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Abstract

Feature selection is the problem of selecting a subset of features for a machine learn-1

ing model that maximizes model quality subject to a budget constraint. For neural2

networks, prior methods, including those based on ℓ1 regularization, attention,3

and other techniques, typically select the entire feature subset in one evaluation4

round, ignoring the residual value of features during selection, i.e., the marginal5

contribution of a feature given that other features have already been selected. We6

propose a feature selection algorithm called Sequential Attention that achieves7

state-of-the-art empirical results for neural networks. This algorithm is based on an8

efficient one-pass implementation of greedy forward selection and uses attention9

weights at each step as a proxy for feature importance. We give theoretical insights10

into our algorithm for linear regression by showing that an adaptation to this setting11

is equivalent to the classical Orthogonal Matching Pursuit (OMP) algorithm, and12

thus inherits all of its provable guarantees. Our theoretical and empirical analyses13

offer new explanations towards the effectiveness of attention and its connections to14

overparameterization, which may be of independent interest.15

1 Introduction16

Feature selection is a classic problem in machine learning and statistics where one is asked to find17

a subset of 𝑘 features from a larger set of 𝑑 features, such that the prediction quality of the model18

trained using the subset of features is maximized. Finding a small and high-quality feature subset is19

desirable for many reasons: improving model interpretability, reducing inference latency, decreasing20

model size, regularization, and removing redundant or noisy features to improve generalization. We21

direct the reader to Li et al. (2017b) for a survey on the role of feature selection in machine learning.22

The widespread success of deep learning has prompted an intense study of feature selection algorithms23

for neural networks, especially in the supervised setting. While many methods have been proposed,24

we focus on a line of work that studies the use of attention for feature selection. The attention25

mechanism in machine learning roughly refers to applying a trainable softmax mask to a given layer.26

This allows the model to “focus” on certain important signals during training. Attention has recently27

led to major breakthroughs in computer vision, natural language processing, and several other areas28

of machine learning (Vaswani et al., 2017). For feature selection, the works of Wang et al. (2014);29

Gui et al. (2019); Skrlj et al. (2020); Wojtas and Chen (2020); Liao et al. (2021) all present new30

approaches for feature attribution, ranking, and selection that are inspired by attention.31

One problem with naively using attention for feature selection is that it can ignore the residual values32

of features, i.e., the marginal contribution a feature has on the loss conditioned on previously-selected33

features being in the model. This can lead to several problems such as selecting redundant features or34

ignoring features that are uninformative in isolation but valuable in the presence of others.35

This work introduces the Sequential Attention algorithm for supervised feature selection. Our algo-36

rithm addresses the shortcomings above by using attention-based selection adaptively over multiple37
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Figure 1: Sequential attention applied to model 𝑓(·;𝜃). At each step, the selected features 𝑖 ∈ 𝑆 are
used as direct inputs to the model and the unselected features 𝑖 ̸∈ 𝑆 are downscaled by the scalar
value softmax𝑖(w, 𝑆), where w ∈ R𝑑 is the vector of learned attention weights and 𝑆 = [𝑑] ∖ 𝑆.

rounds. Further, Sequential Attention simplifies earlier attention-based approaches by directly training38

one global feature mask instead of aggregating many instance-wise feature masks. This technique39

reduces the overhead of our algorithm, eliminates the toil of tuning unnecessary hyperparameters,40

works directly with any differentiable model architecture, and offers an efficient streaming implemen-41

tation. Empirically, Sequential Attention achieves state-of-the-art feature selection results for neural42

networks on standard benchmarks. The code for our algorithm and experiments is publicly available.143

Sequential Attention. Our starting point for Sequential Attention is the well-known greedy forward44

selection algorithm, which repeatedly selects the feature with the largest marginal improvement in45

model loss when added to the set of currently selected features (see, e.g., Das and Kempe (2011)46

and Elenberg et al. (2018)). Greedy forward selection is known to select high-quality features, but47

requires training 𝑂(𝑘𝑑) models and is thus impractical for many modern machine learning problems.48

To reduce this cost, one natural idea is to only train 𝑘 models, where the model trained in each step49

approximates the marginal gains of all 𝑂(𝑑) unselected features. Said another way, we can relax50

the greedy algorithm to fractionally consider all 𝑂(𝑑) feature candidates simultaneously rather than51

computing their exact marginal gains one-by-one with separate models. We implement this idea by52

introducing a new set of trainable variables w ∈ R𝑑 that represent feature importance, or attention53

logits. In each step, we select the feature with maximum importance and add it to the selected set. To54

ensure the score-augmented models (1) have differentiable architectures and (2) are encouraged to55

hone in on the best unselected feature, we take the softmax of the importance scores and multiply56

each input feature value by its corresponding softmax value as illustrated in Figure 1.57

Formally, given a dataset X ∈ R𝑛×𝑑 represented as a matrix with 𝑛 rows of examples and 𝑑 feature58

columns, suppose we want to select 𝑘 features. Let 𝑓(·;𝜃) be a differentiable model, e.g., a neural59

network, that outputs the predictions 𝑓(X;𝜃). Let y ∈ R𝑛 be the labels, ℓ(𝑓(X;𝜃),y) be the loss60

between the model’s predictions and the labels, and ∘ be the Hadamard product. Sequential Attention61

outputs a subset 𝑆 ⊆ [𝑑] := {1, 2, . . . , 𝑑} of 𝑘 feature indices, and is presented below in Algorithm 1.62

Algorithm 1 Sequential Attention for feature selection.

1: function SEQUENTIALATTENTION(dataset X ∈ R𝑛×𝑑, labels y ∈ R𝑛, model 𝑓 , loss ℓ, size 𝑘)
2: Initialize 𝑆 ← ∅
3: for 𝑡 = 1 to 𝑘 do
4: Let (𝜃*,w*)← argmin𝜃,w ℓ(𝑓(X ∘W;𝜃),y), where W = 1𝑛softmax(w, 𝑆)⊤ for

softmax𝑖(w, 𝑆) :=

⎧⎪⎨⎪⎩
1 if 𝑖 ∈ 𝑆

exp(w𝑖)∑︀
𝑗∈𝑆 exp(w𝑗)

if 𝑖 ∈ 𝑆 := [𝑑] ∖ 𝑆 (1)

5: Set 𝑖* ← argmax𝑖 ̸∈𝑆 w*
𝑖 ◁ unselected feature with largest attention weight

6: Update 𝑆 ← 𝑆 ∪ {𝑖*}
7: return 𝑆

1Anonymous while under review
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Theoretical guarantees. We give provable guarantees for Sequential Attention for least squares63

linear regression by analyzing a variant of the algorithm called regularized linear Sequential Attention.64

