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Abstract

Multiple instance regression (MIR) was introduced
by Ray and Page [2001] as an analogue of multi-
ple instance learning (MIL) in which we are given
bags of feature-vectors (instances) and for each bag
there is a bag-label which matches the label of one
(unknown) primary instance from that bag. The
goal is to compute a hypothesis regressor consis-
tent with the underlying instance-labels. A natural
approach is to find the best primary instance as-
signment and regressor optimizing the mse loss
on the bags though no formal generalization guar-
antees were known. Our work is the first to prove
generalization error bounds for MIR when the bags
are drawn i.i.d. at random. Essentially, with high
probability any MIR regressor with low error on
sampled bags also has low error on the underlying
instance-label distribution. We next study the com-
plexity of linear regression on MIR bags, shown
to be NP-hard in general by Ray and Page [2001],
who however left open the possibility of arbitrarily
good approximations. Significantly strengthening
previous work, we prove a strong inapproximabil-
ity bound: even if there exists zero bag-loss MIR
linear regressor on a collection of 2-sized bags
with labels in [−1, 1], it is NP-hard to find an MIR
linear regressor with bag-loss < C for some ab-
solute constant C > 0. Our work also proposes a
model training method for MIR based on a novel
weighted assignment loss, geared towards handling
overlapping bags which have not received much
attention previously. We conduct empirical evalu-
ations on synthetic and real-world datasets show-
ing that our method outperforms the baseline MIR
methods.

1 INTRODUCTION

In traditional supervised learning, the training data consists
of labeled instances represented by feature-vectors. In many
applications however, due lack of instrumentation, uncer-
tainty in the data or privacy constraints, instance-wise labels
may not be available. Instead, the data consists sets or bags
of instances and one label per such bag which is thought to
depend on the (unknown) instance-labels present in the bag
via some label aggregation function.

The approach of multiple instance learning (MIL) – intro-
duced in [Dietterich et al., 1997] for predicting drug activity
– trains an instance-level predictor to be consistent with the
bag-labels of the training data according to the aggregation
function. In the many commonly studied binary {0, 1}-label
scenarios [Dietterich et al., 1997, Maron and Lozano-Pérez,
1997, Zhang and Goldman, 2001, Chen et al., 2006], the
bag-label is OR i.e, disjunction of the instance-labels in the
bag.

Our focus is multiple instance regression (MIR) introduced
by [Ray and Page, 2001] as an analogue of MIL, in which
the labels are real-valued and only one primary instance
in a bag determines the bag label. These primary instances
are unknown and the task here is to learn an instance-label
predictor so that a primary instance per bag can be identified
whose predicted label is consistent with the bag label. The
trained instance-label predictor is then deployed to infer the
label of unlabelled instances encountered in the future. The
model training is formulated as an optimization problem:
find an instance-level predictor and identify the primary in-
stance of each training bag whose predicted label is taken to
be the predicted bag-label. The objective is to minimize the
loss between the observed and predicted bag-labels, where
the typical loss metric is mean-squared error (mse). Given
a predictor, the optimal primary instance for any bag is
the one whose predicted label minimizes loss. The MIR
formulation has been used to model applications in remote
sensing such as aerosol optical depth prediction [Wang et al.,
2008] and crop yield prediction [Wagstaff and Lane, 2007].



More recent works have applied MIR across multiple areas.
In a novel deployment of MIR, the work of Serafini et al.
[2022] used it to model electrical load disaggregation. In
the biological domain, Park et al. [2020] have used MIR
to model the continuous response of bags of neoantigens.
For image quality assessment where each image patch has a
probability of being prime, the work of Liang et al. [2021]
applied an MIR approach to train a CNN. A different image
analysis task - estimating facial age from images - has also
been tackled using MIR techniques [Liu et al., 2019]. Pre-
vious works have proposed baselines which preprocess the
data to produce fully supervised training data [Wang et al.,
2008]; along with specialized methods based on expectation-
maximization (EM) [Ray and Page, 2001, Wang et al., 2012]
as well as clustering [Trabelsi and Frigui, 2018]. Most of the
previous works consider the restricted case of disjoint bags,
however overlapping bags occur in real-world applications
such as electrical load disaggregation across time [Serafini
et al., 2022] mentioned above, as well as continuous time
human emotion recognition [Romeo et al., 2022] and mu-
sical clip analysis for automatic metadata tagging [Mandel
and Ellis, 2008], the latter two applications, while studied
more from the classification standpoint, admit analogous
regression tasks.

While there has been substantial work on the applied aspects
of MIR, a formal treatment from the statistical and compu-
tational perspectives has been lacking. Another aspect that
has received little attention is the case of overlapping bags.
For bags of size 1 i.e., traditional supervised regression,
generalization error bounds are known depending on the
complexity of the regressor class. Moreover, supervised lin-
ear regression (under mse) is known to be tractable on any
distribution, in particular finding a perfect linear regressor
i.e., with zero loss, as long as one exists, is computation-
ally easy. To the best of our knowledge, these aspects for
MIR have not (or only partially) been studied, for e.g. under
what conditions will an instance-label predictor trained on a
sample of MIR bags generalize to the underlying instance
distribution? On the complexity side, while [Ray and Page,
2001] showed that computing the optimum mse-loss linear
regression MIR with one primary instance per bag is NP-
hard in general, they leave open the possibility of arbitrarily
close approximations to the optimum.

Our work is the first to rigorously address the above ques-
tions. We first prove a bag to instance generalization error
bound when bags are sampled i.i.d. at random, essentially
showing that a regressor with bounded pseudo-dimension
(see Sec. 2.2) with values in [0, O(1)], where O(1) denotes
a constant, optimizing MIR on such bags also generalizes
well on the underlying instance distribution. We informally
state our result below:

Theorem 1.1 (bag to instance generalization bound, infor-
mal). Let f∗ : X → [0, O(1)] for some domain of real
feature-vectors X . Suppose m i.i.d. MIR bags are sampled,

each bag B consisting of k i.i.d. random instances from
some distribution D over X , with bag label f∗(x) for a
uniformly sampled x ∈ B. Let F be a concept class of re-
gressors which map X to [0, O(1)], and for any f ∈ F ,
εMIR be its mse-loss on the sampled bags, while εD be
its instance-wise mse-loss under D. Then, with probabil-
ity 1 − δ, εD ≤ O

(
ε

1/(2k+1)
MIR

)
as long as m/(logm) >

O
(

(d/ε
2k/(2k+1)
MIR )[log(1/δ) + log(1/εMIR)]

)
where d is

the pseudo-dimension of F .

Next we consider the problem of optimizing the loss of
linear regression for MIR and show that it is NP-hard to
approximate, even if a perfect solution exists and all bags
are of size ≤ 2.

Theorem 1.2 (inapproximability of bag loss, informal).
Given an instance of MIR whose bags are of size ≤ 2 with
labels in [−1, 1] such that there exists a linear regressor
and primary instances for each bag whose label given by
the linear regressor equals the bag label, it is NP-hard to
find a linear regressor with primary instances per bag such
that the optimum is strictly less than some absolute constant
c0 > 0 with respect to the mse-loss.

From a more practical standpoint as well, our work focuses
on the case of overlapping bags. These arise in applications
in which instances can belong to several groups based ei-
ther on temporal characteristics or annotations (see for e.g.
[Serafini et al., 2022], [Romeo et al., 2022] and [Mandel
and Ellis, 2008]). Such overlapping bag setting can also
be constrained to ensure that an instance is primary for at
most one bag that contains it. This injectiveness constraint
is superfluous in the disjoint bag setting considered in most
previous MIR methods, and therefore some of those tech-
niques – such as assigning the bag label to all instances in
that bag, or predicting the likelihood of an instance being
primary independent of the bag – are either not applicable
or don’t result in a solution respecting that constraint.

