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ABSTRACT

Self-supervised learning (SSL) offers a compelling solution to the challenge of
extensive labeled data requirements in traditional supervised learning. With the
proven success of Vision Transformers (ViTs) in supervised tasks, there is increas-
ing interest in adapting them for SSL frameworks. However, the high computational
demands of SSL pose substantial challenges, particularly on resource-limited plat-
forms like edge devices, despite its ability to achieve high accuracy without labeled
data. Recent studies in supervised learning have shown that token pruning can
reduce training costs by removing less informative tokens without compromising
accuracy. However, SSL’s dual-branch encoders make traditional single-branch
pruning strategies less effective, as they fail to account for the critical cross-branch
similarity information, leading to reduced accuracy in SSL. To this end, we intro-
duce SimPrune, a novel token pruning strategy designed for ViTs in SSL. SimPrune
leverages cross-branch similarity information to efficiently prune tokens, retaining
essential semantic information across dual branches. Additionally, we incorporate
a difficulty-aware pruning strategy to further enhance SimPrune’s effectiveness.
Experimental results show that our proposed approach effectively reduces training
computation while maintaining accuracy. Specifically, our approach offers 24%
savings in training costs compared to SSL baseline, without sacrificing accuracy.

1 INTRODUCTION

Self-supervised learning (SSL) is a training paradigm that addresses the need for extensive labeled
data in traditional supervised learning (Chen et al., 2020; Xu et al., 2022a; Grill et al., 2020; Gao
et al., 2021). Due to the success of Vision Transformer (ViT) in supervised learning, researchers have
attempted to integrate ViT into SSL frameworks (Caron et al., 2021; Chen et al., 2021). However,
although SSL achieves high accuracy without the necessity to use labeled data, its high training costs,
which require more than 8× the training iterations and more than 2× the computational cost per
iteration compared to supervised learning (Wen & Li, 2021), remain a significant barrier. This is
particularly challenging for resource-limited platforms, such as edge devices, urging the need for
more efficient SSL approaches to enable practical ViT deployments.

Among SSL approaches for ViT, Masked Image Modeling (MIM) and dual-branch (i.e., discrimina-
tive) methods represent two prominent paradigms. MIM-based methods, such as BEiT (Bao et al.,
2021), MAE (He et al., 2022), and SimMIM (Xie et al., 2022), reconstruct masked portions of input
images, enabling models to capture fine-grained image details. This makes them well-suited for
tasks like object detection and segmentation, which benefit from detailed local features. In contrast,
dual-branch SSL methods focus on aligning representations from differently augmented views of the
same image, prioritizing global representation learning (Bachman et al., 2019; Zheng et al., 2021; Cao
et al., 2023). These methods, such as DINO, excel in classification tasks, achieving higher accuracy
(∼3%) on ImageNet classification compared to MIM-based approaches (Oquab et al., 2023). In this
paper, we focus on dual-branch SSL, an important and promising area in self-supervised learning
research.

Recent studies have highlighted the effectiveness of token pruning in reducing the training costs
of Vision Transformers (ViTs) in conventional supervised learning contexts (Liang et al., 2022b;
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Rao et al., 2021; Kong et al., 2022). These methods selectively eliminate less informative tokens
during training, thereby decreasing computational demands and enhancing training efficiency. For
example, certain approaches successfully reduced computational costs by 24% in ViT models
without compromising accuracy (Liang et al., 2022b). However, the training paradigm of SSL
differs significantly from supervised learning. SSL utilizes dual-branch Siamese encoders, each
processing distinct augmented views of the same input, aiming to maximize the similarity between
representations of these different views. In contrast, supervised learning trains the model using a
single branch and is guided by explicit labels. As such, it is natural to raise a question: Do existing
token pruning strategies remain effective under the SSL paradigm?

To address this inquiry, we apply a representative token pruning method that prunes tokens with
lower attention scores (Liang et al., 2022b; Xu et al., 2022b; Song et al., 2022) to SSL and evaluate
its effectiveness. However, this method results in a considerable drop in accuracy, suggesting that
existing token pruning strategies may not effectively enhance SSL efficiencies. This is because such
an approach only evaluates token importance based on self-attention scores within a single branch,
does not consider the crucial cross-branch similarity information that SSL relies on, and therefore
may remove features that are critical to SSL performance.

Fortunately, the augmented input images and feature maps on the two branches of a Siamese
network inherently share a certain degree of similarity. For example, although differently augmented,
divergent views from the same image typically represent the same objects. This natural similarity
presents significant opportunities for enhancing token pruning and training. Firstly, by leveraging the
inherent similarities across branches, we can pair tokens from the two branches and prune them in
pairs, maintaining essential cross-branch semantic consistency. Additionally, inspired by previous
research (Zheng et al., 2019; Tan et al., 2023; Bian et al., 2021; Ma et al., 2022) on improving model
performance by adjusting training difficulty, selectively pruning token pairs with varying degrees of
similarity allows us to strategically control the difficulty of the SSL process, which further improves
the model accuracy.

Building on the insights above, we propose SimPrune, a token pruning approach for Vision Trans-
formers in self-supervised learning (SSL), which leverages the unique characteristics of SSL to
enhance training efficiency. Our approach consists of two key components: First, we introduce a
similarity-based token pruning method that uses cross-branch similarity information to pair and prune
tokens, which allows us to eliminate non-essential tokens without compromising SSL performance.
Second, we introduce a difficulty-aware pruning strategy that strategically prunes token pairs with
different similarity levels at different training stages, further boosting the model’s final performance.
Our approach effectively utilizes mutual information contributed by dual branches to boost training
efficiency (i.e., Mutual Effort for Efficiency). In summary, our major contributions are as follows:

• We conduct a preliminary study to analyze the effectiveness of conventional single-branch
token pruning on SSL. We find that conventional token pruning is not desirable for SSL
because it overlooks the critical cross-branch similarity information necessary for effective
token pruning.

• We propose a novel token pruning approach, SimPrune, tailored specifically for self-supervised
learning. This method utilizes cross-branch similarity to guide token pruning, maintaining
crucial semantic consistency across different augmented views of the same image, thus
enhancing model efficiency without compromising accuracy.