This variant (1) uses Hadamard product overparameterization directly between the attention weights65

and feature values without normalizing the attention weights via softmax(w, 𝑆), and (2) adds ℓ266

regularization to the objective, hence the “linear” and “regularized” terms. Note that ℓ2 regularization,67

or weight decay, is common practice when using gradient-based optimizers (Tibshirani, 2021). We68

give theoretical and empirical evidence that replacing the softmax by different overparameterization69

schemes leads to similar results (Section 4.2) while offering more tractable analysis. In particular, our70

main result shows that regularized linear Sequential Attention has the same provable guarantees as71

the celebrated Orthogonal Matching Pursuit (OMP) algorithm of Pati et al. (1993) for sparse linear72

regression, without making any assumptions on the design matrix or response vector.73

Theorem 1.1. For linear regression, regularized linear Sequential Attention is equivalent to OMP.74

We prove this equivalence using a novel two-step argument. First, we show that regularized linear75

Sequential Attention is equivalent to a greedy version of LASSO (Tibshirani, 1996), which Luo76

and Chen (2014) call Sequential LASSO. Prior to our work, however, Sequential LASSO was only77

analyzed in a restricted “sparse signal plus noise” setting, offering limited insight into its success in78

practice. Second, we prove that Sequential LASSO is equivalent to OMP in the fully general setting79

for linear regression by analyzing the geometry of the associated polyhedra. This ultimately allows80

us to transfer the guarantees of OMP to Sequential Attention.81

Theorem 1.2. For linear regression, Sequential LASSO (Luo and Chen, 2014) is equivalent to OMP.82

We present the full argument for our results in Section 3. This analysis takes significant steps towards83

explaining the success of attention in feature selection and the various theoretical phenomena at play.84

Towards understanding attention. An important property of OMP is that it provably approximates85

the marginal gains of features—Das and Kempe (2011) showed that for any subset of features, the86

gradient of the least squares loss at its sparse minimizer approximates the marginal gains up to a factor87

that depends on the sparse condition numbers of the design matrix. This suggests that Sequential88

Attention could also approximate some notion of the marginal gains for more sophisticated models89

when selecting the next-best feature. We observe this phenomenon empirically in our marginal gain90

experiments in Appendix B.6. These results also help refine the widely-assumed conjecture that91

attention weights correlate with feature importances by specifying an exact measure of “importance”92

at play. Since a countless number of feature importance definitions are used in practice, it is important93

to understand which best explains how the attention mechanism works.94

Connections to overparameterization. In our analysis of regularized linear Sequential Attention95

for linear regression, we do not use the presence of the softmax in the attention mechanism—rather,96

the crucial ingredient in our analysis is the Hadamard product parameterization of the learned weights.97

We conjecture that the empirical success of attention-based feature selection is primarily due to the98

explicit overparameterization.2 Indeed, our experiments in Section 4.2 verify this claim by showing99

that if we substitute the softmax in Sequential Attention with a number of different (normalized)100

overparamterized expressions, we achieve nearly identical performance. This line of reasoning is also101

supported in the recent work of Ye et al. (2021), who claim that attention largely owes its success to102

the “smoother and stable [loss] landscapes” induced by Hadamard product overparameterization.103

1.1 Related work104

Here we discuss recent advances in supervised feature selection for deep neural networks (DNNs)105

that are the most related to our empirical results. In particular, we omit a discussion of a large body of106

works on unsupervised feature selection (Zou et al., 2015; Altschuler et al., 2016; Balın et al., 2019).107

The group LASSO method has been applied to DNNs to achieve structured sparsity by pruning108

neurons (Alvarez and Salzmann, 2016) and even filters or channels in convolutional neural net-109

works (Lebedev and Lempitsky, 2016; Wen et al., 2016; Li et al., 2017a). It has also be applied for110

feature selection (Zhao et al., 2015; Li et al., 2016; Scardapane et al., 2017; Lemhadri et al., 2021).111

2Note that overparameterization here refers to the addition of 𝑑 trainable variables in the Hadamard product
overparameterization, not the other use of the term that refers to the use of a massive number of parameters in
neural networks, e.g., in Bubeck and Sellke (2021).
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While the LASSO is the most widely-used method for relaxing the ℓ0 sparsity constraint in feature112

selection, several recent works have proposed new relaxations based on stochastic gates (Srinivas113

et al., 2017; Louizos et al., 2018; Balın et al., 2019; Trelin and Procházka, 2020; Yamada et al., 2020).114

This approach introduces (learnable) Bernoulli random variables for each feature during training, and115

minimizes the expected loss over realizations of the 0-1 variables (accepting or rejecting features).116

There are several other recent approaches for DNN feature selection. Roy et al. (2015) explore using117

the magnitudes of weights in the first hidden layer to select features. Lu et al. (2018) designed the118

DeepPINK architecture, extending the idea of knockoffs (Benjamini et al., 2001) to neural networks.119

Here, each feature competes with a “knockoff” version of the original feature; if the knockoff wins,120

the feature is removed. Borisov et al. (2019) introduced the CancelOut layer, which suppresses121

irrelevant features via independent per-feature activation functions that act as (soft) bitmasks.122

In contrast to these differentiable approaches, the combinatorial optimization literature is rich with123

greedy algorithms that have applications in machine learning (Zadeh et al., 2017; Fahrbach et al.,124

2019b,a; Chen et al., 2021; Halabi et al., 2022; Bilmes, 2022). In fact, most influential feature selection125

algorithms from this literature are sequential, e.g., greedy forward and backward selection (Ye and126

Sun, 2018; Das et al., 2022), Orthogonal Matching Pursuit (Pati et al., 1993), and several information-127

theoretic methods (Fleuret, 2004; Ding and Peng, 2005; Bennasar et al., 2015). These approaches,128

however, are not normally tailored to neural networks, and can suffer from quality, efficiency, or both.129

Lastly, this paper studies global feature selection, i.e., selecting the same subset of features across130

all training examples, whereas many works consider local (or instance-wise) feature selection. This131

problem is more related to model interpretability, and is better known as feature attribution or132

saliency maps. These methods naturally lead to global feature selection methods by aggregating their133

instance-wise scores (Cancela et al., 2020). Instance-wise feature selection has been explored using a134

variety of techniques, including gradients (Smilkov et al., 2017; Sundararajan et al., 2017; Srinivas135

and Fleuret, 2019), attention (Arik and Pfister, 2021; Ye et al., 2021), mutual information (Chen et al.,136

2018), and Shapley values from cooperative game theory (Lundberg and Lee, 2017).137

2 Preliminaries138

Before discussing our theoretical guarantees for Sequential Attention in Section 3, we present several139

known results about feature selection for linear regression, also called sparse linear regression. Recall140

that in the least squares linear regression problem, we have141

ℓ(𝑓(X;𝜃),y) = ‖𝑓(X;𝜃)− y‖22 = ‖X𝜃 − y‖22. (2)

We work in the most challenging setting for obtaining relative error guarantees for this objective by142

making no distributional assumptions on X ∈ R𝑛×𝑑, i.e., we seek 𝜃 ∈ R𝑑 such that143

