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Abstract

Aspect-Opinion Pair Extraction (AOPE) and001
Aspect Sentiment Triplet Extraction (ASTE)002
have drawn growing attention in NLP. However,003
most existing approaches extract aspects and004
opinions independently, optionally adding pair-005
wise relations, often leading to error propaga-006
tion and high time complexity. To address these007
challenges and being inspired by transition-008
based dependency parsing, we propose the first009
transition-based model for AOPE and ASTE010
that performs aspect and opinion extraction011
jointly, which also better captures position-012
aware aspect-opinion relations and mitigates013
entity-level bias. By integrating contrastive-014
augmented optimization, our model delivers015
more accurate action predictions and jointly016
optimizes separate subtasks in linear time. Ex-017
tensive experiments on four commonly used018
ASTE/AOPE datasets show that, our proposed019
transition-based model outperform previous020
models on two out of the four datasets when021
trained on a single dataset. When multiple train-022
ing sets are used, our proposed method achieves023
new state-of-the-art results on all datasets. We024
show that this is partly due to our model’s abil-025
ity to benefit from transition actions learned026
from multiple datasets and domains. Our code027
is available at https://anonymous.4open.028
science/r/trans_aste-8FCF.029

1 Introduction030

Aspect-Based Sentiment Analysis (ABSA) is a031

fine-grained sentiment analysis task that identi-032

fies specific aspects in text and analyzes the sen-033

timents linked to them (Hu and Liu, 2004; Liu,034

2012; Wang et al., 2024). As shown in Figure 1,035

ABSA involves subtasks such as Aspect Extraction036

(AE) and Opinion Extraction (OE)—identifying037

mentioned aspects and their related opinions, or038

the combination—Aspect-Opinion Pair Extraction.039

Once the aspect and opinion have been extracted,040

a sentiment is usually computed, and this more041

Figure 1: Demonstration of the processing steps in both
classic and transitional methods for extracting aspect-
opinion pairs. Importantly, our proposed transitional
method predicts transition actions, and performs pair
extraction after the aspect–opinion relationship has been
established, allowing the model to capture contextual
relationships more effectively.

complicated task is often referred to as Aspect- 042

Sentiment Triplet Extraction (ASTE). For instance, 043

given the sentence: “Gourmet food is delicious. 044

Good service, but not so welcoming”, AE identifies 045

gourmet food and service as aspects, while OE 046

extracts delicious, good, and not so welcoming 047

as opinions. These outputs are then combined to 048

form aspect-opinion pairs, with a separate senti- 049

ment tagging system assigning polarities to cre- 050

ate triplets (Jiang et al., 2023; Wang et al., 2023; 051

Chakraborty, 2024). 052

ASTE is the most integrated task for aspect- 053

based sentiment analysis, for which diverse models 054

leveraging various methodologies have been de- 055

veloped, including pipeline-based approach (Peng 056

et al., 2020), sequence-to-sequence method (Yan 057

et al., 2021), sequence-tagging method (Wu et al., 058

2020; Xu et al., 2020), to name just a few. De- 059

spite these efforts and growing interests, the accu- 060

racy of recent models remains suboptimal, with 061

the best systems scoring 60% or 70% (Sun et al., 062

2024). There are two key challenges that hinder 063
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performance: (1) Disconnected Aspect-Opinion064

