
Under review as a conference paper at ICLR 2024

MEMSTRANDING: ADVERSARIAL ATTACKS ON TEM-
PORAL GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal graph neural networks (TGNN) have achieved significant momentum
in many real-world dynamic graph tasks. While this trend raises an urgent to
study their robustness against adversarial attacks, developing an attack on TGNN
is challenging due to the dynamic nature of their input dynamic graphs. On the
one hand, subsequent graph changes after the attacks may diminish the impact
of attacks on seen nodes. On the other hand, targeting future nodes, which are
unseen during the attack, poses significant challenges due to missing knowledge
about them. To tackle these unique challenges in attacking TGNNs, we propose
a practical and effective adversarial attack framework, MemStranding, that lever-
ages node memories in TGNN models to yield long-lasting and spreading adver-
sarial noises in dynamic graphs. The MemStranding allows the attacker to inject
noises into nodes’ memory by adding fake nodes/edges at arbitrary timestamps.
During future updates, the noises in nodes will persist with the support from their
neighbors and be propagated to the future nodes by molding their memories into
similar noisy states. The experimental results demonstrate that MemStranding can
significantly decrease the TGNN models’ performances in various tasks.

1 INTRODUCTION

Dynamic graphs are prevalent in real-world scenarios, spanning areas like social media (Kumar
et al., 2018), knowledge graphs (Leblay & Chekol, 2018), autonomous systems (Leskovec et al.,
2005), and traffic graphs (Pareja et al., 2020). Unlike static graphs, whose nodes and edges remain
constant, dynamic graphs evolve over time, introducing challenging tasks like link prediction and
node classification on dynamically changing nodes and edges. Driven by successes of Graph Neural
Networks (GNNs)(Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017; Xu et al.,
2018), Temporal Graph Neural Networks (TGNNs) have emerged as a popular solution for dynamic
graph tasks(Trivedi et al., 2019; Kumar et al., 2019; Rossi et al., 2020; Zhang et al., 2023; You et al.,
2022). TGNNs leverage memory vectors in nodes to track temporal history, leading to state-of-the-
art results in numerous tasks. As such, there is a pressing need to study their robustness towards
adversarial attacks, especially since such attacks have shown significant efficacy against traditional
GNNs (Wang et al., 2018; Tao et al., 2021; Zügner et al., 2018; Zou et al., 2021; Zügner et al., 2020;
Ma et al., 2020; Zang et al., 2020; Bojchevski & Günnemann, 2019; Sun et al., 2022; Li et al., 2022).
For example, in social media such as REDDIT (Kumar et al., 2018) may employ TGNN to predict
if a comment from a user to a post (as a node) should be banned based on his/her comment histories
(as edges to the nodes representing Reddit posts). With subtle adversarial attacks to these TGNN
models, malicious/fake messages can easily bypass this checking functionality.

By modifying the input graphs with imperceptible and subtle perturbations, adversarial attacks can
inject noises into the node features in GNNs, making the models yield incorrect or adversary-
expected results. However, conducting adversarial attacks on TGNNs is nontrivial due to the dy-
namic graphs’ inherent dynamism. The reasons are two-fold: Firstly, the noises introduced by the
attacks can quickly decay due to the future changes on the graphs and subsequent updates on node
memories in TGNNs, as what we called Noise Decaying issue. Secondly, the attacker only knows
the graphs up to the attack time; hence, the attacks can hardly affect unseen nodes/edges. We called
this Knowledge Missing issue. To avoid such issues with existing attacks, the attackers must conduct
adversarial attacks right before each change of the dynamic graphs. However, this is infeasible for
two reasons: First, one cannot accurately predict when there will be an update, hence cannot decide

1

Under review as a conference paper at ICLR 2024

Time

Step 1: Message Generating Step 2: Memory Updating

Event at 𝒕𝟎
− : Adding Edge 𝒆𝟐𝟑

1

2
3

𝒎𝒔𝒈𝟐𝟑
𝒎𝒔𝒈𝟑𝟐

Step 3: Node

Embedding

1

2
3

𝒔𝟐
− → 𝒔𝟐

𝒔𝟑
− → 𝒔𝟑

𝒎𝒔𝒈𝟐𝟑

𝒎𝒔𝒈𝟑𝟐

𝒎𝒔𝒈𝟏𝟐 1

2
3

𝒉𝟐

𝒔𝟏

𝒔𝟑
Prediction

Prediction at 𝒕𝟎: 𝒚𝟐 =?

𝒚𝟐 = 𝒇𝑴𝑳𝑷(𝒉𝟐)

Figure 1: The three steps of TGNN computing assuming a new event at timestamp t−0 adds an edge
e23 to the dynamic graph: Firstly, messages are generated for the nodes that are directly involved in
this event (i.e., msg23 and node32). Next, the nodes aggregate messages from their neighbors and
update their memories (e.g., s−2 → s2). At a future prediction time t0, nodes aggregate memories
(e.g., s1 and s2) from their neighbors and embed them into node vectors (e.g., h2) for the prediction.

when to attack. Consequently, finding the attack time right before each change of the input graph is
infeasible. Second, attacking before each update will introduce massive and frequent modifications
on the input graph, making the attack evident and easy to defend. Therefore, an effective adversarial
strategy against TGNN must withstand dynamic graphs’ ever-evolving nature and influence current
and future nodes without knowledge of future changes.

Fortunately, the memory updating mechanism in TGNNs exposes unique opportunities for persist-
ing and propagating adversarial noises. In TGNN, a node’s memory vector will be maintained to
update its neighbors’ memory vectors when these neighbors are involved in graph changes, such as
node/edge adding/deleting. To this end, we raise an intriguing question:

Can we leverage the memory updating mechanism in TGNNs to persist and prop-
agate adversarial noises injected at a specific timestamp?

Drawing from these insights, we introduce MemStranding, a novel adversarial attack approach tai-
lored for TGNNs. Given a specific attack timestamp, MemStranding strategically introduces fake
nodes and edges to push sampled victim nodes’ memories toward a stable, noise-infused state. These
affected nodes retain the noisy memory and spread it to the future neighbors, aided by their con-
nected but also affected nodes termed as support neighbors. Then, the affected future neighbors
will also be converted to noisy states and contribute to persisting and spreading the noises in the
future. Through this method, MemStranding effectively and persistently attacks both present and
future nodes with limited knowledge up to the attack time. To the best of our knowledge, this paper
presents the first adversarial attack on TGNNs.

2 BACKGROUND AND RELATED WORK

Dynamic Graphs. Unlike a static graph, which can be presented as a fixed set of nodes and edges as
G = (V,E), a dynamic graph consists of nodes and edges evolving over time. Dynamic graphs can
be represented in two ways: Discrete-Time Dynamic Graphs (DTDGs) describe dynamic graphs as
a series of static snapshots taken periodically, while Continuous-Time Dynamic Graphs (CTDGs)
view the graph as a collection of events—each event detailing updates like node or edge changes.
Recent TGNNs focus on CTDGs since they can retain more information than DTDGs’ fixed inter-
vals and more complex (Kazemi et al., 2020) Within the CTDG paradigm, the dynamic graphs are
represented as G = {x(t1), x(t2), ...}, in which x(ti) indicates an event happened at timestamp ti.
Generally, the prediction task of deep learning models for CTDGs can be depicted in equation 1.

yi = fθ(G−i , ti) = fθ({x(t1), x(t2), ...x(ti−1)}, ti) (1)

At the prediction time ti, the model fθ(·) takes all previous events G−i = {x(t1), x(t2), ...x(ti−1)}
as inputs and predicts the testing nodes’ classes or future edges.