• We introduce a difficulty-aware pruning strategy to enhance our token pruning approach,
which prunes token pairs at different similarity levels throughout different training stages.
This strategy offers an effective and efficient way to control the training difficulty, further
optimizing the model performance.

• We conduct a comprehensive evaluation of our proposed SimPrune approach. Compared
to the SSL baseline, SimPrune reduces computation costs by 24% without compromising
accuracy. Additionally, when compared to the popular token pruning method EViT and the
token merging method ToMe, SimPrune outperforms them by achieving 3.1% and 3.2% higher
accuracy, respectively, while consuming similar training costs.
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2 BACKGROUND AND RELATED WORKS

2.1 DUAL-BRANCH SELF-SUPERVISED LEARNING FOR VISION TRANSFORMERS

Self-supervised learning offers a compelling alternative to traditional supervised learning by eliminat-
ing the need for extensive labeled data (Zheng et al., 2021; Xu et al., 2022a; Grill et al., 2020). This
method exploits inherent patterns within the data itself to train models effectively. Given the success
of Vision Transformers in supervised tasks, researchers have explored their integration into SSL
frameworks (Caron et al., 2021; Chen et al., 2021). Considering that extracting detailed, context-rich
representations from unlabeled data is essential in SSL, ViTs’ proficiency in capturing complex
dependencies in data makes them particularly effective for SSL.

Two main paradigms have emerged in self-supervised learning: Masked Image Modeling (MIM)
and dual-branch (i.e., discriminative) methods. MIM-based approaches, such as BEiT (Bao et al.,
2021), MAE (He et al., 2022), and SimMIM (Xie et al., 2022), train models by reconstructing masked
parts of input images, enabling them to capture fine-grained details that are beneficial for tasks like
object detection and segmentation. In contrast, dual-branch SSL methods learn representations by
aligning differently augmented views of the same image, focusing on global features rather than local
reconstruction. This makes them particularly effective for classification tasks, as demonstrated by
DINO, which achieves 3% higher accuracy than MIM-based approaches MAE (Oquab et al., 2023)
on ImageNet classification task. In this paper, we focus on dual-branch SSL, an important area of
research with significant potential to advance self-supervised learning.

DINO (Caron et al., 2021) is a prominent dual-branch SSL framework tailored for ViT. It employs
two branches: an online (i.e., student) branch and a target (i.e., teacher) branch, each processing
different augmented views of the same image. DINO’s learning process is based on the principle
of self-distillation, where the online encoder is trained to replicate the output of the target encoder.
The framework operates by maximizing the similarity between the outputs from these two branches.
The two branches use identical model architectures, with the online encoder being updated via
back-propagation for immediate learning adjustments, while the target encoder is updated by a
momentum-based approach (He et al., 2020). DINO offers the option to enhance its performance
by employing local views (smaller cropped patches). Specifically, the online branch processes both
global and local views, while the target branch processes only global views. The outputs of both
view types in the online branch are then aligned with the global view output from the target branch.
Incorporating local views helps facilitate the learning of rich and granular features.

MoCo v3 (Chen et al., 2021) adapts the Momentum Contrast approach for ViT. It not only maximizes
the similarity between representations of differently augmented views of the same image but also
concurrently reduces the similarity with representations of other images in the batch. However,
despite the advantages, self-supervised learning with ViT is challenged by significant computation
costs and slow convergence speeds (Wen & Li, 2021), which limits their effectiveness and practicality.

2.2 SPARSE VISION TRANSFORMER

Token pruning is a promising technique for reducing the computation costs for ViTs. The most popular
strategy to select the tokens to be pruned is utilizing attention scores to determine the importance
of each token, which is adopted by many token pruning approaches (Liang et al., 2022b; Kong
et al., 2022; Xu et al., 2022b; Song et al., 2022; Fayyaz et al., 2022; Yu & Wu, 2023). Tokens that
receive lower attention scores are often considered less critical and are thus candidates for pruning. In
addition to the attention-based strategy, there are other strategies to determine which tokens to prune.
For example, some models incorporate a trainable component that explicitly scores each token’s
relevance to the task (Rao et al., 2021; 2023). This scoring function is optimized during training to
allow the model to learn task-dependent criteria for pruning.

Token merging, as a complementary approach to pruning, has been gaining traction for its ability
to condense information without significant losses. A recent work (Bolya et al., 2023) proposes to
merge similar tokens using a lightweight matching algorithm, effectively condensing information and
reducing the number of tokens processed. There are also other sparse ViT designs beyond token-level
sparsity, such as sparse attention mechanisms (Liu et al., 2021; Kong et al., 2023; Li et al., 2022).
However, token reduction methods are particularly favored due to their simple implementation and
outstanding performance in computation reduction.
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3 DOES EXISTING TOKEN PRUNING WORK WELL FOR SSL?

In supervised learning, there is only one single branch to process input data and the learning process
is guided by explicit labels. Differently, in self-supervised learning, the Siamese encoders are
generally used in the two branches, where each branch processes distinct augmented views from the
same input image. And the model (i.e., encoder) is trained by maximizing the similarity between
representations of differently augmented views of the same image. Considering that the training
paradigm of SSL diverges significantly from conventional supervised learning, it is natural to question
whether existing token pruning methods are truly desirable for SSL. Therefore, we first set out to
investigate this question. Here, we select one of the most representative attention-based token pruning
approaches (Liang et al., 2022b) for our investigation, applying it to SSL to assess its performance.

3.1 REVISITING ATTENTION-BASED TOKEN PRUNING IN SUPERVISED LEARNING

The attention-based pruning approach is the most popular token pruning approach and has been
used by many previous token pruning works in supervised learning, as discussed in Section 2, due
to its outstanding performance, simplicity, and ease of implementation, The key idea of this type
of approach is to use the self-attention scores to evaluate the importance of the tokens and prune
those less important tokens. Specifically, Vision Transformers employ a multi-head self-attention
(MHSA) mechanism to process a sequence of input image tokens (i.e., image patches). Each token is
first linearly transformed into matrices of queries (Q), keys (K), and values (V ). Then the attention
operation is performed as:

Attention(Q,K, V ) = Softmax
(
QKT /

√
d
)
V. (1)

Here d represents the dimensionality of the keys and it is used to scale the outputs to stabilize the
gradients during training. Then the attention scores (Softmax(QKT /

√
d)) are used to multiply the

values (V ) to produce the output, effectively synthesizing the information across different tokens. As
such, tokens with higher attention scores have more significant contribution to the final output.