We propose the Weighted Assignment model training that
applies to overlapping bags along with injectiveness con-
straints. The method trains a label predictor model along
with free trainable variables (one for each bag and instance
in that bag) which model the primary instances in differ-
ent bags. These variables are constrained via regulariza-
tion terms to approximately be {0, 1}-valued, and sum to
1 within a bag, and are used to minimize loss between the
prediction for the bag and its bag-label. Another regulariza-
tion term across bags is used to make sure that an instance
is primary for at most one bag.

We believe that MIR is of current practical relevance and
our theoretical insights can impact the design and analysis
of new techniques for MIR and are therefore interesting.
The hardness result in Theorem 1.2 shows that this problem
becomes hard in a strong sense when we have bags of size



2, and rules out a straightforward application of the simple
techniques that can solve the instance-wise (bag size 1)
case. Our generalization error bound (Theorem 1.1) is the
first such for the MIR problem - it shows that optimizing
the bag-level mse loss provably (in the case of random
bags) learns the underlying instance labeling. This justifies
our algorithmic approach explained above, the Weighted
Assignment model training, for finding the prime instance
assignment and the regressor to optimize the bag-level loss.

1.1 PREVIOUS RELATED WORK

The work of [Dietterich et al., 1997] introduced the classi-
fication setting of multiple instance learning (MIL) in the
context of drug activity detection where the bag label is
modeled as an OR of the its (unknown) instance-labels (all
labels are {0, 1}-valued). Given a such a dataset of bags
the goal is to train an instance-label predictor. This formu-
lation was shown thereafter to have applicability in several
other domains including the analysis of medical images [Wu
et al., 2015] and videos [Sikka et al., 2013], information
retrieval [Lozano-Pérez and Yang, 2000], time series predic-
tion [Maron, 1998] and drug discovery [Maron and Lozano-
Pérez, 1997]. Multiple instance regression (MIR) [Ray and
Page, 2001] is the regression analogue in which the labels
are real-valued and a primary instance in a bag determines
the bag label. Other related settings in which aggregation
occurs are learning from label proportions Rueping [2010],
Wojtusiak et al. [2011] in which a bag’s label is the average
labels of its instances, and distribution regression Poczos
et al. [2013], Szabó et al. [2016] where the bag denotes a
probability distribution which is typically represented by a
collection of samples from it.

Techniques such as maximum-likelihood or boosting using
differentiable approximations to the OR function [Ramon
and De Raedt, 2000, Zhang et al., 2005] and logistic re-
gression [Ray and Craven, 2005] were proposed. More spe-
cialized MIL techniques include the diverse-density (DD)
method [Maron and Lozano-Pérez, 1997] and and its EM-
based variant, EM-DD [Zhang and Goldman, 2001]. On
the theoretical front, Blum and Kalai [1998] showed that
noise tolerant PAC learnability implies MIL PAC learnabil-
ity for i.i.d. bags while Sabato and Tishby [2012] showed
generalization bounds for the classification error on bags.

While MIL in the classification setting has been extensively
studied, the MIR problem has received much less attention,
its study largely being specific to the remote sensing domain.
Straightforward baseline methods transform the problem
into a fully supervised setting by either (i) averaging the
feature-vectors in each bag and assigning it the bag label i.e.,
aggregated-MIR [Wang et al., 2008], or (ii) instance-MIR
in which the bag-label is assigned to each instance in a bag
(see [Ray and Craven, 2005]). More sophisticated EM based
methods were developed, first of which was primary-MIR

(PIR) [Ray and Page, 2001] followed by others such as prun-
ing MIR [Wang et al., 2008] and mixture-model MIR [Wang
et al., 2012], while other work [Wagstaff et al., 2008, Tra-
belsi and Frigui, 2018] proposed methods for MIR based
on clustering techniques. Among these, aggregated-MIR
and the pruning-MIR methods are applicable to overlapping
bags as they operate at a bag level (collapsing or shrinking
them).

1.2 OVERVIEW OF PROOF TECHNIQUES

Bag to instance generalization error bound. With the
setup in the statement of Theorem 1.1, we prove the contra-
positive with high probability: if there is a lower bound of
4ζ on the instance-level error of any f ∈ F , then for any
prime instance assignment to bags, the loss on the sampled
bags is at least Ω(ζ2k+1) as long as the lower bound on m
in the statement holds. We can think of the m i.i.d. bags
being constructed as follows: sample mk i.i.d. instances
from D and then randomly partition them into m bags of
k feature-vectors each, and from each bag select a primary
instance at random and assign its label given by f∗ to the
bag. The known generalization error bounds for regression
imply that when m satisfies the given lower bound, for any
f ∈ C with loss onD at least 4ζ , its loss on the mk sampled
points is at least 2ζ . By losing another additive ζ in the loss
we can restrict ourselves to such f belonging to an appro-
priately fine-grained `∞-cover for F . Since, the range of
f is bounded, we obtain by averaging that there must be a
Ω(ζmk) points where the f has regression loss at least ζ/2.

In comparison to the fully supervised case, having bags of
size > 1 affords more choice to a bad regressor f - it can
fit the bag-label by a low error prediction on any one of
the instances in the bag. To show this is not possible with
high probability for all bags, we show - using a bucket-
ing argument - in the key Lemma 3.3 that among the mk
points sampled, there is a sizable subset S such that all the
values of f on S are far from all the values of f∗ on S
(†), where f∗ is the instance-labeling. More formally, by
a counting argument over a division of the range into ζ/4-
length segments, we obtain that for a subset S of size at
least Ω(ζ2mk/R2) =: 2pmk of the sampled points, the
value of f∗ on any of those points is at least ζ/4 in distance
from the value of f on any of those points.

Lemma 3.4, via a combinatorial analysis of the sampling
induced by the random partitioning, yields that with high
probability at least pk fraction of the bags are sampled en-
tirely from S each of which induces a loss of at least ζ/16.
In other words, a significant fraction of the sampled bags
are subsets of S. These bags induce the lower bound on
the bag-level loss since f is bound to incur a high error on
these bags due to the property (†) above of S. A further
union bound on the `∞-cover of C yields the desired bound.
Section 3 states our generalization error bound (Theorem



3.1) and includes its detailed proof.

Hardness of approximating linear MIR. The hardness re-
duction follows the (by now commonly used) template of
combining a tailored dictatorship test with a hard to approxi-
mate constraint satisfaction problem (CSP). The dictatorship
test – usually the key ingredient – is a toy version of the
problem defined over some domain e.g. RK which admits
a good solution corresponding to each coordinate in [K]
(completeness), while on the other hand any good solution
to the problem must depend significantly on at least one
distinguished coordinate in [K] (soundness). For our prob-
lem, we construct it as follows: let X = {−1, 1}K , and
for each x ∈ X , add two copies of the bag {x,−x}, one
with bag-label −1 and another with bag-label 1, which can
have different primary instances. For the completeness prop-
erty, observe that for any i ∈ [K] the regressor given by
f(x) = xi assigns −1 and 1 to the two instances of each
bag. Thus, by appropriately choosing the primary instances,
their labels can match the corresponding bag-labels leading
to a zero-loss solution.

For soundness, let us for ease of exposition restrict to only
homogeneous linear regressors of the form 〈r,x〉 for some
r ∈ RK . Suppose that for all i ∈ [K], ci � ‖c‖2 i.e., the
regressor does not have any distinguished coordinate. Then,
using Berry-Esseen theorem one can show that under the
uniform distribution over X , 〈r,x〉 is distributed close to a
mean-zero Gaussian. Now, it is easy to see that a random
point from such a Gaussian and its negation, both are at a
constant distance from the value 1 with significant probabil-
ity. This immediately yields a constant lower bound on the
loss, demonstrating the soundness. This dictatorship test is
plugged into a hard-to-approximate Label Cover problem
with certain structural properties which, along with the tech-
nique of folding over the constraints, aid in the reduction’s
analysis which we omit in this overview. As evident in this
discussion, our reduction creates overlapping bags. Never-
theless, a straightforward scaling perturbation can ensure
that all bags are pairwise disjoint. In particular, our hardness
result also applies to injective MIR.