Temporal Graph Neural Networks. The memory-based Temporal Graph Neural Networks
(TGNN) are widely studied and achieve state-of-the-art accuracies in dynamic graph tasks (Trivedi
et al., 2019; Kumar et al., 2019; Rossi et al., 2020; Kazemi et al., 2020; Zhang et al., 2023; You
et al., 2022). Generally, these TGNNs maintain a node memory that tracks the node’s history and
uses it for the predictions. Here, we use the general framework presented in (Rossi et al., 2020) to
introduce the workflow of TGNNs. As illustrated in Figure 1, TGNNs produce node embedding for

2

Under review as a conference paper at ICLR 2024

the predictions in three steps. When an event x(t) adds an edge euv from node u to node v (i.e.,
x(t) = euv), two messages are generated as equation 2.

muv = msgs(s
−
u , s

−
v ,∆T, euv),mvu = msgd(s

−
v , s

−
u ,∆T, euv) (2)

The msgs and msgd are learnable functions such as Multi-Layer-Perceptions (MLPs). The s−u and
s−v denote the memories of node u and node v at their last updated times, and ∆T represents the
difference between the current timestamp and the nodes’ last updated times. Next, nodes u and v
aggregate messages from their neighbors and update their memories as equation 3. For simplicity,
we only present the updating and following operations of node u, which is the same for node v.

s+u = UPDT (s−u , AGGR(m−
ku|k ∈ N(u)), (3)

The N(u) denotes the neighbors of node u. The AGGR(·) is usually implemented by a mean or
most recent function to aggregate messages from the node’s neighbors (Rossi et al., 2020). The
UPDT (·) uses the aggregated messages to update the node’s memory and is usually implemented
by a Gated-Recurrent-Unit (GRU) (Chung et al., 2014). When there is a prediction involving node
u, TGNNs use a graph embedding module, such as Graph Attention Network (GAT) (Veličković
et al., 2017), to embed the node’s memory into the final node embedding, as depicted in equation 4.

hu = GNN(su, sk|k ∈ N(u)), (4)

TGNNs use node memories from previous timestamps (i.e., si and su) to compute the node embed-
ding hu instead of using memories updated at the prediction timestamp to avoid information leakage.
The resulting node embedding hu is fed into a final MLP module to get the prediction results. Gen-
erally, nodes relevant to the events at the current timestamp will be used as testing nodes (Rossi
et al., 2020). For instance, if an event adds an edge euv from nodeu to nodev at timestamp t, then
both nodes will be evaluated (e.g., predict nodes’ classes or their outgoing edges) at timestamp t
based on their memories before updating.

Adversarial Attacks on Graph Neural Networks. The considerable achievements of GNNs have
catalyzed numerous investigations into their resilience against adversarial attacks (Chen et al., 2017;
Bai et al., 2018; Wang et al., 2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019; Zügner
et al., 2020; Ma et al., 2020; Zang et al., 2020; Tao et al., 2021; Zou et al., 2021; Sun et al., 2022; Li
et al., 2022; Zou et al., 2023). These adversarial attacks generally seek to misguide GNN predictions
by modifying the nodes and edges of input graphs. For example, (Wang et al., 2018) introduces fake
nodes with fake features that can minimize the loss between prediction results in the original graphs
and the targeted fake results; (Zügner et al., 2020) adds and deletes edges that can cause the most
substantial increases in the training losses on the original graphs. Though different in their strategies,
existing GNN attacks assume that (1) attackers have full knowledge of every node and edge in the
targeted graphs and (2) these graphs remain static after the attack.

3 PROBLEM ANALYSIS

3.1 ATTACK MODEL

Adversarial attacks on TGNN face several constraints due to the inherent dynamism of the dynamic
graphs. First and foremost, attacks must be executed before the prediction’s timestamp. As outlined
in equation 4, TGNNs generate node embeddings for the predictions from memories from previous
timestamps, which are influenced by input events before the prediction, as depicted in equation 3.
Hence, any adversarial attacks should occur before the prediction so that their updates can impact the
resultant embeddings. Secondly, attackers can only acquire knowledge up to the attack’s timestamp.
At most, attackers can only access model details, presented inputs, and subsequent node memories
but remain unaware of future changes in the dynamic graphs after the attack’s timestamp. Thirdly,
they can add fake events as nodes/edges at the attack time. For example, in social media, attackers
can create fake user accounts as fake nodes and make junk comments to the blogs as fake edges.

3.2 CHALLENGES IN DYNAMIC GRAPHS

Future interference. Typical GNN attacks assume attackers have comprehensive knowledge of the
target input graphs and that these graphs remain static after the attacks. However, in TGNNs, an

3

Under review as a conference paper at ICLR 2024

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

1
2

3

4

1
2

3

4 5

1
2

3

4 5

…

Node Prediction Truth

2 0.01 1

3 0.02 1

Node Prediction Truth

3 0.33 1

5 0.85 1

Node Prediction Truth

3 0.88 1

6 0.95 1

Missing Missing

Decaying

Time𝒕𝟎

𝒕𝟎
−

𝒕𝟏

𝒕𝟏
−

𝒕𝟐

𝒕𝟐
−

6

…

Missing
Decaying

Missing

Decaying

Attack

Decaying

Figure 2: (Left) The noise decaying (Decaying) and knowledge missing (Missing) issues in TGNN
adversarial attacks. Initially, at t−0 , an attack adds fake node1 and node4, significantly skewing
predictions for node2 and node3 at t0. As time progresses to t−1 and t−2 , the appearance of node5,
node6, and subsequent updates dilute the adversarial impact on node3, making its prediction closer
to the ground truth. Moreover, the attacks can hardly work for these new nodes coming after t−0
(i.e., node5, node6) since the attackers lack knowledge of these nodes. (right) The accumulated
accuracies on victim nodes in TGN under no-attack (vanilla) and FakeNode attack (FakeNode).

attacker’s knowledge is limited to events up to the attack timestamp, and the graph continues to
evolve after the attacks. To align with traditional attack assumptions, one might consider launch-
ing an attack immediately before each prediction; then, the attacker can tailor the attack based on
full knowledge of the until-now inputs and ensure no subsequent changes before the prediction.
However, this strategy is impractical for two reasons: Firstly, predicting the exact attack moment
“just before” an unforeseeable future event is nearly impossible. Secondly, constantly modifying
the graph before each prediction violates the imperceptible nature desired in adversarial attacks. To
this end, attacks on TGNNs must endure interference from future changes in dynamic graphs.

Issues from the future interference. The inevitable future interference may potentially nullify the
noise introduced by existing adversarial attacks towards GNNs. The reasons are two-fold: Firstly,
for the seen and attacked targets, the noises that mislead their prediction would be mixed with infor-
mation brought by the future changes (in equation 3 and equation 4), thereby no longer adequately
strong enough to mislead their future predictions. We call this issue as noise decaying. Secondly,
the unseen nodes and edges that were added after the timestamp of the attack can hardly be affected
by the attacks. This is because the attackers have no idea about these future victims, hence unable to
forge noises that can affect them. We call this issue as knowledge missing. We illustrate examples of
noise decaying and knowledge missing in Figure 2. To further investigate the impact of the issues,
we randomly sample 100 nodes from the Wikipedia dataset (Kumar et al., 2019), use the FakeNode
attack (Wang et al., 2018) on a well-trained TGN (Rossi et al., 2020) and observe its performances.
More details about the models and experiment setup are included in Section 5.1. As shown in Fig-
ure 2, while the attack effectively reduces the model’s accuracy right after the attack timestamp, it
can hardly perturb the predictions in the future.

Opportunities in node memories. While dynamic graphs considerably harden attacking TGNNs at
specific timestamps, the intrinsic memory mechanism in these models offers pathways for more en-
during and infectious adversarial attacks. Specifically, TGNNs maintain a memory vector for every
node to store its historical data, which plays a pivotal role in all TGNN prediction stages as depicted
from equations (2) to (4). This memory mechanism potentially facilitates noise transmission in three
aspects: First, it can sustain attack-induced noises during updates as shown in equation 3; second, it
can transmit these noises to neighboring nodes via the messages outlined in equation 2; and finally, it
can influence neighboring nodes’ embedding and subsequent predictions as described in equation 4.

4 THE MEMSTRANDING ATTACK

To ensure persistent and contagious adversarial noises in the dynamic settings of TGNNs, we in-
troduce the MemStranding attack, which exploits the node memories in TGNNs to achieve the fol-
lowing goals: (1) Ensure that once a node’s memory is contaminated, its adversarial noise remains
sustained during updates, supported by its noisy neighboring nodes. (2) Ensure that a contaminated
node’s memory will influence its neighboring nodes’ update processes, guiding their memory vec-
tors toward a noisy state. MemStranding adds fake events to manipulate node memories, driving
them into expected states. The resultant adversarial noises are enduring to the noise decaying issues
and influence future nodes, addressing the knowledge missing issues, as illustrated in Figure 3.