3.2 APPLYING EXISTING TOKEN PRUNING APPROACH TO SSL

In this experiment, we follow the implementation of a recognized paper EViT (Liang et al., 2022b),
which applies the representative attention scores from the [CLS] token to other tokens to identify
the most important tokens. Specifically, we keep the top-k (k is a hyperparameter) tokens with the
highest attention scores from the [CLS] token and prune the non-topk tokens. The reason why we use
the attention of the [CLS] token to other tokens is that the [CLS] token is designed to capture the
global contextual information of the entire input image, making it ideal for a holistic understanding
of the input image. Following the setting in previous works (Liang et al., 2022b; Kong et al., 2023),
we apply token pruning only at certain transformer blocks (i.e., the 4th, 7th, and 10th transformer
blocks in DeiT). Once a token is pruned at a certain layer, it will not appear in subsequent layers.

Table 1: Results of applying attention-based token pruning approach to the self-supervised learning
on ViT. DINO is used as the training framework in this experiment (w/o local views). The encoder
is DeiT-S and it is trained on the ImageNet-1k for 300 epochs. The accuracy results are obtained
through linear evaluation. kr represents the token keep rate.

Method Training FLOPs SSL Acc. ∆Acc. (SSL) ∆Acc. (SL)

SSL w/o token prune (baseline) 100% 57.16±0.22 – –
Atten-based token prune (kr = 0.9) 87% 56.65±0.26 -0.51 -0.10
Atten-based token prune (kr = 0.8) 76% 54.68±0.30 -2.48 -0.21

Table 1 shows the experimental results. We use DeiT-Small (Touvron et al., 2021) as the encoder and
use ImageNet dataset (Deng et al., 2009) as an example. We use DINO as the training framework and
directly apply the attention-based pruning to the encoders of two branches. We do not incorporate the
local views in this preliminary experiment (we include experiments that incorporate local views later
in Section 5). The keep rate in the table indicates the ratio of retained tokens after pruning to the total
number of tokens before pruning. For example, if we set the keep rate to 0.8 and apply token pruning
at the 4th, 7th, and 10th blocks, 80% of the tokens are retained after the 4th block. Subsequently, due
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Figure 1: Overview of SimPrune. (a) SimPrune can be directly applied to a transformer block in
self-supervised learning. (b) The process of SimPrune. We assume each token in the online branch
matches a different token in the target branch in this example. And we present the case that more
than one tokens in the online branch match a token in the target branch later in Figure 2.

to the cumulative pruning effect, only 64% of the original tokens remain after the 7th block. The
column ∆Acc.(SSL) shows the accuracy difference compared to the baseline model under the SSL
setting, while the ∆Acc.(SL) shows the accuracy difference under the original supervised learning
setting counterparts using the same network and dataset. We select two relatively high keep rates (0.9
and 0.8) for this experiment. As shown in the table, these two keep rate configurations incur only
marginal accuracy loss (about 0.2%) in the supervised learning setting. However, there is a significant
accuracy drop of more than 2.4% in SSL with a keep rate of 0.8. These results show that the SSL
is more sensitive (severe accuracy drop) to attention-based token pruning, indicating conventional
single-branch attention-based pruning may not be suitable for SSL.

The limitations of applying the popular attention-based token pruning approach to SSL stem from
the differences between the training paradigm of SSL and supervised learning. In SSL, models
are trained by maximizing the similarity of representations from different augmented views of the
same source image, relying on cross-branch similarity information (Li et al., 2024; Misra & Maaten,
2020; Reed et al., 2021; Zbontar et al., 2021). In contrast, token pruning approaches developed
for supervised learning typically evaluate token importance based solely on attention scores from
a single branch. They often remove tokens with lower self-attention scores—usually associated
with background features (Liang et al., 2022b). Such an approach does not consider the crucial
cross-branch information that is essential for SSL, potentially leading to the removal of features
critical for SSL performance. For example, asymmetric pruning may occur where tokens containing
the same semantic information across two branches are pruned inconsistently, causing a mismatch
in the representations and potentially impairing the model’s ability to learn robust features. We
use attention-based pruning as an example and provide a visualization for this issue in Figure 4
and Section 5.5. It is also important to note that this issue is not exclusive to the attention-based
token pruning approach but also exists in all token reduction approaches that overlook cross-branch
information, such as the popular Token Merging approach ToMe. A more detailed comparison of
these approaches is presented in the evaluation section (Section 5.2).

4 SIMPRUNE DESIGN

In this section, we propose a similarity-based token pruning approach, namely SimPrune, which
leverages the inherent similarity information from both two branches to guide the token pruning in
self-supervised learning. In addition, we propose applying a difficulty-aware pruning strategy to our
pruning approach. The overview of SimPrune is shown in Figure 1. While we follow the prior token
pruning works (Liang et al., 2022b; Kong et al., 2023) that prune tokens only at certain transformer
blocks (e.g., the 4th, 7th, and 10th blocks) in this paper, it is important to note that SimPrune can be
applied at any transformer block, as shown in Figure 1a.
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4.1 LEVERAGING CROSS BRANCH SIMILARITY FOR TOKEN PRUNING

Suppose we perform token pruning at the ith transformer block, the pruning process of SimPrune is
as follows (visualized in Figure 1b). We first conduct the token matching for the image tokens in the
online and target encoders in layer i (step 1 in Figure 1b). Specifically, for each token (excluding the
[CLS] token) in the online encoder, we match it to its most similar tokens in the target encoder. Here,
the similarity is quantified using the cosine similarity. After the token matching, we would have N
token pairs across two branches, where N is the number of image tokens in the online branch. We
match each token in the online branch to its most similar counterpart in the target branch so that we
can ensure semantic consistency for the paired tokens. Pruning at the granularity of these token pairs
guarantees that the representations in both branches maintain consistent semantic information.