Extraction: Opinions are often extracted indepen-065

dently from their corresponding aspects (Liang066

et al., 2023; Sun et al., 2024). While positional067

relationships can be added as an auxiliary factor068

to assist pair extraction (Liu et al., 2022; Wang069

et al., 2023), this approach loses critical contex-070

tual information by treating aspects and opinions071

as separate entities. This limits the effectiveness072

of many token-based extraction methods. (2) High073

time complexity with longer sequences: Meth-074

ods using 2D matrix tagging (Liang et al., 2023;075

Sun et al., 2024) to capture relationships between076

tokens face significant increases in time complex-077

ity as the length of the token sequence increases.078

This computational burden restricts their scalability,079

especially for longer texts in practical applications.080

To address these two challenges, we present the081

first transition-based AOPE system named Trans-082

AOPE that (1) extracts the Aspect and the Opin-083

ion at the same time, and (2) has a time com-084

plexity of O(n). We also introduce a contrastive-085

augmented optimization method to enhance model086

efficiency. We conduct experiments on 4 com-087

monly used ABAS datasets, and compare our sys-088

tem with previous models. Our results show that089

Trans-model achieves state-of-the-art performance090

on all datasets we tested. We conduct comprehen-091

sive ablation studies to evaluate the contribution092

of optimization components and perform extensive093

training on various datasets to identify precisely094

where our model and baselines derive their learn-095

ing.096

Our contributions are: (1) We propose the first097

transition-based model that extracts aspect-opinion098

pairs based on relational aspects, rather than us-099

ing relational factors as supplementary references100

or confirmation, with linear time complexity. (2)101

We experiment with a contrastive-augmented opti-102

mization method and find that balanced weighting103

yields faster, more stable improvements, emerging104

as the optimal training configuration. (3) We ex-105

plore various training strategies and show that our106

proposed method achieves optimal performance on107

four datasets when trained on combined training108

sets, with better cross-dataset generalization.109

2 Related Work110

Previous methods on ASTE Pipeline-based ap-111

proaches, such as Peng-Two-stage (Peng et al.,112

2020), decompose the task into multiple stages for113

modular refinement. Sequence-to-sequence frame- 114

works like BARTABSA (Yan et al., 2021) employ 115

pretrained transformers to generate triplets flexibly. 116

Sequence-tagging methods, including GTS (Wu 117

et al., 2020) and JET-BERT (Xu et al., 2020), an- 118

notate tokens for precise identification of relation- 119

ships. Machine Reading Comprehension (MRC)- 120

based models, such as COM-MRC (Zhai et al., 121

2022) and Triple-MRC (Zou et al., 2024), reframe 122

the task as query answering for efficient extraction. 123

Graph-based approaches such as EMC-GCN (Chen 124

et al., 2022), BDTF (Chen et al., 2022), and DGC- 125

NAP (Li et al., 2023) use graph structures to cap- 126

ture semantic and syntactic interactions. Tagging 127

schema-based models, exemplified by STAGE-3D 128

(Liang et al., 2023), use hierarchical schemas for 129

multi-level extraction, while lightweight models 130

like MiniConGTS (Sun et al., 2024) focus on effi- 131

ciency with reduced computational costs. 132

Table 1 summarizes these baseline methods, 133

along with our proposed model, in terms of their 134

core approaches and time complexities. 135

Transition-based Methods in NLP Transition- 136

based approaches are widely used in dependency 137

parsing, leveraging shift-reduce and bidirectional 138

arc actions (left-arc, right-arc) for efficient O(n) 139

parsing (Aho and Ullman, 1973; Nivre, 2003; Cer 140

et al., 2010). These parsers maintain stack, buffer, 141

and arc relations to track transitions and then build 142

up dependency relations between tokens. 143

Transition-based methods have also been ap- 144

plied to various NLP tasks, including token seg- 145

mentation (Zhang et al., 2016), argument mining 146

(Bao et al., 2021), constituency parsing (Yang and 147

Deng, 2020), AMR parsing (Zhou et al., 2021), 148

and sequence labeling (Gómez-Rodríguez et al., 149

2020), among others. Transition-based methods 150

have been explored in emotion analysis (Fan et al., 151

2020; Jian et al., 2024). In sentiment analysis, how- 152

ever, transition-based models have not been widely 153

adopted. One exception is their use in generating 154

graph structures for opinion extraction (Fernández- 155

González, 2023), although this design relies on 156

graph embeddings and thus results in a time com- 157

plexity of O(N2), with performance that lags be- 158

hind more recent AOPE and ASTE approaches. 159

Contrastive-based Optimization Contrastive 160

learning powers state-of-the-art token-independent 161

extraction (MiniconGTS (Sun et al., 2024)), im- 162

proves few-shot prompt learners via view augmen- 163
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Method Approach Time Complexity

Peng-Two-stage (Peng et al., 2020) Two-Stage Pipeline: entity identification and relation formation O(n+ k2)
BARTABSA (Yan et al., 2021) Generative-based Aspect-based Sentiment Analysis O(m · v)
GTS (Wu et al., 2020) Grid Matrix-based Tagging O(n2)
JET-BERT (Xu et al., 2020) Position-Aware Sequence Tagging O(n)
COM-MRC (Zhai et al., 2022) Compositional Machine Reading Comprehension O(r · n2 · h)
Triple-MRC (Zou et al., 2024) Multi-turn Machine Reading Comprehension O(r · n2 · h)
EMC-GCN (Chen et al., 2022) Multi-channel Graph Convolutional Network O(m · n2 · h)
DGCNAP (Li et al., 2023) Graph Convolutional Network w/ Affective Knowledge O(m · n2 · h)
MiniConGTS (Sun et al., 2024) Lightweight Grid Matrix-based Tagging System O(n2)

Trans-model (Ours) Transition-based Action Prediction for Simulating Relation Formation and Pair Extraction O(n)

Table 1: An overview of previous methods and models (which will serve as baselines in this study), their approaches,
and corresponding time complexities. Here, the hidden size for LSTM d is simplified; n is the sequence length; m
is the number of graph channels; v is the vocabulary size; k is the number of extracted terms; r is the number of
query rounds, and h is the hidden size of the encoder.