4

Under review as a conference paper at ICLR 2024

1
2

3

4

2

3

5

2

3

5

Node Prediction Truth

3 0.01 1

5 0.02 1

Time

𝒕𝟎
−

𝒕𝟏

𝒕𝟏
−

𝒕𝟐

𝒕𝟐
−

6
Attack

𝒔𝟐
𝟎

𝒔𝟑
𝟎

𝒔𝟑
𝟏 = 𝑼𝑷𝑫𝑻(𝒔𝟑

𝟎, 𝑨𝑮𝑮𝑹(𝒎𝟐𝟑,𝒎𝟓𝟑))

Support

2

3

5 𝒔𝟓
𝟏 = 𝑼𝑷𝑫𝑻 𝒔𝟓

𝟎, 𝑨𝑮𝑮𝑹 𝒎𝟑𝟓

Contaminate

2

3

5

𝑵𝒐𝒅𝒆𝟑 memory updating:

𝒔𝟐
𝟎 supports 𝒔𝟑

𝟏

𝑵𝒐𝒅𝒆𝟓 memory updating:

𝒔𝟑
𝟎 contaminate 𝒔𝟓

𝟏

Node Prediction Truth

3 0.02 1

6 0.03 1

𝑵𝒐𝒅𝒆𝟑 memory updating:

𝒔𝟐
𝟏, 𝒔𝟓

𝟏 supports 𝒔𝟑
𝟏

2

3

5 6

𝒔𝟑
𝟐 = 𝑼𝑷𝑫𝑻(𝒔𝟑

𝟏, 𝑨𝑮𝑮𝑹(𝒎𝟐𝟑,𝒎𝟓𝟑,𝒎𝟔𝟑))

Support

Support

𝑵𝒐𝒅𝒆𝟔 memory updating:

𝒔𝟑
𝟎 contaminate 𝒔𝟔

𝟏
2

3

5 6 𝒔𝟓
𝟏 = 𝑼𝑷𝑫𝑻 𝒔𝟔

𝟎, 𝑨𝑮𝑮𝑹 𝒎𝟑𝟔

Contaminate

2

3

𝒔𝟐
−

𝒔𝟑
−

MemStranding Attack
✓ Persist with neighbor

supports

✓ Infect future nodes

Figure 3: The overall goal of the MemStranding attack. (1) Persisting a node’s noisy memory with
support from its noisy neighbors, as node3 updating at t−1 and t−2 . (2) Contaminating a noisy node’s
new neighbors’ memories, such as node3 contaminating node5 at t−1 and node6 at t−2 . As a result,
despite any post-attack changes, all associated predictions could misguided.

4.1 NOISE PERSISTING

Limits in Self-Persisting. While nodes’ memories show significant potential for retaining adver-
sarial perturbations, achieving persistent noise in a node solely through its own memory, termed
self-persisting, is challenging. Specifically, the unpredictable messages aggregated from its neigh-
bors can influence a node’s memory during its updating depicted in equation 3. An intuitive solution
is to maximize the portion of the nodes’ self-memory s−u in the subsequent states while suppressing
the effects of any incoming messages. We explored the viability of this approach with a case study in
TGN (Rossi et al., 2020) by suppressing nodes’ memory changes in its memory updating. We then
assessed if nodes’ memories remained consistent over time. As highlighted in Figure 4(a), this strat-
egy fails to prevent future modifications. The primary challenge lies in the unpredictability of future
messages, making it virtually impossible to find a memory that completely suppresses updates in the
RNNs. Further experimental details and related theoretical proofs are provided in Appendix A.1.
As a result, relying solely on self-persisting is insufficient to achieve our objectives.

Opportunities in Cross-Persisting. Although we cannot block messages from a node’s neighbors,
we can introduce noise to these messages, making them helpful for persisting noises as well. This
approach, we termed as cross-persisting, is inspired by the graph smoothing phenomenon observed
in GNNs (Li et al., 2018). The phenomenon suggests that when node features undergo repeated
aggregations with neighboring features, they become over-smoothed and converge to similar val-
ues (Li et al., 2018). Drawing from this, we assume that nodes’ noisy memories in TGN can remain
consistent if they are surrounded by similar neighbors. We use the same model and data in the
self-persisting experiment to verify the assumption. Specifically, for each sampled node (referred to
as root node), we select two neighbors as its support nodes (referred to as support neighbors) and
set their memories the same as the root node, then observe their memory changes over time. As
depicted in Figure 4(b), with assistance from its neighbors, the memory within a node can quickly
achieve a relatively stable state, persisting to future changes. Therefore, we propose to persist noise
via cross-persisting. Specifically, we would first sample a node as the root node, then sample two of
its neighbors as support nodes. Note that these support neighbors also cost our attack budgets, which
limit the number of nodes to be attacked. Then, force them to fulfill the following two goals: First,
the nodes’ memories should be similar to each other so that their memories could have potential
converge states. Second, the noisy nodes’ memories should reach their converged states so that the
process from the injecting states to the converged states (e.g., ascending part in Figure 4) will not
distort the injected noises. While forcing one node’s neighbors to be the same as itself may make its
neighbors away from their own converge states, as shown in Figure 4(c), the converge states from
different nodes are similar due to the graph smoothing effects. Hence, for each attacked node, we
formulate the problem to be solved as equation 5.

Lpersist
u =

∑
k∈N∗(u)

(
Lmse(s

∗
k, s

+
k) + Lmse(s

+
u , s

+
k)

)
(5)

For any given nodeu with its memory denoted as su and support nodes as N∗(u), our objective
relies on two Mean-Squared-Error (MSE) losses. The first, Lmse(s

∗
k, s

+
k), aims to ensure that it

updates its support neighbors’ memory s+k close to their ideal or converged state s∗k. We introduce

5

Under review as a conference paper at ICLR 2024

C
o
si

n
e

S
im

il
a
ri

ty

B
ef

o
re

/A
ft

e
r

U
p

d
a
ti

n
g

C
o
si

n
e

S
im

il
a
ri

ty

B
ef

o
re

/A
ft

e
r

U
p

d
a
ti

n
g

Timestamp Timestamp Similarity

C
o
u

n
t

(a) (b) (c)

C
o
u

n
ts

1

Figure 4: The ranges (colored bar) and averages (line) of the cosine similarities between node’s
evolving memories over time with (a) self-persisting and (b) cross-persisting solutions. (c) The
distribution of cosine similarities between the converged states in different nodes.

how to find s∗k in Section 4.3. The second loss, represented by Lmse(s
+
u , s

+
k), is designed to make

sure that its own updated memory s+u are similar to the updated memories s+k of its support nodes.
By leveraging these losses, we aim to drive the nodes’ memory into a state that strikes a balance
between its own and neighbors’ converged states.

4.2 NOISE PROPAGATING

Contamination exercise. To make the nodes’ memory influential for future neighbors, we propose
to use its existing neighbors to simulate those potential future neighbors. This is because, due to
the principle of homophily in real-world graphs, neighboring nodes often exhibit close similari-
ties (McPherson et al., 2001). Specifically, for a given nodeu, we first augment its current neighbor
set N(u) with several ”fake future neighbors”, which are created by sampling nodes from N(u) and
mixing Gaussian noises to them. We then use the resulting augmented neighbors N ′(u) to solve the
problem described in equation 6.

Lprop
u =

∑
k∈N ′(u)

Lmse(su, UPDT (sk,muk)) (6)

The objective of this loss function is to minimize the Mean Squared Errors (MSEs) between a node’s
memory and the memories of its new neighbors after an update. By implementing this strategy, we
ensure the memory becomes contagious for its current and potential future neighbors.

Neighbor-aware Cross-optimization. So far, for a node u, we can combine its losses for noise
persisting and propagating as equation 7.

Lu = Lpersist
u + Lprop

u (7)

We utilize the Adam optimizer (Kingma & Ba, 2014) to optimize the nodes’ memories based on their
gradients. To bolster the nodes’ propagation capabilities, we employ a cross-optimization strategy.
This strategy calculates the gradients of one node’s memory relative to its support neighbor’s loss and
uses these gradients to solve the node’s memory in each optimizing step, as outlined in equation 8.

sq+1
u = squ − α · ∇uLk (8)

In this equation, q indicates the optimizing steps, and α denotes the learning rate. Intuitively, the
cross-optimization scheme encourages a node’s memory to support its neighbors in achieving the
optimization goals. By doing so, the solved node memories can better forge their neighbors and vice
versa, thereby further improving their capacity to contaminate others.

4.3 ATTACK FRAMEWORK

Combining the above-mentioned solutions together, we introduce an adversarial attack framework,
MemStranding, that conducts the attack on TGNs in two stages, as illustrated in Figure 5.

Stage 1: Victim Node Sampling. In this stage, we use a simple greedy approach to select the nodes
to be attacked. Specifically, we sample the nodes with the highest degrees in the current graph as
root nodes. The intuition behind this is that we want the injected noises to be propagated to as many
nodes as possible, and these high-degree nodes, such as top-commented posts on social media, are
usually popular in existing and future graphs. Next, for each root node, we sample its two highest-
degree neighbors as its support nodes. All the root and support nodes will be treated as victim nodes
and have their noise solved and affected in the following procedure.