Next, we sort the token pairs by their similarity value (step 2 in Figure 1b). The key question then
arises: which token pairs should be pruned in SSL? Generally, there are two potential strategies
for pruning: i) prune the most similar pairs or ii) the most dissimilar pairs. Intuitively, since SSL
trains the model by maximizing the similarity of the outputs from its two branches, pruning the most
similar pairs and retaining those with lower similarity could increase the training difficulty for the
model. This might enhance its ability to learn more robust and generalized features, as it faces greater
challenges in recognizing connections between less similar views (Tian et al., 2020). On the contrary,
pruning the most dissimilar pairs allows the model to focus on more similar parts, which may reduce
the complexity of the learning process. We conduct a preliminary study to evaluate the effectiveness
of these two strategies.

The results are presented in Table 2 and these two strategies are categorized as “static” in the table as
they always prune the most similar/dissimilar token pairs during the whole training process. As one
can observe, our static cross-branch similarity-based token pruning methods generally yield higher
accuracy than the attention-based method, with an improvement of more than 1.7% when pruning the
most similar token pairs. However, there remains a 0.75% accuracy drop compared to the baseline
without pruning, suggesting that further optimization is needed. Since the model’s capabilities evolve
throughout training, different training stages may require varying levels of training difficulty (Bengio
et al., 2009; Soviany et al., 2022), necessitating the use of different pruning strategies. To explore
this, we set to investigate a dynamic pruning strategy in the following Section 4.2.

Retained

Pruned

Figure 2: Many-
to-one matching.

Addressing imbalanced token pruning in two branches. As depicted in Figure
2, during the token matching process, more than one token in the online branch
may match the same token in the target branch. In the example in Figure 2, when
pruning token pairs based on similarity, it is possible to prune the two token pairs
with the many-to-one issue. It causes an imbalance problem, where the number
of tokens pruned in the target branch is less than online branch. In our practice,
we find that the number of tokens pruned in the two branches generally differs by
less than 10%. To address this issue, we propose using an attention-based pruning
approach to further prune tokens in the target branch, ensuring that the number
of tokens in both branches remains the same and meets the predefined pruning
ratio. Note that this method is already applied in the experiments in Table 2 for
a fair comparison.

4.2 DIFFICULTY-AWARE PRUNING STRATEGY

Some studies have demonstrated that gradual adjustment of the difficulty of training tasks during
the self-supervised learning process can effectively improve the model’s performance and robust-
ness (Zheng et al., 2019; Tan et al., 2023; Bian et al., 2021; Ma et al., 2022). Specifically, these works
suggest starting with simpler tasks for models with limited capabilities in the early training stage, and
gradually increasing the training difficulty in later training stages as the model’s capabilities evolve.

Based on these findings, we conduct a preliminary experiment to explore whether adjusting task
difficulty can also yield benefits in self-supervised learning. In this preliminary study, we simply
divide the whole training epochs into two halves, with the first half of epochs as the early training
stage and the second half as the late training stage. We apply different pruning strategies in these
two stages and evaluate their effectiveness. The results are shown in Table 2 and these strategies are
categorized as “dynamic” in the table. As one can observe, the strategy that prunes the most dissimilar
token pairs (i.e., retain similar tokens) at the early training stage while prunes the most similar token
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pairs (i.e., retain dissimilar tokens) at late training stages yields better accuracy (56.90%) than the
above-mentioned static pruning methods, with 0.49% higher than the pruning strategy that always
prunes the most similar token pairs. These results demonstrate that SSL also prefers reducing training
complexity in the early stages and increasing the difficulty in the later stages.
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Figure 3: Illustration of sliding window mecha-
nism. The black box indicates the window and the
tokens inside are retained after pruning. It shows
the pruning strategy in three different epochs.

As such, we propose applying this difficulty-
aware pruning strategy to our cross-branch
similarity-based token pruning approach. Con-
sidering that the model’s capability evolves pro-
gressively during the training process, we aim
to gradually adjust the training difficulty rather
than arbitrarily dividing the training process into
several fixed stages. This dynamic and gradual
adjustment is achieved using a sliding window
mechanism based on token similarity values. All
the tokens within the window are retained after
pruning, and the window size is determined by a
pre-defined keep rate. This mechanism is illus-
trated in Figure 3. Initially, the window includes
token pairs with the highest similarity (i.e., prun-
ing token pairs with the lowest similarity), making the task easier during the early training stages. As
training proceeds, the window moves linearly with the training epochs to include token pairs with
lower similarity (i.e., prune more token pairs with higher similarity), gradually increasing the task
difficulty. By the end of the training, the window eventually incorporates the most dissimilar pairs.
As shown in Table 2, applying the sliding window mechanism to our pruning approach achieves the
highest accuracy (57.20%) among all methods, highlighting its effectiveness.

By integrating this difficulty-aware pruning strategy into our cross-branch similarity-based token
pruning approach, we offer an effective and efficient way to control task difficulty without incurring
additional computation overhead. It is worth noting that our approach also works well for SSL
framework that involves negative samples, such as MoCo v3. Detailed experimental results and
analysis are provided in Appendix A.3.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

In this section, we evaluate the performance of our proposed token pruning approach SimPrune. We
use five representative datasets: ImageNet-1k, CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009),
along with two fine-grained datasets Stanford Cars (Krause et al., 2013) and FGVC Aircraft (Maji
et al., 2013). We use the DeiT model as the encoder. The batch size in the experiments is set to 128,
the learning rate is 0.001, and we adopt the half-precision FP16 during training for efficiency. We

Table 2: Evaluation of two static and two dynamic strategies of cross-branch similarity-based token
pruning. DINO (w/o local views) is used as the training framework. The encoder is DeiT-S and
it is trained on ImageNet-1k for 300 epochs. Toke pruning is performed at the 4th, 7th, and 10th
transformer blocks. The keep rate for all methods is 0.8.