‖X𝜃 − y‖22 ≤ 𝜅 min
𝜃∈R𝑑
‖X𝜃 − y‖22, (3)

for some 𝜅 = 𝜅(X) > 0, where X is not assumed to follow any particular input distribution. This144

is far more applicable in practice than assuming the entries of X are i.i.d. Gaussian. In large-scale145

applications, the number of examples 𝑛 often greatly exceeds the number of features 𝑑, resulting in146

an optimal loss that is nonzero. Thus, we focus on the overdetermined regime and refer to Price et al.147

(2022) for an excellent discussion on the long history of this problem.148

Notation. Let X ∈ R𝑛×𝑑 be the design matrix with ℓ2 unit columns and let y ∈ R𝑛 be the149

response vector, also assumed to be an ℓ2 unit vector.3 For 𝑆 ⊆ [𝑑], let X𝑆 denote the 𝑛× |𝑆| matrix150

consisting of the columns of X indexed by 𝑆. For singleton sets 𝑆 = {𝑗}, we write X𝑗 for X{𝑗}.151

Let P𝑆 := X𝑆X
+
𝑆 denote the projection matrix onto the column span colspan(X𝑆) of X𝑆 , where152

X+
𝑆 denotes the pseudoinverse of X𝑆 . Let P⊥

𝑆 = I𝑛 − P𝑆 denote the projection matrix onto the153

orthogonal complement of colspan(X𝑆).154

Feature selection algorithms for linear regression. Perhaps the most natural algorithm for sparse155

linear regression is greedy forward selection, which was shown to have guarantees of the form of (3) in156

3These assumptions are without loss of generality by scaling.
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the breakthrough works of Das and Kempe (2011); Elenberg et al. (2018), where 𝜅 = 𝜅(X) depends157

on sparse condition numbers of X, i.e., the spectrum of X restricted to a subset of its columns. Greedy158

forward selection can be expensive in practice, but these works also prove analogous guarantees for159

the more efficient Orthogonal Matching Pursuit algorithm, which we present formally in Algorithm 2.160

Algorithm 2 Orthogonal Matching Pursuit (Pati et al., 1993).

1: function OMP(design matrix X ∈ R𝑛×𝑑, response y ∈ R𝑛, size constraint 𝑘)
2: Initialize 𝑆 ← ∅
3: for 𝑡 = 1 to 𝑘 do
4: Set 𝛽*

𝑆 ← argmin𝛽∈R𝑆‖X𝑆𝛽 − y‖22
5: Let 𝑖* ̸∈ 𝑆 maximize ◁ maximum correlation with residual

⟨X𝑖,y −X𝑆𝛽
*
𝑆⟩

2
= ⟨X𝑖,y −P𝑆y⟩2 =

⟨︀
X𝑖,P

⊥
𝑆 y

⟩︀2
6: Update 𝑆 ← 𝑆 ∪ {𝑖*}
7: return 𝑆

The LASSO algorithm (Tibshirani, 1996) is another popular feature selection method, which simply161

adds ℓ1-regularization to the objective in Equation (2). Theoretical guarantees for LASSO are known162

in the underdetermined regime (Donoho and Elad, 2003; Candes and Tao, 2006), but it is an open163

problem whether LASSO has the guarantees of Equation (3). Sequential LASSO is a related algorithm164

that uses LASSO to select features one by one. Luo and Chen (2014) analyzed this algorithm in165

a specific parameter regime, but until our work, no relative error guarantees were known in full166

generality (e.g., the overdetermined regime). We present the Sequential LASSO in Algorithm 3.167

Algorithm 3 Sequential LASSO (Luo and Chen, 2014).

1: function SEQUENTIALLASSO(design matrix X ∈ R𝑛×𝑑, response y ∈ R𝑛, size constraint 𝑘)
2: Initialize 𝑆 ← ∅
3: for 𝑡 = 1 to 𝑘 do
4: Let 𝛽*(𝜆, 𝑆) denote the optimal solution to

argmin
𝛽∈R𝑑

1

2
‖X𝛽 − y‖22 + 𝜆‖𝛽𝑆‖1 (4)

5: Set 𝜆*(𝑆)← sup{𝜆 > 0 : 𝛽*(𝜆, 𝑆)𝑆 ̸= 0} ◁ largest 𝜆 with nonzero LASSO on 𝑆

6: Let 𝐴(𝑆) = lim𝜀→0{𝑖 ∈ 𝑆 : 𝛽*(𝜆* − 𝜀, 𝑆)𝑖 ̸= 0}
7: Select any 𝑖* ∈ 𝐴(𝑆) ◁ non-empty by Lemma 3.5
8: Update 𝑆 ← 𝑆 ∪ {𝑖*}
9: return 𝑆

Note that Sequential LASSO as stated requires a search for the optimal 𝜆* in each step. In practice, 𝜆168

can simply be set to a large enough value to obtain similar results, since beyond a critical value of 𝜆,169

the feature ranking according to LASSO coefficients does not change (Efron et al., 2004).170

3 Equivalence for least squares: OMP and Sequential Attention171

In this section, we show that the following algorithms are equivalent for least squares linear regression:172

regularized linear Sequential Attention, Sequential LASSO, and Orthogonal Matching Pursuit.173

3.1 Regularized linear Sequential Attention and Sequential LASSO174

We start by formalizing a modification to Sequential Attention that admits provable guarantees.175

Definition 3.1 (Regularized linear Sequential Attention). Let 𝑆 ⊆ [𝑑] be the set of currently se-176

lected features. We define the regularized linear Sequential Attention objective by removing the177

softmax(w, 𝑆) normalization in Algorithm 1 and introducing ℓ2 regularization on the importance178
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Figure 2: Contour plot of 𝑄*(𝛽 ∘𝛽) for
𝛽 ∈ R2 at different zoom-levels of |𝛽𝑖|.

weights w ∈ R𝑆 and model parameters 𝜃 ∈ R𝑑 restricted to 𝑆. That is, we consider the objective179

min
w∈R𝑑,𝜃∈R𝑑

‖X(s(w) ∘ 𝜃)− y‖22 +
𝜆

2

(︁
‖w‖22 + ‖𝜃𝑆‖

2
2

)︁
, (5)

where s(w) ∘ 𝜃 denotes the Hadamard product, 𝜃𝑆 ∈ R𝑆 is 𝜃 restricted to indices in 𝑆, and180

s𝑖(w, 𝑆) :=

{︂
1 if 𝑖 ∈ 𝑆,

w𝑖 if 𝑖 ̸∈ 𝑆.

