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Abstract

The hype around OpenAI’s ChatGPT has
more than ever sparked interest in AI-based
bots where labeling and classification of ut-
terances are a centerpiece in order to im-
prove user experience. Broadly, Dialogue
Acts (DA) and Emotion/Sentiment (E/S) tasks
are identified through sequence labeling sys-
tems that are trained in a supervised man-
ner. In this work, we propose four encoder-
decoder models to learn generic representa-
tions adapted to the spoken dialog, which we
evaluate on six datasets of different sizes of a
benchmark called Sequence labellIng Evalua-
tion benChmark fOr spoken laNguagE bench-
mark (SILICONE). Designed models are rep-
resented with either a hierarchical encoder or
non-hierarchical encoders both based on pre-
trained transformers (BERT/XLNet). We no-
tice the failure of the models to learn some
datasets due to their inherent properties but
in general, the BERT-GRU architecture is the
best model regarding accuracy.

1 Introduction

In recent years, conversational agents and chat-
bots have become increasingly popular for a vari-
ety of applications, from customer service to men-
tal health support. These systems rely heavily on
natural language processing (NLP) techniques to
understand user inputs and generate appropriate
responses. However, to create engaging and effec-
tive interactions, it is not enough to simply under-
stand the literal meaning of the user’s input. Emo-
tion and dialog act recognition are crucial com-
ponents of effective communication that must be
taken into account.

Emotion recognition enables the chatbot to
identify the user’s emotional state (Witon* et al.,
2018) and respond accordingly, which can help es-
tablish rapport and build trust between the user and
the system. For instance, a mental health chatbot

may use emotion recognition to detect signs of dis-
tress and provide appropriate support. Addition-
ally, dialog act recognition can help the chatbot
understand the purpose and intent of the user’s in-
put. This can enable the system to generate more
targeted and effective responses, leading to a more
satisfying user experience.

In this context, this paper explores the impor-
tance of dialog act recognition for conditioning
the response of chatbots and conversational agents
(Colombo et al., 2019; Jalalzai* et al., 2020;
Colombo et al., 2021b). We will examine dif-
ferent methods for incorporating these techniques
into chatbot systems and the impact that they have
on the effectiveness of the interaction. By doing
so, we hope to provide insights into how these
techniques can be leveraged to improve the per-
formance of chatbot systems and create more en-
gaging and effective interactions.

2 Problem Framing

A decisive step in conversational AI systems is the
characterization of user’s utterances since it en-
hances the identification of both DA and E/S on
spontaneous dialogue (Dinkar et al., 2020). This
can involve two levels of modeling, the utterance
level to understand the subtlety of the user mes-
sages and the dialogue level to figure out the in-
ner patterns over long sequences of conversations.
In this work, we focus on an English setting and
the purpose is to fine-tune a pre-trained model
on discourse level and/or utterance level and then
build a label decoder according to a given archi-
tecture. First of all, let’s state the sequence label-
ing problem as in (Chapuis et al., 2020; Colombo
et al., 2021a) and in (Colombo et al., 2020). At
the highest level, we have a set of D conversa-
tions composed of utterances. The set can be
either monolingual or multilingual conversations



while in this article, we focus on monolingual con-
versations. Therefore, D =

(
C1, C2, . . . , C|D|

)
with Y =

(
Y1, Y2, . . . , Y|D|

)
being the corre-

sponding set of labels (e.g. DA or E/S). At the
lower level, each conversation Ci is formed of
utterances u, i.e Ci =

(
u1, u2, . . . , u|Ci|

)
with

Yi =
(
y1, y2, . . . , y|Ci|

)
being the corresponding

sequence of labels. Each utterance ui is associated
with a unique label yi. ui =

(
wi
1, w

i
2, . . . , w

i
|ui|

)
is a sequence of words. The below table shows
concrete examples with emotion and sentiment.

Utterance E/S

Good job Joe! Well done! Top notch! pos

You liked it? You really liked it? pos

Oh-ho-ho, yeah! pos

Which part exactly? neu

The whole thing! Can we go? neu

Oh no-no-no, give me some specifics neg

Table 1: Example of dialogue labelled with E/Staken
from MELDs. The labels pos, neu and neg respec-
tively stand for positive, neutral and negative

2.1 Architecture
The aforementioned definitions highlight the hi-
erarchical relation that captures some possible
multi-utterance dependencies. Besides a lack of
high computation infrastructures motivates us to
restrain on smaller models which leverage the fine-
tuned capability of transformers. On this basis,
we draw four encoder-decoder strategy architec-
tures of sequence labeling prediction. Typically
an architecture (Figure 1) is a merge of an en-
coder which is based on either a layer of trans-
formers (Wolf et al., 2019) or hierarchical trans-
formers i.e. a bloc of Transformers (Chen et al.,
2017) (Li et al., 2018) and a decoder designed by
either a feedforward or a recurrent neural network.