Method category Method Accuracy

— SSL without token pruning (baseline) 57.16±0.22
Attention-based token pruning (keep rate = 0.8) 54.68±0.30

Static
Similarity-based

Prune most similar pairs 56.41±0.16
Prune most dissimilar pairs 56.07±0.32

Dynamic
Similarity-based

Prune most dissimilar pairs at first half of epochs,
and prune most similar pairs at second half of epochs 56.90±0.21

Prune most similar pairs at first half of epochs,
and prune most dissimilar pairs at second half of epochs

55.76±0.19

Sliding window
Similarity-based (Ours)

Prune most dissimilar pairs at the beginning, gradually
shift to pruning more similar pairs 57.20±0.28

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison of different methods. DINO is used as the training framework. The encoders
are DeiT-T, DeiT-S, and DeiT-B, which are trained on ImageNet-1k for 300 epochs.

Keep
Rate Method

DeiT-T DeiT-S DeiT-B

Accuracy Training
FLOPs

Training
Time Accuracy Training

FLOPs
Training

Time Accuracy Training
FLOPs

Training
Time

– DINO 55.71±0.23 100% 100% 62.49±0.21 100% 100% 64.56±0.15 100% 100%

0.9
EViT 55.24±0.24 87% 93% 62.25±0.36 87% 95% 64.35±0.16 87% 95%
ToMe 55.38±0.17 87% 94% 61.92±0.20 87% 94% 64.12±0.13 87% 95%

SimPrune 55.79±0.22 87% 93% 62.39±0.31 87% 94% 64.50±0.28 87% 95%

0.8
EViT 53.13±0.19 76% 88% 60.06±0.29 76% 87% 62.27±0.29 76% 89%
ToMe 53.65±0.27 76% 86% 60.34±0.22 76% 87% 61.58±0.31 76% 88%

SimPrune 55.66±0.30 76% 86% 62.31±0.11 76% 85% 64.21±0.27 76% 89%

0.7
EViT 52.30±0.41 65% 78% 58.40±0.24 65% 75% 61.12±0.14 65% 82%
ToMe 52.01±0.35 65% 77% 58.68±0.38 65% 78% 60.71±0.25 65% 80%

SimPrune 55.38±0.25 65% 77% 61.90±0.32 65% 76% 63.85±0.44 65% 79%

also provide the results of using full-precision FP32 and a larger batch size of 1024 in Appendix
A.5. In our experiment, we perform the token pruning at the 4th, 7th, and 10th transformer blocks of
DeiT for all the evaluated approaches, following the setting in previous work (Liang et al., 2022b;
Kong et al., 2023). The overhead introduced by SimPrune is included in the reported training
FLOPs and time results and we present a detailed overhead analysis in Appendix B. We compare our
proposed SimPrune with two other representative token reduction approaches: attention-based token
pruning method EViT (Liang et al., 2022b) and token merging method ToMe (Bolya et al., 2023). In
addition, we also evaluate the compatibility of SimPrune with two recent efficient self-supervised
learning methods. We follow the linear evaluation protocol (Goyal et al., 2019) in our experiments
for evaluation, where the pre-trained model is fixed, and only the appended linear classification layer
undergoes fine-tuning. We run the experiments on an NVIDIA A100 GPU. All results in this paper
are the average of three runs with different random seeds.

5.2 MAIN RESULTS

Experiments on ImageNet. Table 3 presents the experimental results of different methods. Here we
utilize DINO as the training framework and set the number of local views to six as the setup in (Caron
et al., 2021). Details on how we handle local views in our experiments are provided in Appendix C.
Compared to the DINO baseline, our proposed SimPrune approach greatly reduces training costs
with minimal impact on accuracy. For instance, at a keep rate of 0.8, SimPrune reduces training
FLOPs by 24% and training time by 13% on average, with less than 0.2% accuracy drop. In addition
to computation cost reduction, SimPrune can also benefit memory usage during training, as memory
usage is primarily associated with storing activations and gradients during the forward and backward
propagation. By setting the keep rate to 0.8, SimPrune can achieve 11% memory usage reduction.

When compared to the attention-based token pruning method EViT, SimPrune consistently yields
significantly higher accuracy with similar training time and FLOPs at the same keep rates. Notably,
with a keep rate of 0.7, SimPrune provides 3.1% higher accuracy on average. In addition to EViT,
we also compare SimPrune against the token merging approach ToMe. ToMe merges similar tokens
within each branch to condense information and reduce the number of tokens for subsequent layers.
Consistent with our token pruning experiments, token merging is performed at the same transformer
blocks—specifically, the 4th, 7th, and 10th blocks. As shown in the table, at the same keep rates,
SimPrune achieves much higher accuracy than ToMe while consuming comparable training time and
training FLOPs. For instance, SimPrune delivers 3.2% higher accuracy than ToMe with a keep rate
of 0.7, demonstrating the superiority of our proposed SimPrune approach.

SimPrune’s superior performance stems from its use of similarity information across two branches
to guide token pruning. In contrast, both EViT and ToMe rely on single-branch information (e.g.,
single-branch attention scores and single-branch token similarity information) and overlook the
crucial cross-branch similarity information, which is vital for self-supervised learning.

Experiments on fine-grained image datasets. We further evaluate our proposed SimPrune using
two fine-grained datasets, Stanford Cars and FGVC Aircraft. In this experiment, we follow the setup
used in prior work (Shu et al., 2023). The encoder DeiT-S is initialized using ImageNet-pretrained
weights. Then the DeiT-S is trained on the Cars and Aircraft datasets using self-supervised learning,
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Table 4: Experiments on fine-grained image datasets. The encoder is DeiT-S and it is trained for 100
epochs. DINO is used as the training framework. The keep rate for token pruning is set to 0.8.

Method
Stanford Cars FGVC Aircraft

Accuracy Training
FLOPs

Training
Time Accuracy Training

FLOPs
Training

Time

DINO 52.87±0.12 100% 100% 55.70±0.16 100% 100%
EViT 50.72±0.28 76% 83% 53.81±0.17 76% 86%
ToMe 49.56±0.18 76% 87% 53.15±0.24 76% 85%

SimPrune 52.61±0.24 76% 84% 55.48±0.26 76% 86%

Table 5: Experiments on Dynamic SimPrune and Comparison of other Token Reduction methods.