tation (Jian et al., 2022), supplies a principled164

loss for goal-conditioned RL (Eysenbach et al.,165

2023), and benefits from margin studies that stress166

positive-sample weighting (Rho et al., 2023). Its167

versatility prompts us to embed a contrastive loss in168

our transition-based AOPE and ASTE, sharpening169

representations and boosting accuracy.170

3 The Trans-AOPE/ASTE Model171

We recast aspect–opinion extraction as a parsing-172

guided graph-construction problem in two stages:173

Trans-AOPE incrementally extracts aspect–opinion174

pairs from context-rich inputs, and Trans-ASTE175

tags the recovered pairs. The parser tracks five176

working structures—stack, buffer, aspect set, opin-177

ion set, and pair set—extending the three used in178

earlier systems and enabling joint recovery of as-179

pects and opinions.180

3.1 Transitional Operations and State Change181

Phrase relations are modeled as directed edges be-182

tween two tokens N1 and N2. We denote a right-183

ward (aspect-to-opinion) link by RR : N1
l−→ N2184

and a leftward link by LR : N1
l←− N2, where185

l ∈ {lL, lR} covers causal (bidirectional) labels.186

Aspect (A) and opinion (O) spans may contain sev-187

eral tokens (e.g., gourmet food, not bad), so merge188

operations are allowed.189

For the ASTE task we use seven transition ac-190

tions that (i) retrieve tokens, (ii) terminate, or191

(iii) merge spans. Each parser state is the tuple192

T = (σ, β,A,O,R) of stack, buffer, current as-193

pect, current opinion and accumulated relations.194

Default actions are always available, primary ac-195

tions create or merge spans, and secondary actions196

add relations once the relevant spans exist. Verbal197

and symbolic definitions of every action follow.198

Default Actions: 199

1. Shift (SF ) moves a token from the tokenized 200

stack into the buffer for further processing. 201

2. Stop (ST ) halts the process when only one 202

token remains in the buffer, and the stack is 203

empty. 204

Primary Actions: 205

1. Merge (M ) combines multiple tokens in the 206

buffer into a single compound target. 207

2. Left Constituent Removal (Ln) removes the 208

left constituent from the buffer. 209

3. Right Constituent Removal (Rn) removes the 210

right constituent from the buffer. 211

Secondary Actions: 212

1. Left-Relation Formation (LR) creates a re- 213

lation from the right aspect constituent to the 214

left opinion constituent. 215

2. Right-Relation Formation (RR) creates a re- 216

lation from the left aspect constituent to the 217

right opinion constituent. 218

Table 2 provides a symbolic illustration of how 219

the symbolic state is constructed and utilized. Take 220

the sentence "Gourmet food is delicious" as an 221

example. Table 3 demonstrates the process of mov- 222

ing tokens from the buffer to the stack, deciding 223

whether they should be merged into a single en- 224

tity or removed, and finally evaluating them for 225

relation formation. It is important to note that 226

the set of actions shown in the figure is not the 227

only way to extract the "Gourmet food" and "deli- 228

cious" aspect-opinion pair. An alternative approach 229

use the stack’s capacity of holding multiple tokens, 230

moving "is" to the stack (β3 → σ3) before merging 231

"Gourmet" and "food" ([σ1, σ2, σ3]→ [σ1&2, σ3]). 232
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Action Symbolic Expression
Shift (SF ) (σ0, β0 | β1, A,O,R)

SH−−→ (σ0 | σ1, β1, A,O,R)

Stop (ST ) (σ0, , A,O,R)
ST−−→ (, , A,O,R)

Merge (M ) (σ0 | σ1, β1 | β2, A,O,R)
M−→ (σ0&1, β1 | β2, A,O,R)

Left Constituent Removal (Ln) (σ0 | σ1, β0, A,O,R)
Ln−−→ (σ1, β0, A,O,R)

Right Constituent Removal (Rn) (σ0 | σ1, β0, A,O,R)
Rn−−→ (σ0, β0, A,O,R)

Left-Relation Formation (LR) (σ0 | σ1, β0, A,O,R)
LR−−→ (σ0 | σ1, β0, A ∪ σ1, O ∪ σ0, R ∪ σ0 ←− σ1)

Right-Relation Formation (RR) (σ0 | σ1, β0, A,O,R)
RR−−→ (σ0 | σ1, β0, A ∪ σ0, O ∪ σ1, R ∪ σ0 −→ σ1)

Table 2: Symbolic Expressions for the Proposed Actions. Here, σ represents the stack, β represents the buffer, A
denotes the aspect, O denotes the opinion, and R consist of an aspect and an opinion.

Phrase Action Stack (σ) Buffer (β) Aspect Opinion Pair
– – [] [β1, β2, β3, β4] – – –
1 SF [σ1] [β2, β3, β4] – – –
2 SF [σ1, σ2] [β3, β4] – – –
3 M [σ1&2] [β3, β4] – – –
4 SF [σ1&2, σ3] [β4] – – –
5 Rn [σ1&2] [β4] – – –
6 SF [σ1&2, σ4] [] – – –
7 RR [σ1&2, σ4] [] [σ1&2] [σ4] (σ1&2 → σ4)
9 ST [] [] [σ1&2] [σ4] (σ1&2 → σ4)

Table 3: State changes for "Gourmet food is delicious" using symbolic representation. Here, σ1 corresponds to
"Gourmet", σ2 to "food", σ3 to "is", and σ4 to "delicious". Similarly, β1, β2, β3, and β4 correspond to tokens in the
buffer in sequence.

Figure 2: The complete process of the transition-based
model is illustrated. Purple highlights represent the
transition-based pair extraction actions, while orange
indicates the final step of sentiment tagging.

3.2 Trans-AOPE State Representation233

The model we propose consists of two core stages:234

pair extraction with a designed transitional action235

slot (in purple) and pair-based sentiment tagging236

(in orange), as illustrated in Figure 2.237

In the first stage, the input, denoted as In1 =238

(t1, t2, . . . , tn), is a sequence of tokens. The out-239

put is a sequence of actions, represented as Am
1 =240

(a1, a2, . . . , am). This process can be conceptual-241

ized as a search for the optimal action sequence, 242

A∗, given the input sequence In1 . At each step n, 243

the model predicts the next action based on the 244

current system state, S, and the sequence of prior 245

actions, An−1
1 The updated system state, Sn+1 , is 246

determined by the specific action at. We define 247

rn as a symbolic representation for calculating the 248

probability of the action an at step n. This proba- 249

bility is computed as follows: 250

p(an|rn) =
exp(w⊤

anrn + ban)∑
a′∈A(S) exp(w

⊤
a′rn + ba′)

(1) 251

Here, wa is a learnable parameter vector, and ba is a 252

bias term. The setA(S) represents the legal actions 253

available given the current parser state. The overall 254

optimization objective for the model is defined as: 255

(A∗, S∗) = argmax
A,S

∏
n

p(an, Sn+1|An−1
1 , Sn)

= argmax
A,S

∏
n

p(an|rn)