2.2 Encoder
We choose two types of encoders for outcome em-
beddings. The first one is built on a simple layer
T d of transformers basis and performs encoding at
the discourse level (Chapuis et al., 2020). Indeed,
given a conversation Cj we have

ECj = T d
(
wi
1, . . . , w

i
|ui|, 1 ≤ i ≤ |Cj |

)
(1)

where ECj ∈ Rdd is the embedding of Cj . The
other encoding design is the hierarchical one aim-

u1 · · · u|Ck|

Ck

T

ECk

D

Yk

Figure 1: Architecture of a model where T and D are
respectively an encoder and a decoder

ing to capture dependencies at different granular-
ity levels (Chen et al., 2018), (Chen et al., 2017)
. Formally it is expressed with an additional func-
tion T u verifying:

Eui = T u
(
wi
1, . . . , w

i
|ui|

)
(2)

ECj = T d
(
Eu1 , . . . , Eu|Cj |

)
(3)

where Eui ∈ Rdu is the embedding of utterance ui.

2.3 Decoder
After encoding conversations, the following step
is the building of a model which can predict labels
(DA, E/S). The model is fed with the discourse-
level embeddings ECj and in view of this, a de-
coder with the purpose to predict in one shot the
sequence of labels is more suitable. Concretely
given a conversation Ci the associated predicted
labels are:

Ŷi =
(
ŷ1 · · · ŷ|Ci|

)
= D (ECi) (4)

where D is the decoder with either a recurrence or
a forward property and its performance evaluates
according to:

Acc (D) :=
1

|D|

|D|∑
i=1

1

|Ci|

|Ci|∑
j=1

1 (yj = ŷj) (5)

3 Experiments Protocol

3.1 Datasets
The datasets used for the model evaluation are col-
lected from SILICONE (Godfrey et al., 1992; Li



et al., 2017; Leech and Weisser, 2003; Busso et al.,
2008; Passonneau and Sachar., 2014; Thompson
et al., 1993; Poria et al., 2018; Shriberg et al.,
2004a; Mckeown et al., 2013), a reference in the
community composed of a set of sequence label-
ing tasks, gathering both DA and E/S annotated
datasets. The corpora statistics are summarised in
Table 4

From DA datasets, we pick three which are
Switchboard Dialog Act Corpus (SwDA) a tele-
phone speech corpus consisting of two-sided tele-
phone conversations with provided topics, Daily-
Dialog Act Corpus (DyDAa) a multi-turn dialogues
and daily communication corpus and ICSI MRDA
Corpus (MRDA) introduced by (Shriberg et al.,
2004b) and composed of transcripts of multi-party
meetings hand-annotated with DA.

As E/S annotated, we choose DailyDialog
Emotion Corpus (DyDAe) with eleven emotional
labels, and Multimodal EmotionLines Datasets
(Chen et al., 2018) MELDs and MELDe with respec-
tively three sentiments and seven emotions cre-
ated by enhancing and extending the Emotion-
Lines dataset where multiple speakers participated
in the dialogues.

3.2 Data prepocessing

Processing the data to make it suitable for a chosen
architecture is the first task of our experiment1. An
important point to notice is the non-uniform length
of discourse for a dataset. We then decide to split
a dialog to T utterances where T is determined by
analyzing the average number of utterances per di-
alogue given a dataset. The table 5 in the appendix
gives values of T taken for each dataset. We then
outline two data formats to match our architec-
tures. The concatenate format where for a con-
versation Ci the T utterances and their associated
labels are concatenated to make the model inputs
and target features. The second format is to group
utterances and labels by dialogue to form a batch.
Furthermore each y represents a class and we pro-
ceed to one-hot encode it to a vector of dimension
the number of distinct labels in the datasets. We
finally denote by Y the target variable after pre-
processing which is represented in Table 2. The
below table shows the shape of inputs and outputs
i/o tensors after processing:

1Our experiments and plots can be reproduced
thanks to our code available on GitHub repository link:
github.com/intent_classification