6

Under review as a conference paper at ICLR 2024

MemStranding Attack

Stage 1: Victim Node Sampling

𝒔𝟐
−

𝒔𝟑
−

2

3

Step 1: Find nodes’ converged states

Update

𝒔𝟐
−

𝒔𝟑
−

2

3

𝒔𝟐
−

𝒔𝟑
−

2

3 a
𝒔𝟐
− + 𝜹𝟏

𝒔𝟐
−

𝒔𝟑
−

2

3

b

𝒔𝟐
− + 𝜹𝟏

2

3

4

1

2

3

4

1

2

3

4

1

Step 1: Sample

Root Nodes

Step 2: Sample

Support Nodes

Supporting neighbors:

𝑵∗ 𝟐 = 𝟑
𝑵∗ 𝟑 = 𝟐

Stage 2: Adversarial Message Solving

2

3

Update 2

3

Update
…

Update 2

3

𝒔𝟐
∗

𝒔𝟑
∗

Step 2: Augment nodes’ neighbor with simulated futures

a

𝒔𝟐
− + 𝜹𝟐

Augmented neighbors: 𝑵′ 𝟑 = 𝟐, 𝒂, 𝒃
Simulate 𝒏𝒐𝒅𝒆𝒂 Simulate 𝒏𝒐𝒅𝒆𝒃

Step 3: Cross-optimizing memory solving & message solving

𝒔𝟐
𝒒+𝟏

= 𝒔𝟐
𝒒
− 𝜶 ∙ 𝛁𝟐𝑳𝟑 , 𝒔𝟑

𝒒+𝟏
= 𝒔𝟑

𝒒
− 𝜶 ∙ 𝛁𝟑𝑳𝟐 𝒎𝟓𝟐,𝒎𝟔𝟑

Modify Graph

2

3

4

1

2

3

4

15

6

Figure 5: The two stages of the MemStranding attack. In the victim node sampling stage, we
greedily sample victim nodes under the attack budget. In the adversarial message solving stage,
we solve messages to be injected to achieve our attack goal. The solved messages are added to the
graphs and removed after the attack timestamp. We included a detailed algorithm in Appendix A.2.

Stage 2: Adversarial Message Solving. In this stage, we solve the messages to be passed to the
sampled victim nodes, which can be injected as fake nodes or edges. In the first step, we find the
nodes’ converged states (i.e., s∗u in equation 5) by updating its memory using current neighbors un-
til convergence. In the second step, we simulate the future changes by augmenting victim nodes’
neighbors with simulated futures (i.e., nodes/edges). The resulting neighbors are used as N+(u)
in equation 6. In the third step, we use cross-optimization following equation 8 to find the expected
noisy memories ŝu of the victim nodes. Then, we solve the adversarial messages described in equa-
tion 9 so that the nodes’ memory can reach these expected states after injecting them.

argmin
mAu

Lmse(UPDT (s−u , AGGR(mAu, m̃u), ŝu) (9)

In short, for nodeu, the solution aims to find a fake message mAu that minimizes the MSE loss
between the expected noise memory ŝu and the memory updated after inserting it to the graph. The
m̃u represents the aggregated messages collected from the rest of nodeu’s neighbors. Lastly, we can
add the solved noisy message as a fake node or fake edge accordingly and remove it after the attack.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Models and Datasets: We use on four TGNN models for evaluation: Jodie (Kumar et al., 2019),
Dyrep (Trivedi et al., 2019), TGN (Rossi et al., 2020) and Roland (You et al., 2022). The experiments
use four dynamic graph datasets: Wikipedia (WIKI), Reddit (REDDIT) (Kumar et al., 2019), Reddit-
body (REDDIT-BODY) and Reddit-title (REDDIT-BODY) (Kumar et al., 2018). More details about
the models and datasets are included in Appendix B.1.

Training Task & Metrics: We train and evaluate the models on tasks: node classification and
edge prediction (Rossi et al., 2020). We use the commonly used Area under the ROC Curve (ROC-
AUC) to measure the model performances. For a timestamp, we measure the accuracies/AUC based
on all presented predictions from the beginning, which we termed as accumulated accuracy and
accumulated ROC-AUC. More details about the tasks and matrices in Appendix B.2

Attack Setup: We compare our work with three state-of-the-art GNN attacks: FakeNode (FN)
(Wang et al., 2018), TDGIA(TDGIA) (Zou et al., 2021) and Meta-Attack-Heuristic(Meta-h) (Li
et al., 2022). The results from Table 1 evaluate all attacks with 5% attack budgets, where we inject
noises to 5% nodes of the input graph. In Appendix B.3, we evaluate attacks with 1% attack budgets.
For our attack, we use a 1/3 budget for root node sampling and 2/3 for support nodes.

Defense Setup: We adopt two typical adversarial defenses–Adversarial Training(Adv train)
and— Regularization under empirical Lipschitz (Lip reg)–from static GNNs to train robust TGNs,
and evaluate the proposed attack on these robust models. Details are in Appendix B.4.

7

Under review as a conference paper at ICLR 2024

Table 1: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps; lower matrices indicate more effective attacks. More results in Appendix B.3

Dataset WIKI REDDIT REDDIT-BODY
Model TGN Jodie Dyrep Roland TGN Jodie Dyrep Roland TGN Jodie Dyrep Roland
Vanilla 0.93 0.87 0.85 0.94 0.96 0.98 0.96 0.95 0.90 0.87 0.90 0.88

t0

FN 0.81 0.74 0.74 0.82 0.84 0.83 0.84 0.83 0.76 0.82 0.77 0.79
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92 0.86 0.83 0.88 0.85
TDGIA 0.77 0.72 0.71 0.80 0.74 0.80 0.81 0.74 0.72 0.81 0.74 0.76
Ours 0.89 0.88 0.85 0.87 0.75 0.84 0.94 0.82 0.84 0.85 0.81 0.78

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.93 0.90 0.86 0.89 0.88
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96 0.89 0.86 0.90 0.87
TDGIA 0.93 0.81 0.84 0.92 0.94 0.95 0.95 0.90 0.89 0.85 0.89 0.88
Ours 0.80 0.80 0.78 0.85 0.81 0.84 0.91 0.80 0.81 0.84 0.76 0.80

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95 0.90 0.86 0.90 0.88
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95 0.90 0.86 0.90 0.88
TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92 0.89 0.86 0.90 0.87
Ours 0.75 0.81 0.76 0.84 0.80 0.84 0.91 0.80 0.77 0.82 0.76 0.77

A
cc

um
ul

at
ed

A

cc
ur

ac
y

Timestamp

Clean Acc. : 93%

A
cc

um
ul

at
ed

A

cc
ur

ac
y

Timestamp

Clean Acc. : 90%

A
cc

um
ul

at
ed

A

cc
ur

ac
y

Timestamp

Clean Acc. : 88 %

Figure 6: Accumulated accuracies of TGN under no defense(left), Adv train(middle), and
Lip reg(right) with FakeNode and our attack on WIKI dataset. More results in Appendix B.4

5.2 EXPERIMENTAL RESULT

Overall Performance. We collect the accumulated accuracy at three timestamps: t0 = 0, t25 = 25,
and t50 = 50, which indicate time intervals after the attack noises are injected into the memories.
The results of the edge prediction task are shown in Table 1, and more results of the edge prediction
and node classification tasks are included in Appendix B.3 As one can observe, all prior attacks
achieve significant accuracy drops at the t0 timestamp, but the strengths quickly decay as time
shifts. In t25 and t50, the accumulated ACC under these attacks is nearly identical to the vanilla.
In contrast, our proposed MemStranding fabricates the noise with persistence. Since MemStranding
spends more budget on injecting the noise to the support nodes, it does not achieve considerable
accuracy drops at t0 compared to the FakeNode attack. Nevertheless, as the time shifts to t25 and
t50, MemStranding maintains a high accuracy drop over the entire time interval. Moreover, when
the new event arrives, MemStranding propagates its noise to new incoming neighbors and affects
more nodes. As a result, the accuracy drop increases at the later timestamps. It is worth mentioning
that the attacks are weak on Jodie since it adopts a memory decay mechanism that uniformly decays
all previous memories. Besides, memory decay delivers additional information outside the node
memory, making Jodie more robust toward attacks from node memories. We further illustrate the
accumulated accuracy of TGNs under different defenses in Figure 16. The typical static GNN
attack (i.e., FakeNode) fails to perturb the model over time, i.e., when t = 50, the FakeNode attack
only achieves 1.1% accuracy drop. In contrast, under the MemStrending attacks, the model suffers
continually accumulated accuracy drops.