(2) 256

We recast ASTE as a transition-based action pre- 257

diction problem. At each step the model, given 258

the current state and action history, greedily selects 259

the highest-probability action until parsing termi- 260

nates. This yields an efficient parser that avoids 261
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information leakage and supports flexible relation262

construction.263

3.3 Transition Implementation with Neural264

Model265

This section introduces a transition-based parsing266

process. RoBERTa (Liu et al., 2019) encodes the267

text, while UniLSTM (Hochreiter and Schmidhu-268

ber, 1997) and BiLSTM (Graves and Schmidhuber,269

2005) capture transitions. The parser state evolves270

through a sequence of actions, with LSTMs pro-271

cessing each token once. This yields a time com-272

plexity of O(n · d2), typically simplified to O(n)273

under fixed d. Finally, an MLP classifies the sen-274

timent for each pair or triplet based on the final275

parser state.276

Token representations Consider the process of277

parsing a text dn1 = (p1, p2, . . ., pn) , consisting of278

n phrases. Each phrase pi = (wi1, wi2, . . ., wil)279

contains l tokens. A phrase can be represented as280

a sequence xi = ([CLS], ti1, . . ., til, [SEP]), where281

[CLS] is a special classification token whose final282

hidden state serves as the aggregate sequence fea-283

ture, and [SEP] is a separator token. The hidden284

representation of each phrase is computed as hpi285

= RoBERTa(xi) ∈ Rdb×|li|, where db is the hid-286

den dimension size, and |li| is the length of the287

sequence xi. Finally, the entire text dn1 is repre-288

sented as a list of tokens: hd = [hp1 , hp2 , . . ., hpn].289

State Initialization At the start of the parsing290

process, the parser’s state is initialized as (β =291

∅, σ = [1, 2, . . . , n], E = ∅, C = ∅, R = ∅),292

where σ is the stack, β is the buffer, and E, C,293

and R are empty sets representing different outputs.294

The state evolves through a sequence of actions,295

progressively consuming elements from the buffer296

β and constructing the output. This process contin-297

ues until the parser reaches its terminal state when298

there is only one token left in buffer, represented299

as (β = [SEP ], σ = ∅, E, C,R).300

Step-by-Step Parser State Representation. For301

the action sequence, each action a is mapped to302

a distributed representation ea through a lookup303

table Ea. An unidirectional LSTM is then utilized304

to capture the complete history of actions in a left-305

to-right manner at each step t:306

αt = LSTMa(a0, a1, . . . , at−1, at) (3)307

Upon generation of a new action at, its correspond-308

ing embedding eat is integrated into the rightmost309

position of LSTMa. To further refine the represen- 310

tation of the pair (σ1, σ0), their relative positional 311

distance d is also encoded as an embedding ed from 312

a lookup table Ed. The composite representation of 313

the parser state at step t encompasses these varied 314

features. 315

The parser state is represented as a triple 316

(βs, σs, At), where σs denotes the stack sequence 317

(σ0, σ1, . . . , σn), βs represents the buffer sequence 318

(β0, β1, . . . , βn), and At encapsulates the action 319

history (a0, a1, . . . , at−1, at). The stack (σn) and 320

buffer (βn) are encoded using bidirectional LSTMs 321

as follows: 322

[st, bt] = BiLSTM((σn, β0), (σn−1, β1),

. . . , (σ0, βn))
(4) 323

Here, st and bt are the output feature representa- 324

tions of the stack and buffer, respectively. Each 325

of these representations consists of forward and 326

backward components: σt = (−→σt ,←−σt) and βt = 327

(
−→
βt ,
←−
βt). The forward and backward components 328

are matrices in Rdl×|σt| and Rdl×|βt|, respectively, 329

where dl is the hidden dimension size of the LSTM, 330

and |σt|, |βt| are the lengths of the sequences σt 331

and βt. 332

3.4 Optimization Implementation 333

We compare two optimization strategies: regu- 334

lar optimization using Cross-Entropy Loss and 335

contrastive-based optimization, which aligns pre- 336

dicted and true action embeddings. A weight study 337

will evaluate the impact of the positioning of two 338

components in augmented optimization on model 339

performance. Both action and sentiment classifica- 340

tion tasks are optimized using the Cross-Entropy 341

Loss as base optimization, defined as follows: 342

L = − 1

N

N∑
i=1

M∑
j=1

yji log(p
j
i ), (5) 343

where N is the number of samples, M is the num- 344

ber of classes (either action or sentiment classes), 345

yji is a binary indicator (0 or 1) indicating whether 346

class j is the correct class for sample i, and pji is 347

the predicted probability for class j for sample i. 348

For AOPE task, total loss is action loss Laction, and 349

for ASTE task, is the sum of the losses for both 350

tasks: Lbase = Laction + Lsentiment. 351

Given action and sentiment logits Alogits and 352

ground-truth labels Atrue, the predicted actions 353

are Apred = argmax(softmax(Alogits)). Pre- 354

dicted and true actions are embedded as Epred = 355
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Embed(Apred) and Etrue = Embed(Atrue). The356