Concatenate Separate2

i shape (?, dd) (?, T, dd)

o shape (?, T × |Labels|) (?, T, |Labels|)

Yi

[
0 0 · · · 0 1

]

[
0 1

]
...[

1 0
]


Table 2: Shape of inputs and outputs tensor after pre-
processing where ? stands for the batch size

3.3 Pre-trained transformers used for
encoding

We build encoders based on pre-trained transform-
ers through the PyTorch implementation provided
by the Hugging Face transformers library. We use
mainly two models: BERT (Devlin et al., 2018)
and XLNet (Yang et al., 2019) in their base-cased
architecture for the non-hierarchic encoding. Re-
garding hierarchical encoding, we try to bring up
two BERT transformers at their tiny variant. Since
a base BERT does not allow input with a dimen-
sion larger than 512. However, we do not succeed
to find an appropriate output from the hierarchical
decoder to conduct decoding and consequently we
focus on a non-hierarchic decoder.

3.4 Models for prediction
The use of a neural network enables us to show the
dependencies between utterances. As mentioned
in Problem Statement two methods are mainly
rolled out. Firstly we set up a multilayer percep-
tron that fits with the concatenated format in order
to produce a one-shot prediction. We implement
an architecture of 2 hidden layers since a neural
net with 2 layers can model any relationship. At
each layer, we utilize a number of neurons accord-
ing to Equation (6), 20 % dropout, and a ReLU
activation function.

#neurons =
2

3
dd + T |Labels| (6)

Several activation functions are suitable for clas-
sification tasks. In our problem, we choose a sig-
moîd to output a value in (0, 1). After the model
is fitted a label prediction is made by voting per
batch of |Labels| on a argmax strategy. Con-
cretely the predicted labels for the dialogue Ci are
obtained by:

ŷj ≡ argmax
(j−1)T+1≤k≤jT

Yik (mod T ) (7)

https://github.com/konkinit/intent_classification.git


SwDA DyDAa MRDA DyDAe MELDe MELDs

BERT + MLP 37.4 63.5 69.1 86.1 52.0 57.8
BERT + GRU 44.0 81.9 69.3 86.7 60.5 70.3
XLNet + MLP 39.1 61.7 69.3 85.7 52.3 53.7
XLNet + GRU 58.7 78.3 69.3 85.3 51.2 63.9

Table 3: Performances of all mentioned models with different decoders such as MLP, GRU. The datasets are
grouped by label type (DA vs E/S) and order by decreasing size

Afterward, we implement a Gated Recurrent Unit
to perform sequence prediction. The architecture
is composed of a GRU layer. Since the model out-
puts a tensor of dimension3 (?, T, |Labels|), the
prediction of each label is done similarly to the
MLP case. We select the binary cross-entropy
loss (8) as a loss function for both decoder archi-
tectures.

L = −
∑
i,j

Yij log p (Yij) (8)

Finally to accelerate computational time we train
models on Onyxia - SSP Cloud Datalab using a
service of 1 GPU.

4 Results

This section gathers experiences carried out on the
SILICONE benchmark. Globally, models do not is-
sue outstanding performances certainly due to the
decision to split each dialogue into T utterances.
The sequential GRU decoder outperforms slightly
the MLP with an average accuracy of 7.56% of
over. This awaited difference could be explained
by the awareness of GRU to leverage past labels
in a sequence. Moreover, The designed architec-
tures have higher prediction accuracy on E/S tasks
rather than DA ones.

On the dataset level, models produce good per-
formance since the preprocessing method and the
corpus structure generate sufficient data for train-
ing. For example, designed architectures reach
roughly 80 % on the DyDA based datasets. The
corpus SwDA stands out itself with an average
performance of 44.8% and this fact is explain-
able by its atypical ratio of the number of utter-
ances over the number of labels after data man-
agement. While the models applied to MRDA and
DyDAecorpOra show acceptable performances, on
average respectively 69% and 85%, they output
confusion matrices which highlight a problem of
imbalanced classes.

3? refers to the batch size

5 Conclusion

In this work, we have proposed a building of an
intent classifier whose purpose is to predict the
sequence of labels in a dialogue based on different
works. We have proposed four encoder-decoder
models either non-hierarchical or hierarchical.
We have implemented those models on different
DA/E/S datasets of SILICONE: SwDA, DyDAa, MRDA
for DA task and DyDAe, MELDe, MELDs which are
E/S datasets. performance of each model depends
on the dataset on which it is applied. Therefore,
the best model depends on the dataset considered.
However, in general4, the best model is the one
obtained by applying a GRU-based sequential
decoder on the dialogues encoded with the BERT
transformer.

