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VRDistill: Vote Refinement Distillation for Efficient
Indoor 3D Object Detection
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ABSTRACT
Recently, indoor 3D object detection has shown impressive progress.
However, these improvements have come at the cost of increased
memory consumption and longer inference times, making it diffi-
cult to apply these methods in practical scenarios. To address this
issue, knowledge distillation has emerged as a promising technique
for model acceleration. In this paper, we propose the VRDistill
framework, the first knowledge distillation framework designed
for efficient indoor 3D object detection. Our VRDistill framework
includes a refinement module and a soft foreground mask operation
to enhance the quality of the distillation. The refinement module
utilizes trainable layers to improve the quality of the teacher’s votes,
while the soft foreground mask operation focuses on foreground
votes, further enhancing the distillation performance. Comprehen-
sive experiments on the ScanNet and SUN-RGBD datasets demon-
strate the effectiveness and generalization ability of our VRDistill
framework.

CCS CONCEPTS
• Computing methodologies → Object detection; Shape rep-
resentations; Learning paradigms; • General and reference→
Performance; • Computer systems organization → Neural net-
works.

KEYWORDS
Knowledge Distillation; 3D Object Detection; Refinement

1 INTRODUCTION
Object detection is a fundamental task in computer vision that
involves detecting and categorizing multiple semantic objects, such
as vehicles, chairs, and pictures. 3D object detection, as one of the
subsets of object detection, focuses on identifying and locating
objects within the 3D point cloud. This task is crucial for advancing
high-quality autonomous driving, auxiliary robotics, and other
related fields.

As indoor 3D object detection often necessitates more precise
coordinate and classification data, point cloud-based methods (e.g.,
VoteNet [18], H3DNet [34]) are commonly used. Recently, many
attempts have been made to improve the performance of indoor 3D
object detection. For example, a highly effective and representative
point-based 3D object detection method is VoteNet [18], which
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Figure 1: Visualization of the teacher votes. Original votes
from VoteNet (shown in blue) are often far away from the
object centers. The votes after the refinement module shown
in red are closer to the centers of the bounding boxes.

leverages PointNet++ [20] to extract sparse point features and gen-
erate point-wise 3D proposals. However, stronger performance is
often accompanied by a heavier computation burden, meaning that
it is still challenging to apply existing well-performed methods to
real-world applications. Meanwhile, because of the effectiveness,
generality, and simplicity, knowledge distillation (KD) has become
a widely-used strategy to develop efficient models in a variety of
2D tasks [8, 16]. This technique improves the performance of a
lightweight and efficient student model by harvesting knowledge
learned from a heavy teacher model. Despite numerous studies
in 2D tasks, the investigation of KD for efficient 3D indoor object
detection has largely escaped research attention.

Therefore, in this paper, we aim to design a model-agnostic
framework for obtaining efficient and accurate 3D indoor object de-
tectors based on knowledge distillation. Unlike 2D object detection,
where most methods directly predict bounding boxes, indoor 3D
object detection methods typically generate votes first [18] and use
these votes to generate 3D bounding boxes. However, as illustrated
in Fig. 1, we visualize the predicted votes from VoteNet and observe
that some votes are far from the actual object centers (highlighted
in blue in Fig. 1). This phenomenon is unique to 3D object detection
and is caused by the property of LiDAR, which can only collect
points from the objects’ surface, resulting in a sparse point cloud.
Consequently, the generated votes from a well-performing teacher
model may not provide accurate guidance for the student model’s
vote generation process. In other words, the student will mimic a
teacher without accurate expert knowledge, leading to ineffective
distillation. Additionally, inspired by [30], the extreme foreground-
background class imbalance degrades knowledge distillation in
object detection. Specifically, background class losses will suppress
the accurate distillation of foreground objects. Thus, it is crucial to
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emphasize votes within object bounding boxes to guide distillation
while simultaneously utilizing background information.

To address the aforementioned limitations, we propose a simple
yet effective Vote Refinement Distillation (VRDistill) for indoor
3D object detection, to refine the votes from the teacher model
and subsequently improve the quality of the student model. Our
VRDistill framework specifically incorporates two newly proposed
techniques: a refinement module and a soft foreground mask. In
the refinement module, to achieve more accurate vote supervi-
sion, we initially apply a series of stacked refinement layers to the
predicted votes from the teacher. Each refinement layer includes a
self-attention operation to enhance contextual relations and distinc-
tiveness for each vote cluster feature, along with a cross-attention
operation for localization alignment with the initial vote clusters.

To address the second issue, we propose the soft foregroundmask
operation to reduce the impact of imbalance between foreground
and background classes. Specifically, we assign higher mask values
to the votes that are closer to the ground-truth center, representing
higher confidence values for these foreground votes. Meanwhile,
we assign lower mask values to the votes far away from real object
centers, indicating lower confidence values for these background
votes. Finally, based on the masked teacher votes and student votes,
we calculate the vote consistency loss to update the student model.