cosine-similarity matrix is S = cos(Epred,Etrue) ∈357

RN×N ; its diagonal gives positive pairs. Define358

epos = exp(S ⊙Mpos) and eall = exp(S), where359

Mpos is the diagonal mask and ⊙ denotes element-360

wise multiplication. Contrastive loss is computed361

as362

Lcon = − 1

N

N∑
i=1

log

(
e
(i)
pos

e
(i)
all

)
, (6)363

and the total loss is the addition of two weighted364

losses365

Ltotal = ω1 Lbase + ω2 Lcon. (7)366

4 Experimental Setups367

4.1 Datasets and preprocessing368

We benchmark on four standard ABSA datasets:369

14lap and 14res (SemEval-2014)(Pontiki et al.,370

2014), 15res (SemEval-2015)(Pontiki et al., 2015),371

and 16res (SemEval-2016)(Pontiki et al., 2016);372

statistics are in Table6. 14lap contains laptop re-373

views, while the others comprise restaurant reviews,374

and all are widely used for aspect-based sentiment375

extraction (Xu et al., 2021). For ASTE we con-376

struct sentiment-aware dependency graphs: SpaCy377

supplies syntactic edges (Honnibal et al., 2020),378

SenticNet provides sentiment weights (Cambria379

et al., 2017), and the resulting weighted adjacency380

matrices, paired with tokenized sentences and as-381

pect–opinion–sentiment triplets, feed model train-382

ing and evaluation.383

4.2 Training settings384

We experiment with two settings for training data.385

In this setting, we train with one of the four datasets386

and test on the test set of the same dataset (In-387

domain training), e.g., train on 14lap and test on388

14lap. Since our method depends on the model389

learning the correct action to pair an aspect with an390

opinion from the training data, we hypothesize that391

it will have the advantage of being able to make392

use of training data from diverse domains to learn393

various actions. Thus we experiment with training394

on two or more training sets combined (Combined395

training), to observe whether there is performance396

gain when more actions are learned. Specifically,397

we train on several training sets together, and eval-398

uate on a single test set.399

4.3 Baselines400

We benchmark our model against three represen-401

tative baselines—STAGE-3D (Liang et al., 2023),402

Figure 3: Mean batch time (s) and mean batch memory
usage (MB) for Trans-ASTE, STAGE-3D, MiniCon-
GTS, and BARTABSA

MiniConGTS (Sun et al., 2024), and BARTABSA 403

(Yan et al., 2021). STAGE-3D is included through 404

the scores reported in its original paper because no 405

runnable code is available. MiniConGTS, the cur- 406

rent state of the art for both ASTE and AOPE with 407

quadratic complexity O(n2) (fixed constants omit- 408

ted), is re-trained using the authors’ public imple- 409

mentation; we keep all original hyper-parameters 410

and preprocessing steps, modifying only the train- 411

ing data where necessary to incorporate every split 412

(14lap, 14res, 15res, and 16res). BARTABSA, an 413

earlier single-stage AOPE model of linear com- 414

plexity O(n), is re-trained under the same protocol. 415

After re-training, each baseline is evaluated sepa- 416

rately on the four test sets. Results for additional 417

published baselines—CMLA, GTS, Triple-MRC, 418

EMC-GCN, DGCNAP, and others—are presented 419

in Appendix A.2. 420

5 Results and Analysis 421

We study wall-clock training time per batch and 422

peak GPU memory per batch because these two 423

metrics jointly determine scalability (how fast 424

larger datasets can be processed) and deployabil- 425

ity (whether the model fits on commodity GPUs). 426

As shown in Figure 3, Trans-ASTE has the small- 427

est footprint on both counts. Then, we present 428

results obtained under various training-data con- 429

figurations and compare our model with previous 430

methods (Section 5.1). Finally, we assess the im- 431

pact of adding a contrastive-loss term and identify 432

the optimal loss configuration (Section 5.2), and 433

section 5.3 provides a detailed discussion of these 434

findings. 435
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14res 14lap 15res 16res

In-domain training setting P R F1 P R F1 P R F1 P R F1

O(n) | BARTABSA (Yan et al., 2021) ⋄ - - 77.68 - - 66.11 - - 67.98 - - 77.38
O(n2) | MiniConGTS (Sun et al., 2024) ⋆ - - 79.60 - - 73.23 - - 73.87 - - 76.29

O(n) | Trans-AOPE (Ours) 78.89 65.98 71.86 66.31 55.51 60.43 93.20 85.31 89.08 78.16 81.73 79.91

Combined-train setting (Training Sets)

MiniConGTS (14lap & 14res) 75.72 78.20 76.94 71.05 68.64 69.83 63.30 69.90 66.44 68.13 72.54 70.27
MiniConGTS (14res, 15res, & 16res) 78.68 76.78 77.72 56.86 48.31 52.23 94.54 92.48 93.50 77.65 75.22 76.42
MiniConGTS (14res, 14lap, 15res, & 16res) 78.22 77.11 77.66 76.32 64.19 69.74 93.35 91.99 92.67 76.27 76.79 76.53
BARTABSA (14res, 14lap, 15res & 16res) 75.40 76.76 76.07 72.36 63.40 67.59 93.56 94.43 93.56 87.06 87.32 87.19

Ours
Trans-AOPE (14lap & 14res) 91.95 83.24 87.38 90.60 79.88 84.91 73.99 73.19 73.59 74.84 69.94 72.31
Trans-AOPE (14res, 15res & 16res) 74.34 62.29 67.78 91.03 78.11 84.07 95.66 88.04 91.69 90.63 80.65 85.35
Trans-AOPE (14res, 14lap, 15res & 16res) 92.92 83.61 88.02 92.20 80.47 85.94 96.17 90.94 93.48 93.75 84.82 89.06

Table 4: Comparison of different models on multiple datasets for AOPE task. Recall and precision values are omitted
where they are not reported. The former best scores are underlined, and current best scores are bold. Highlights are
used for analysis. ⋄ are retrieved from Yan et al., 2021. • is retrieved from Zhao et al., 2020, and ⋆ are retrieved
from Sun et al., 2024