Ablation Studies. To analyze the propagating and persisting capability of the noise solved by
MemStranding, we capture 100 root nodes in TGN in edge prediction on WIKI and monitor the
changes in their memory and their neighbors’ memory. In Figure 22, we compare the cosine simi-
larity between the memories of the root nodes at t0 with those in themselves and their one-hop and
two-hop neighbors at each timestamp after the attack in four versions: (1) MemStranding, (2) Mem-
Stranding w/o converge state (i.e., without starting from converge state and using

(
Lmse(s

∗
k, s

+
k)

in Equation equation 5), (2) MemStranding w/o persisting loss (i.e., without using Lpersist
u Equa-

tion equation 5), and (4)those similarities in the original TGNN without attacks. The result shows
that the noise in the root node can persist over 10 timestamps, with over 0.92 cosine similarities. For

8

Under review as a conference paper at ICLR 2024

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

Timestamp Timestamp Timestamp Timestamp

Figure 7: The similarities between root nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in MemStranding(left), MemSranding w/o
(middle-left) converge state, MemSranding w/o persisting loss (middle-right), and regular nodes
(right). All results above are from TGN and WIKI. More results in Appendix B.5.

A
ff

ec
te

d
N

od
e

C
ou

nt A
ccum

ulated A
ccuracy

A
ff

ec
te

d
N

od
e

C
ou

nt

A
ccum

ulated A
ccuracy A

cc
um

ul
at

ed
 A

cc
ur

ac
y

Timestamp Timestamp Attack Budget

Figure 8: (left) Count of nodes affected by MemStranding and accuracy for the affected nodes
over time. (middle) Comparison between two strategies for selecting the injected node: 1% lowest
degree and highest degree nodes. Count of affected nodes and overall accuracy over time. (right)
The accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All
results above are from TGN and WIKI. More results in Appendix B.6.
the one-hot neighbors, at t = 1, they achieve 0.51 average similarities after the first update by the
message from root nodes, and at t = 15, the average rises to 0.88. For the two-hot neighbors, whose
memories are updated by the message from one-hot neighbors, their average similarities grow from
0.24 to 0.84. In contrast, the similarity between nodes’ initial attacked memory and their future
counterparts drops drastically in the normal TGNNs and fails to propagate to their neighbors and
persist them. If the converge states are not guaranteed, the similarities also suffer drops and achieve
much lower similarities in the future. This is because the memories will change before they reach
their converged states, making the final converged state different from the original noise ones, in-
dicating that the converged state is essential for persisting noisy memories. The similarities drop
faster if we remove the persisting loss since the cross-persist is entirely disabled. Moreover, despite
the removal of persisting losses, the neighbors are getting closer to the target nodes, indicating that
the propagating loss works as expected. The results demonstrate that the noises solved by the
MemStranding can effectively propagate to their neighbors and boost stronger later.

Sensitive Studies. In Figure 5.2 (left), We evaluate MemStranding by its affected nodes (presented
as the colored area). Specifically, we monitor all the topologically connected nodes to the root
node after the noise is injected. Further, we measure the prediction accuracy of the affected nodes
(presented as colored lines). The results indicate that MemStranding can effectively persist noises
in affected nodes despite their future changes. In Figure 5.2 (middle), we evaluate two strategies
for selecting the nodes for the noise injection: selecting the nodes with the top 5% highest degree
and the nodes with top 5% lowest degree. MemStranding employs the former approach, resulting
in rapid noise propagation and greater accuracy degradation. In Figure 5.2 (right), we evaluate
MemStranding in attack budgets ranging from 1% to 15%. With more attack budget, MemStranding
achieves a higher accumulated accuracy drop.

6 CONCLUSION

In this work, we investigate the challenges and opportunities in adversarial attacks on memory-based
TGNNs. Based on our observations, we propose MemStranding, a novel adversarial attack tailored
for TGNNs, to overcome the challenges brought by the dynamism in TGNNs. Firstly, it utilizes
memories from a node’s neighbors to persist adversarial noises over time. Secondly, it molds a
node’s memory so that the node can affect future neighbors by polluting them into a similar noisy
state. The experimental results show that our approach can produce long-lasting and contagious
noises over a long period in the dynamic graphs, leading to significant performance drops in TGNNs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto Perdisci, Manos
Antonakakis, and Nikolaos Vasiloglou. Practical attacks against graph-based clustering. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp.
1125–1142, 2017.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Yaning Jia, Dongmian Zou, Hongfei Wang, and Hai Jin. Enhancing node-level adversarial defenses
by lipschitz regularization of graph neural networks. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 951–963, 2023.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In Proceedings of the 2018 world wide web conference, pp. 933–943, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference 2018, pp. 1771–1776, 2018.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp. 177–187, 2005.

Kuan Li, Yang Liu, Xiang Ao, and Qing He. Revisiting graph adversarial attack and defense from a
data distribution perspective. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Advances in neural information processing systems, 33:4756–4766, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

10

Under review as a conference paper at ICLR 2024

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang He, and Bo Li.
Adversarial attack and defense on graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 2022.

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng. Single node
injection attack against graph neural networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1794–1803, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International conference on learning representations, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional
networks by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2358–2366, 2022.

Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. Graph universal adversarial attacks: A few bad actors
ruin graph learning models. arXiv preprint arXiv:2002.04784, 2020.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangy-
ong Zhu. Tiger: Temporal interaction graph embedding with restarts. arXiv preprint
arXiv:2302.06057, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2461–2471, 2021.

D Zügner and S Günnemann. Adversarial attacks on graph neural networks via meta learning.¡ i¿
iclr¡/i¿. In The Eighth International Conference on Learning Representations, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 14(5):1–31, 2020.

11

Under review as a conference paper at ICLR 2024

APPENDIX

A EXTENDED DESIGN

A.1 SELF-PERSISTING EXPERIMENTAL SETUP

We explored the viability of the self-persist approach with a case study in TGN (Rossi et al., 2020),
where the UPDT (·) function is typically realized using a GRU (Chung et al., 2014). At a particular
timestamp, we randomly sample 100 nodes from the Wikipedia dataset and modify their memories.
For each node, we use Adam optimizer (Kingma & Ba, 2014) to find a memory vector to suppress
GRU updates by minimizing its reset gates (Chung et al., 2014). We then assessed if this memory
state remains consistent over time.

The TGN used by the self-persisting experiment uses GRU for memory updating (i.e., for imple-
menting UPDT (·) function in equation 3), as depicted in equation 10-13.

rt = σ(Wirm̃t + bir +Whrst−1 + bhr) (10)
zt = σ(Wizm̃t + biz +Whzst−1 + bhz) (11)
nt = tanh(Winm̃t + bin + rt ⊙ σ(Winm̃t + bin) (12)
st = (1− zt)⊙ nt + zt ⊙ st−1 (13)

where σ(·) is the sigmoid function. Given the node memory st−1 ∈ RM at the previous timestamp,
and the aggregated message m̃t ∈ RD at time t, GRUs first compute reset gate rt ∈ RM , update
gate zt ∈ RM , and new gate nt ∈ RM .

In the self-persisting experiment, we aim to minimize the interference of the message, m̃t, and main-
tain the updated memory, st, close to the previous memory, st−1. To this scope, we can maximize
all the features in the update gate, zt, until it approaches 1, where the update gate will be directly
used to control the portion of the previous memory, which is:

as zt → 1, st → 0⊙ nt + 1⊙ st−1 ≈ st−1 (14)
Additionally, according to Equation 11, the update gate zt is computed by the sum of two linear
processes, and one is from the message, m̃t and the other one is from memory st−1. As we maximize
the linear output of the memory, Whz · st−1, the update gate, zt, is then maximized.

Hence, to analyze the maximum output of the linear process, Whz ·st−1, we formulate it into a linear
program problem with the equations:

max
∑

Whz · st−1

s.t. − 1 ≤ st−1 ≤ 1

Whz · st−1 > δ

(15)

As the memory is the output of the tanh function rather than the unit-length vector, st is bounded by
the limit of the tanh function, [−1, 1]M . Further, we introduce an addition constraint Whz ·st−1 > δ
to guarantee all dimensions of the linear output are bound by a constant, δ.