Overall, our contributions are as follows:
• We propose VRDistill, the first knowledge distillation frame-

work for efficient indoor 3D object detection, wherein the
refinement module and soft foreground mask are proposed
to enhance the quality of distillation.

• We propose a refinement module consisting of multiple
refinement layers to improve the quality of the votes from
the teacher.

• We propose a soft foreground mask operation to suppress
the useless background votes and emphasize foreground
votes, aiming for improved distillation performance.

• Comprehensive experiments on the ScanNet and SUN-RGBD
datasets demonstrate the effectiveness and generalization
ability of our VRDistill framework.

2 RELATEDWORKS
2.1 3D Object Detection
Recently, several novel point-based techniques for 3D object de-
tection [35] have emerged. These methods aim to extract features
that are invariant to permutations from irregularly and sparsely dis-
tributed point cloud data. A common approach involves grouping
features within a specific range, assigning a representative point to
the aggregated feature, and subsequently passing it to the predic-
tion models. Frustum PointNet [19] employs a 3D Frustum envelope
generated by a 2D object detector to group points for reducing the
search space, while using PointNet [20] for computing object fea-
tures to predict bounding boxes. However, this dimension reduction
process may result in information loss. VoteNet [18] utilizes raw
point cloud data as input and adopts a simple three-phase architec-
ture. It utilizes PointNet [20] to group point features and performs
object center voting through group-wise clustering. Finally, they
make predictions based on the Vote feature. Subsequent advance-
ments to VoteNet, such as MLCVNet [22], HGNet [4], and 3DSSD

[32], have employed contextual clues, hierarchical graph neural
networks, and feature-FPS sampling strategies to enhance the gen-
eration of object proposals. However, these methods heavily rely
on unreliable vote clustering, which is susceptible to outliers and
often overlooks inlier seed points. H3DNet [34] partially tackled
this issue by introducing a hybrid set of overcomplete geometric
primitives to refine the initial bounding boxes predicted by the
clustered votes. Point R-CNN [25] uses deep networks to exploit
the sparsity of point clouds without additional image input, but
generates point-wise proposals that consume significant computa-
tion. PV-RCNN [24] uses voxel representation to complement the
point-based representation in Point R-CNN for 3D object detection,
resulting in improved performance. In contrast to these works, we
aim to improve the performance of the lightweight 3D detection
backbone based on knowledge distillation.

2.2 Knowledge Distillation
Knowledge distillation is a popular approach for model compres-
sion and acceleration [11]. The objective of knowledge distillation
is to transfer knowledge from a powerful teacher model to a light-
weight student model [10]. This technique has been widely utilized
in various computer vision tasks [14, 17, 27]. Numerous knowledge
distillation methods have been proposed, employing different types
of representations as knowledge for enhanced performance. For
instance, FitNet [23] utilizes middle-level hints from the teacher’s
hidden layers to guide the training of the student model. CRD [27]
employs a contrastive-based objective function to transfer knowl-
edge between deep networks. Relation-based knowledge distillation
methods like CCKD [17] and RKD [14] leverage relational knowl-
edge to improve the student model. VID [1] and PKT [15] reframe
knowledge distillation as maximizing the mutual information be-
tween the teacher and student networks. The above-mentioned
knowledge distillation methods for classification tasks may not
apply to object detection tasks, as the spatial coordinates corre-
sponding to the logits differ between the teacher and the student
detectors. In response to this, DeFeat [8] has found that mimick-
ing feature representations achieves better performance. [3] first
proposed a method that operates on the neck feature, the classifica-
tion head, and the regression head. GID [7] applies instance-wise
distillation on areas where the teacher and student models perform
differently. FGD [30] distills the spatial and channel features of the
foreground and background of the image respectively. Inspired by
MAE [9], MGD [31] shows that teacher network can improve the
student’s representation ability by guiding students’ feature recov-
ery. All of these methods distinguish foreground and background
areas during knowledge transfer and have achieved impressive
improvements. In comparison to existing knowledge distillation
methods, our proposed VRDistill is specifically designed for distill-
ing knowledge in 3D object detection. It focuses on improving the
quality of votes from the teacher model and effectively transferring
knowledge to the student model.

