

For synthetic 1D regression experiments, the neural architectures for CNP, NP, ANP, BCNP, BNP,
BANP, and our SCNP/SNP/SANP refer to Appendix B. The number of hidden units is dh = 128 and
latent representation dz = 128. The number of layers are le = lde = lla = lqk = lv = 2.

We generate datasets for synthetic 1D regression. Specifically, the stochastic process (SP) initializes
with a 0 mean Gaussian Process (GP) y(0) ∼ GP (0, k(·, ·)) indexed in the interval x ∈ [−2.0, 2.0],
where the radial basis function kernel k(x, x

′
) = σ2 exp(−‖x− x′‖2/2l2) with s ∼ U(0.1, 1.0) and

σ ∼ U(0.1, 0.6). Furthermore, GP with Matern Kernel is adopted for model-data mismatch scenario,
which is defined as k(x, x′) = σ2(1 +

√
5d/l + 5d2/(3l2)) exp(−

√
5d/l) and d = ‖x − x′‖ with

s ∼ U(0.1, 1.0) and σ ∼ U(0.1, 0.6). For a fair comparison, we set the same data generation,
training, and testing for all models.

We trained all models for 100, 000 steps with each step computing updates with a batch containing
100 tasks. We used the Adam optimizer with an initial learning rate 5 · 10−4 and decayed the learning
rate using Cosine annealing scheme for baselines. For SCNP/SNP/SANP, we set K = 3. The size of
the context C was drawn as |C| ∼ U(3, 200). Testings were done for 3, 000 batches with each batch
containing 16 tasks (48, 000 tasks in total).

We investigate the model stability from the size of the context set and the percent of added noise.
First, we conduct experiments on different size of context set, i.e., |C| ∈ {20, 50, 100, 200}. Table 7
shows the Average Log-likelihoods performance comparison between different methods in terms
of different context size. We can see that the performance becomes better with the increasing of
|C| and NPs with stable solution still achieve better performance. Second, we investigate the model
performance in terms of different noise setting. Here we introduce Gaussian noise N (0, 1) and add
noise to different proportions of the data, such as {0%, 5%, 10%, 15%}. Table 8 lists the Average
Log-likelihoods performance comparison in terms of different noise proportions.
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Table 7: Average Log-likelihoods over all context and target points on realizations from Synthetic
Stochastic Process on different size of context set. (Mean ± Std).

Kernel Method 20 50 100 200
context target context target context target context target