Section 4 formally states our hardness result and includes
the formal description and analysis of the dictatorship test.
The rest of the proof is included in Appendix A along with
an explanation in Appendix A.5 of the perturbation used to
make the bags pairwise disjoint.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM DEFINITION

Let X be a set of real feature-vectors i.e., X ⊆ Rd0 for
some d0 ∈ Z+. A bag B is a subset of X . An instance I of
MIR consists of a collection B of m bags {B1, . . . , Bm}
along with a label vector σ = (σ1, . . . , σm) with the goal

being to find:

• a predictor h : X → R, and
• an assignment Γ : B → X s.t. Γ(B) ∈ B ∀B ∈ B

indicating the primary instance i.e., feature-vector for
each bag

minimizing the following objective

val (Lreg, I, h,Γ) := Ej∈[m] [Lreg (σj , h (Γ(Bj)))] (1)

for some loss function Lreg. For convenience we subsume
the optimization over Γ by defining:

val (Lreg, I, h) := min
Γ

Ej∈[m] [Lreg (σj , h (Γ(Bj)))] (2)

If there are no other constraints on Γ, then
clearly val (L, I, h) is minimized when Γ(Bj) =
arg minx∈BLreg(σj , h(x)), j ∈ [m]. In the case the bags
are overlapping one may add the constraints that for each
x, |{B ∈ B | x ∈ B,Γ(B) = x}| ≤ 1 i.e., an instance
may be primary for at most one bag. We shall refer to this
problem as injective MIR.

For brevity we shall denote by valp (I, h) the LHS of (2)
when Lreg(a, b) := |a − b|p, for any p ≥ 1. In particular,
val2 uses the mse-loss.

LetD be a distribution on X . For some f : X → [0, R] and
k ∈ Z+, an instance of IID-MIR[f, k,m] is a random prob-
lem instance I of MIR with m bags where independently
for each j ∈ [m]:
(i) bag Bj = {x1j , . . . ,xkj}, where xij ∼ D, indepen-
dently for i = 1, . . . , k, and
(ii) σj = f(x1j).

2.2 USEFUL CONCEPTS AND TOOLS

For our generalization error bound, we shall restrict our-
selves to a class F of real-valued functions (regressors) over
X with values i.e., predictions in [0, R] for some R ∈ R s.t.
R ≥ 1. For any X ′ ⊆ X s.t. |X ′| = N , let Cp(ξ,F ,X ′) de-
note a minimum cardinality `p-metric ξ-cover of F over X ′,
for some ξ > 0. Specifically, Cp(ξ,F ,X ′) is a minimum
sized subset of F such that for each f∗ ∈ F , there exists
f ∈ Cp(ξ,F ,X ′) s.t. (Ex∈X ′ [|f∗(x)− f(x)|p])1/p ≤ ξ
for p ∈ [1,∞), and maxx∈X ′ |f∗(x)− f(x)| ≤ ξ for
p =∞.

The maximum size of such a cover over all choices of X ′ ⊆
X s.t. |X ′| = N is defined to be Np(ξ,F , N). In other
words, such a cover of size Np(ξ,F , N) always exists for
p = [1,∞]. We refer the reader to Sections 10.2-10.4 of
[Anthony and Bartlett, 2009] for more details (see also
Chapter 2.2 of Vaart and Wellner [1996]).

The pseudo-dimension of F , Pdim(F) is a measure of the
complexity of the of F . As described in Sec. 10.4 and 12.3



of [Anthony and Bartlett, 2009], the pseudo-dimension can
be used to bound the size of covers for F as follows:

N1(ξ,F , N) ≤ N∞(ξ,F , N) ≤ (eNR/ξd)d (3)

where d = Pdim(F) and N ≥ d.

3 GENERALIZATION ERROR BOUND

With the setup in Sec. 2, let f∗ : X → [0, R] be any labeling.
This section is devoted to proving the following theorem.

Theorem 3.1. There is a constant K0 > 0 s.t. for pa-
rameters ε ∈ [0, R2] and δ ∈ (0, 1), if m/(logm) ≥

d
(
K0R

4

ε2

)2k (
log
(

1
δ

)
+ log

(
Rk
ε

))
, then with probability

1 − δ over instance I of IID-MIR[f∗, k,m]: any h ∈ F
s.t. ED

[
|h(x)− f∗(x)|2

]
≥ ε satisfies val2 (I, h) ≥

ε2k+1/16R8k+1.

The converse of the above theorem is obtained by letting
εMIR = ε2k+1/16R8k+1 (along with some simplifications)
and is stated below.

Corollary 3.2. For the lower bound on m above,
with probability at least 1 − δ, val2 (I, h) ≤
εMIR implies that ED

[
|h(x)− f∗(x)|2

]
≤(

16εMIR)1/(2k+1)
)
R(8k+1)/(2k+1) ≤(

16εMIR)1/(2k+1)
)
R4, since R ≥ 1.

Let ζ > 0 be a small enough parameter to be fixed later. For
convenience we shall prove the generalization error bounds
for the `1-loss (mae) and then translate them to `22-loss
(mse).

3.1 FIXING THE INSTANCES

The process of sampling a random instance I of IID-
MIR[f∗, k,m] can be equivalently defined as follows:

• Sample a collection Z of mk i.i.d. points from D.
• Randomly partition Z into k-sized bags B1, . . . , Bm
• For each j ∈ [m] choose a random feature-vector from
Bj and let its label under f∗ be the bag-label of Bj .

In this subsection, we shall prove bounds after fixing the
underlying instances Z sampled in the above process.

3.1.1 Bag error lower bound for fixed f

Let f ∈ F be s.t.

Ex∈Z [|f∗(x)− f(x)|] > ζ (4)

We have the following lemma.

Lemma 3.3. There is S ⊆ Z s.t. |S| ≥ ζ2mk/(10R2)
and for any x, z ∈ S, |f∗(x)− f(z)| > ζ/4.

Proof. Note that maxx∈X |f∗(x)− f(x)| ≤ R. Using this
upper bound along with (4) and an averaging argument
we obtain that ∃S0 ⊆ Z s.t. |S0| ≥ ζmk/(2R) and for
any x ∈ S0, |f∗(x)− f(x)| > ζ/2, if not, then the LHS
of (4) is at most Rζ/(2R) + (1 − ζ/(2R))(ζ/2) < ζ
which is a contradiction. For i ∈ {1, . . . , d4R/ζe} define
Si = {x ∈ S0 | f∗(x) ∈ [(i − 1)ζ/4, iζ/4]}. Note that
by the construction of S0, for each i ∈ {1, . . . , d4R/ζe}
and any x, z ∈ Si, |f∗(x)− f(z)| > ζ/4. Choose S
to be the Si with the largest size – which is at least
mk (ζ/(2R)) / (d4R/ζe). Note that ζ ≤ R and therefore
d4R/ζe ≤ 4R/ζ+1 ≤ 4R/ζ+R/ζ ≤ 5R/ζ . Thus, we ob-
tain that |S| ≥ ζ2mk/(10R2) , completing the proof.

Define υ := ζ2/(20R2) so that ζ2mk/(10R2) = 2υmk.
Let p := |S|/(2|Z|) = |S|/(2mk) ≥ υ. We now show
that (in the random partitioning step), a significant number
of bags have all the elements from S.

Lemma 3.4. With probability at least 1− 2exp
(
−mυk/8

)
the number of bags having all k elements from S is at least
mυk/2.

Proof. After the randomized partitioning step each bag gets
a certain number of elements from S and the rest from
Z \ S, with exactly k elements per bag. We model this
process of generating these counts as follows:

1. Initially each of the m bags have k uncolored balls
each, in total having mk balls.

2. Each uncolored ball independently is colored red with
probability p and with probability 1− p colored blue.
Depending on the total number of red balls go to either
Step 3 or Step 4.