3 METHODOLOGY
In this section, we use VoteNet [18] as the teacher model to present
our VRDistill framework. We first introduce the preliminary of
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Figure 2: Overview of VRDistill framework: Given a point cloud P, we first use the backbone to generate the teacher and student
seeds S𝑡 and S𝑠 . Then, we employ the vote generation module to produce teacher and student votes V𝑡 and V𝑠 . In the distillation
process, the refinement module refines the teacher votes, generating refined votes R𝑡 , which serve as input for the foreground
mask, producing masked votes R̂𝑡 . Simultaneously, student votes V𝑠 are aligned by the feature align module, generating aligned
votes R𝑠 . The vote consistency loss 𝐿𝑑𝑖𝑠 is then calculated for updating the student network. Additionally, the refinement loss
𝐿𝑟𝑒 𝑓 is employed to facilitate vote refinement.

VoteNet [18]. Subsequently, we will describe each part of our VRDis-
till framework.

3.1 Preliminary
VoteNet is a simple yet effective end-to-end 3D object detection
method, which comprises three main components: backbone, vote
generation module, and detection head. As shown in Fig. 2, given
a raw point cloud P ∈ R𝑁×3, we first use a backbone (e.g., Point-
Net++ [21]) to generate the seed S. After seed generation, we use a
vote generation module to generate votes V ∈ R𝑀×(3+𝐶 ) , which is
implemented by multiple set abstraction module and multi-layer
perceptron [18]. Here,𝑀 is the number of seeds, and 𝐶 represents
the feature dimension. Finally, we use a detection head and apply
3D Non-Maximal Suppression (3DNMS) to obtain high-quality 3D
bounding boxes. More details can be found in the VoteNet [18].

3.2 Overview
The overview of our VRDistill framework is depicted in Fig. 2. Our
goal is to use the pre-trained cumbersome teacher network to help
the training of the small student network with limited capacity and
achieve the best 3D object detection performance.

Given the input point cloud P, we first use the teacher model to
generate the teacher seed S𝑡 and teacher vote V𝑡 . Similarly, we also
utilize the student model to generate student seeds S𝑠 and student
votes V𝑠 . As discussed before, the generated teacher votes V𝑡 are
often far away from the real object center, leading to inaccurate
distillation knowledge. Therefore, we propose to use a refinement
module to refine the generated teacher votes and obtain the refined
teacher votes R𝑡 . At the same time, as a large number of votes lie
in the background, causing a suppression of foreground votes in
distillation. So we also use a soft foreground mask operation to
eliminate the supervision from background votes and generate the
masked teacher votes R̂𝑡 . Moreover, as the student model carries
different feature channels from the teacher, we also use a feature
align module to align the student votes and generate the aligned
student votes R𝑠 . Based on the masked teacher votes R̂𝑡 and aligned
student votes R𝑠 , we calculate the vote consistency loss to update
the student network as well as the refinement module. As the re-
finement module is randomly initialized, we also use a refinement
loss to facilitate the training of the refinement module.
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Figure 3: The structure of the refinement module. For better
presentation, we omit the addition, normalization, and feed-
forward network components.

3.3 Refinement Module
During the distillation process, we notice that teacher votes are
often far away from the object center, inducing mismatched super-
vision for the student. To this end, we propose a refinement module
in the distillation process to correct the inaccurate teacher votes.
Specifically, the refinement module is illustrated in Fig. 3, which
consists of 𝐿 refinement layers.

As it only takes the teacher’s votes as the input, here, we omit
the superscript ·𝑡 for better presentation. In this figure, we take the
𝑖-th layer as an example to introduce the structure of the refinement
layer. It takes the output coordinates X𝑖−1 and features F𝑖−1 from
the previous layer as inputs and produces output coordinatesX𝑖 and
output features F𝑖 of this layer. Specifically, we use 𝐹𝑖−1 as the query,
key, and value to calculate a masked multi-head self-attention,
where the mask is generated based on the output coordinate 𝑋𝑖 . As
the masked multi-head self-attention and the masked multi-head
cross-attention are similar, we use masked multi-head self-attention
as an example to introduce our refinement module. Note that our
refinement module is trained together with the student network, so
the teacher can keep the same architecture as the student network
to guarantee fair comparison, and facilitate convergence during
training.

Distance calculation. Given the output coordinates X𝑖−1 ∈
R𝑀×3 from the previous layer, we first use the self-distance calcu-
lation module to calculate the intra-position information. Here,𝑀
is the number of votes. We calculate the distance between any two
points in X𝑖−1 and generate the intra-position matrix D𝑖 ∈ R𝑀×𝑀 .
Then, we keep the smallest 𝐾 values in each row of D𝑖 unchanged
and add extremely large negative numbers to the rest of the entries,
so that they can be masked out in the attention. Mathematically,
the masked intra-position information can be calculated as follows:

B𝑖 = M(D(X𝑖−1,X𝑖−1)), (1)

where D(·, ·) is the distance calculation andM(·) is the masking
operation to add extremely small values to the rest of the entries. B𝑖
denotes the masked intra-position information. The masked intra-
position information B𝑐 from cross-distance calculation module
can be also obtained using a similar process.