The optimal result for the memory, s∗t−1, for the linear problem only depends on the model weights,
where given a TGN model, the solution of the self-persisting memory is unique, and we have con-
ducted the experiment on three models TGN+WIKI, TGN+REDDIT, and a randomly initialized
model.

The result in Figure 9-11 (a) shows the maximum update gate, z∗t , computed by σ(Whz · s∗t−1). In
the TGN+wiki example, z∗t is a 172-dimension vector, and it is distributed with a mean of 0.64 and
a standard deviation of 0.12. As aforementioned, to achieve the self-persisting memory, the update
gate, zt, is required to approach 1, but it is infeasible to fine the solution in the real world case under
the constraints. In Figure 9-11 (b), we simulate the GRU updating starting with the optimal memory,
s∗t−1, and monitor the cosine similarity between the memory before updated and after updated. The
results further demonstrate even the optimal solution cannot accomplish the self-persisting goal.

To theoretically analyze the maximum of the in the general case, we divide them into their eigen-
representations, and we use the SVD decomposition:

Whz = U · Σ · V T =
∑
i

ei · Ui · V T
i , st−1 =

∑
i|Vi∈V

αi · Vi (16)

12

Under review as a conference paper at ICLR 2024

In SVD decomposition, U and V are the unitary matrix, and we use the basis from V to decompose
st−1. Moreover, the linear process is written as:

Whz · st−1 =
∑
i

ei · αi · Ui · V T
i · Vi =

∑
i

αi · ei · Ui (17)

This linear process is represented by the linear combination on the basis of U . We can easily acquire
the theoretical maximum of the output. As st−1 ∈ [−1, 1]M , if Vθ is a basis of {− 1√

M
, 1√

M
}M ,

st−1 = sθ can achieve the maximum projection to this basis, which is, αθ =
√
M and st−1 = Vθ.

Similarly, the linear output Whz · st−1 achieves the maximum by there exist a basis Uθ = { 1√
M
}M ,

and the linear output,

Wθ · sθ = eθ ·
1√
M
·
√
M · 1 = eθ · 1 (18)

As is shown, the maximum output of the linear process is equal to the eigenvalue. According to the
experiment, the largest eigenvalue of the weight matrix is usually around 2. Therefore, the update
gate,zt, has the theoretical maximum value, σ(eθ) ≈ 0.88.

However, the weights, Whz , are trained through the model update, which makes it impossible to find
the ideal maximum in the practical case.

C
o
u

n
ts

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

(a)

Timestamp

(b)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Figure 9: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-persisting memory s∗t .
Experiments are conducted in the TGN model with WIKI datasets.

C
o
u

n
ts

(a)

Timestamp

(b)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

Figure 10: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-persisting memory s∗t .
Experiments are conducted in the TGN model with REDDIT datasets.

13

Under review as a conference paper at ICLR 2024

C
o

u
n

ts

(a)

C
o
si

n
e

S
im

il
a
ri

ty
 A

ft
er

M
em

o
r
y
 U

p
d

a
te

Timestamp

(b)

Distribution of the Optimal Update Gate (𝒛𝒕
∗)

Figure 11: (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between
memory before the update and after the update, starting with the optimal self-persisting memory s∗t .
Experiments are conducted in the randomly sampled GRU model.

14

Under review as a conference paper at ICLR 2024

A.2 DESIGN: OVERALL ALGORITHM

We present the detailed algorithm of our approach in this section.

Algorithm 1 MemStranding Attack
Input : G = (V, s(V))← Original graph with Node V , memories s(V)
Input : ∀i,j|Vi,Vj∈V m(si, sj , eij ,∆t)←Messages before t0
Input : B ← Number of attacked nodes (attack budget)
Input : q ← Number of support neighbors for each root node.
Output: VA, eA: Perturbed nodes and message.

/* Stage 1. Victim Node Sampling */
n← B/(q + 1)
for i ∈ {1, 2, · · · , n} do

V root
i ← topk(degree(V), n)

V support
i,1:q ← V root

i ∪ {V1, V2, · · ·Vq ∈ N(V root
i)}

ŝi,1:q ← ComputeConvergeState(V support
i)

VA, eA ← ComputeAdversarialMessage(ŝi,1:q, V
support
i,1:q)

/* Stage 2. Solving Converge State */
Function ComputeConvergeState(V support)

/* 2.1. Solving the self-optimal State */
for Vi ∈ V support do

si ← s(Vi)
m← m(s(Vi), s(Vi), eij ,∆t) | Vj ∈ V
do

si ← s+i
m← m(si, si, eij ,∆t)
s+i ← UPDT (si,m)

while ||s+i − si||22 > ϵ;

s∗1, s
∗
2, · · · s∗q ← s+1 , s

+
2 , · · · s+q

/* 2.2. Solving the cross-optimal State */
s
(0)
1 , s

(0)
1 , · · · s(0)q ← s∗1, s

∗
2, · · · s∗q +N (0, η · σ(s(V)))

for t ∈ {0, 1, 2, · · · , T} do
∀i∈{1,2,···q} , s

(t)+
i ← UPDT (s

(t)
i , m̃i)

for i ∈ {0, 1, 2, · · · , q} do
Lpersist
i ←

∑
k∈N∗(i)

(
Lmse(s

(t)+
k , s∗k) + Lmse(s

(t)+
i , s

(t)+
k)

)
Lprop
i ←

∑
k∈N ′(u) Lmse(s

(t)
i , UPDT (s

(t)
i ,mik))

∀i∈{1,2,···q} , s
(t+1)
i ← s

(t)+
i − α · ∇si(L

persist
k + Lprop

i)

return {s(T)
1 , s

(T)
2 , · · · s(T)

q }

/* Stage 3. Solving the Adversarial Message */
Function ComputeAdversarialMessage(ŝ, V support)

for Vi ∈ V support do
Vi,A ← V ∈ N(Vi)
for t ∈ {0, 1, · · · , T} do

m
(t)
Ai ← m(s(Vi), s(VA), e

(t)
Ai,∆t)

LA ← Lmse(UPDT (s(Vi), AGGR(m
(t)
Ai, m̃i), ŝi)

e
(t+1)
Ai ← e

(t)
Ai − α · ∇

e
(t)
Ai

LA

return {V1,A, V2,A, · · · , Vq,A} , {eA1, eA2, · · · , eAq}

15

Under review as a conference paper at ICLR 2024

B EXTENDED EVALUATION

B.1 EXPERIMENTAL DETAILS.

Model Details. All four TGNNs we included maintain a memory vector in each node and follow the
memory updating process as discussed in Section 2. And they are different in their node embedding
procedure (i.e., equation 4). Specifically, Dyrep directly uses the node memories for the predictions
(i.e., ht

i = sti). Jodie applies a time-decay coefficient to the scale memories before classification
(i.e., ht

i = δ(t) · sti). TGN, on the other hand, refines memories using a single-layer graph attention
module, as outlined in equation 4. Unlike prior models, ROLAND You et al. (2022) is a recent model
designed for DTDG graphs, yet it also maintains a history node feature for each node as memory.
Specifically, it adopts a multi-layer memory mechanism by keeping memory for both memory and
embedding stages. In other words, for the graph embedding part, it also adopts a GRU to combine
nodes’ previous embedding with the current embedding gathered from updated node memories. All
the models update and embed memory for one time at each prediction (i.e., one layer aggregation
in equation 3 and equation 4). The node memory dimension is set to 172, and the node embedding
dimension is set to 100. Following the training steps in (Rossi et al., 2020), we use Adam optimizer
with learning rate α = 0.01 to train the models 120 epochs.

Tasks Details. Models for node classification are trained to predict binary labels on each node.
We use the commonly used Area under the ROC Curve (ROC-AUC) to measure the model perfor-
mances. The models for edge prediction are self-supervise trained, using the edge information in
future steps. During the testing, given a source node, they predict the possibility of whether another
node will be its next incoming destination node and then decide which node will be its next neighbor.
We use prediction accuracy for evaluating the edge prediction result.

Dataset Details. Reddit and Wikipedia are dynamic interaction graphs retrieved from online re-
sources in (Rossi et al., 2020). In Wikipedia datasets, the nodes represent users and wiki pages, and
the edges indicate editing from users to pages. In the Reddit dataset, the nodes represent users and
subreddits, and an edge within it represents a poster from a user posted on a subreddit. The edge fea-
tures are represented by text features, and the node labels indicate whether a user is banned. All the
abovementioned information is accompanied by timestamps. Align with their original designs (Ku-
mar et al., 2019), and we set the newly input nodes’ features as zero feature vectors. Reddit-body
and Reddit-title are two larger-scale datasets that represent the directed connections between two
subreddits (a subreddit is a community on Reddit). The dataset is collected by SNAP using publicly
available Reddit data of 2.5 years from Jan 2014 to April 2017 (Kumar et al., 2018). The statistics
of the dataset used are shown in Table 2.