Keep
Rate Method

DeiT-S DeiT-B

Accuracy Training
FLOPs

Training
Time Accuracy Training

FLOPs
Training

Time

– DINO 62.49 100% 100% 64.56 100% 100%
– SimPrune (Dynamic) 62.52 78% 87% 64.39 74% 86%

0.8

MCTF 59.75 76% 86% 61.85 76% 87%
PatchSlim 59.51 76% 87% 61.92 76% 90%
SelfSlim 60.46 80% 89% 62.10 80% 92%
SimPrune 62.31 76% 85% 64.21 76% 89%

0.7

MCTF 58.84 65% 78% 61.05 65% 78%
PatchSlim 59.22 65% 75% 60.18 65% 82%
SelfSlim 58.38 70% 81% 60.67 70% 85%
SimPrune 61.90 65% 76% 63.85 65% 79%

after which the model is evaluated using the linear evaluation. As shown in Table 4, SimPrune
delivers a 24% reduction in computation FLOPs and a 15% reduction in training time compared to
the DINO baseline on average, while incurring only a marginal accuracy loss of 0.2%. Moreover,
SimPrune outperforms both EViT and ToMe, achieving 1.8% and 2.7% higher accuracy, respectively,
with comparable training time and FLOPs. These results demonstrate the effectiveness of SimPrune
in processing fine-grained images.

For a more comprehensive evaluation, we also perform experiments on other downstream tasks,
including object detection and semantic segmentation. The results are shown in Appendix A.1.
we also conduct experiments on CIFAR dataset (Appendix A.2) and two other SSL framework
MoCov3 (Chen et al., 2021) (Appendix A.3) and DINOv2 (Oquab et al., 2023) (Appendix A.4).

5.3 EXPERIMENTS ON DYNAMIC SIMPRUNE AND COMPARISON WITH OTHER TOKEN
REDUCTION METHODS

In this section, we extend SimPrune to a dynamic version that can automatically prune tokens
without requiring a pre-defined keep rate. Similar to other dynamic pruning approaches (Tang et al.,
2022; Gao et al., 2018), we incorporate a lightweight module consisting of a downsampling layer, a
linear layer, and an activation layer within each attention block. During SSL, we expand the sliding
window size to include 50% of the total token pairs based on cross-branch similarity, treating these as
“candidate token pairs.” The module then processes the candidate tokens to determine which tokens
should be pruned. As shown in Table 5, SimPrune with the dynamic pruning strategy reduces 24%
computation costs without compromising accuracy compared to the DINO baseline, demonstrating
that the advantages of SimPrune are preserved even when extended to a dynamic pruning framework.

We also further compare SimPrune to some other token reduction methods MCTF (Lee et al., 2024),
PatchSlim (Tang et al., 2022), and SelfSlim (Zong et al., 2022). As shown in Table 5, SimPrune
consistently outperforms all these methods, delivering up to 3% higher accuracy when consuming
comparable computation costs.

5.4 COMPATIBILITY OF SIMPRUNE WITH OTHER EFFICIENT SSL METHODS

In this section, we evaluate the compatibility of SimPrune with two recent efficient self-supervised
learning methods (Addepalli et al., 2022; Koçyiğit et al., 2023). These two works are complementary
to our proposed SimPrune. Specifically, Koçyiğit et al. (2023) introduces a combination of efficient
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SimPrune (Ours)

Conventional Attention-based Method (EViT)

Figure 4: Visualization of the conventional attention-based token pruning method (EViT) and our
SimPrune. The masked region represents the tokens that are pruned.

training strategies (short as ETS) to accelerate model convergence by utilizing an innovative learning
rate schedule, an adaptive input image resolution schedule, and a novel augmentation technique
aimed at improving the quality of augmented images. Addepalli et al. (2022) identifies the noise
present in the training objective as a key factor to the slow convergence in SSL. To address this, they
propose rotation prediction (termed Rotation) as an additional, noise-free training objective, helping
to expedite model convergence. On the other hand, SimPrune operates in a different dimension,
which removes less important tokens during training. To ensure a fair comparison, we adjust training
epochs for these two efficient SSL methods to match the accuracy of baseline DINO. Then, we
integrated SimPrune with these two methods. Table 6 shows that combining SimPrune with the ETS
and Rotation can further reduce the training cost by 17% and 15% without compromising accuracy,
respectively, demonstrating the compatibility and effectiveness of SimPrune.

Table 6: Compatibility of SimPrune. The dataset is ImageNet and the encoder is DeiT-S.

Method Accuracy Training Time

DINO (baseline) 62.49±0.21 100%
ETS 62.56±0.36 71%

Rotation 62.45±0.25 64%
ETS + SimPrune (keep rate = 0.8) 62.40±0.28 59%

Rotation + SimPrune (keep rate = 0.8) 62.34±0.23 54%

5.5 VISUALIZATION

We visualize the token pruning outcomes for SimPrune and the attention-based method EViT in
Figure 4. From the figure, we can observe that SimPrune’s pruning regions are more concentrated and
symmetrical compared to EViT. This is because SimPrune first matches tokens from two branches
to form multiple token pairs, and then prunes at the granularity of these token pairs. As a result,
tokens in a pair that have similar semantic information are either both pruned or retained, ensuring
semantic consistency between the outputs of the two branches after token pruning. In contrast, if
we only consider information from a single branch when performing token pruning, tokens with
similar semantic information in different branches might be pruned differently, with one being pruned
and the other retained, as discussed in 3.2. This compromises the semantic consistency between the
images of the two branches, which in turn adversely affects model training.