By a simple argument due to Hoff (2017), the objective function in (5) is equivalent to181

min
𝜃∈R𝑑
‖X𝜃 − y‖22 + 𝜆‖𝜃𝑆‖1. (6)

It follows that attention (or more generally overparameterization by trainable weights w) can be seen182

as a way to implement ℓ1 regularization for least squares linear regression, i.e., the LASSO (Tibshirani,183

1996). This connection between overparameterization and ℓ1 regularization has also been observed in184

several other recent works (Vaskevicius et al., 2019; Zhao et al., 2022; Tibshirani, 2021).185

By this transformation and reasoning, regularized linear Sequential Attention can be seen as iteratively186

using the LASSO with ℓ1 regularization applied only to the unselected features—which is precisely187

the Sequential LASSO algorithm in Luo and Chen (2014). If we instead use softmax(w, 𝑆) as in (1),188

then this only changes the choice of regularization, as shown in Lemma 3.2 (proof in Appendix A.3).189

Lemma 3.2. Let 𝐷 : R𝑑 → R𝑆 be the function defined by 𝐷(w)𝑖 = 1/softmax2𝑖 (w, 𝑆), for 𝑖 ∈ 𝑆.190

Denote its range and preimage by ran(𝐷) ⊆ R𝑆 and 𝐷−1(·) ⊆ R𝑑, respectively. Moreover, define191

the functions 𝑄 : ran(𝐷)→ R and 𝑄* : R𝑆 → R by192

𝑄(q) = inf
w∈𝐷−1(q)

‖w‖22 and 𝑄*(x) = inf
q∈ran(𝐷)

⎛⎝∑︁
𝑖∈𝑆

x𝑖q𝑖 +𝑄(q)

⎞⎠.

Then, the following two optimization problems with respect to 𝛽 ∈ R𝑑 are equivalent:193

inf
𝛽∈R𝑑

s.t. 𝛽=softmax(w,𝑆)∘𝜃
w∈R𝑑,𝜃∈R𝑑

‖X𝛽 − y‖22 +
𝜆

2

(︁
‖w‖22 + ‖𝜃𝑆‖

2
2

)︁
= inf

𝛽∈R𝑑
‖X𝛽 − y‖22 +

𝜆

2
𝑄*(𝛽 ∘ 𝛽). (7)

We present contour plots of 𝑄*(𝛽 ∘ 𝛽) for 𝛽 ∈ R2 in Figure 2. These plots suggest that 𝑄*(𝛽 ∘ 𝛽)194

is a concave regularizer when |𝛽1|+ |𝛽2| > 2, which would thus approximate the ℓ0 regularizer and195

induce a sparse solution of 𝛽 (Zhang and Zhang, 2012), as ℓ1 regularization does (Tibshirani, 1996).196

3.2 Sequential LASSO and OMP197

This connection between Sequential Attention and Sequential LASSO gives us a new perspective198

about how Sequential Attention works. The only known guarantee for Sequential LASSO, to the best199

of our knowledge, is a statistical recovery result when the input is a sparse linear combination with200

Gaussian noise in the ultra high-dimensional setting (Luo and Chen, 2014). This does not, however,201

fully explain why Sequential Attention is such an effective feature selection algorithm.202

To bridge our main results, we prove a novel equivalence between Sequential LASSO and OMP.203
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Theorem 3.3. Let X ∈ R𝑛×𝑑 be a design matrix with ℓ2 unit vector columns, and let y ∈ R𝑑 denote204

the response, also an ℓ2 unit vector. The Sequential LASSO algorithm maintains a set of features205

𝑆 ⊆ [𝑑] such that, at each feature selection step, it selects a feature 𝑖 ∈ 𝑆 such that206 ⃒⃒⟨︀
X𝑖,P

⊥
𝑆 y

⟩︀⃒⃒
=

⃦⃦
X⊤P⊥

𝑆 y
⃦⃦
∞,

where X𝑆 is the 𝑛 × |𝑆| matrix given formed by the columns of X indexed by 𝑆, and P⊥
𝑆 is the207

projection matrix onto the orthogonal complement of the span of X𝑆 .208

Note that this is extremely close to saying that Sequential LASSO and OMP select the exact same set209

of features. The only difference appears when there are multiple features with norm ‖X⊤P⊥
𝑆 y‖∞.210

In this case, it is possible that Sequential LASSO chooses the next feature from a set of features211

that is strictly smaller than the set of features from which OMP chooses, so the “tie-breaking” can212

differ between the two algorithms. In practice, however, this rarely happens. For instance, if only one213

feature is selected at each step, which is the case with probability 1 if random continuous noise is214

added to the data, then Sequential LASSO and OMP will select the exact same set of features.215

Remark 3.4. It was shown in (Luo and Chen, 2014) that Sequential LASSO is equivalent to OMP in216

the statistical recovery regime, i.e., when y = X𝛽* + 𝜀 for some true sparse weight vector 𝛽* and217

i.i.d. Gaussian noise 𝜀 ∼ 𝒩 (0, 𝜎I𝑛), under an ultra high-dimensional regime where the dimension 𝑑218

is exponential in the number of examples 𝑛. We prove this equivalence in the fully general setting.219

The argument below shows that Sequential LASSO and OMP are equivalent, thus establishing220

that regularized linear Sequential Attention and Sequential LASSO have the same approximation221

guarantees as OMP.222

Geometry of Sequential LASSO. We first study the geometry of optimal solutions to Equation (4).223

Let 𝑆 ⊆ [𝑑] be the set of currently selected features. Following work on the LASSO in Tibshirani224

and Taylor (2011), we rewrite (4) as the following constrained optimization problem:225

min
z∈R𝑛,𝛽∈R𝑑

1

2
‖z− y‖22 + 𝜆‖𝛽𝑆‖1

subject to z = X𝛽.

(8)

It can then be shown that the dual problem is equivalent to finding the projection, i.e., closest point in226

Euclidean distance, u ∈ R𝑛 of P⊥
𝑆 y onto the polyhedral section 𝐶𝜆 ∩ colspan(X𝑆)

⊥, where227

𝐶𝜆 :=
{︀
u′ ∈ R𝑛 :

⃦⃦
X⊤u′⃦⃦

∞ ≤ 𝜆
}︀

and colspan(X𝑆)
⊥ denotes the orthogonal complement of colspan(X𝑆). See Appendix A.1 for the228

full details. The primal and dual variables are related through z by229

X𝛽 = z = y − u. (9)

Selection of features in Sequential LASSO. Next, we analyze how Sequential LASSO selects230

its features. Let 𝛽*
𝑆 = X+

𝑆y be the optimal solution for features restricted in 𝑆. Then, subtracting231

X𝑆𝛽
*
𝑆 from both sides of (9) gives232

X𝛽 −X𝑆𝛽
*
𝑆 = y −X𝑆𝛽

*
𝑆 − u

= P⊥
𝑆 y − u.