5.1 Main Results436

On AOPE In the in-domain setting (upper half437

of Table 4), Trans-AOPE outperforms the base-438

lines only on the 15res and 16res test sets.1 Once439

we switch to the combined-train regime, Trans-440

AOPE eclipses MiniConGTS and BARTABSA in441

every train–test combination. Training on all four442

datasets boosts Trans-AOPE’s F1 by roughly 20443

points across the board—for example, from 71.86444

→ 88.02 on 14res and from 60.43 → 85.94 on445

14lap—whereas MiniConGTS gains meaningfully446

only on 15res and even declines on 14res and447

14lap (BARTABSA shows the same pattern). Do-448

main mixing is especially telling on the laptop set:449

adding restaurant data catapults Trans-AOPE from450

50.94 → 84.91, but drags MiniConGTS down from451

73.23 → 69.83. Remarkably, even when trained452

only on the three restaurant corpora, Trans-AOPE453

still reaches 84.07 F1 on 14lap—virtually match-454

ing its 84.91 when 14lap is included—whereas455

MiniConGTS collapses to 52.23. Taken together,456

these results demonstrate that Trans-AOPE trans-457

fers knowledge across domains far more robustly458

than previous models.459

On ASTE Table 5 echoes the pattern seen with460

AOPE. In the strict in-domain setup, Trans-ASTE461

trails on the 14res and 14lap test sets but outper-462

forms its peers on 15res and 16res. Once the train-463

ing data are pooled (combined-train), however, it464

1Scores for earlier models are taken from their original
papers; we assume they were trained solely on the correspond-
ing in-domain data, although most papers do not state this
explicitly.

outshines the baselines on every dataset. Simply 465

adding 14lap to the 14res training set propels Trans- 466

ASTE’s F1 from 65.92 to 85.20, while MiniCon- 467

GTS slips a bit (75.59 → 73.28) and BARTABSA 468

gains only modestly (65.25 → 71.68). With all 469

four corpora in the training mix, Trans-ASTE leads 470

every test set except 15res—often by wide mar- 471

gins—and is the only model to secure a dramatic 472

jump on 14lap (53.36 → 81.26). An exception 473

appears when the model is trained on the three 474

restaurant corpora and evaluated on 14lap (high- 475

lighted in yellow): Trans-ASTE plunges to 36.58 476

F1, far below the 84.07 recorded by its AOPE coun- 477

terpart. We attribute this gap to domain-specific 478

sentiment-polarity labels, whose transfer proves 479

more fragile than the transfer of aspect–opinion 480

spans themselves. 481

5.2 Study on Contrastive Loss 482

To investigate the impact of different weight con- 483

figurations between the base loss and contrastive 484

loss in Equation 7, we tested loss-weight ratios 485

wbase : wcon ∈ {1:0, 1:1, 1:10, 0:1, 10:1} with 486

a batch size of 4. On the 14lap AOPE bench- 487

mark (Fig. 4), the balanced 1:1 setting climbed 488

fastest and reached higher early F1 values, while 489

contrastive-only training stalled. ASTE showed 490

the same pattern (Fig. 5), and results were con- 491

sistent on additional datasets. We therefore adopt 492

wbase : wcon = 1:1 in all remaining experiments. 493

5.3 When and Why is Trans-model Better? 494

When: Trans-model is better with combined 495

training sets and in multi-domain generaliza- 496
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14res 14lap 15res 16Res

In-domain training setting P R F1 P R F1 P R F1 P R F1

O(n) | BARTABSA (Yan et al., 2021) ⋄ 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62
O(n2) | STAGE-3D (Liang et al., 2023) ⋆ 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.90 64.79 76.67 70.12 73.24
O(n2) | MiniConGTS (Sun et al., 2024) ⋆ 76.10 75.08 75.59 66.82 60.68 63.61 66.50 63.86 65.15 75.52 74.14 74.83

O(n) | Trans-ASTE (Ours) 72.25 60.61 65.92 61.49 47.13 53.36 91.30 83.05 86.98 77.95 79.90 77.95

Combined-train setting (Training Sets)

MiniConGTS (14lap & 14res) 72.11 74.48 73.28 62.50 60.38 61.42 56.48 62.38 59.28 64.57 68.75 66.59
MiniConGTS (14res, 15res, & 16res) 74.64 72.84 73.73 52.12 44.28 47.88 92.31 90.29 91.29 74.42 72.10 73.24
MiniConGTS (14res, 14lap, 15res & 16res) 73.89 72.84 73.36 68.26 57.42 62.37 90.64 89.32 89.98 72.73 73.21 72.97
BARTABSA (14res, 14lap, 15res & 16res) 71.05 72.33 71.68 63.66 56.01 59.59 91.30 92.99 92.13 83.82 84.07 83.95

Ours
Trans-ASTE (14lap &14res) 88.05 80.51 84.11 88.11 74.56 80.77 69.55 67.03 68.27 64.53 62.80 63.65
Trans-ASTE (14res, 15res & 16res) 73.53 61.74 67.12 42.25 32.25 36.58 89.89 86.96 88.40 81.19 77.08 79.08
Trans-ASTE (14res, 14lap, 15res & 16res) 89.56 81.24 85.20 86.87 76.33 81.26 94.34 90.58 92.42 90.03 83.33 86.55

Table 5: Comparison of different models on multiple datasets for ASTE task. Recall and precision values are
omitted where they are not reported. Highlights are used for analysis. The former best scores are underlined, and
current best scores are bold. ⋆ are retrieved from Sun et al., 2024, and ⋄ is retrieved from Yan et al., 2021.