3. If the total number red balls exceeds |S| = 2pmk by
r, then a random choice of r red balls are colored blue.

4. If the total number red balls is less than |S| = 2pmk
by r, then a random choice of r blue balls are colored
red.

In the end, a random set of exactly |S| balls are colored
red, and therefore the distribution of red-ball counts in the
bags is same as that of the number of elements of S in the
partitioning process. Thus, all we need to estimate is the
number of bags with k red balls. Since the ball coloring
step in Step 2 is i.i.d. random, each bag independently gets
k red balls with probability pk. Letting s be the number
of bags with k red balls, by the lower tail Chernoff bound
(see Theorem 4 in [Goemans, 2015]), we obtain at Step 2
that Pr[s ≥ mpk/2] ≥ 1 − exp

(
−mpk/8

)
. Now, if we

are in Step 4 then the number of bags with all red balls
does not decrease, while it Step 3 this number can decrease.
So we only need to subtract off the probability that Step



3 happens, which by the Chernoff bound (upper tail) is at
most exp

(
−mpk/3

)
≤ exp

(
−mpk/8

)
. Thus, at the end

of the process, Pr[s ≥ mpk/2] ≥ 1 − 2exp
(
−mpk/8

)
completing the proof.

3.1.2 Union bound over cover

As described in Sec. 2.2, let C∞(ξ,F ,Z) be an `∞-metric ξ-
cover whose size we shall denote for convenience by q∞, for
some parameter ξ > 0 we shall set later. Then, from Lemma
3.4 and by union bound we obtain that with probability at
least 1− 2q∞exp

(
−mυk/8

)
the following event E0 holds:

for each f ∈ C∞(ξ,F ,Z) satisfying (4)

• the number of bags having all k elements from the
corresponding S (see Lemma 3.3) is at least mpk/2 ≥
mυk/2. Call these the S-covered bags with respect to
f .

3.2 ERROR BOUNDS FOR Z

Consider the subset Ferr ⊆ F of all h ∈ F such that
ED [|h(x)− f∗(x)|] ≥ ζ̂ for ζ̂ := 4ζ. We have the fol-
lowing lemma.

Lemma 3.5. With probability at least 1 −
4q1exp

(
−ζ̂2mk/(128R2)

)
over the choice of Z ,

∀h ∈ Ferr Ex∈Z [|h(x)− f∗(x)|] ≥ ζ̂/2 (5)

where q1 = N1(ζ̂/32,F , 2mk).

Proof. The labeling is given by f∗ and therefore the true
error of h is ED [|h(x)− f∗(x)|]. The empirical error is
Ex∈Z [|h(x)− f∗(x)|] where the expectation is over x sam-
pled uniformly at random from Z . Therefore, given that
ED [|h(x)− f∗(x)|] ≥ ζ̂ for all h in Ferr, the condition
of (5) follows by an upper bound of ζ̂/2 on the difference
between true and empirical errors for the class Ferr given
by Theorem 17.1 of [Anthony and Bartlett, 2009]. Since
the mappings in the latter are to [0, 1] instead of [0, R] in
our case, we apply Theorem 17.1 of Anthony and Bartlett
[2009] with f∗/R as the labeling and F err := {h/R :
h ∈ Ferr} as the function class. This amounts to taking
ζ̂/(2R) as the error ε in Theorem 17.1 of Anthony and
Bartlett [2009]. Observing that N1(ζ̂/(32R),F err, 2mk) =

N1(ζ̂/(32),Ferr, 2mk) and that |Z| = mk completes the
argument.

Suppose the random choices of Z and B ensure that (5)
holds and letting ξ := ζ/8 the event E0 in the previous
subsection also holds. This happens with probability 1 −
2q∞exp

(
−mυk/8

)
− 4q1exp

(
−ζ̂2mk/(128R2)

)
.

Consider any h ∈ Ferr and let f ∈ C∞(ξ,F ,Z) be the
nearest to it in `∞-distance i.e, maxx∈Z |h(x)− f(x)| ≤ ξ.
Noting that ξ = ζ/8, from (5) and the triangle inequality,
f satisfies (4). Since the event E0 holds, any S-covered
bag with respect to f incurs a bag-loss of at least ζ/4 in
val1 (I, h). By the nearness of h and f such a bag incurs
a bag loss of at least ζ/4 − ξ ≥ ζ/8 in val1 (I, h). By the
lower bound on the number of such bags implied by E0 we
obtain val1 (I, h) ≥ ζυk/16.

Summarizing the above we have that with probability at
least:

1− 2q∞exp
(
−mυ

k

8

)
− 4q1exp

(
−ζ

2mk

8R2

)
(6)

for all h ∈ F such that ED [|h(x)− f∗(x)|] ≥ 4ζ,
val1 (I, h) ≥ ζυk/16.

3.3 BOUNDS USING PSEUDO-DIMENSION

From Sec. 2.2 we have that,

q∞ ≤
(

2emk

dξ

)d
, q1 ≤

(
8emk

dζ

)d
(7)

Using the above, there is some absolute constant K0 > 0
s.t. choosing

m

logm
≥ d

(
K0R

2

ζ2

)2k (
log

(
1

δ

)
+ log

(
k

ζ

))
(8)

yields that (6) is at least 1− δ, for δ ∈ (0, 1].

MSE Error Bound. Suppose that h ∈ F satis-
fied ED

[
|h(x)− f∗(x)|2

]
≥ ε, then since h, f have

range [0, R], we obtain that ED [R |h(x)− f∗(x)|] ≥
ED
[
|h(x)− f∗(x)|2

]
≥ ε i.e., ED [|h(x)− f∗(x)|] ≥

ε/R. Also, the optimal primary instance assignment for
val1 (I, h) is also optimal for val2 (I, h) since the closest
instance-prediction in a bag to the bag-label remains the
same. Using this, along with the above analysis and substi-
tuting ε/R for ζ along with the values of the other parame-
ters we obtain the statement of Theorem 3.1.

4 HARDNESS OF LINEAR MIR

Theorem 4.1. Let F be the class of all linear regressors
over Rn for some n ∈ Z+. There is an absolute constant
C2 > 0 s.t. given an instance I of MIR whose bags are
of size ≤ 2 with bag-labels in [−1, 1] such that there exists
a f∗ ∈ F such that val2(I, f∗) = 0, it is NP-hard to find
f ∈ F s.t. val2(I, f) ≤ C2 − ε, for any constant ε > 0.

In fact, one can take C2 = 2
100

(
1− 1√

π

)
. The result also

holds when the bags are disjoint and therefore for injective
MIR.



The rest of this section describes the dictatorship test which
is a key component of the proof, the rest of which is included
in Appendix A. While the hardness reduction creates MIR
instances with overlapping bags, in Appendix A.5 we show
how to make the bags disjoint while retaining the hardness
factor.

4.1 DICTATORSHIP TEST

For any positive integer K, let JK an instance of MIR
on 2-sized bags as follows. The underlying set of feature-
vectors is {−1, 1}K , we now define JK as a distribution
which samples a random 2-sized bag along with its label as
follows:

1. Choose x(1) uniformly at random from {−1, 1}K and
define x(2) = −x(1).

2. Sample σ ← {1,−1} uniformly at random.
3. Output bag B = {x(1),x(2)} along with σ as its label.

While we define JK for convenience as a distribution over
bags and their labels, the distribution is uniform over all
possible 2K sets {x(1),x(2) = −x(1)} and labels {−1, 1}
for each of them, in total we have 2K+1 bags. Note that in
the above we treat a set of two feature-vectors with label
1 and with label −1 as two distinct bags. We prove the
following two properties of JK .

Lemma 4.2 ((Completeness of JK)). For any i∗ ∈ [K],
the linear regressor f (i)(x) = xi admits a primary instance
assignment Γ such that its val2(JK , f (i),Γ) = 0.