(10)

Note that if 𝜆 ≥ ‖X⊤P⊥
𝑆 y‖∞, then the projection of P⊥

𝑆 y onto 𝐶𝜆 is just u = P⊥
𝑆 y, so by (10),233

X𝛽 −X𝑆𝛽
*
𝑆 = P⊥

𝑆 y −P⊥
𝑆 y = 0,

meaning that 𝛽 is zero outside of 𝑆. We now show that for 𝜆 slightly smaller than ‖X⊤P⊥
𝑆 y‖∞, the234

residual P⊥
𝑆 y − u is in the span of features X𝑖 that maximize the correlation with P⊥

𝑆 y.235

Lemma 3.5 (Projection residuals of the Sequential LASSO). Let p denote the projection of P⊥
𝑆 y236

onto 𝐶𝜆 ∩ colspan(X𝑆)
⊥. There exists 𝜆0 <

⃦⃦
X⊤P⊥

𝑆 y
⃦⃦
∞ such that for all 𝜆 ∈ (𝜆0, ‖X⊤P⊥

𝑆 y‖∞)237

the residual P⊥
𝑆 y − p lies on colspan(X𝑇 ), for238

𝑇 :=
{︀
𝑖 ∈ [𝑑] :

⃒⃒⟨︀
X𝑖,P

⊥
𝑆 y

⟩︀⃒⃒
=

⃦⃦
X⊤P⊥

𝑆 y
⃦⃦
∞

}︀
.
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We defer the proof of Lemma 3.5 to Appendix A.2.239

By Lemma 3.5 and (10), the optimal 𝛽 when selecting the next feature has the following properties:240

1. if 𝑖 ∈ 𝑆, then 𝛽𝑖 is equal to the 𝑖-th value in the previous solution 𝛽*
𝑆 ; and241

2. if 𝑖 ̸∈ 𝑆, then 𝛽𝑖 can be nonzero only if 𝑖 ∈ 𝑇 .242

It follows that Sequential LASSO selects a feature that maximizes the correlation |⟨X𝑗 ,P
⊥
𝑆 y⟩|, just243

as OMP does. Thus, we have shown an equivalence between Sequential LASSO and OMP without244

any additional assumptions.245

4 Experiments246

4.1 Feature selection for neural networks247

Small-scale experiments. We investigate the performance of Sequential Attention, as presented in248

Algorithm 1, through experiments on standard feature selection benchmarks for neural networks. In249

these experiments, we consider six datasets used in experiments in Lemhadri et al. (2021); Balın et al.250

(2019), and select 𝑘 = 50 features using a one-layer neural network with hidden width 67 and ReLU251

activation (just as in these previous works). For more points of comparison, we also implement the252

attention-based feature selection algorithms of Balın et al. (2019); Liao et al. (2021) and the Group253

LASSO, which has been considered in many works that aim to sparisfiy neural networks as discussed254

in Section 1.1. We also implement natural adaptations of the Sequential LASSO and OMP for neural255

networks and evaluate their performance.256

In Figure 3, we see that Sequential Attention is competitive with or outperforms all feature selection257

algorithms on this benchmark suite. For each algorithm, we report the mean of the prediction258

accuracies averaged over five feature selection trials. We provide more details about the experimental259

setup in Appendix B.2, including specifications about each dataset in Table 1 and the mean prediction260

accuracies with their standard deviations in Table 2. We also visualize the selected features on MNIST261

(i.e., pixels) in Figure 5.262
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Figure 3: Feature selection results for small-scale neural network experiments. Here, SA = Sequential
Attention, LLY = (Liao et al., 2021), GL = Group LASSO, SL = Sequential LASSO, OMP = OMP,
and CAE = Concrete Autoencoder (Balın et al., 2019).

We note that our algorithm is considerably more efficient compared to prior feature selection algo-263

rithms, especially those designed for neural networks. This is because many of these prior algorithms264

introduce entire subnetworks to train (Balın et al., 2019; Gui et al., 2019; Wojtas and Chen, 2020; Liao265

et al., 2021), whereas Sequential Attention only adds 𝑑 additional trainable variables. Furthermore, in266

these experiments, we implement an optimized version of Algorithm 1 that only trains one model267

rather than 𝑘 models, by partitioning the training epochs into 𝑘 parts and selecting one feature in268

each of these 𝑘 parts. Combining these two aspects makes for an extremely efficient algorithm. We269

provide an evaluation of the running time efficiency of Sequential Attention in Appendix B.2.3.270

Large-scale experiments. To demonstrate the scalability of our algorithm, we perform large-scale271

feature selection experiments on the Criteo click dataset, which consists of 39 features and over three272
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billion examples for predicting click-through rates (Diemert Eustache, Meynet Julien et al., 2017).273

Our results in Figure 4 show that Sequential Attention outperforms other methods when at least 15274

features are selected. In particular, these plots highlight the fact that Sequential Attention excels at275

finding valuable features once a few features are already in the model, and that it has substantially less276

variance than LASSO-based feature selection algorithms. See Appendix B.3 for further discussion.277
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Figure 4: AUC and log loss when selecting 𝑘 ∈ {10, 15, 20, 25, 30, 35} features for Criteo dataset.

4.2 The role of Hadamard product overparameterization in attention278

In Section 1, we argued that Sequential Attention has provable guarantees for least squares linear279

regression by showing that a version that removes the softmax and introduces ℓ2 regularization280

results in an algorithm that is equivalent to OMP. Thus, there is a gap between the implementation of281

Sequential Attention in Algorithm 1 and our theoretical analysis. We empirically bridge this gap by282

showing that regularized linear Sequential Attention yields results that are almost indistinguishable283

to the original version. In Figure 10 (Appendix B.5), we compare the following Hadamard product284

overparameterization schemes:285

∙ softmax: as described in Section 1286

∙ ℓ1: s𝑖(w) = |w𝑖| for 𝑖 ∈ 𝑆, which captures the provable variant discussed in Section 1287

∙ ℓ2: s𝑖(w) = |w𝑖|2 for 𝑖 ∈ 𝑆288

∙ ℓ1 normalized: s𝑖(w) = |w𝑖|/
∑︀

𝑗∈𝑆 |w𝑗 | for 𝑖 ∈ 𝑆289

∙ ℓ2 normalized: s𝑖(w) = |w𝑖|2/
∑︀

𝑗∈𝑆 |w𝑗 |2 for 𝑖 ∈ 𝑆290

Further, for each of the benchmark datasets, all of these variants outperform LassoNet and the other291

baselines considered in Lemhadri et al. (2021). See Appendix B.5 for more details.292

5 Conclusion293

This work introduces Sequential Attention, an adaptive attention-based feature selection algorithm294

designed in part for neural networks. Empirically, Sequential Attention improves significantly upon295

previous methods on widely-used benchmarks. Theoretically, we show that a relaxed variant of296

Sequential Attention is equivalent to Sequential LASSO (Luo and Chen, 2014). In turn, we prove a297

novel connection between Sequential LASSO and Orthogonal Matching Pursuit, thus transferring the298

provable guarantees of OMP to Sequential Attention and shedding light on our empirical results. This299

analysis also provides new insights into the the role of attention for feature selection via adaptivity,300

overparameterization, and connections to marginal gains.301

We conclude with a number of open questions that stem from this work. The first question concerns302

the generalization of our theoretical results for Sequential LASSO to other models. OMP admits303

provable guarantees for a wide class of generalized linear models (Elenberg et al., 2018), so is the304

same true for Sequential LASSO? Our second question concerns the role of softmax in Algorithm 1.305