R
B

F
CNP 0.8724±0.008 0.4334±0.007 0.9533±0.005 0.4854±0.010 1.1224±0.005 0.5322±0.007 0.1563±0.004 0.5783±0.004

BCNP 0.9015±0.009 0.4579±0.007 0.9787±0.007 0.5215±0.008 1.1687±0.007 0.5716±0.009 0.1985±0.005 0.6086±0.005

SCNP 0.9255±0.008 0.4733±0.004 0.9944±0.005 0.5433±0.006 1.1833±0.006 0.5918±0.005 0.2111±0.004 0.6333±0.004

NP 0.8215±0.004 0.3853±0.005 0.9124±0.006 0.4234±0.003 1.0855±0.003 0.4767±0.005 1.1225±0.002 0.5233±0.004

BNP 0.8714±0.004 0.4122±0.004 0.9712±0.004 0.4718±0.004 1.1426±0.005 0.5269±0.006 1.1716±0.004 0.5698±0.004

SNP 0.8955±0.003 0.4356±0.004 0.9866±0.004 0.4934±0.005 1.1637±0.004 0.5434±0.004 1.1958±0.003 0.5933±0.003

ANP 1.2563±0.002 0.5763±0.004 1.3233±0.002 0.6322±0.003 1.4633±0.003 0.6866±0.006 1.4982±0.006 0.7322±0.004

BANP 1.2715±0.003 0.5878±0.005 1.3325±0.004 0.6465±0.004 1.4778±0.003 0.6915±0.004 1.5115±0.005 0.7436±0.005

SANP 1.2831±0.000 0.5994±0.004 1.3452±0.002 0.6577±0.003 1.4898±0.001 0.7043±0.002 1.5285±0.002 0.7534±0.005

M
at

er
n

CNP 0.8531±0.005 0.2431±0.010 0.9123±0.005 0.2984±0.003 1.0522±0.004 0.3542±0.002 1.0984±0.008 0.4022±0.005

BCNP 0.8765±0.006 0.2788±0.009 0.9411±0.006 0.3266±0.005 1.0752±0.004 0.3762±0.004 1.1245±0.007 0.4326±0.006

SCNP 0.8963±0.003 0.2953±0.006 0.9555±0.004 0.3467±0.003 1.0967±0.003 0.3967±0.003 1.1467±0.008 0.4556±0.005

NP 0.7643±0.015 0.2041±0.015 0.8221±0.002 0.2547±0.003 0.9322±0.003 0.3155±0.004 1.0452±0.005 0.3563±0.005

BNP 0.8052±0.008 0.2651±0.007 0.8678±0.003 0.3163±0.004 0.9672±0.003 0.3656±0.005 1.1052±0.005 0.4015±0.005

SNP 0.8368±0.006 0.2844±0.005 0.8956±0.002 0.3326±0.004 0.9959±0.003 0.3849±0.004 1.1215±0.003 0.4313±0.004

ANP 1.2421±0.002 0.6366±0.004 1.3022±0.001 0.6881±0.004 1.4211±0.004 0.7331±0.003 1.4631±0.002 0.7753±0.008

BANP 1.3452±0.007 0.6513±0.004 1.4056±0.003 0.7015±0.004 1.4505±0.004 0.7531±0.005 1.4986±0.004 0.7996±0.006

SANP 1.3721±0.002 0.6653±0.004 1.4322±0.003 0.7126±0.004 1.4633±0.004 0.7644±0.003 1.5153±0.005 0.8125±0.004

Table 8: Average Log-likelihoods over all context and target points on realizations from Synthetic
Stochastic Process on different percent of added noise. Here we set the context size to 20. (Mean ±
Std). Note that adding ‘S’ before the original model name is a model with our stable solution.

Kernel Method Original Noise(+5%) Noise(+10%) Noise(+15%)
context target context target context target context target

R
B

F

CNP 0.8724±0.008 0.4334±0.007 0.8522±0.005 0.4001±0.010 0.8014±0.006 0.3552±0.004 0.7152±0.006 0.2853±0.005
BCNP 0.9042±0.009 0.4589±0.006 0.8774±0.006 0.4278±0.008 0.8316±0.006 0.3767±0.005 0.7487±0.007 0.3017±0.006
SCNP 0.9255±0.008 0.4733±0.004 0.8935±0.005 0.4478±0.006 0.8517±0.004 0.3986±0.005 0.7621±0.005 0.3279±0.006

NP 0.8215±0.004 0.3853±0.005 0.8011±0.004 0.3511±0.006 0.7611±0.005 0.3042±0.008 0.6722±0.005 0.2435±0.007
BNP 8722±0.004 0.4211±0.004 0.8321±0.003 0.3876±0.004 0.7922±0.004 0.3389±0.005 0.7189±0.004 0.2776±0.007
SNP 0.8955±0.003 0.4356±0.004 0.8567±0.003 0.4046±0.005 0.8165±0.004 0.3568±0.006 0.7356±0.005 0.2955±0.006
ANP 1.2563±0.002 0.5763±0.004 1.2245±0.007 0.5347±0.006 0.1742±0.005 0.4871±0.007 0.9821±0.005 0.4151±0.004

BANP 1.2722±0.004 0.5887±0.006 1.2411±0.005 0.5471±0.005 0.1886±0.006 0.4917±0.006 1.0642±0.006 0.4327±0.005
SANP 1.2831±0.000 0.5994±0.004 1.2564±0.004 0.5578±0.004 1.2052±0.004 0.5025±0.006 1.1243±0.005 0.4356±0.006

M
at

er
n

CNP 0.8531±0.005 0.2431±0.010 0.8231±0.005 0.2144±0.010 0.7761±0.008 0.1784±0.007 0.7052±0.005 0.1452±0.006
BCNP 0.8778±0.005 0.2762±0.009 0.8487±0.006 0.2477±0.009 0.8015±0.007 0.2051±0.007 0.7378±0.005 0.1766±0.006
SCNP 0.8963±0.003 0.2953±0.006 0.8689±0.005 0.2658±0.007 0.8268±0.006 0.2258±0.006 0.7567±0.004 0.1936±0.005