Maskedmulti-head self-attention.After the intra-position in-
formation calculation, we use the output features F𝑖−1 and masked
intra-position information B𝑖 to calculate the masked multi-head
self-attention. We use the output features F𝑖−1 as the query, key,

and value, and use B𝑖 for masking, which can be written as follows:

F̃𝑖−1 = Ψ̃

(
𝐻

| |
ℎ=1

S
(
Ψℎ
𝑄
(F𝑖−1 )Ψℎ𝐾 (F𝑖−1 )𝑇√︁

𝐶/𝐻
+ B𝑖

)
Ψℎ𝑉 (F𝑖−1 )

)
. (2)

Here, ∥𝐻
ℎ=1 is the concatenation of the 𝐻 attentive features from

different attention heads. S means the softmax operation along
each row. F̃𝑖−1 is the output of the masked multi-head self-attention
and 𝐻 is the number of heads. 𝐶 is the number of channels in the
query, the key, and the value. Ψ̃(·) is the linear projection operation
at the end of the masked multi-head attention. Ψℎ

𝑄
(·),Ψℎ

𝐾
(·) and

Ψℎ
𝑉
(·) are linear projections for the ℎ-th head corresponding to the

query, the key, and the value.
In this way, we generate the output of the masked multi-head

self-attention F̃𝑖−1. The operations in masked multi-head cross-
attention are similar to masked multi-head self-attention except
the inputs are different. After multiple refinement layers, we fi-
nally obtain refined votes R𝑡 = [X𝑡 ,Q𝑡 ] ∈ R𝑀×(3+𝐶 ) , where X𝑡
and Q𝑡 are the vote coordinates and the vote features in the re-
fined votes, respectively. The refined votes will be used for soft
foreground mask operation. For better presentation, we omit addi-
tion and normalization when illustrating the refinement module.
The masked-multi-head cross-attention is similar to the masked
multi-head self-attention. The only difference is they use different
inputs.

3.4 Soft Foreground Mask
Enlightened by [30] that the extreme foreground-background class
imbalance induces degraded knowledge distillation on object de-
tection, we propose to apply a foreground mask to focus on the
distillation on the foreground. However, unlike 2D object detection,
3D object detection operates in a significantly sparser space, where
3D coordinates mean the actual spatial position. If we were to em-
ploy a hard mask, as many 2D object detection distillation papers
do, it could potentially include low-quality information, such as
noise points located at the corners of a bounding box.

To address this, based on the actual position of point cloud, we
propose a soft foreground mask, which focuses more on votes that
are in object bounding boxes to guide the distillation while utilizing
the background information simultaneously. Mathematically, let us
denote the refined votes coordinates as X𝑡 = {x𝑖 }𝑀𝑖=1, where x𝑖 is
the 3D coordinate for the 𝑖-th vote. The foreground mask for the
𝑖-th refined vote is as follows:

𝑀𝑎𝑠𝑘𝑖 = (∥
x𝑖 − g𝑗

s𝑗
∥2𝐹 + 𝜎)−1,

where 𝑗 = argmin𝑗∈{1,2,...,𝑀 } ∥x𝑖 − g𝑗 ∥2𝐹 .
(3)

𝜎 is a value to avoid the division of 0, which is set as 1.0 in our
implementation to regulate that𝑀𝑎𝑠𝑘𝑖 ∈ (0, 1]. x𝑖 is the 3D coordi-
nate of the 𝑖-th refined vote, and g𝑗 is the ground truth coordinate
of the center for the 𝑗-th object. s𝑗 ∈ R3 is the length along x, y, z
axes of the 𝑗-th ground truth box. ∥ · ∥𝐹 is the Frobenius norm.

From Eq. (3), as the distance between the vote and the nearest
ground truth object center increases, the corresponding mask value
decreases, the𝑀𝑎𝑠𝑘𝑖 for this refined vote will decrease, indicating
we assign less attention on this refined vote. By adjusting the im-
portance of different point pairs from foreground and background

4
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areas, as shown in Eq. (5), this foreground mask allows us to strike
a balance between foreground and background information during
the distillation process, enabling more effective knowledge transfer
while preserving valuable background knowledge.

3.5 Distillation Losses
After the refinement module and soft foreground mask generation,
we can use the masked votes to distill the knowledge from our
teacher network. The overall loss function to train the student can
be written as follows:

𝐿 = 𝐿𝑑𝑖𝑠 + 𝜆𝐿𝑟𝑒𝑔 + 𝜂𝐿𝑐𝑙𝑠 (4)

where 𝐿𝑑𝑖𝑠 denotes the vote consistency distillation loss between
the teacher and student, which will be introduced below. 𝐿𝑟𝑒𝑔 and
𝐿𝑐𝑙𝑠 are the box regression and classification losses used in VoteNet,
which provides accurate supervision for training the student. 𝜆 and
𝜂 are two hyperparameters to balance different loss terms.