Our experimental results suggest that using softmax for overparametrization may not be necessary, and306

that a wide variety of alternative expressions can be used. On the other hand, our provable guarantees307

only hold for the overparameterization scheme in the regularized linear Sequential Attention algorithm308

(see Definition 3.1). Can we obtain a deeper understanding about the pros and cons of the softmax309

and other overparameterization patterns, both theoretically and empirically?310
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Andrii Trelin and Aleš Procházka. Binary stochastic filtering: Feature selection and beyond. arXiv431

preprint arXiv:2007.03920, 2020.432

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal sparse433

recovery. Advances in Neural Information Processing Systems, 32, 2019.434

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz435

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing436

Systems, 30, 2017.437

Qian Wang, Jiaxing Zhang, Sen Song, and Zheng Zhang. Attentional neural network: Feature438

selection using cognitive feedback. Advances in Neural Information Processing Systems, 27, 2014.439

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in440

deep neural networks. Advances in Neural Information Processing Systems, 29, 2016.441

Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning. Advances in442

Neural Information Processing Systems, 33:5105–5114, 2020.443

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using444

stochastic gates. In International Conference on Machine Learning, pages 10648–10659. PMLR,445

2020.446

12



Mao Ye and Yan Sun. Variable selection via penalized neural network: A drop-out-one loss approach.447

In International Conference on Machine Learning, pages 5620–5629. PMLR, 2018.448

Xiang Ye, Zihang He, Heng Wang, and Yong Li. Towards understanding the effectiveness of attention449

mechanism. arXiv preprint arXiv:2106.15067, 2021.450

Sepehr Abbasi Zadeh, Mehrdad Ghadiri, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Scalable451

feature selection via distributed diversity maximization. In Proceedings of the Thirty-First AAAI452

Conference on Artificial Intelligence, pages 2876–2883. AAAI Press, 2017.453

Cun-Hui Zhang and Tong Zhang. A general theory of concave regularization for high-dimensional454

sparse estimation problems. Statist. Sci., 27(4):576–593, 2012.455

Lei Zhao, Qinghua Hu, and Wenwu Wang. Heterogeneous feature selection with multi-modal deep456

neural networks and sparse group lasso. IEEE Transactions on Multimedia, 17(11):1936–1948,457

2015.458

Peng Zhao, Yun Yang, and Qiao-Chu He. High-dimensional linear regression via implicit regulariza-459

tion. Biometrika, 2022.460

Qin Zou, Lihao Ni, Tong Zhang, and Qian Wang. Deep learning based feature selection for remote461

sensing scene classification. IEEE Geosci. Remote. Sens. Lett., 12(11):2321–2325, 2015.462

13



A Missing proofs from Section 3463

A.1 Lagrangian dual of Sequential LASSO464

We first show that the Lagrangian dual of (8) is equivalent to the following problem:465

min
u∈R𝑛

1

2
‖y − u‖22

subject to
⃦⃦
X⊤u

⃦⃦
∞ ≤ 𝜆

X⊤
𝑗 u = 0, ∀𝑗 ∈ 𝑆

(11)

We then use the Pythagorean theorem to replace y by P⊥
𝑆 y.466

First consider the Lagrangian dual problem:467

max
u∈R𝑛

min
z∈R𝑛,𝛽∈R𝑑

1

2
‖z− y‖22 + 𝜆‖𝛽|𝑆‖1 + u⊤(z−X𝛽). (12)

Note that the primal problem is strictly feasible and convex, so strong duality holds (see, e.g., Section468

5.2.3 of Boyd and Vandenberghe (2004)). Considering just the terms involving the variable z in (12),469

we have that470

1

2
‖z− y‖22 + u⊤z =

1

2
‖z‖22 − (y − u)⊤z+

1

2
‖y‖22

=
1

2
‖z− (y − u)‖22 +

1

2
‖y‖22 −

1

2
‖y − u‖22,

which is minimized at z = y − u as z varies over R𝑛. On the other hand, consider just the terms471

involving the variable 𝛽 in (12), that is,472

𝜆‖𝛽𝑆‖1 − u⊤X𝛽. (13)

Note that if X⊤u is nonzero on any coordinate in 𝑆, then (13) can be made arbitrarily negative473

by setting 𝛽𝑆 to be zero and 𝛽𝑆 appropriately. Similarly, if ‖X⊤u‖∞ > 𝜆, then (13) can also be474

made to be arbitrarily negative. On the other hand, if (X⊤u)𝑆 = 0 and
⃦⃦
X⊤u

⃦⃦
∞ ≤ 𝜆, then (13) is475

minimized at 0. This gives the dual in Equation (11).476

We now show that by the Pythagorean theorem, we can project P⊥
𝑆 y in (11) rather than y. In (11),477

recall that u is constrained to be in colspan(X𝑆)
⊥. Then, by the Pythagorean theorem, we have478

1

2
‖y − u‖22 =

1

2

⃦⃦
y −P⊥

𝑆 y +P⊥
𝑆 y − u

⃦⃦2
2

=
1

2

⃦⃦
y −P⊥

𝑆 y
⃦⃦2
2
+

1

2

⃦⃦
P⊥

𝑆 y − u
⃦⃦2
2
,

since y −P⊥
𝑆 y = P𝑆y is orthogonal to colspan(X𝑆)

⊥ and both P⊥
𝑆 y and u are in colspan(X𝑆)

⊥.479

The first term in the above does not depend on u and thus we may discard it. Our problem therefore480

reduces to projecting P⊥
𝑆 y onto 𝐶𝜆 ∩ colspan(X𝑆)

⊥, rather than y.481

A.2 Proof of Lemma 3.5482

Proof of Lemma 3.5. Our approach is to reduce the projection of P⊥
𝑆 y onto the polytope defined by483

𝐶𝜆 ∩ colspan(X)⊥ to a projection onto an affine space.484

We first argue that it suffices to project onto the faces of 𝐶𝜆 specified by set 𝑇 . For 𝜆 > 0, feature485

indices 𝑖 ∈ [𝑑], and signs ±, we define the faces486

𝐹𝜆,𝑖,± := {u ∈ R𝑛 : ±⟨X𝑖,u⟩ = 𝜆}

of 𝐶𝜆. Let 𝜆 = (1− 𝜀)‖X⊤P⊥
𝑆 y‖∞, for 𝜀 > 0 to be chosen sufficiently small. Then clearly487

(1− 𝜀)P⊥
𝑆 y ∈ 𝐶𝜆 ∩ colspan(X𝑆)

⊥,

so488

min
u∈𝐶𝜆∩colspan(X𝑆)⊥

⃦⃦
P⊥

𝑆 y − u
⃦⃦2
2
≤

⃦⃦
P⊥

𝑆 y − (1− 𝜀)P⊥
𝑆 y

⃦⃦2
2

14



= 𝜀2
⃦⃦
P⊥

𝑆 y
⃦⃦2
2
.