Proof. For any fixed i ∈ [K], and any bag B =
{x(1),x(2)} sampled by D(JK), we have that f (i)(x(1)) =

x
(1)
i = −x(2)

i = −f (i)(x(2)) ∈ {−1, 1}. Thus,
{f (i)(x(1)), f (i)(x(2))} = {−1, 1} which are the two pos-
sible values of σ. Therefore, the choice of Γ(B) to be xa s.t.
f (i)(x(a)) = σ yields that val2(JK , f (i),Γ) = 0.

4.1.1 Soundness of JK

Let f(x) = 〈c,x〉 + c0 =
∑K
i=1 cixi + c0 denote a

linear regressor over RK . We say that f is τ -regular if
maxi∈[K] |ci| ≤ τ‖c‖2. This subsection is devoted to prov-
ing the following soundness property of JK for the above
linear regressor.

Lemma 4.3 ((Soundness of JK)). There is an absolute
constant C2 > 0 such that for any small enough constant
τ > 0, if f is τ -regular then for any primary instance
assignment Γ, val2(JK , f,Γ) ≥ C2 − τ . In fact, one can

take C2 = 2
100

(
1− 1√

π

)
.

We assume the τ -regularity condition of the above lemma
and prove the lemma for the case c0 ≤ 0, with the proof for
c0 ≥ 0 being analogous.

Observe that the bag gets label either 1 or −1 with equal
probability. Therefore, it suffices to lower bound the prob-
ability that both f(x(1)) as well as f(x(2)) are far enough
from 1 (for c0 ≥ 1 the deviation from−1 is lower bounded),
as the following lemma shows.

Lemma 4.4. There are absolute constants t0 ∈
(0, 1/2], p0 ∈ (0, 1] s.t.

Pr
[∣∣∣f(x(1))− 1

∣∣∣ , ∣∣∣f(x(2))− 1
∣∣∣ > t0

]
≥ p0 − 2.5τ. (9)

In fact, the above is satisfied with t0 = 0.2 and p0 = 1 −
1/
√
π

Proof. For convenience let g(x) := 〈c,x〉 i.e., f(x) =
g(x)+c0. Consider a random bagB sampled by JK . Define
the random variable X̃ := g(x(1)) and by construction we
have that g(x(2)) = −X̃ . Thus, we have

min
{∣∣∣f(x(1))− 1

∣∣∣ , ∣∣∣f(x(2))− 1
∣∣∣} > t0

⇔ min {|X + c0 − 1| , |−X + c0 − 1|} > t0

⇔ min {|X − (1− c0)| , |−X − (1− c0)|} > t0

⇔ |X| 6∈ [κ− t0, κ+ t0] (10)

where κ = 1− c0 ≥ 1 since c0 ≤ 0. Now, X =
∑K
i=1 cixi

where xi are i.i.d. uniform {−1, 1} random variables, i ∈
[K]. Applying the Berry-Esseen theorem [Shevtsova, 2010]
and using the regularity of f we obtain that for any t ∈ R

|Pr[X > t]− Pr[Z > t]| ≤ 0.57τ (11)

where Z ∼ N(0, σ2) is a mean zero Gaussian with variance
σ2 = ‖c‖22. Thus,

|Pr [|X| 6∈ [κ− t0, κ+ t0]]

−Pr [|Z| 6∈ [κ− t0, κ+ t0]]| ≤ 2.5τ

To complete the proof, we need to lower bound the above
probability term with Z. Since Z is a mean-zero Gaussian
and κ − t0 ≥ κ − 1/2 > 0, Pr [|Z| 6∈ [κ− t0, κ+ t0]] =
1−2 Pr [Z ∈ [κ− t0, κ+ t0]]. Therefore, we need to upper
bound Pr [Z ∈ [κ− t0, κ+ t0]] by a constant strictly less
than 1/2. To do this we shall take t0 = 0.2 ≤ 0.2κ and
consider two cases:

• σ > 4
√

2κ/10: In this case a straightforward integra-
tion over the segment [κ− t0, κ+ t0] of length 2t0
yields

Pr [Z ∈ [κ− t0, κ+ t0]]

≤ 2t0

σ
√

2π
≤ 2(0.2)(10)κ

8κ
√
π

=
1

2
√
π

• σ ≤ 4
√

2κ/10: In this case we have,

Pr [Z ∈ [κ− t0, κ+ t0]] ≤ Pr

[
Z

σ
≥ κ− t0

σ

]
≤ Pr

[
Z

σ
≥
√

2

]



where we use the upper bound of 4
√

2κ/10 on σ
and that κ − t0 ≥ κ − 0.2κ = 0.8κ. Now since
Z/σ ∼ N(0, 1), Prop 2.1.2 of [Vershynin, 2018]
yields an upper bound for the RHS of above given
by
(
1/(
√

2
√

2π)
)

exp(−((
√

2)2/2) ≤ 1/(2
√
π).

Combining everything we complete the proof with t0 = 0.2
and p0 = 1− 1/

√
π.

Proof. (of Lemma 4.3) Observe that a bag with the same
two feature-vectors occurs with bag-label 1 as well as −1.
Lemma 4.4 shows that the expected contribution to val2
from bags with bag-label 1 is (p0 − 2.5τ)t20. Since, bag-
label 1 occurs half the time, we obtain the following lower
bound on the val2(JK , f,Γ) for any Γ:

1

2

(
1− 1√

π
− 2.5τ

)
(0.2)2 ≥ 2

100

(
1− 1√

π

)
− τ

(12)
which completes the proof.

5 WEIGHTED ASSIGNMENT TRAINING

We describe our wtd-Assign model training method. Let I
be an instance of injective MIR as defined in Sec. 2. Let
kj (j ∈ [m]) be the size of the jth bag given by Bj =
{xij | i = 1, . . . , kj}, and n =

∑m
j=1 kj be the total

elements with multiplicity of all the bags. Let X be the set
of distinct feature-vectors in ∪B∈B. For each x ∈ X let
J(x) := {(i, j) | x = xij}. Since each bag is a subset
(i.e., with no multiplicities) each J(x) has at most one tuple
corresponding to any j.

Predictor Model. We train a real-valued model M over the
domain X i.e., M : X → R.

Trainable free variables. We define zij ∈ R to trainable
variables for each (i, j) ∈ ∪mj=1{1, . . . , kj}×{j}.Note that
these are real-valued free variables which are not outputs
from the predictor model M . Denote set of such variables
as Z.

Derived variables. For each zij there is a corresponding
variable uij := Sigmoid(zij) = 1/(1 + e−zij ) ∈ (0, 1)
denoting the the probability that xij is primary for bag j.
Let the collection of all the u variables be denoted by U .

Loss Function. Given the variables U , our first regulariza-
tion loss term pushes each u ∈ U to be either 0 or 1 using
an entropic loss:

LSE(U) :=
∑
u∈U

(−u log u− (1− u) log(1− u)) (13)

The second regularization loss term ensures that each bag
has exactly one primary instance:

Lprob(B) :=

m∑
j=1

∣∣∣∣∣∣
kj∑
i=1

uij − 1

∣∣∣∣∣∣ (14)

The next one similarly makes sure that an instance is primary
in at most one bag

Lprim(X ) :=

∣∣∣∣∣∣max

∑
x∈X

∑
(i,j)∈J(x)

uij , 1

− 1

∣∣∣∣∣∣ (15)

Lastly, we minimize the deviation of the bag-label prediction
from the true bag-label using:

Lbag(B) :=

m∑
j=1

Lbag

σj , kj∑
i=1

uijM(xij)

 (16)

where Lbag is typically mase or the mean absolute error
(mae). For convenience we will use LSE(V ) to denote the
restriction of LSE(U) to only those variables in V ⊆ U ,
and similarly for any B0 ⊆ B, Lprob(B0) and Lbag(B0) are
corresponding restrictions to the bags in B0 in which the
summations in the RHS of (14) and (16) respectively are
only over the bags in in B0. For convenience, Lprim(B0) is
used to denote the restriction of (15) to only the bags B0 i.e.,
the summation is over only the instances x present in B0.