As 3D point clouds are unordered, one important problem in
knowledge distillation is how to align the teacher and student votes.
To solve this problem, we propose to use the closest vote in refined
teacher vote R𝑡 = [X𝑡 ,Q𝑡 ] as supervision, where X𝑡 and Q𝑡 are
the coordinates and features in the refined votes. Thus, the 𝐿𝑑𝑖𝑠 is
calculated as follows:

𝐿𝑑𝑖𝑠 =

𝑀∑︁
𝑗=1

∥q𝑠𝑗 − q𝑡𝑖 ∥
2
𝐹 ·𝑀𝑎𝑠𝑘𝑖 ,

where 𝑖 = argmin𝑖∈{1,2,...,𝑀 } ∥x𝑠𝑗 − x𝑡𝑖 ∥
2
𝐹 ,

and R𝑠 = 𝐴𝑙𝑖𝑔𝑛(V𝑠 ) .

(5)

Here, 𝑀 is the number of votes for both student and teacher. x𝑡
𝑖

is the coordinate of 𝑖-th point in X𝑡 . q𝑡
𝑖
is the 𝑖-th feature in Q𝑡 .

𝐴𝑙𝑖𝑔𝑛(·) is the projection to avoid the dimension mismatch between
teacher and student votes, which is implemented by a series of MLP
layers. R𝑠 = [X𝑠 ,Q𝑠 ] is the aligned student vote, where X𝑠 and Q𝑠

are the coordinates and features.
As our refinement module is randomly initialized in the distilla-

tion process, we also introduce a refinement loss to provide strong
supervision for better refinement performance. Suppose x𝑖 is the
3D coordinates of a refined vote, the refinement loss can be written
as follows:

𝐿𝑟𝑒 𝑓 =

𝑀∑
𝑖=1

∥x𝑖 − g𝑖 ∥I(s𝑖 on object)

𝑀∑
𝑖=1
I(s𝑖 on object)

(6)

where g𝑖 is the ground truth center of the object that the vote
belongs to. s𝑖 is corresponding seed that generates refined vote x𝑖 .
I(s𝑖 on object) is an indicative function whether a seed s𝑖 is on an
object. In this way, we introduce the supervision for the refinement
module to generate better-refined votes to facilitate the distillation
process.

In summary, we train the student network by using Eq. (4). Mean-
while, we also use the refinement loss in Eq. (6) and Eq. (4) to update
the refinement module in our VRDistill to facilitate the refinement
process. In this way, we can obtain a lightweight student network
with better performance.

Setting mAP@0.25 mAP@0.5

Teacher 58.1 33.4

Student (1/2) 50.8 29.5
Seed Disitllation 53.0(+2.2) 28.4(-1.1)

FGD [30] 53.6(+2.8) 30.7(+1.1)
MGD [31] 53.5(+2.7) 29.4(-0.1)
PGD [28] 52.7(+1.9) 30.8(+1.3)
itKD [5] 52.7(+1.9) 29.6(+0.1)

SparseKD [29] 53.5(+2.7) 27.1(-2.4)
VRDistill (Ours) 58.8(+8.0) 36.5(+7.0)

Student (1/4) 39.9 20.5
Seed Disitllation 41.8(+1.9) 21.1(+0.6)

FGD [30] 43.8(+3.9) 20.6(+0.1)
MGD [31] 43.2(+3.3) 21.9(+1.4)
PGD [28] 42.0(+2.1) 21.0(+0.5)
itKD [5] 39.1(-0.8) 16.8(-3.7)

SparseKD [29] 41.3(+1.4) 19.4(-1.1)
VRDistill (Ours) 49.9(+10.0) 26.5(+6.0)

Table 1: Results of different 3D indoor object detection meth-
ods on the ScanNet dataset.

Setting mAP@0.25 mAP@0.5

Teacher 57.9 35.7

Student (1/2) 53.2 26.5
Seed Disitllation 54.4(+1.2) 28.0(+1.5)

FGD [30] 53.3(+0.1) 26.2(-0.3)
MGD [31] 51.4(-1.8) 26.1(-0.4)
PGD [28] 51.6(-1.6) 25.2(-1.3)
itKD [5] 49.7(-3.5) 23.2(-3.3)

SparseKD [29] 53.9(+0.7) 25.2(-1.3)
VRDistill (Ours) 56.9(+3.7) 33.0(+6.5)

Student (1/4) 44.7 16.4
Seed Disitllation 47.1(+2.8) 18.2(+1.8)

FGD [30] 43.1(-1.6) 16.1(-0.3)
MGD [31] 44.0(-0.7) 14.8(-1.6)
PGD [28] 43.1(-1.6) 16.7(+0.3)
itKD [5] 36.3(-8.4) 11.7(-4.7)

SparseKD [29] 44.9(+0.2) 15.8(-0.6)
VRDistill (Ours) 48.7(+4.0) 24.8(+8.4)

Table 2: Results of different 3D indoor object detection meth-
ods on the SUNRGBD dataset.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments to evaluate
the effectiveness of our VRDistill framework.