In fact, (1 − 𝜀)P⊥
𝑆 y lies on the intersection of faces 𝐹𝜆,𝑖,± for an appropriate choice of signs and489

𝑖 ∈ 𝑇 . Without loss of generality, we assume that these faces are just 𝐹𝜆,𝑖,+ for 𝑖 ∈ 𝑇 . Note also that490

for any 𝑖 /∈ 𝑇 ,491

min
u∈𝐹𝜆,𝑖,±

⃦⃦
P⊥

𝑆 y − u
⃦⃦2
2
≥ min

u∈𝐹𝜆,𝑖,±

⟨︀
X𝑖,P

⊥
𝑆 y − u

⟩︀2
(Cauchy–Schwarz, ‖X𝑖‖2 ≤ 1)

= min
u∈𝐹𝜆,𝑖,±

⃒⃒
X⊤

𝑖 P
⊥
𝑆 y −X⊤

𝑖 u
⃒⃒2

=
(︀⃒⃒
X⊤

𝑖 P
⊥
𝑆 y

⃒⃒
− 𝜆

)︀2
(u ∈ 𝐹𝜆,𝑖,±)

≥
(︁
(1− 𝜀)

⃦⃦
X⊤P⊥

𝑆 y
⃦⃦
∞ −

⃦⃦
X⊤

𝑇
P⊥

𝑆 y
⃦⃦
∞

)︁2

.

For all 𝜀 < 𝜀0, for 𝜀0 small enough, this is larger than 𝜀2‖P⊥
𝑆 y‖22. Thus, for 𝜀 small enough, P⊥

𝑆 y is492

closer to the faces 𝐹𝜆,𝑖,+ for 𝑖 ∈ 𝑇 than any other face. Therefore, we set 𝜆0 = (1−𝜀0)‖X⊤P⊥
𝑆 y‖∞.493

Now, by the complementary slackness of the KKT conditions for the projection u of P⊥
𝑆 y onto 𝐶𝜆,494

for each face of 𝐶𝜆 we either have that u lies on the face or that the projection does not change if we495

remove the face. For 𝑖 /∈ 𝑇 , note that by the above calculation, the projection u cannot lie on 𝐹𝜆,𝑖,±,496

so u is simply the projection onto497

𝐶 ′ =
{︀
u ∈ R𝑛 : X⊤

𝑇 u ≤ 𝜆1𝑇

}︀
.

By reversing the dual problem reasoning from before, the residual of the projection onto 𝐶 ′ must lie498

on the column span of X𝑇 .499

A.3 Parameterization patterns and regularization500

Proof of Lemma 3.2. The optimization problem on the left-hand side of Equation (7) with respect501

to 𝛽 is equivalent to502

inf
𝛽∈R𝑑

⎛⎝‖X𝛽 − y‖22 +
𝜆

2
inf

w∈R𝑑

⎛⎝‖w‖22 +∑︁
𝑖∈𝑆

𝛽2
𝑖

s𝑖(w)2

⎞⎠⎞⎠. (14)

If we define503

𝑄̃*(x) = inf
w∈R𝑑

⎛⎝‖w‖22 +∑︁
𝑖∈𝑆

x𝑖

s𝑖(w)2

⎞⎠,

then the LHS of (7) and (14) are equivalent to inf𝛽∈R𝑑(‖X𝛽−y‖22+ 𝜆
2 𝑄̃

*(𝛽∘𝛽)). Re-parameterizing504

the minimization problem in the definition of 𝑄̃*(x) (by setting q = 𝐷(w)), we obtain 𝑄̃* = 𝑄*.505

B Additional experiments506

B.1 Visualization of selected MNIST features507

In Figure 5, we present visualizations of the features (i.e., pixels) selected by Sequential Attention508

and the baseline algorithms. This provides some intuition on the nature of the features that these509

algorithms select. Similar visualizations for MNIST can be found in works such as Balın et al. (2019);510

Gui et al. (2019); Wojtas and Chen (2020); Lemhadri et al. (2021); Liao et al. (2021). Note that these511

visualizations serve as a basic sanity check about the kinds of pixels that these algorithms select. For512

instance, the degree to which the selected pixels are “clustered” can be used to informally assess513

the redundancy of features selected for image datasets, since neighboring pixels tend to represent514

redundant information. It is also useful at time to assess which regions of the image are selected. For515

example, the central regions of the MNIST images are more informative than the edges.516

Sequential Attention selects a highly diverse set of pixels due to its adaptivity. Sequential LASSO also517

selects a very similar set of pixels, as suggested by our theoretical analysis in Section 3. Curiously,518
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OMP does not yield a competitive set of pixels, which demonstrates that OMP does not generalize519

well from least squares regression and generalized linear models to deep neural networks.520

Sequential Attention Liao-Latty-Yang 2021 Group LASSO Sequential LASSO OMP

Figure 5: Visualizations of the 𝑘 = 50 pixels selected by the feature selection algorithms on MNIST.

B.2 Additional details on small-scale experiments521

We start by presenting details about each of the datasets used for neural network feature selection522

in Balın et al. (2019) and Lemhadri et al. (2021) in Table 1.523

Table 1: Statistics about benchmark datasets.
Dataset # Examples # Features # Classes Type

Mice Protein 1,080 77 8 Biology
MNIST 60,000 784 10 Image

MNIST-Fashion 60,000 784 10 Image
ISOLET 7,797 617 26 Speech
COIL-20 1,440 400 20 Image
Activity 5,744 561 6 Sensor

In Figure 3, the error bars are computed using the standard deviation over five runs of the algorithm524

with different random seeds. The values used to generate these plots are provided below in Table 2.525

Table 2: Feature selection results for small-scale datasets (see Figure 3 for a key). These values are
the average prediction accuracies on the test data and their standard deviations.

Dataset SA LLY GL SL OMP CAE

Mice Protein 0.993± 0.008 0.981± 0.005 0.985± 0.005 0.984± 0.008 0.994± 0.008 0.956± 0.012
MNIST 0.956± 0.002 0.944± 0.001 0.937± 0.003 0.959± 0.001 0.912± 0.004 0.909± 0.007

MNIST-Fashion 0.854± 0.003 0.843± 0.005 0.834± 0.004 0.854± 0.003 0.829± 0.008 0.839± 0.003
ISOLET 0.920± 0.006 0.866± 0.012 0.906± 0.006 0.920± 0.003 0.727± 0.026 0.893± 0.011
COIL-20 0.997± 0.001 0.994± 0.002 0.997± 0.004 0.988± 0.005 0.967± 0.014 0.972± 0.007
Activity 0.931± 0.004 0.897± 0.025 0.933± 0.002 0.931± 0.003 0.905± 0.013 0.921± 0.001