NP 0.7643±0.015 0.2041±0.015 0.7342±0.002 0.1725±0.008 0.6892±0.004 0.1542±0.006 0.6235±0.008 0.1342±0.007
BNP 0.8156±0.005 0.2689±0.007 0.7789±0.004 0.2215±0.005 0.7421±0.005 0.2117±0.007 0.6715±0.006 0.1828±0.006
SNP 0.8368±0.006 0.2844±0.005 0.8036±0.003 0.2483±0.003 0.7635±0.004 0.2325±0.006 0.6973±0.006 0.2016±0.005
ANP 1.2421±0.002 0.6366±0.004 1.2115±0.001 0.6001±0.008 1.1784±0.004 0.5622±0.006 1.1252±0.007 0.5274±0.008

BANP 1.3456±0.003 0.6514±0.005 1.3125±0.005 0.6115±0.002 1.2672±0.004 0.5711±0.005 1.2236±0.006 0.5306±0.006
SANP 1.3721±0.002 0.6653±0.004 1.3461±0.003 0.6256±0.004 1.3011±0.003 0.5782±0.004 1.2457±0.005 0.5356±0.002

C.2 System Identification on Physics Engines

The second synthetic experiment focuses on evaluating model dynamics on a classical simulator,
Cart-Pole systems, which is detailed in [7, 27]. The Cart-Pole swing-up task is a standard benchmark
for nonlinear control due to the non-linearity in the dynamics, and the requirement for nonlinear
controllers to successfully swing up and balance the pendulum. A pendulum of length l is attached to
a cart by a frictionless pivot. The system begins with the cart at position xc = 0 and the pendulum
hanging down: θ. The goal is to accelerate the cart by applying horizontal force ut at each time-step
t to invert and then stabilize the pendulum’s endpoint at the goal. There are some parameters that
need to be known, such as cart mass mc, pendulum mass mp, acceleration of gravity g = 9.82m/s2,
time horizon T , time discretization4t and ground friction coefficient fc. In this case, the Cart-Pole
swing-up task aims to forecast the transited state [xc, θ, x

′
c, θ
′] in time step t+ 1 based on the input

as a state action pair [xc, θ, x′c, θ
′, a] in time step t.

For system identification task on physics engines, the neural architectures for CNP, NP, ANP, BANP
and our RNP refer to Appendix B. The number of hidden unites is dh = 32 and latent representation
dz = 32. The number of layers are le = lde = lla = lqk = lv = 2.

To generate a variety of trajectories under a random policy for this experiment, the mass mc and
the ground friction coefficient fc are varied in the discrete choices mc ∈ {0.3, 0.4, 0.5, 0.6, 0.7} and
fc ∈ {0.06, 0.08, 0.1, 0.12}. Each pair of [mc, fc] values specifies a dynamics environment, and we
formulate all pairs of mc ∈ {0.3, 0.5, 0.7} and fc ∈ {0.08, 0.12} as training environments with the
rest 16 pairs of configurations as the testing environments. For each configuration of the simulator
including training and testing environments, we sample 400 trajectories of horizon as 10 steps using
a random controller, and more details refer to Supplementary material. During the testing process,
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Figure 4: Cart-Pole Dynamical Systems.The cart and the pole are with masses mc and mp, and the
length of the pole is l. And the configuration of the simulator is up to parameters of the cart-pole
mass and the ground friction coefficient here with other hyper-parameters fixed in this experiment.

Table 9: Average Log-likelihoods over all context and target points on EMNIST and CELEBA.
Dataset Method Original Noise(+5%) Noise(+10%) Noise(+15%)