tion. From the results above, it seems clear that497

the Trans-model in the two tasks are better when498

trained on multiple datasets combined, rather than499

one dataset alone. Our results also suggest that500

the added training data do not have to be in the501

same domain: when trained on 14lap & 14res and502

tested on either 14lap or 14res, the F1 score is at503

least about 10 percentage points better than trained504

on only one of the two datasets. It shows that our505

Trans-model is capable of learning from multiple506

domains, and seems to be able to transfer its knowl-507

edge from the laptop domain to the restaurant do-508

main and vice versa, unlike MiniConGTS, which509

seems to be more sensitive to the domain of the510

data. However, further research is need to better511

understand the discrepancy between Trans-AOPE512

and Trans-ASTE models in cross-domain transfer,513

and improve the cross-domain transfer ability of514

the sentiment tagger.515

Why: Trans-model can learn more actions in516

data from diverse domains. We believe that the517

proposed trans-models excel when trained on mul-518

tiple datasets and show considerable generalization519

ability for two main reasons. First, by predict-520

ing actions instead of tokens, it avoids token-level521

biases and prevents overfitting on token-level pat-522

terns specific to restaurant datasets. Additionally,523

trans-models perform pair extraction after the as-524

pect–opinion relationship is established, which en-525

ables the model to capture contextual relationships526

more effectively. These design decisions work to-527

gether to significantly enhance the overall effective-528

ness and robustness of the trans-models.529

6 Conclusion and Future Work 530

In this paper, we present an efficient transition 531

pipeline for the extraction of aspects-opinion pairs 532

with linear time complexity O(n), enhanced by a 533

contrastive-based optimization method. This ap- 534

proach obviates the need to directly identify and 535

extract individual tokens, thereby mitigating token- 536

level bias. It can be trained on a combination of 537

diverse datasets that offers the most comprehen- 538

sive coverage of the actions needed, resulting in 539

significant performance improvements across vari- 540

ous datasets. Specifically, training our model on a 541

well-covered fused dataset enables it to learn robust 542

action patterns, leading to superior performance on 543

all datasets. Our model surpasses retrained baseline 544

models on the same fused dataset, establishing new 545

state-of-the-art results for both AOPE and ASTE 546

tasks. 547

As transition-based methods have remained rela- 548

tively less explored in sentiment-related tasks, we 549

believe our work shows a promising direction to 550

employ such methods in aspect-based sentiment 551

analysis. Future work can further examine the 552

potential of transition-based models in other sen- 553

timent analysis tasks, as well as the generaliza- 554

tion ability of these models in situations of multi- 555

domain data. It is also important to better under- 556

stand the cross-domain and multi-domain general- 557

ization ability of transition models, by experimen- 558

tation on more domains, since only two domains 559

are involved in this work. 560
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Limitation561

Although the Trans-model demonstrates robust gen-562

eralization capability, its reliance on larger datasets563

to effectively learn action patterns remains a no-564

table limitation of the transition-based pipeline.565

This issue is evident in our results: while it is not566

necessary to use the same dataset for both train-567

ing and testing, the model performs better when568

trained on blended datasets rather than on a sin-569

gle, limited one. Consequently, if the training data570

lack sufficient action patterns, the model’s ability571

to handle nuanced or previously unseen contexts572

can be significantly compromised. These findings573

underscore the importance of training on a com-574

bined or broader dataset to enhance the model’s575

overall effectiveness.576
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A Appendix788

A.1 Datasets Details789

We conduct all experiments on the four benchmark790

corpora that originate from the SemEval Aspect-791

Based Sentiment Analysis (ABSA) shared tasks.2792

Table 6 summarises their key statistics. The two793

restaurant collections, 14res and 16res, are the794

largest, containing 2068 and 1393 sentences and795

3909 and 2247 annotated aspect–sentiment–target796

triplets, respectively. 14lap covers the laptop do-797

main and is both smaller and more sentiment-798

balanced: although it includes only 1453 sentences,799

the proportion of negative triplets (33 %) is compa-800

rable to the positive ones, reflecting the more crit-801

ical tone of consumer-electronics reviews. 15res802

sits between the two 2014 datasets in size but ex-803

hibits the sparsest neutral category, with merely 61804

neutral annotations out of 1747 triplets, making it805

effectively a polar dataset. Across all four corpora,806

positive opinions dominate (66–72 %), while neu-807

tral labels remain scarce; this imbalance motivates808

the macro-averaged metrics reported in Section 5.809

A.2 Other Baselines810

To provide a fuller historical context we also re-811

benchmark a broad set of earlier end-to-end sys-812

tems—including CMLA (Wang et al., 2017), Peng-813

Two-stage (Peng et al., 2020), Dual-MRC (Mao814

et al., 2021), SpanMlt (Zhao et al., 2020), JET-815

BERT (Xu et al., 2020), COM-MRC (Zhai et al.,816

2022), Triple-MRC (Zou et al., 2024) under the817

same four-dataset protocol. Their precision, recall818

and F1 scores for the AOPE and ASTE tasks are819

214RES and 14LAP were released in SemEval-2014 Task
4, whereas 15RES and 16RES come from the 2015 and 2016
restaurant subtasks, respectively.