Table 2: Dataset details
of Nodes # of Edges # Edge Feature # of Node Feature

Wikipedia(WIKI) 9,227 157,474 172 172
Reddit(REDDIT) 11,000 672,447 172 172
Reddit-Body(REDDIT-BODY) 35,776 286,561 64 172
Reddit-Title(REDDIT-TITLE) 54,075 571,927 64 172

B.2 BASELINE ATTACK AND DEFENSES

We adopt the following attacks toward static GNNs. Specifically, we adopt the attack at the same
time as our attack time by attacking the existing dynamic graph as a static graph:

TDGIA (Zou et al., 2021) is a cutting-edge Graph Injection Attack tailored to compromise static
GNNs. This method exploits the inherent vulnerabilities of GNNs and the unique topological char-
acteristics of graphs. In our implementation for each target node, we adhere to the established
methodology of TDGIA to identify the top 65 susceptible edges, utilizing their specialized scheme
for selecting topologically defective edges. These edges are then optimized using gradient descent.
Notably, the scale of modifications applied to each target node in the TDGIA method is substantially
larger than our approach, involving adjustments to 65 edges instead of just 3. Furthermore, these
modifications will be kept after the attack instead of being removed as our attack.

16

Under review as a conference paper at ICLR 2024

Meta Attack Heuristic (Li et al., 2022) is a heuristic-based attack inspired by the meta at-
tack (Zügner & Günnemann, 2019). This heuristic-based approach is an evolution of the original
meta-attack, which relied on gradient-based edge selection. The updated heuristic version demon-
strates greater versatility across a variety of GNN models and large-scale graphs, and it exhibits
enhanced effectiveness compared to its predecessor. Notably, the meta-attack and its heuristic coun-
terpart operate under the assumption that edges lack attributes. Consequently, in our application, we
assign an all-zero feature to the fake edges inserted as part of the attack process.

We adopt the following defensive strategies for the vanilla TGNN models:

Adversarial Training: In line with the approach detailed in (Madry et al., 2017), we introduce per-
turbations to the node memories in TGNN models during the training. We then employ a minimax
adversarial training scheme to enhance the robustness of the TGNN model against these perturba-
tions.

Regularization under empirical Lipschitz bound: Following the methodology in (Jia et al., 2023),
we minimize the empirical Lipschitz bound during the TGNN training process, where the empirical
Lipschitz bound, L, is computed by:

L = sup∆
||f(x+∆)− f(x)||22

||∆||22
(19)

This regularization aims to bound the effectiveness of small perturbations, such as adversarial ex-
amples.

Notably, most robust GCN models, such as RobustGCN, SGCN, GraphSAGE, and TAGCN men-
tioned in (Zou et al., 2021), are primarily tailored for static graph benchmarks. Given their design
constraints, these models are unsuited for TGNN setup with dynamic graph benchmarks and do not
offer a viable defense for the TGNN models targeted by our attack.

B.3 EXTRA MAIN RESULTS

Here we report edge prediction accuracies on REDDIT-TITLE in Table 3, and node classification
AUCs on WIKI in Table 4. The results indicate that: (1) The static attacks cannot last long and
affect future nods. (2) Our approach can be more and more effective after the attack time

Table 3: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on REDDIT-TITLE; lower matrices indicate more effective attacks.

Dataset REDDIT-TITLE
Model TGN Jodie Dyrep ROLAND
Vanilla 0.93 0.92 0.91 0.91

t0

FN 0.76 0.82 0.77 0.79
Meta h 0.86 0.83 0.88 0.85
TDGIA 0.72 0.81 0.74 0.76
ours 0.84 0.85 0.81 0.78

t25

FN 0.9 0.86 0.89 0.88
Meta h 0.89 0.86 0.9 0.87
TDGIA 0.89 0.85 0.89 0.88
ours 0.81 0.84 0.76 0.80

t50

FN 0.9 0.86 0.9 0.88
Meta h 0.9 0.86 0.9 0.88
TDGIA 0.89 0.86 0.9 0.87
ours 0.77 0.82 0.76 0.77

To more comprehensively show the impact of the attack budget, we include detailed results of base-
lines’ and our attacks’ effectiveness under the attack budget as 1%. As shown in Table 5, Table 6,
and Table 7, our approach can outperform baselines as well, despite fewer nodes being attacked.

17

Under review as a conference paper at ICLR 2024

Table 4: The AUC of vanilla/attacked TGNNs on the node classification task; lower matrices indicate
more effective attacks.

Dataset WIKI
Model TGN Jodie Dyrep ROLAND
Vanilla 0.90 0.88 0.89 0.90

t0

FN 0.77 0.87 0.75 0.78
Meta 0.86 0.83 0.86 0.85
TDGIA 0.73 0.82 0.76 0.75
ours 0.82 0.88 0.84 0.80

t25

FN 0.90 0.88 0.88 0.88
Meta 0.89 0.87 0.88 0.89
TDGIA 0.88 0.87 0.88 0.89
ours 0.82 0.85 0.81 0.79

t50

FN 0.90 0.88 0.88 0.90
Meta 0.90 0.89 0.90 0.90
TDGIA 0.90 0.88 0.88 0.90
ours 0.80 0.85 0.77 0.77

Table 5: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on WIKI and REDDIT; The attack budget is 1% for all attacks; lower matrices indicate
more effective attacks.

Dataset WIKI REDDIT
Model TGN Jodie Dyrep ROLAND TGN Jodie Dyrep ROLAND
Vanilla 0.93 0.87 0.85 0.94 0.96 0.98 0.96 0.95

t0

FN 0.89 0.83 0.82 0.85 0.93 0.93 0.92 0.85
Meta 0.92 0.85 0.83 0.89 0.95 0.96 0.94 0.93
TDGIA 0.83 0.81 0.77 0.83 0.89 0.88 0.88 0.8
ours 0.9 0.85 0.86 0.9 0.93 0.94 0.94 0.86

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.95
Meta 0.93 0.86 0.85 0.93 0.95 0.98 0.95 0.94
TDGIA 0.91 0.84 0.83 0.93 0.94 0.96 0.96 0.92
ours 0.8 0.8 0.78 0.88 0.81 0.84 0.91 0.84

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95
Meta 0.94 0.87 0.86 0.93 0.96 0.98 0.95 0.95
TDGIA 0.94 0.87 0.85 0.93 0.96 0.97 0.95 0.93
ours 0.85 0.83 0.81 0.86 0.83 0.84 0.91 0.83

Table 6: Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different
timestamps on REDDIT-BODY and REDDIT-TITLE; The attack budget is 1% for all attacks; lower
matrices indicate more effective attacks.

Dataset REDDIT-BODY REDDIT-TITLE
Model TGN Jodie Dyrep ROLAND TGN Jodie Dyrep ROLAND
Vanilla 0.9 0.87 0.9 0.88 0.93 0.92 0.91 0.91

t0

FN 0.85 0.85 0.81 0.83 0.88 0.88 0.85 0.83
Meta 0.87 0.85 0.87 0.86 0.92 0.89 0.89 0.9
TDGIA 0.81 0.83 0.79 0.78 0.85 0.87 0.85 0.83
ours 0.87 0.85 0.85 0.82 0.88 0.9 0.86 0.85

t25

FN 0.9 0.84 0.89 0.88 0.92 0.92 0.9 0.91
Meta 0.9 0.87 0.9 0.88 0.93 0.93 0.91 0.91
TDGIA 0.88 0.86 0.9 0.87 0.92 0.92 0.9 0.91
ours 0.84 0.86 0.8 0.82 0.85 0.88 0.81 0.86

t50

FN 0.9 0.87 0.9 0.88 0.93 0.92 0.9 0.91
Meta 0.9 0.88 0.9 0.88 0.93 0.93 0.9 0.91
TDGIA 0.89 0.87 0.9 0.87 0.93 0.91 0.9 0.9
ours 0.79 0.85 0.77 0.83 0.8 0.83 0.82 0.83

18

Under review as a conference paper at ICLR 2024

Table 7: The AUC of vanilla/attacked TGNNs on the node classification task under 1% node attacked
budget; lower matrices indicate more effective attacks.