4.1 Datasets
Following VoteNet, we utilize the ScanNet [6] and SUNRGBD [26]
datasets to evaluate the performance of our method.
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ScanNet is an RGB-D video dataset consisting of indoor scenes,
specifically designed for tasks like 3D object detection, 3D instance
segmentation, and semantic segmentation. It comprises 1513 scenes
and 21 object categories. The dataset is divided into a training set
of 1201 scenes and a validation set of 312 scenes. For evaluation
purposes, we employ the standard mean Average Precision (mAP)
metric, considering various Intersection over Union (IoU) thresh-
olds, for 18 object categories. Wall, Floor, and the “Other” categories
are disregarded and treated as background during the whole process.
Details are shown in Tab. 6.

SUNRGBD dataset is another single-view RGB-D dataset that
consists of 5285 training images and 5050 testing images for 3D
scene understanding. In these 10335 scenes, approximately 50k 3D
oriented bounding boxes are annotated for 37 objects. We adhere
to the standard evaluation protocol and report performance on the
10 most common categories.

4.2 Implementation Details
We follow the experimental settings of VoteNet [18] to ensure a
fair comparison. Specifically, we first pre-train the teacher model
and then use our VRDistill to distill the knowledge from teacher to
student. The architecture of the teacher model follows the original
paper [18], while we conduct experiments by halving and quarter-
ing the number of channels in the student model.

For the feature alignment in Eq. (5), we adopt a single-layer MLP
to align the feature channel between the student and the teacher.
We use a raw points count of 𝑁 = 40000 for ScanNet and 20000 for
SUNRGBD. In the Vote Generation Module, we generate𝑀 = 256
votes. In the refinement module, we empirically set the number of
refinement layers 𝐿 as 4 and set the number of nearest points𝐾 as 5.
During the distillation process, both the student and the refinement
module are trained from scratch. For optimization on the ScanNet
dataset, we employ the AdamWoptimizer. The default weight decay
is set to 0.00001, except we use 0.01 for refinement module to
prevent overfitting on the student model. To better approach the
global optimal point, we use a cosine learning rate schedule. We use
the batch size of 8 and train student for 180 epochs. The settings
on SUNRGBD are the same as those on the ScanNet dataset except
that we set the initial learning rate to 0.005.

4.3 Experimental Results
To the best of our knowledge, there have been few studies con-
ducted on distilling indoor 3D object detection. To show the effect
of our approach, we have reimplemented several 2D object detec-
tion distillation methods including FGD [30], MGD [31], PGD [28],
itKD [5] and SparseKD [29]. In this section, student (1/2) means the
student network has the same network structure as the teacher but
with half channels in each layer. Student (1/4) means the student
network with quarter channels as the teacher in each layer.

Results on ScanNet. Tab. 1 shows the performance comparison
of our VRDistill framework with other baseline approaches. From
Tab. 1, we have the following observations:

(1) When comparing student (1/2) or student (1/4) with other
distillation methods, the performance of knowledge distillation
approaches surpasses training the student from scratch, which

Refinement Module Soft Mask mAP@0.25 mAP@0.5

No Yes 57.6 34.4
Yes No 58.5 35.5
Yes Yes 58.8 36.5

Table 3: Performance of our VRDistill when removing differ-
ent components on ScanNet.

demonstrates that it is effective to use knowledge distillation for
efficient 3D indoor object detection.

(2) Our VRDistill framework outperforms other baseline meth-
ods, showing the effectiveness of our VRDistill. Specifically, our
VRDistill framework outperforms the baseline method FGD by 6.1%
under the quarter channel setting.

(3) It is surprising to note that our VRDistill framework even
outperforms the Teacher model. We can also observe this phenom-
enon in [2, 33]. Besides, on ScanNet, we hypothesize that this is
because the refinement module can correct the inaccurate votes in
the teacher model and transfer this correction information to the
student.

Results on SUNRGBD. To further evaluate our method, we
also compare VRDistill with other distillation methods on the SUN-
RGBD dataset, and the result is shown in Tab. 2. The results of our
VRDistill framework indicate better performance compared with
other baseline methods.