6 CONCLUSION

In this paper, we proposed SimPrune, a novel token pruning strategy tailored specifically for ViTs
in self-supervised learning. By leveraging cross-branch similarity, SimPrune efficiently prunes
non-essential tokens while preserving crucial semantic information across the dual branches of SSL,
significantly enhancing training efficiency. Additionally, our difficulty-aware pruning strategy further
optimizes model performance by strategically pruning token pairs with varying similarity levels at
different stages of training. Our extensive evaluation demonstrates that SimPrune can substantially
reduce computation costs without compromising accuracy.
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APPENDIX

A EXTENDED EXPERIMENTAL RESULTS

A.1 EXPERIMENTS ON DOWNSTREAM TASKS OF OBJECT DETECTION AND SEMANTIC
SEGMENTATION

In this section, we evaluate the performance of SimPrune on two downstream tasks other than
image classification: object detection and semantic segmentation. We use MS COCO (Lin et al.,
2014) dataset for the object detection task and ADE20k (Zhou et al., 2017) dataset for the semantic
segmentation task. The evaluation metrics are average precision for bounding boxes (APb) and mean
IoU (mIoU), respectively. As shown in Table 7, compared to the DINO baseline, SimPrune is able
to reduce computation costs with only a marginal loss in accuracy. Compared to EViT, SimPrune
delivers 1.7 higher APb on object detection task and 2.8 higher mIoU on semantic segmentation task.
Compared to ToMe, SimPrune offers 2.9 higher APb and 2.3 higher mIoU. These results demonstrate
the effectiveness of SimPrune across a variety of downstream tasks.

Table 7: Experiments on downstream tasks of object detection and semantic segmentation. DeiT-B is
used as the encoder. The keep rate is set to 0.8 for all methods.

Method MS COCO ADE20k
APb mIoU Training FLOPs Training Time

DINO 49.8 34.3 100% 100%
EViT 48.0 31.2 76% 89%
ToMe 46.8 31.7 76% 88%

SimPrune 49.7 34.0 76% 89%

A.2 EXPERIMENTS ON CIFAR DATASET

In this section, we further evaluate our proposed SimPrune approach using CIFAR datasets. As shown
in Table 8, SimPrune offers considerable training cost savings compared to the DINO baseline. For
instance, with a keep rate of 0.8, SimPrune achieves a 24% reduction in computation FLOPs and a
14% reduction in training time without accuracy loss. Additionally, SimPrune also outperforms both
EViT and ToMe, delivering 2.0% and 1.6% higher accuracy, respectively, with similar training time
and FLOPs.

Table 8: Comparison of different methods on CIFAR dataset. DINO is used as the training framework.
The encoder is DeiT-S, which is trained for 300 epochs.

Keep Rate Method
CIFAR-10 CIFAR-100

Accuracy Training
FLOPs

Training
Time Accuracy Training

FLOPs
Training

Time

– DINO 89.54±0.13 100% 100% 62.78±0.20 100% 100%

0.8
EViT 87.75±0.26 76% 84% 61.19±0.14 76% 85%
ToMe 88.41±0.14 76% 86% 62.20±0.21 76% 87%

SimPrune 89.58±0.17 76% 86% 62.62±0.32 76% 84%

0.7
EViT 86.69±0.38 65% 77% 60.10±0.35 65% 76%
ToMe 87.37±0.18 65% 79% 59.63±0.17 65% 78%

SimPrune 89.30±0.23 65% 76% 62.32±0.24 65% 77%

A.3 EXPERIMENTS ON MOCO V3

In this section, we evaluate our proposed SimPrune method using the MoCo v3 training framework,
which handles both positive and negative sample pairs. In MoCo v3, the primary objective is twofold:
maximizing the similarity between two augmented views of the same input (i.e., positive sample pairs)
while minimizing the similarity between views from different input samples (i.e., negative sample
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pairs). In this case, SimPrune performs token pruning between each positive sample pair, ensuring
that essential semantic consistency is maintained across the two branches. On the other hand, since
negative sample pairs inherently lack semantic connections, SimPrune focuses on the relationship
between positive samples when performing token pruning. The experimental results are shown in
Table 9. Compared to the MoCo baseline, SimPrune reduces training FLOPs by 24% and training
time by 16% without compromising accuracy. Additionally, SimPrune outperforms both EViT and
ToMe, achieving 0.76% and 1.32% higher accuracy, respectively, with similar training costs. These
results demonstrate the versatility and robustness of SimPrune across various self-supervised learning
frameworks.

Table 9: Experiments on MoCo v3 framework. DeiT-T is used as the encoders and it is trained for
100 epochs on Tiny ImageNet. The keep rate for pruning is set to 0.8.

Method Accuracy Training FLOPs Training Time

MoCo v3 38.46±0.17 100% 100%
EViT 37.65±0.24 76% 85%
ToMe 37.09±0.29 76% 87%

SimPrune 38.41±0.20 76% 84%

A.4 EXPERIMENTS ON DINO V2

In this section, we evaluate our proposed SimPrune on DINOv2. DINOv2 is an enhanced dual-branch
SSL framework (i.e., discriminative SSL) that incorporates ideas from masked image modeling
(MIM) into the dual-branch SSL paradigm. Specifically, DINOv2 augments the original input image
into two distinct views and employs a two-part training strategy: (i) aligning the outputs of the two
augmented views processed by the student and teacher branches, and (ii) simultaneously masking
a subset of tokens in the view processed by the student branch and reconstructing those tokens to
learn fine-grained details. This combination enables DINOv2 to leverage both global and local
representation learning, enhancing its performance across various tasks. To adapt SimPrune to the
DINOv2 framework, the token matching process of SimPrune first aligns the masked tokens in the
view processed by the student model to their counterparts in the full view (i.e., without masking)
processed by the teacher model. Subsequently, it performs token matching for the remaining tokens.
This approach ensures semantic consistency and prevents misalignment by guaranteeing that the
masked tokens and their corresponding counterparts are either pruned or retained together throughout
the training process.