The combined wtd-Assign loss that we optimize is:

LWA(U,B) = λ1LSE(U)+λ2Lprob(B)

+λ3Lprim(B) + λ4Lbag(B) (17)

for some hyperparameters λ1, λ2, λ3, λ4 ≥ 0.

Minibatch based model training. For a given set
of hyperparameters {λt}4t=1, learning rate δ, optimizer
optimizer, and a minibatch size q the method trains the
predictor model M along with the variables Z as follows by
doing the following for N epochs and K steps per epoch:

1. Sample a minibatch S of q bags BS ⊆ B.
2. For each distinct (i, j) s.t. Bj ∈ BS and i ∈ [kj ], use
uij := Sigmoid(zij) along with the predictions M of
the model on the required subset of variables from Z
to compute uij , and let US := {uij | Bj ∈ B0, i ∈
[kj ]} ⊆ U .

3. Use the values in US to compute LSE(US),Lprob(BS)
and Lbag(BS).

4. For each feature-vector x in the bags BS compute
{uij | (i, j) ∈ J(x)} using uij := Sigmoid(zij)
along with the predictions M of the model on the re-
quired subset of variables from Z. Use these to com-
pute Lprim(BS).

5. Using the required gradients of LWA(US ,BS) from
(17) along optimizer and learning rate δ, update
the weights of the model M .

6 EXPERIMENTAL EVALUATION

We comparatively evaluate our wtd-Assign method on syn-
thetic as well as real-world data.



Baselines. The following baselines are included as part of
our experiments:

1. Instance-MIR (InsMIR [Ray and Craven, 2005]) in
which all the feature-vectors in a bag are labeled with
the bag-label and the model is trained on the resultant
data. For overlapping bags, multiple copies of the same
feature-vector with different labels are used.

2. Aggregation-MIR (AggMIR [Wang et al., 2008]) in
which the feature-vectors in a bag are averaged into a
single feature-vector which is assigned the bag label
and the model is trained on this aggregated dataset.

3. Primary-MIR (PIR [Ray and Page, 2001]) which is an
EM based method which iteratively selects and updates
the best instance in a bag as primary and trains the
model on the selected primary instances.

4. Balanced-Pruning MIR (BPMIR [Wang et al., 2008])
in which those instances in a bag are removed which
are farthest from the median prediction over the non-
pruned bags. This is a more sophisticated – as well as
empirically better performing – of the pruning based
methods (see [Wang et al., 2008]).

6.1 SYNTHETIC DATASET EXPERIMENTS

Our synthetic data is generated over n = 32 dimensional
real-space, with m = 10000 bags of size k = 2, 5, and 10
each using the following steps.

Feature-vector generation: mk feature-vectors are initially
sampled i.i.d. from N(0, 1)n, and then partitioned into m
subsets of size k each. For each of the 32 features and each
of the m subsets, a k × k Cholesky matrix is sampled and
k-vector of feature values linearly transformed. Thus, within
each subset, the values corresponding to each feature are
made correlated. There is no correlation across features or
across bags for the same feature.

Bag generation: We create overlapping bags by resampling
them as follows. For each bag and each instance x in that
bag we center a Gaussian with a temperature-tuned log-
likelihood at x and sample an instance from X using the nor-
malized weights assigned by the temperature-tuned Gaus-
sian, and replace x with the sampled instance in that bag.
The temperature parameter is useful in controlling the de-
gree of overlap. We define the overlap percentage as the
fraction of feature-vectors that are part of more than one
bag.

Label generation: A quadratic regressor over Rn is con-
structed by sampling n linear coefficients randomly from
[−1, 1] and the n+

(
n
2

)
quadratic term coefficients randomly

from [−0.1, 0.1]. The instance-labels are given by this re-
gressor and for each bag a random instance is chosen as
primary and the bag-label is equated to its label with addi-
tive i.i.d. N(0, 1) noise. Note that once an instance is made
primary for one bag it is removed from the primary instance

candidates for the subsequent bags, so that one instance is
primary in at most one bag i.e., this is an injective MIR
setting.

The train-dataset consists of 8000 bags and the validation
and test sets each consist of 2000 primary instances and
their labels.

Model Training. The model used for all baselines is an
neural net with one hidden layer of size 1024 and relu ac-
tivations. The output node is a linear sum. The Adam opti-
mizer is used in all our experiments. The mini-batch size
is a hyperparameter ranging from 100 to 1000 bags, which
along with the learning rate and weight decay as well as
the weights for various loss terms in wtd-Assign are tuned
using a grid search.

Results. Table 1 shows the test mse scores of the various
methods with bag sizes k = 5, 10 and different overlap
percentages (refer to Appendix B for results with k = 2).
We observe that wtd-Assign is the best performing across
the different overlap percentages. For smaller overlap per-
centages, the performance of PIR and BPMIR are closer
to wtd-Assign while they significantly worsen for larger
overlaps. This is expected as wtd-Assign explicitly handles
overlapping bags.

Our technique wtd-Assign as well as PIR and BPMIR im-
plicitly track the primary instances in each bag. Using this,
in Table 2 we also present the attribution accuracy of these
methods on the training bags i.e., on what percentage of
training bags is the predicted primary instance same as the
true primary instance. We again see wtd-Assign performs
the best with stable accuracy scores across the overlap per-
centages. PIR is clearly the second best while its perfor-
mance decreases noticeably with increasing overlap.

Overlap %→ 10 15 20 25

k = 5
InsMIR 7.55 9.09 9.48 11.12
AggMIR 13.84 13.95 13.71 13.89
PIR 3.20 4.32 4.95 3.94
BPMIR 3.46 3.85 4.12 4.69
wtd-Assign 2.61 2.87 2.74 3.17

k = 10
InsMIR 16.12 18.61 22.97 28.46
AggMIR 30.45 30.35 30.19 32.00
PIR 7.95 9.35 11.51 13.46
BPMIR 7.29 12.13 15.03 21.34
wtd-Assign 6.23 8.47 8.80 11.77

Table 1: Synthetic data (k = 5, 10): Test MSE



Overlap %→ 10 15 20 25

k = 5
PIR 43.21 43.46 38.95 40.02
BPMIR 19.36 20.71 20.00 20.00
wtd-Assign 52.60 47.48 54.76 49.75

k = 10
PIR 24.00 23.60 21.90 20.60
BPMIR 12.60 13.70 12.00 11.70
wtd-Assign 24.51 24.20 25.30 24.10

Table 2: Synthetic data (k = 5, 10): Train Attribution Accu-
racy

6.2 REAL-WORLD DATASET EXPERIMENTS

We use the 1940 US Census Data [Steven Ruggles and
Sobek, 2018]1 from which we use the following features:

• Target : WKSWORK1 - Number of weeks the person
worked in the previous year

• Numerical Features : AGE - Age of the person
• Categorical Features: SEX - gender, MARST - mar-

ital status, CHBORN - number of children born to
a woman in that year, SCHOOL - school attendance,
EMPSTAT - employment status, OCC - primary oc-
cupation, IND - type of industry in which the person
works

• Aggregation Features: STATEICP, COUNTYICP,
CITY, CNTRY, REGION.

We use the aggregation features only to create k-sized bags
with k = 16 and k = 25. The first step is to group-by
the aggregation features to obtain groups of instances cor-
responding to each setting of those features. We sample
k-sized bags independently from each such group. As over-
laps are desired, we discard those groups with less than
50 instances. From any remaining group of size s we ran-
domly sample ≈ s/k bags randomly and we also include
a fraction of the instances into the test and validation sets.
For each training bag, its label is obtained from a randomly
chosen primary instance, making sure by resampling that
an instance is primary for at most one bag. In total, we ob-
tain ≈ 78, 000 training bags and ≈ 26, 000 sized test and
validation sets for k = 16 and ≈ 53, 000 training bags and
≈ 18, 000 sized test and validation sets for k = 25. The
overlap percentage is around 40%. The categorical features
are encoded as multi-hot in a 402 dimensional space so that
the input dimension is 403.