Notably, the performance improvement of students on SUN-
RGBD is not as impressive as that on ScanNet. One potential expla-
nation is as follows: compared to the ScanNet dataset, scenes in the
SUNRGBD dataset are more complete. The ground truth bounding
boxes in ScanNet are aligned to the axis with no angles, while in the
SUNRGBD dataset, each ground truth detection box is annotated
with a heading angle, making it relatively hard to achieve further
improvement.

4.4 Ablation Study
In this section, we seek to investigate VRDistill through a series of
ablation studies.

Effect of Refinement Module. To assess the contribution of
the refinement module, we present the results of our VRDistill
framework with and without the refinement module in Tab. 3. After
removing the refinement module, we can observe an accuracy loss
of 1.2% mAP@0.25. In the refinement module, the teacher votes are
revised to be closer to the object center, thus leading to improved
detection performance.

Effect of Soft Foreground Mask. To evaluate the contribution
of the soft foreground mask, we also perform the experiments to
distill the student with and without the mask, and the result is
shown in Tab. 3. From the table, we can observe that the distillation
with the foreground mask performs better than the distillation
without the mask. This finding demonstrates the effectiveness of
incorporating the foreground mask in the distillation process.

Effect of the Number of Refinement Module layer. In our
refinement module, we set the number of transformer layers to𝑀 =

4. To look deep into the refinement module, we design experiments
to discover the effect of the number of layers in the refinement

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

VRDistill: Vote Refinement Distillation for Efficient
Indoor 3D Object Detection ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Detectors Group-Free-3D [12] H3DNet [34] 3DETR [13]

Setting mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

Teacher 66.7 48.4 66.3 48.3 60.6 42.1

Student (1/2) 52.5 31.5 62.0 41.0 58.9 35.4
VRDistill (Ours) 57.0(+4.5) 34.7(+3.2) 64.4(+2.4) 46.6(+5.6) 60.9(+2.0) 37.5(+2.1)

Student (1/4) 46.4 25.7 57.8 35.1 50.4 21.8
VRDistill (Ours) 51.8(+5.4) 31.0(+5.3) 58.3(+0.5) 38.2(+3.1) 55.8(+5.4) 26.9(+5.1)

Table 4: Results of VRDistill framework when using Group-Free-3D, H3DNet, and 3DETR as backbone networks on ScanNet.

Detectors Group-Free-3D [12] H3DNet [34] 3DETR [13]

Setting mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

Teacher 60.4 43.3 58.0 30.3 60.1 39.0

Student (1/2) 58.3 38.8 54.9 25.3 50.5 23.2
VRDistill (Ours) 60.1(+1.8) 41.0(+2.2) 56.2(+1.3) 28.8(+3.5) 52.8(+2.3) 26.9(+3.7)

Student (1/4) 56.1 34.1 50.3 22.6 43.0 15.5
VRDistill (Ours) 57.1(+1.0) 37.1(+3.0) 51.4(+1.1) 25.2(+2.6) 48.7(+5.7) 18.4(+2.9)

Table 5: Results of VRDistill framework when using Group-Free-3D, H3DNet, and 3DETR as backbone networks on SUNRGBD.

Algorithm Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Desk Curtain Refrigerator Showercurtrain Toilet Sink Bathtub Garbagebin mAP

Teacher 35.0 85.3 87.2 87.2 61.3 44.6 35.4 55.1 3.9 55.7 65.7 43.9 43.4 67.1 98.3 50.1 90.1 36.3 58.1
Student (1/2) 27.2 80.3 84.8 82.8 54.1 38.2 28.7 41.0 1.2 37.0 60.1 34.5 48.1 46.8 93.8 43.2 89.0 23.4 50.8

FGD 28.3 84.6 85.6 86.2 54.7 38.7 33.1 46.3 3.1 51.1 62.1 35.1 37.9 61.2 93.7 48.2 82.8 32.4 53.6
MGD 24.4 83.9 84.7 87.7 55.4 39.8 29.7 46.6 3.0 40.5 67.2 42.4 42.8 59.3 91.1 48.2 87.3 28.9 53.5
PGD 24.0 88.1 84.6 86.5 56.6 38.5 29.0 44.4 1.8 44.6 65.7 39.2 43.4 51.3 92.7 48.0 80.6 30.6 52.7

VRDistill (ours) 36.7 86.3 89.8 88.9 58.5 50.9 31.7 46.7 8.4 60.3 67.2 51.4 44.5 67.4 96.3 55.1 90.2 37.1 58.8

Table 6: Results of all object classes on ScanNet using 1/2 channel of VoteNet. mAP uses an IoU threshold of 0.25.

Number of layers (𝐿) 1 2 4 6

mAP@0.25 58.1 57.6 58.8 57.5
mAP@0.5 35.3 34.8 36.5 36.0

Table 7: Results of different number of refinement layers 𝐿.