Futur work: In addition to addressing label im-
balance, future work in this area should also con-
sider fairness concerns. Bias in machine learning
models can lead to unfair and discriminatory out-
comes (Pichler et al., 2022; Colombo et al., 2022).
Therefore, it is important to ensure that the models
developed for emotion and dialog act recognition
are fair and unbiased. By incorporating fairness
concerns into future research on emotion and di-
alog act recognition, we can help to ensure that
these models are not only effective but also ethical
and equitable. This can help to build trust in these
systems and increase their adoption in various do-
mains, leading to more positive outcomes for users
and society as a whole.

4According to Table 4
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Corpus |Train| |V al| |Test| Utt. |Labels| Task

SwDA 1k 100 11 200k 42 DA

DyDAa 11k 1k 1k 102k 4 DA

MRDA 56 6 12 110k 5 DA

DyDAe 11k 1k 1k 102k 7 E/S

MELDe 934 104 280 13k 7 E/S

MELDs 934 104 280 13k 3 E/S

Table 4: Statistics of used datasets part of SILICONE where sizes of Train, Val and Test are given in number of
conversations.

SwDA DyDAa MRDA DyDAe MELDe MELDs

T 50 5 50 5 5 5

Table 5: Value of T per corpus
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Figure 2: Confusion matrices on DyDAa corpus
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Figure 4: Confusion matrices on DyDAe



surprise disgust anger neutral joy fear sadness

su
rp

ris
e

di
sg

us
t

an
ge

r
ne

ut
ra

l
jo

y
fe

ar
sa

dn
es

s

12 0 20 72 3 0 4

2 0 4 16 1 0 1

6 0 48 73 3 0 8

9 0 29 4.7e+02 19 0 13

3 0 16 1.3e+02 23 0 3

2 0 6 14 0 0 0

3 0 14 48 3 0 8

(a) BERT+MLP

surprise disgust anger neutral joy fear sadness

su
rp

ris
e

di
sg

us
t

an
ge

r
ne

ut
ra

l
jo

y
fe

ar
sa

dn
es

s

40 0 4 37 30 0 0

0 0 3 14 7 0 0

22 0 21 69 26 0 0

11 0 4 5.1e+02 19 0 0

2 0 5 79 85 0 0

2 0 1 15 4 0 0

5 0 3 58 8 0 2

(b) BERT+GRU

surprise disgust anger neutral joy fear sadness

su
rp

ris
e

di
sg

us
t

an
ge

r
ne

ut
ra

l
jo

y
fe

ar
sa

dn
es

s

4 0 10 81 16 0 0

0 0 3 19 2 0 0

5 0 32 90 11 0 0

4 0 10 4.9e+02 35 0 1

0 0 4 1.3e+02 39 0 0

0 0 3 19 0 0 0

2 0 5 65 4 0 0

(c) XLNet+MLP

surprise disgust anger neutral joy fear sadness

su
rp

ris
e

di
sg

us
t

an
ge

r
ne

ut
ra

l
jo

y
fe

ar
sa

dn
es

s

6 0 0 1e+02 1 0 0

0 0 0 24 0 0 0

4 0 0 1.3e+02 2 0 0

2 0 0 5.4e+02 0 0 0

0 0 0 1.6e+02 9 0 0

0 0 0 21 1 0 0

0 0 0 76 0 0 0

(d) XLNet+GRU

Figure 5: Confusion matrices on MELDe



positive neutral negative

po
sit

iv
e

ne
ut

ra
l

ne
ga

tiv
e

61 1e+02 58

66 3.7e+02 1e+02

29 99 2e+02

(a) BERT+MLP

positive neutral negative
po

sit
iv

e
ne

ut
ra

l
ne

ga
tiv

e

1.2e+02 77 27

22 4.8e+02 41

44 1.1e+02 1.7e+02

(b) BERT+GRU

positive neutral negative

po
sit

iv
e

ne
ut

ra
l

ne
ga

tiv
e

78 82 59

90 3.3e+02 1.2e+02

48 98 1.8e+02

(c) XLNet+MLP

positive neutral negative

po
sit

iv
e

ne
ut

ra
l

ne
ga

tiv
e

1.1e+02 83 24

21 4.8e+02 39

67 1.6e+02 99

(d) XLNet+GRU
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