We compare our proposed SimPrune to two token reduction methods Expediting ViT (Liang et al.,
2022a) and EViT. Expediting ViT reduces the number of tokens through token clustering at the
early attention block and reconstructs the tokens to the original amount for further processing at the
later attention block. Expediting ViT accelerates the model computation by reducing the number of
tokens to be processed on the transformer blocks. EViT is a recognized attention-based token pruning
method that prunes tokens with lower attention scores. It is also worth noting that both these two
methods and our proposed SimPrune only embed non-parametric operators (i.e., token clustering
and reconstruction, attention score calculation, and cosine similarity calculation for tokens) for
token reduction. We adjust the hyper-parameter of Expediting ViT to ensure the same computation
cost savings for a fair comparison. As shown in Table 10, compared to the DINOv2 baseline,
SimPrune is able to reduce more than 20% computation with a marginal accuracy loss of 0.2%.
SimPrune also outperforms both Expediting ViT and EViT, delivering 3.9% and 2.9% higher accuracy
than Expediting ViT and EViT, respectively. The reason behind this is that SimPrune maintains
semantic consistency across two branches during dual-branch SSL. On the other hand, the token
reduction methods Expediting ViT and EViT do not consider the cross-branch similarity and semantic
information when reducing the number of tokens to be processed, therefore leading to a compromised
performance of the resultant model.

A.5 EXPERIMENTS ON LARGER BATCH SIZE AND FULL PRECISION

In this section, for a more comprehensive evaluation, we further conduct experiments under a batch
size of 1024, a learning rate of 0.002, using 8 local views, and full precision FP32. As shown in
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Table 10: Experiments on DINO v2 framework. DeiT-S is used as the encoder and it is trained on
ImageNet. The keep rate is set to 0.8 for all methods.

Method Accuracy Training FLOPs Training Time

DINOv2 80.52 100% 100%
Expediting ViT 76.37 76% 84%

EViT 77.41 76% 80%
SimPrune 80.30 76% 81%

Table 11: Experiments on Larger Batch Size and Full Precision. DeiT-S is used as the encoder and it
is trained on ImageNet. The keep rate is set to 0.8 for all methods.

Method Accuracy Training FLOPs Training Time

DINO 77.24 100% 100%
EViT 75.18 76% 83%
ToMe 74.60 76% 85%

SimPrune 77.19 76% 82%

Table 11, the baseline accuracy is 77.24%, which is much better than using a batch size of 128
and half-precision. Our proposed SimPrune still can reduce the computation cost by more than
20% compared to the baseline, without compromising accuracy. Compared to the EViT and ToMe,
SimPrune offers 2.0% and 2.6% higher accuracy, respectively.

B OVERHEAD ANALYSIS

The computational overhead introduced by SimPrune primarily arises from the cosine similarity
calculations required for token matching across the two branches. Given N tokens, each represented
by a D-dimensional vector, the cosine similarity computation between a pair of tokens can be
approximated as:

Overhead per block = N2 × 2D FLOPs
In our experiment setup, SimPrune is applied at three different transformer blocks, and the total
overhead of SimPrune becomes:

SimPrune Overhead = 3×N2 × 2D FLOPs

Table 12 shows an analysis of each operation in a Transformer block. Given an input sequence
N×D, where N is the input sequence length or the token number and Dattn is the embed-
ding dimension of each token (Touvron et al., 2021). Dch is the attention layer dimension, and
Dfc is the dimension of the MLP layer. The total computational complexity of one block is
(4NDchDattn+2N2Dattn+8NDchDfc). For simplicity, the computational complexity of ViT is
(12ND2+2N2D) MACs.

Table 12: The computational complexity of each operation in a ViT block. The input N×Dch goes
through three linear transformation layers with Dch×Dattn to generate Query (Q), Key (K), and
Value (V ) matrices of size N×Dattn. N is transitive, while Dch is not.

# Module Input Size Operation Layer Size Output Size Computation

①

MSA

N ×Dch Linear Transformation Dch ×Dattn N ×Dattn NDchDattn × 3

② N ×Dattn Q Multiplying KT - N ×N N2Dattn

③ N ×N Multiplying V - N ×Dattn N2Dattn

④ N ×Dattn Projection Dattn ×Dch N ×Dch NDattnDch

⑤ FNN N ×Dch FC Layer Dch × 4Dfc N × 4Dfc 4NDchDfc

⑥ N × 4Dfc FC Layer 4Dfc ×Dch N ×Dch 4NDfcDch

Total Computational Complexity 4NDchDattn+
2N2Dattn + 8NDchDfc
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Since there are 12 transformer blocks in a DeiT model and there are 2 branches in self-supervised
learning, the computation cost for training one image in self-supervised learning can be approximated
as:

Total Cost = 2× 12× 3× (12ND2+2N2D) MACs = 144× (12ND2+2N2D) FLOPs

Let us assume we are using the DeiT-Small model, then N is 196, and D is 384. So if we compare the
Total overhead to the Total training cost, we can get:

Overhead Compared to Total Cost =
3×N2 × 2D

144× (12ND2+2N2D)
≈ 0.16%

As such, the overhead of our proposed method SimPrune is about 0.16% of the total computation
cost, which is negligible.

C IMPLEMENTATION DETAILS OF HANDLING LOCAL VIEWS FOR DINO
FRAMEWORK

As discussed in Section 2, the DINO framework provides an option of employing local views (smaller
cropped patches) in addition to global views to enhance the model’s capability to capture detailed and
granular features. Specifically, while the online branch (i.e., student branch) processes both global
and local views, the target branch (i.e., teacher branch) is limited to processing global views only.
The online branch’s output from both view types is then aligned with the global view output from the
target branch. Given this setup, we first apply SimPrune between the global views of both branches.
After that, we are able to obtain a set of pruned tokens for the global views in the target branch. We
then perform token matching between this pruned token set and the tokens from the local views. After
the matching process, we have multiple token pairs, and the local view tokens are pruned accordingly
based on the similarity and keep rate.

D ADDITIONAL VISUALIZATION

In this section, we provide more visualization to illustrate the token pruning pattern throughout the
self-supervised training process. As shown in Figure 5, the pruned regions in our proposed SimPrune
are more symmetric and concentrated across the two branches compared to the pruned regions of
single-branch token pruning approaches throughout the entire training process.
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SimPrune (Ours)

Conventional Attention-based Method (EViT)
Early Training stage Middle Training stage Late Training stage

Early Training stage Middle Training stage Late Training stage

Figure 5: Visualization of the conventional attention-based token pruning method (EViT) and our
SimPrune throughout the training process. The masked region represents the tokens that are pruned.
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