Dataset WIKI
Model TGN Jodie Dyrep ROLAND
Vanilla 0.9 0.88 0.89 0.9

t0

FN 0.83 0.88 0.83 0.83
Meta 0.87 0.85 0.88 0.88

TDGIA 0.81 0.85 0.83 0.8
ours 0.86 0.88 0.86 0.85

t25

FN 0.89 0.88 0.89 0.9
Meta 0.9 0.88 0.88 0.89

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.85 0.81 0.81

t50

FN 0.9 0.87 0.89 0.9
Meta 0.9 0.88 0.89 0.9

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.88 0.79 0.82

B.4 EXTRA RESULTS ON ATTACKS UNDER DEFENSES

We include the results of two attacks, i.e., FakeNode and MemStranding, under the two defenses,
i.e., adv train and Lip reg, on two TGNN models, i.e., Jodie and Dyrep. The observations are
similar to the prior analysis.

A
cc

um
ul

at
ed

A

cc
ur

ac
y

A
cc

um
ul

at
ed

A

cc
ur

ac
y

Timestamp Timestamp

Clean Acc.: 71%Clean Acc.: 81%

Figure 12: Accumulated accuracies of DyRep under Adv train(left), and Lip reg(right) with
FakeNode and our attack on WIKI.

A
cc

um
ul

at
ed

A

cc
ur

ac
y

A
cc

um
ul

at
ed

A

cc
ur

ac
y

Timestamp Timestamp

Clean Acc.: 78%
Clean Acc.: 82%

Figure 13: Accumulated accuracies of JODIE under Adv train(left), and Lip reg(right) with
FakeNode and our attack on WIKI.

19

Under review as a conference paper at ICLR 2024

B.5 EXTRA ABLATION STUDY

We include the results for the ablation studies under the TGN model and REDDIT dataset in Fig-
ure B.5. The results show a similar pattern as we observed in Section 5.

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

Timestamp
C

os
in

e
Si

m
ila

ri
ty

 b
et

w
ee

n
N

od
e

M
em

or
y

C
os

in
e

Si
m

ila
ri

ty
 b

et
w

ee
n

N
od

e
M

em
or

y

Timestamp Timestamp

Figure 14: The similarities between root nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in MemSranding w/o (left) converge state,
MemSranding w/o persisting loss (middle), and regular nodes (right). All results are from the TGN
model and REDDIT dataset.

B.6 EXTRA SENSITIVITY STUDY

We include more results for different target node sampling strategies and attack budgets in Fig-
ure B.6. The results show a similar pattern as we observed in Section 5.

A
cc

um
ul

at
ed

 A
cc

ur
ac

y

Attack Budget (%)

A
ff

ec
te

d
N

od
e

C
ou

nt

A
ccum

ulated A
ccuracy

Timestamp

Figure 15: (left) Comparison between two strategies for selecting the injected node: lowest degree
and highest degree nodes. Count of affected nodes and overall accuracy over time. (RIGHT) The
accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All results
above are from TGN and REDDIT

20

Under review as a conference paper at ICLR 2024

B.7 ACCUMULATED ACCURACIES OVER TIME ON DIVERSE MODELS

We report the accumulated accuracies over time collected from Jodie and Dyrep on the WIKI and
REDDIT datasets. The results include model accuracies under the vanilla (i.e., un-attacked), baseline
(i.e., FakeNode), and our (i.e., MemStranding) attacks in edge prediction tasks.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp Timestamp

Figure 16: Accumulated accuracies of TGN under different attacks in link prediction tasks over time
in WIKI (left) and REDDIT (right) datasets.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Figure 17: Accumulated accuracies of Jodie under different attacks in link predictions over time
with WIKI (left) and REDDIT (right) datasets.

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

A
cc

u
m

u
la

te
d

A
cc

u
ra

cy

Timestamp

Figure 18: Accumulated accuracies of Dyrep under different attacks in link predictions over time
with WIKI (left) and REDDIT (right) datasets.

21

Under review as a conference paper at ICLR 2024

B.8 AFFECTED NODES

We report the number and accumulated accuracies over time of affected nodes over time in Jodie
and Dyrep on the WIKI and REDDIT datasets. The results include model accuracies under our (i.e.,
MemStranding) attack in edge prediction tasks.

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy A

ff
ec

te
d

 N
o

d
e

C
o

u
n

t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 19: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in TGN.

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 20: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in Jodie.

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

A
ff

ec
te

d
 N

o
d

e
C

o
u

n
t

A
ccu

m
u

la
ted

 A
ccu

ra
cy

Timestamp

Figure 21: Count of affected nodes (presented as the colored areas) and their accumulated accuracies
(presented as lines) in WIKI (left) and REDDIT (right) over time. The data are collected in Dyrep.

22

Under review as a conference paper at ICLR 2024

B.9 NOISE PROPAGATING

We report the cosine similarities between the initial root node and its neighbors over time in Jodie
and Dyrep on the WIKI and REDDIT datasets. The results include similarities under our (i.e.,
MemStranding) attack in edge prediction tasks.

Timestamp

C
o
si

n
e

S
im

il
a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o
d

e
M

em
o
ry

Timestamp

Figure 22: The similarities between root nodes’ initial noisy memories (at the time of the attack)
and themselves’/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over
time. The data are collected in TGN.

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Figure 23: The cosine similarities between root nodes’ initial memory (at the time of the attack) and
themselves/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over time.
The data are collected in Jodie.

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Timestamp

C
o

si
n

e
S

im
il

a
ri

ty
 b

et
w

ee
n

N
o

d
e

M
em

o
ry

Figure 24: The cosine similarities between root nodes’ initial memory (at the time of the attack) and
themselves/their subsequent neighbors’ memories in WIKI (left) and REDDIT (right) over time.
The data are collected in Dyrep.

23

Under review as a conference paper at ICLR 2024

C DISCUSSION AND FUTURE WORK

C.1 LIMITS UNDER DIFFERENT MODELS AND GRAPHS.

While the experiment results in Appendix B.3 and Appendix B.6 demonstrated that MemStrand-
ing can be well-generalized on various inputs, several limitations can be observed according to the
performance variance between different models. While our approach can effectively mislead TGN,
ROLAND, and DyRep, its effectiveness is less significant on JODIE, which uses differences be-
tween a node’s current and its last update time to decay the memory. From these observations, we
deduce that our attack may encounter limitations in two specific scenarios:

• Limited Influence of Node Memory on Predictions: Our attack’s effectiveness may be
mitigated in situations where the node memory has a relatively minor role in influencing
the model’s predictions.

• Usage of Additional Information in TGNN Models: The effectiveness may also be con-
strained when the targeted TGNN model incorporates additional information beyond the
node memory for its predictive processes.

While our attack strategy outperforms the baselines, these insights highlight potential limitations
under certain model-specific conditions.

C.2 POTENTIAL DEFENSES.

While we demonstrate that many existing defense schemes, such as adversarial training or regular-
ization, are less effective on our attacks, we expect a potential attack-oriented defense scheme for
our attack using memory filtering. Specifically, a potential defensive approach for our attack is to
pay less attention to the nodes’ memory and rely more on their current input adaptively.

This scheme stems from the observation that our attacks are less effective on JODIE in node clas-
sification tasks. One key difference in JODIE is that it decays the node memory based on the time
differences between the prediction time and the node’s last update time. This mechanism introduces
more hints (i.e., time differences) in addition to the memory itself, which cannot be effectively dis-
torted by the attacks and yields some crucial information. For example, a Wikipedia user is less
likely to be banned if he/she makes a new post after being inactive for a long while.

Therefore, using this non-memory information or current information that does not interact with
node memory could effectively hinder adversarial noises. To this end, an intelligent defense mecha-
nism can judiciously filter out the memory and adaptively focus more on non-memory information
if the memory is suspicious or potentially noisy.

24

	Introduction
	Background and Related Work
	Problem Analysis
	Attack Model
	Challenges in dynamic graphs

	The MemStranding Attack
	Noise Persisting
	Noise propagating
	Attack Framework

	Evaluation
	Experimental Setup
	Experimental result

	Conclusion
	Extended Design
	Self-persisting experimental setup
	Design: Overall Algorithm

	Extended Evaluation
	Experimental Details.
	Baseline attack and defenses
	Extra main results
	Extra results on attacks under defenses
	Extra ablation study
	Extra sensitivity study
	Accumulated Accuracies Over Time on Diverse Models
	Affected Nodes
	Noise Propagating

	Discussion And Future Work
	Limits under different models and graphs.
	Potential Defenses.