Datasets #S #POS #NEU #NEG #T

14res 2068 2869 286 754 3909

14lap 1453 1350 225 774 2349

15res 1075 1285 61 401 1747

16res 1393 1674 90 483 2247

Table 6: Statistics of four datasets. #S denotes the
number of sentence, #POS, #NEU, #NEG the number
of positive, neutral and negative sentiment labels, and
#T the total number of triplets.

reported in Tables 7 and 8, respectively, which are 820

placed in the appendix for completeness. These 821

supplementary results serve as additional reference 822

points but are not central to the main narrative of 823

the paper. 824

A.3 Effect of Contrastive Loss 825

Figures 4 and 5 show that blending cross-entropy 826

and contrastive loss with equal weight (1 : 1) pro- 827

vides the most effective training signal: the F1 828

curve climbs steeply from the earliest epochs, sur- 829

passes the cross-entropy-only baseline roughly two 830

epochs sooner, and finishes with the highest scores 831

on both aspect–opinion pair and triplet extraction. 832

In contrast, weighting the objectives 10 : 1 or 833

1 : 10 slows this ascent and trims the final per- 834

formance, while relying on contrastive loss alone 835

stalls learning entirely. These results indicate that 836

cross-entropy supplies essential label supervision, 837

contrastive loss sharpens representation learning, 838

and their balanced combination accelerates conver- 839

gence and yields the best accuracy; consequently, 840

we adopt the 1 : 1 setting for all subsequent experi- 841

ments. 842

A.4 Error Analysis 843

Training difficulty on the two 2014 corpora stems 844

from different corpus pathologies. In 14res, the 845

restaurant set, dense annotation leads to structural 846

ambiguity: it contains the most triples and the high- 847

est number of bidirectional aspect–opinion links, 848

with 22 explicit overlaps (Table 9). Because most 849

aspect–opinion pairs are separated by only two 850

tokens, the model must assign multiple, often con- 851

flicting, roles within very narrow contexts. The 852

extreme lexical skew illustrated in Figure 6 fur- 853

ther concentrates gradients on a handful of high- 854

frequency tokens, encouraging overfitting and leav- 855

ing rare aspects under-represented. 856
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14res 14lap 15res 16res

Additional AOPE Baselines P R F1 P R F1 P R F1 P R F1

CMLA+ (Wang et al., 2017) – – 48.95 – – 44.10 – – 44.60 – – 50.00
Peng-Two-Stage (Peng et al., 2020) – – 56.10 – – 53.85 – – 56.23 – – 60.04
Dual-MRC (Mao et al., 2021) – – 74.93 – – 63.37 – – 64.97 – – 75.71
SpanMlt (Zhao et al., 2020) – – 75.60 – – 68.66 – – 64.68 – – 71.78

Table 7: Baseline results (%) on the Aspect–Opinion Pair Extraction (AOPE) task. A dash indicates that the
corresponding precision or recall was not reported in the source paper.

14res 14lap 15res 16res

Additional ASTE Baselines P R F1 P R F1 P R F1 P R F1

Peng-Two-Stage (Peng et al., 2020) 43.24 63.66 51.46 38.87 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
JET-BERT (Xu et al., 2020) 70.56 55.94 62.40 55.39 43.57 51.04 64.45 51.96 57.53 70.42 58.37 63.83
COM-MRC (Zhai et al., 2022) 75.46 68.91 72.01 58.15 60.17 61.17 68.35 61.24 64.53 71.55 71.59 71.57
DGCNAP (Li et al., 2023) 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58
Triple-MRC (Zou et al., 2024) – – 72.45 – – 60.72 – – 62.86 – – 68.65

Table 8: Baseline results (%) on the Aspect–Sentiment–Target Extraction (ASTE) task.

Dataset #Triples Mean Dist. Median Dist. A→O O→A Overlap

14res 3 909 3.39 2 2 091 1 796 22
14lap 2 349 3.75 2 1 090 1 257 2
15res 1 747 3.26 2 1 039 707 1
16res 2 247 3.21 2 1 302 944 1

Table 9: Statistics of ASTE triples in the four benchmark datasets. A→O denote aspect appears prior to opinion,
and O→A is the other way around; overlap indicate the overlapping between aspect and opinion.

Figure 4: F1 score as a function of training epochs in
the combined-train condition for the AOPE task on the
14lap test set, with various loss weight configurations.
w1=base loss; w2=contrastive loss.

Conversely, 14lap challenges the model through857

lexical sparsity. Figure 7 shows a much flatter to-858

ken distribution, indicating a larger type–token ra-859

tio and limited repetition for each specialised noun860

or adjective. Combined with the longest mean as-861

pect–opinion distance in Table 9, this diversity pro-862

Figure 5: F1 score as a function of training epochs in
the combined-train condition for the ASTE task on the
14lap test set, with various loss weight configurations.
w1=base loss; w2=contrastive loss.

vides too little evidence for reliable embedding up- 863

dates while simultaneously requiring the encoder 864

to integrate information across wider spans. In 865

short, 14res confounds the model with overlapping, 866

tightly packed signals, whereas 14lap disperses 867

supervision across a broad, domain-specific vocab- 868
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(a) 14res – Aspect token ratios (b) 14res – Opinion token ratios

Figure 6: Token-ratio distributions for the 14res restaurant–review dataset.

(a) 14lap – Aspect token ratios (b) 14lap – Opinion token ratios

Figure 7: Token-ratio distributions for the 14lap laptop-review dataset.

(a) 15res – Aspect token ratios (b) 15res – Opinion token ratios

Figure 8: Token-ratio distributions for the 15res restaurant–review dataset.

(a) 16res – Aspect token ratios (b) 16res – Opinion token ratios

Figure 9: Token-ratio distributions for the 16res restaurant–review dataset.
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ulary, and both factors are largely absent from the869

2015 and 2016 restaurant datasets.870
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