context target context target context target context target

E
M

N
IS

T

CNP 0.9522±0.023 0.7515±0.0015 0.8977±0.0016 0.6336±0.017 0.8242±0.0018 0.5784±0.009 0.6566±0.0017 0.5341±0.016

BCNP 0.9678±0.010 0.8058±0.008 0.9015±0.008 0.6711±0.009 0.8415±0.007 0.6089±0.009 0.6788±0.006 0.5715±0.006

SCNP 0.9716±0.008 0.8343±0.006 0.9251±0.008 0.6971±0.007 0.8674±0.006 0.6343±0.007 0.6986±0.005 0.5877±0.005

NP 0.9678±0.004 0.7756±0.005 0.9011±0.009 0.6941±0.006 0.8544±0.009 0.6455±0.007 0.7034±0.009 0.5865±0.006

BNP 0.9757±0.005 0.8358±0.005 0.8116±0.007 0.7625±0.006 0.8759±0.007 0.6773±0.007 0.7451±0.005 0.6237±0.005

SNP 0.9847±0.005 0.8562±0.006 0.8368±0.006 0.7844±0.005 0.8984±0.005 0.6984±0.005 0.7653±0.005 0.6456±0.004

ANP 1.1125±0.002 1.0321±0.004 0.9815±0.002 0.6366±0.006 0.9021±0.004 0.7053±0.008 0.8454±0.002 0.7034±0.005

BANP 1.1355±0.003 1.0615±0.005 1.0236±0.002 0.6549±0.005 0.9155±0.004 0.7521±0.006 0.8612±0.003 0.7515±0.005

SANP 1.1531±0.000 1.0877±0.004 1.0421±0.002 0.6776±0.005 0.9321±0.002 0.7843±0.006 0.8732±0.003 0.7657±0.005

C
E

L
E

B
A

CNP 1.0323±0.016 0.7845±0.013 1.0177±0.016 0.7438±0.017 0.8956±0.009 0.7344±0.011 0.7677±0.012 0.6096±0.009

BCNP 1.0452±0.009 0.8015±0.008 1.0275±0.009 0.7726±0.008 0.9351±0.006 0.8376±0.009 0.8015±0.010 0.6816±0.008

SCNP 1.0525±0.008 0.8243±0.006 1.0348±0.008 0.7868±0.006 0.9562±0.004 0.8545±0.008 0.8344±0.006 0.7045±0.005

NP 1.1333±0.004 0.8766±0.005 1.1043±0.015 0.8355±0.015 1.0034±0.008 0.8456±0.006 0.8935±0.009 0.6893±0.006

BNP 1.1732±0.005 0.8901±0.006 1.1378±0.007 0.8678±0.006 1.0411±0.008 0.8711±0.005 0.9256±0.008 0.7671±0.006

SNP 1.1952±0.005 0.9062±0.006 1.1565±0.005 0.8846±0.005 1.0542±0.006 0.8956±0.004 0.9425±0.006 0.7985±0.005

ANP 1.2633±0.002 1.0163±0.004 1.1377±0.004 0.9866±0.006 1.0418±0.004 0.8845±0.006 0.9363±0.004 0.7346±0.008

BANP 1.2751±0.002 1.0389±0.005 1.1488±0.004 1.0155±0.005 1.0602±0.005 0.9255±0.006 0.9489±0.004 0.8415±0.007

SANP 1.2854±0.000 1.0594±0.004 1.1685±0.002 1.0353±0.004 1.0772±0.002 0.9455±0.004 0.9655±0.003 0.8673±0.005

100 state transition pairs are randomly selected for each configuration of the environment, working as
the maximum context points to identify the configuration of dynamics.

C.3 Image Completion

Analogous to the 1D experiments, we take random pixels of a given image at training as targets,
and select a subset of this as contexts, again choosing the number of contexts and targets randomly
(n ∼ U [3, 200], m ∼ n+ U [0, 200− n]). The xi are rescaled to [−1, 1] and the yi are rescaled to
[−0.5, 0.5]. We use a batch size of 16 for both EMNIST and CelebA, i.e. use 16 randomly selected
images for each batch.

For image completion experiments on EMNIST and CelebA dataset, the neural architectures for
CNP, NP, ANP, BCNP, BNP, BANP, and our SCNP, SNP, and SANP refer to Appendix B. The
number of hidden unites is dh = 128 and latent representation dz = 128. The number of layers are
le = lde = 4, lla = lqk = lv = 5. hhead = 8

C.4 Uncertainty Measuring

Methods for reasoning under uncertainty are a key building block of accurate and reliable machine
learning systems. We further analyze the learned models using the framework introduced in [17] to
quantify uncertainty by investigate the calibration error and sharpness of the models. By assuming
predictive distribution Pθ(yi|xi,DC) as Gaussian distribution N (yi;µi, σ

2
i ), we can get the proba-

bilistic forecast Fi(xi). More formally, m confidence levels 0 ≤ p1 < p2 < · · · pm ≤ 1 are choose.
For each threshold pj , we compute the empirical frequency

p̂j =
|yi|Fi(yi) ≤ pj , i ∈ T |

|T |
(31)
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Table 10: Calibration error and sharpness of the models for 1D regression experiments (Mean ± Std).