The model architecture, optimizer and the training hyperpa-
rameters are same as in the synthetic data experiments (Sec.
6.1)

1https://usa.ipums.org/usa/
1940CensusDASTestData.shtml

Results. The model trained on the fully supervised training
data has a test mse of 178.0. On the other hand, Table 3
reports the corresponding scores for the different methods
trained on bags. We observe that wtd-Assign performs the
best, however PIR is only slightly worse while BPMIR also
has comparable performance. On the other hand InsMIR
is significantly worse while the loss on AggMIR make it
unusable.

Bag size→ 16 25

InsMIR 290.96 295.93
AggMIR 1028.14 1297.38
PIR 286.60 319.93
BPMIR 219.98 223.02
wtd-Assign 208.03 211.75

Table 3: US Census data: Test MSE

The experimental code is available at https://github.
com/google-research/google-research/
tree/master/mir_uai24.

7 CONCLUSION

Our work proves the first generalization error bounds for
the multiple instance regression (MIR) problem in which
the label of a bag is given by that of an (unknown) primary
instance in the bag. Specifically, we show that optimizing
the mse loss on i.i.d sampled bags yields a regressor which
has low mse on the underlying instance distribution, with
high probability over the sampled bags. We also prove the
first inapproximability result for MIR: given an MIR in-
stance with bounded labels which admits a linear regressor
with primary instances which has zero mse bag-loss, it is
NP-hard to find one which has bag-loss lower than some
absolute constant. While our contributions develop a deeper
theoretical understanding of the problem, from a practical
standpoint we also propose a weighted assignment based
model training method which naturally handles overlapping
bags unlike previous works. Our experiments on synthetic
and real-world datasets demonstrate the improvements pro-
vided by our method.

Future work can include generalization guarantees for non-
iid MIR bags, as well as investigation from the computa-
tional learning perspective of non-linear regressors on MIR
data.
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A HARDNESS REDUCTION FOR LINEAR MIR

A.1 PRELIMINARIES

Our hardness result is via a reduction from the SMOOTH-LABEL-COVER problem defined below.

Definition A.1. An instance of SMOOTH-LABEL-COVER L(G(V,E), N,M, {πe,v | e ∈ E, v ∈ e}) consists of a regular
connected (undirected) graph G(V,E) with vertex set V and edge set E. Every edge e = (v1, v2) is associated with
projection functions {πe,vi}2i=1 where πe,vi : [M ] → [N ]. A vertex labeling is a mapping defined on L : V → [M ]. A
labeling L satisfies edge e = (v1, v2) if πe,v1(L(v1)) = πe,v2(L(v2)). The goal is to find a labeling which satisfies the
maximum number of edges.

The following theorem states the hardness of SMOOTH-LABEL-COVER and is proved in Appendix A of [Guruswami et al.,
2016].

Theorem A.2. There exists a constant c0 > 0 such that for any constant integer parameters Q,R ≥ 1, it is NP-hard to
distinguish between the following two cases for a Smooth Label Cover instance L(G(V,E), N,M, {πe,v | e ∈ E, v ∈ e})
with M = 7(Q+1)R and N = 2R7QR:

• (YES Case) There is a labeling that satisfies every edge.
• (NO Case) Every labeling satisfies less than a fraction 2−c0R of the edges.

In addition, the instance L satisfies the following properties:

• (Smoothness) For any vertex w ∈ V , ∀i, j ∈ [M ], i 6= j, Pre∼w [πe,w(i) = πe,w(j)] ≤ 1/Q, where the probability
is over a randomly chosen edge incident on w.

• For any vertex v, edge e incident on v, and any element i ∈ [N ], we have |(πe,v)−1(i)| ≤ d := 4R; i.e., there are at
most d = 4R elements in [M ] that are mapped to the same element in [N ].

• (Weak Expansion) For any δ > 0, let V ′ ⊆ V and |V ′| = δ · |V |, then the number of edges among the vertices in |V ′|
is at least δ2|E|.

Theorem 4.1 follows from the following hardness reduction and Theorem A.2.

Theorem A.3. There exists a universal constant C2 ∈ (0, 1] s.t. for any ε > 0 there exists a polynomial time reduction from
an SMOOTH-LABEL-COVER instance L with some parameters Q and R depending on ε to an instance I of MIR with all
bags of size ≤ 2 and labels in [−1, 1] s.t.

• (YES Case) If L is a YES instance then there exists a linear regressor h∗ and a primary instance assignment Γ∗

satisfying val2(I, h∗,Γ∗) = 0.
• (NO Case) Id L is a NO instance then for all linear regressors h and primary instance assignments Γ, val2(I, h,Γ) >
C2 − ε.



The above holds with C2 = 2
100

(
1− 1√

π

)
.

The rest of this section is devoted to proving Theorem A.3.

A.2 HARDNESS REDUCTION FROM SMOOTH-LABEL-COVER

Let Q,R be parameters of an SMOOTH-LABEL-COVER L from Theorem A.2, to be set later depending on ε in Theorem
A.3. We first create an intermediate instance Ĩ of MIR as follows. For each vertex in V we have a block of M coordinates
i.e., X = RV×[M ]. For a vector x ∈ X , let xv ∈ RM denote its restriction of the M coordinates corresponding to v ∈ V .
The instance Ĩ is define by a distribution DĨ which samples a random bag as follows:

1. Sample a vertex v ∈ V uniformly at random.
2. Sample a bag-label pair

(
{x(1),x(2)}, σ

)
from JM (see Sec. 4.1).

3. Define vectors x̃(1) and x̃(2) as follows:

∀u ∈ V, x̃(1)
u =

{
x(1) if u = v

0 otherwise.
x̃(2)
u =

{
x(2) if u = v

0 otherwise.
(18)

4. Output the bag
(
{x̃(1), x̃(2)}, σ

)
We now apply the folding transformation to obtain the final instance.

A.2.1 Folding and Final Instance I

For any edge e = (u, v) ∈ E and element j ∈ [N ], define the vector h(e,j) ∈ RV×[M ] as follows,

h
(e,j)
w,i =


1 if w = u and i ∈ (πe,u)−1(j)

−1 if w = v and i ∈ (πe,v)−1(j)

0 otherwise.

Therefore, for any vector x̃ ∈ RV×[M ],

∀e = {u, v} ∈ E, j ∈ [N ], x̃ ⊥ h(e,j) ⇔
∑

i∈(πe,u)−1(j)

x̃u,i =
∑

i′∈(πe,v)−1(j)

X̃v,i′ (19)

Define two subspaces H and F of RV×[M ] as:

H := span(h(e,j) | e ∈ E, j ∈ [N ]}) and F = H⊥ (20)

i.e, F is the orthogonal complement of H in RV×[M ]

The final instance I is obtained by replacing each bag
(
{x̃(1), x̃(2)}, σ

)
with a bag

(
{x(1),x(2)}, σ

)
, where x(s) is the

projection of the vector x̃(s) onto F and represented using a orthonormal basis for F (s = 1, 2). Thus, the entire instance I
along with the expected linear regressor solutions reside in F .

A.3 PROOF OF YES CASE

Suppose ρ : V → [M ] is a labeling that satisfies all edges E of L. We shall first construct a solution for Ĩ with objective 0.
Consider the vector c̃ ∈ RV×[M ] where c̃v,i = 1 if i = ρ(v) and 0 otherwise, for all v ∈ V and i ∈ [M ]. Observe that for
any v ∈ V : (i) c̃ is an indicator vector in the M coordinates corresponding to v, and (ii) the bags of Ĩ after sampling v are
exactly those of JM in those coordinates (with coordinates corresponding to v′ 6= v being set to zero). Thus, by the the
completeness of JM (Lemma 4.2) f∗(x) := 〈c̃,x〉 has zero objective on the bags of Ĩ.