VoteNet #Params #FLOPs #GPU Memory # Time

Teacher 0.95M 5.84G 1377.5MB 5.03ms
Student (1/2) 0.31M 1.53G 709.3MB 3.47ms
Student (1/4) 0.08M 0.42G 376.9MB 2.94ms

Table 8: The complexities of different models.

module using different values of𝑀 . As shown in Tab. 7, when we
set 𝑀 = 1, 𝑀 = 2 or 𝑀 = 6, the accuracy drops. We hypothesize
that there exist under-fitting and over-fitting problems in such
situations. Therefore, we set𝑀 = 4 by default.

Effect of 𝜎 In Eq. 3, the hyperparameter 𝜎 is used to avoid the
denominator to be zero. As shown in Tab. 9, we observe that when

setting 𝜎 = 1.0, our VRDistill can achieve the best performance.
Therefore, we choose this value as our default setting.

𝜎 0.1 0.5 1 2 5 10

mAP@0.25 58.3 58.0 58.8 57.3 56.7 57.7
mAP@0.5 34.5 32.9 36.5 34.2 35.0 35.8
Table 9: Distillation results of using different 𝜎 .

4.5 Analysis
VRDistill on Other Detectors. To demonstrate the generalization
ability of VRDistill, we evaluate our VRDistill on different back-
bones including Group-Free-3D [12], H3DNet [34] and 3DETR [13],
and the results are shown in Tab. 4 and Tab. 5 on ScanNet and SUN-
RGBD datasets. We observe consistent improvement of student
network compared with vanilla training the student. It is evident
that VRDistill achieves impressive results not only in VoteNet but
also in other backbones, which further demonstrates the effective-
ness of our proposed method.

Performance on Different Object Classes. To better under-
stand our VRDistill, we report the detection performance under
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Figure 4: Visualization of results of our VRDistill framework
and other baseline methods on ScanNet.

different object classes in Tab. 6. We observe that the performance
gain mainly comes from the small or thin objects (e.g., picture or
showercurtrain). For these objects, the votes have a higher proba-
bility of being out of the object. Therefore, our refinement module
can effectively correct the inaccurate votes and provide better su-
pervision for the student, which brings higher performance gain
for these classes.

Model Complexity. In Table 8, we provide the number of pa-
rameters, FLOPs, and GPU memory usage, and the inference time
tested using RTX3090 GPU, and we observe that the computation
costs can be reduced a lot when using fewer channels. Note that we
set the batch size as 1 for testing. Besides, the performance results
of student models will be maintained well after using our VRDistill,
which further demonstrates the effectiveness of our VRDistill.

Visualization on detection results. As shown in Fig. 4, we
also provide the 3D object detection visualization results of dif-
ferent methods. When compared with the existing methods, our
VRDistill can produce better results, which further demonstrates
the effectiveness of our proposed method.

Visualization on the refined votes.As shown in Fig. 5, teacher
VoteNet may generate several outliers, which may degrade the
performance of distillation. After using the refinement module, we
observe the votes are refined well to the foreground objects.

Visualization on the soft foreground mask operation. In
Fig. 6, we observe that higher mask values are presented on the
foreground objects, which allows us to strike a balance between
foreground and background information during distillation and
show the effect of soft mask operation.

Visualization on the vote qualities between FGDandVRDis-
till As shown in Fig. 7, we compare the vote quality generated from
VoteNet distilled by FGD and VoteNet distilled by our VRDistill. Sur-
prisingly, we observe that the red vote gathered more densely to the
center of the bounding boxes, which means the refinement module
improves the vote quality of student models in our VRDistill.

5 CONCLUSION
In this paper, we introduce the VRDistill framework, the first knowl-
edge distillation framework for efficient indoor 3D object detection.
Specifically, our VRDistill incorporates a refinement module and

Figure 5: The refined votes are generated by the teacher
model.

Figure 6: The heatmap of the soft mask, where the intensity
of the shading corresponds to the importance of each vote.
Darker shading indicates higher importance on the corre-
sponding vote.

Figure 7: Vote qualities of using different methods (i.e., FGD
and our proposed VRDistill).

soft foreground mask to enhance distillation quality for better per-
formance. The refinement module leverages trainable layers to
improve the quality of the teacher’s votes, while the foreground
mask operation focuses on foreground votes, further enhancing
performance. We conducted comprehensive experiments on Scan-
Net and SUN-RGBD datasets, demonstrating the effectiveness and
generalization capability of our proposed VRDistill.

One of the limitation of our VRDistill is we only validate it on
in-door 3D object detection methods. This is because indoor 3D
object detection often necessitates more precise coordinate and
classification data, which is more sensitive to the votes. We will
investigate this direction in our future work.
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