Method RBF Matern
CAL SHA CAL SHA

CNP 0.0724±0.008 0.0887±0.007 0.0514±0.005 0.0831±0.010

BCNP 0.1015±0.007 0.1151±0.005 0.0724±0.005 0.1152±0.009

SCNP 0.1225±0.005 0.1357±0.006 0.0425±0.005 0.1325±0.008

NP 0.0615±0.004 0.0715±0.005 0.0343±0.015 0.0717±0.015

BNP 0.0871±0.005 0.1052±0.006 0.0325±0.009 0.0715±0.008

SNP 0.1155±0.004 0.1257±0.005 0.0347±0.008 0.0718±0.007

ANP 0.1532±0.002 0.0616±0.004 0.0921±0.004 0.0871±0.006

BANP 0.2353±0.002 0.0689±0.004 0.0752±0.005 0.0741±0.006

SANP 0.2633±0.000 0.0741±0.004 0.0415±0.002 0.0667±0.004

Table 11: Calibration error and sharpness of the models for system identification experiments (Mean
± Std).

Method CAL SHA
CNP 0.0872±0.008 0.0415±0.007

BCNP 0.1051±0.005 0.0765±0.006

SCNP 0.1124±0.005 0.0833±0.005

NP 0.0821±0.003 0.0581±0.005

BNP 0.0952±0.003 0.0616±0.005

SNP 0.1001±0.001 0.0668±0.005

ANP 0.0863±0.001 0.0673±0.004

BANP 0.1235±0.001 0.0815±0.005

SANP 0.1431±0.000 0.1094±0.004

In this case, the calibration error is defined as a numerical score describing the quality of forecast
calibration:

CAL(F1, y1, · · · , F|T |, y|T |) =
m∑
j=1

wj · (pj − p̂j)2 (32)

here wj is weight and we set wj = 1.

Sharpness is measured by using the variance var(Fi) = σ2
i of the random variable whose CDF is Fi.

Low-variance predictions are tightly centered around one value. A sharpness score can be defined by

SHA(F1, · · · , F|T |) =
1

|T |
∑
i∈T

σ2
i (33)

We evaluated the CE and sharpness of CNP, NP, ANP, BCNP, NBP, BANP, and corresponding stable
versions SCNP, SNP, and SANP trained in the experiments. Table 10, 11, 12 list the calibration
error and sharpness score on 1D regression, system identification, and image completion tasks. In
several settings, models with our stable solution can achieve better calibration and sharpness but work
worse in some settings, such as the calibration error being worse than NP and ANP in terms of 1D
regression tasks with Matern. The possible reason is that our method tends to produce conservative
credible intervals, so become under-confident or less over-confident in some settings.

Table 12: Calibration error and sharpness of the models for image completion experiments (Mean ±
Std).

Method EMNIST CELEBA
CAL SHA CAL SHA

CNP 0.0182±0.002 0.0574±0.002 0.0253±0.002 0.0743±0.001

BCNP 0.0415±0.003 0.0716±0.002 0.0412±0.002 0.0981±0.002

SCNP 0.0543±0.001 0.0846±0.002 0.0457±0.002 0.1136±0.002

NP 0.0163±0.001 0.0671±0.002 0.0261±0.001 0.0711±0.001

BNP 0.0352±0.002 0.0815±0.002 0.0463±0.001 0.0981±0.002

SNP 0.0446±0.002 0.0918±0.000 0.0532±0.001 0.1046±0.001

ANP 0.0156±0.002 0.0656±0.002 0.0261±0.004 0.0815±0.006

BANP 0.0412±0.002 0.0871±0.002 0.0513±0.003 0.1125±0.003

SANP 0.0558±0.000 0.0954±0.001 0.0632±0.002 0.1265±0.004
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Figure 5: The Log-likelihood comparisons with different K on 1D regression task.
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Figure 6: The LL and MAE comparisons with different K on system identification task.
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Figure 7: The LL comparisons with different K on image completion task.

C.5 Ablation Study

The key parameter in our stable solution is the number of hard predictive subsets K. Taking SANP
as an example, we investigated the average log-likelihood in terms of different K on 1D regression
task, as shown in Figure 5. We can see that SANP performs better as K increases, reaches the best
value at around K = 4, and then becomes stable in performance as K grows larger. As proved in
Theorem 5.4 in the main manuscript, optimization on DC and more than one hard predicted subsets
of DC can achieve more stable prediction. Similarly, we also conducted experiments to investigate
the effect of K on System identification and image completion task and similar observations can be
seen in Figure 6 and 7.
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