Now, since ρ is a satisfying assignment, c̃ satisfies the condition on the LHS of (19) using which we obtain that c̃ ⊥ H .
Therefore, for any x̃ ∈ RV×[M ], 〈c̃, x̃〉 = 〈c,x〉, where c and x are the projections of c̃ and x̃ onto H⊥ = F . Thus, the
objective of c on I is same as that of c̃ on Ĩ which is 0.



A.4 PROOF OF NO CASE

Suppose for a contradiction that there is a regressor f(x) = 〈c,x〉 + c0 where c ∈ F . for which there is a primary
instance assignment Γ s.t. val2(I, f ,Γ) < C2 − ε. Here we shall choose C2 to be the constant from Lemma 4.3. Since it
suffices to prove the soundness for small enough values of ε, we shall take ε ≤ C2/2. For v ∈ V , let val2(I, f ,Γ, v) be
the objective restricted to only those bags corresponding obtained after sampling v i.e., DĨ conditioned on v. Therefore,
val2(I, f ,Γ) = Ev∈V

[
val2(I, f ,Γ, v)

]
. It is easy to see that there must be (ε/(2C2))-fraction of the vertices V ′ ⊆ V s.t.

val2(I, f ,Γ, v) ≤ C2 − ε/2 for each v ∈ V ′, if not then by averaging val2(I, f ,Γ) > (1− ε/(2C2))(C2 − ε/2) > C2 − ε
which is a contradiction.

We now unfold c, rewriting it as c ∈ RV×[M ] which satisfies the folding constraints (19), and letting the corresponding
regressor over RV×[M ] be f(x) = 〈c,x〉+ c0 for the intermediate instance Ĩ . From the above we have that for each v ∈ V ′,
val2(Ĩ, f,Γ, v) ≤ C2 − ε/2. Using our setting of C2 as the constant from Lemma 4.3, we obtain that for each v ∈ V ′,
cv ∈ RM is not (ε/2)-regular where cv is the restriction of c to only those coordinates corresponding v. Thus, the subsets
Sv := {i ∈ [M ] |, |cv,i| ≥ (ε/2)‖cv‖2} and Rv := {i ∈ [M ] |, |cv,i| ≥ (ε/4)‖cv‖2} are non empty for each v ∈ V ′.
Furthermore by definition, Sv ⊆ Rv and |Sv| ≤ (4/ε2) and |Rv| ≤ 16/ε2 for each v ∈ V ′.

Let us also define the subset Tv := {i ∈ [M ] |, |cv,i| ≥ (ε/(16d))‖cv‖2} where d := 4R is the parameter from Theorem
A.2, so that Sv ⊆ Rv ⊆ Tv and |Tv| ≤ (16d/ε)2, for all v ∈ V ′. Letting E′ be the edges of L induced by V ′, we
obtain from Theorem A.2 that |E′| ≥ (ε/(2C2))2|E|. Call an edge e = {u, v} ∈ E′ good if |πe,u(Tu)| = |Tu| and
|πe,v(Tv)| = |Tv|. For any vertex v ∈ V ′, the fraction of edges e ∈ E incident on v and violating |πe,v(Tv)| = |Tv| is
at most |Tv|2/Q ≤ (16d/ε)4/Q from Theorem A.2. We can count these for each of the vertices and remove them, thus,
yielding the number of good edges to be at least ∆|E| where

∆ ≥
(

ε

2C2

)2

− 2

Q

(
16d

ε

)4

(21)

We now prove the following structural lemma for good edges.

Lemma A.4. For any good edge e = {u, v}, πe,u(Ru) ∩ πe,v(Rv) 6= ∅.

Proof. Without loss of generality assume that ‖cv‖2 ≥ ‖c‖2. Since Sv 6= ∅, let i0 ∈ Sv and j0 = πe,u(i0). Furthermore,
since e is good we know that (πe,v)−1(j0) ∩ Tv = 1. Thus,∣∣∣∣∣∣

∑
i∈(πe,v)−1(j0)

cv,i

∣∣∣∣∣∣ ≥
(ε

2
− d ε

16d

)
‖cv‖2 ≥

7ε

16
‖cv‖2 (22)

where ε
2‖cv‖2 is the lower bound on |cv,i0 | since i0 ∈ Sv , and ε

16d‖cv‖2 is an upper bound on |cv,i0 | for i ∈ (πe,v)−1(j0) \
{i0} from (πe,v)−1(j0) ∩ Tv = 1. Now, for a contradiction assume that (πe,u)−1(j0) ∩Ru = ∅. By the goodness of e we
already have (πe,u)−1(j0) ∩ Tu = 1. Thus,∣∣∣∣∣∣

∑
i∈(πe,u)−1(j0)

cu,i

∣∣∣∣∣∣ ≤
(ε

4
+ d

ε

16d

)
‖cu‖2 ≤

5ε

16
‖cu‖2 (23)

However, (22) and (23) violate the folding constraint (19) for c, thus completing the proof.

Randomized Labeling. Consider the following randomized labeling of V ′: for each v ∈ V ′ assign a label uniformly at
random from Rv . From (21), Lemma A.4 and the upper bound of 16/ε2 for any Rv , v ∈ V ′, we obtain that this randomized
labeling satisfies in expectation at least ∆∗ = (ε/4)4∆|E| edges. We can choose the parameter R in Theorem A.2 to be
large enough and Q� d to be large enough so that ∆∗ > 2−c0R which is a contradiction to the NO case of Theorem A.2.
This completes the proof of the NO case.

A.5 NON-OVERLAPPING BAGS

The bags in the instance I are overlapping, particularly since the dictatorship test JM and therefore Ĩ creates multiple
copies of the same bag with different bag label, and because the folding step may identify feature-vectors. To make the bags



of I disjoint, we do the following: independently for each bag (including copies) B sample γ ∈ (0, ε/2) u.a.r. and scale the
bag-label as well as both the feature-vectors in that bag by (1− γ).

First, note that since the original bag-labels were {−1, 1}, and each feature-vector is primary for at least one bag in the
YES case, none of the feature-vectors can be 0. This also holds in the NO case, otherwise one can easily distinguish the
YES and NO cases, leading to P = NP. Thus, one may assume that none of the feature-vectors in I are 0. Now, observe that
since the scaling factor is independently sampled for each bag from a continuous range and the number of bags are finite,
with probability 1 over the choice of the scaling factors any two feature-vectors from two different bags will have different
lengths, and therefore the bags are pairwise disjoint. Clearly, a perfect linear regressor (i.e., with zero loss) remains one
since the the bag-label is scaled with the same factor as the bag feature-vectors, so the YES case is preserved. For the NO
case, observe that this can reduce the loss by a factor of at most (1− ε/2)2 therefore the lower bound on the loss remains
C2 −O(ε).

B SYNTHETIC DATA EXPERIMENTS WITH k = 2

We observe that for tiny bag sizes (k = 2), PIR is able to better identify prime instances correctly, resulting in better
performance than wtd-Assign. For larger bag sizes though, our wtd-Assign method performs the best (Table 1).

Overlap %→ 10 15 20 25

k = 2
InsMIR 2.90 3.12 3.43 3.76
AggMIR 4.49 4.28 4.15 4.22
PIR 1.21 1.21 1.21 1.21
BPMIR 1.95 1.91 2.13 2.02
wtd-Assign 1.38 1.33 1.34 1.36

Table 4: Synthetic data (k = 2): Test MSE

Overlap %→ 10 15 20 25

k = 2
PIR 84.32 84.46 84.48 84.60
BPMIR 50.30 51.08 50.18 50.20
wtd-Assign 76.51 76.39 79.73 77.55

Table 5: Synthetic data (k = 2): Train Attribution Accuracy
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