B.2.1 Model accuracies with all features526

To adjust for the differences between the values reported in Lemhadri et al. (2021) and ours due (e.g.,527

due to factors such as the implementation framework), we list the accuracies obtained by training the528

models with all of the available features in Table 3.529

B.2.2 Generalizing OMP to neural networks530

As stated in Algorithm 2, it may be difficult to see exactly how OMP generalizes from a linear531

regression model to neural networks. To do this, first observe that OMP naturally generalizes to532

generalized linear models (GLMs) via the gradient of the link function, as shown in Elenberg et al.533

(2018). Then, to extend this to neural networks, we view the neural network as a GLM for any fixing534

of the hidden layer weights, and then we use the gradient of this GLM with respect to the inputs as535

the feature importance scores.536
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Table 3: Model accuracies when trained using all available features.
Dataset Lemhadri et al. (2021) This paper

Mice Protein 0.990 0.963
MNIST 0.928 0.953

MNIST-Fashion 0.833 0.869
ISOLET 0.953 0.961
COIL-20 0.996 0.986
Activity 0.853 0.954

B.2.3 Efficiency evaluation537

In this subsection, we evaluate the efficiency of the Sequential Attention algorithm against our other538

baseline algorithms. We do so by fixing the number of epochs and batch size for all of the algorithms,539

and then evaluating the accuracy as well as the wall clock time of each algorithm. Figures 6 and 7540

provide a visualization of the accuracy and wall clock time of feature selection, while Tables 5 and 6541

provide the average and standard deviations. Table 4 provides the epochs and batch size settings that542

were fixed for these experiments.543

SA LLY GL SL OMP CAE0.94

0.96

0.98

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

Mice Protein

SA LLY GL SL OMP CAE
0.900

0.925

0.950

0.975

1.000

Pr
ed

ict
io

n 
Ac

cu
ra

cy

MNIST

SA LLY GL SL OMP CAE

0.83

0.84

0.85

0.86

Pr
ed

ict
io

n 
Ac

cu
ra

cy

MNIST-Fashion

SA LLY GL SL OMP CAE0.80

0.85

0.90

0.95

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

ISOLET

SA LLY GL SL OMP CAE

0.96

0.98

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

COIL-20

SA LLY GL SL OMP CAE
0.86

0.88

0.90

0.92

0.94

Pr
ed

ict
io

n 
Ac

cu
ra

cy
Activity

Figure 6: Feature selection accuracy for efficiency evaluation.
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Figure 7: Feature selection wall clock time in seconds for efficiency evaluation.

B.2.4 Notes on the one-pass implementation544

We make several remarks about the one-pass implementation of Sequential Attention. First, as noted545

in Section 4.1, our practical implementation of Sequential Attention only trains one model instead546
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Table 4: Epochs and batch size used to compare the efficiency of feature selection algorithms.
Dataset Epochs Batch Size

Mice Protein 2000 256
MNIST 50 256

MNIST-Fashion 250 128
ISOLET 500 256
COIL-20 1000 256
Activity 1000 512

Table 5: Feature selection accuracy for efficiency evaluation. We report the mean accuracy on the test
dataset and the the standard deviation across five trials.

Dataset SA LLY GL SL OMP CAE

Mice Protein 0.984± 0.012 0.907± 0.042 0.968± 0.028 0.961± 0.025 0.556± 0.032 0.956± 0.012
MNIST 0.958± 0.001 0.932± 0.009 0.930± 0.001 0.957± 0.001 0.912± 0.000 0.909± 0.007

MNIST-Fashion 0.852± 0.001 0.833± 0.004 0.834± 0.001 0.852± 0.003 0.722± 0.029 0.839± 0.003
ISOLET 0.931± 0.001 0.853± 0.016 0.885± 0.000 0.921± 0.002 0.580± 0.025 0.893± 0.011
COIL-20 0.993± 0.004 0.976± 0.014 0.997± 0.000 0.993± 0.004 0.988± 0.002 0.972± 0.007
Activity 0.926± 0.002 0.881± 0.013 0.923± 0.002 0.927± 0.006 0.909± 0.000 0.921± 0.001

of 𝑘 models. We do this by partitioning the training epochs into 𝑘 parts and selecting one part in each547

phase. This clearly gives a more efficient running time than training 𝑘 separate models. Similarly,548

we allow for a “warm-up” period prior to the feature selection phase, in which a small fraction549

of the training epochs are allotted to training just the neural network weights. When we do this550

one-pass implementation, we observe that it is important to reset the attention weights after each of551

the sequential feature selection phases, but resetting the neural network weights is not crucial for552

good performance.553

Second, we note that when there is a large number of candidate features 𝑑, the softmax mask severely554

scales down the gradient updates to the model weights, which can lead to inefficient training. In these555

cases, it becomes important to prevent this by either using a temperature parameter in the softmax to556

counteract the small softmax values or by adjusting the learning rate to be high enough. Note that557

these two approaches can be considered to be equivalent.558

B.3 Large-scale experiments559

In this section, we provide more details and discussion on our Criteo large dataset results. For this560

experiment, we use a dense neural network with 768, 256, and 128 neurons in each of the three hidden561

layers with ReLU activations. In Figure 4, the error bars are generated as the standard deviation over562

running the algorithm three times with different random seeds, and the shadowed regions linearly563

interpolate between these error bars. The values used to generate the plot are provided in Table 7 and564

Table 8.565

We first note that this dataset is so large that it is expensive to make multiple passes through the566

dataset. Therefore, we modify the algorithms (both Sequential Attention and the other baselines) to567

make only one pass through the data by using disjoint fractions of the data for different “steps” of the568

algorithm. Hence, we select 𝑘 features while only “training” one model.569

B.4 The role of adaptivity570

We show in this section the effect of varying adaptivity on the quality of selected features in Sequential571

Attention. In the following experiments, we select 64 features on six datasets by selecting 2𝑖 features572

at a time over a fixed number of epochs of training, for 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6}. That is, we investigate573

the following question: for a fixed budget of training epochs, what is the best way to allocate the574

training epochs over the rounds of the feature selection process? For most datasets, we find that575

feature selection quality decreases as we select more features at once. An exception is the mice576

protein dataset, which exhibits the opposite trend, perhaps indicating that the features in the mice577

protein dataset are less redundant than in other datasets. Our results are summarized in Table 8 and578

Table 9. We also illustrate the effect of adaptivity for Sequential Attention on MNIST in Figure 9.579
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Table 6: Feature selection wall clock time in seconds for efficiency evaluations. These values are the
mean wall clock time on the test dataset and their standard deviation across five trials.

Dataset SA LLY GL SL OMP CAE

Mice Protein 57.5± 1.5 90.5± 3.5 49.0± 1.0 46.5± 1.5 50.5± 1.5 375.0± 16.0
MNIST 54.5± 2.5 80.0± 5.0 53.0± 1.0 51.5± 2.5 55.5± 0.5 119.0± 1.0

MNIST-Fashion 279.5± 0.5 553.0± 2.0 265.0± 1.0 266.0± 1.0 309.5± 3.5 583.5± 2.5
ISOLET 61.0± 0.0 76.0± 0.0 59.0± 1.0 56.5± 1.5 62.0± 1.0 611.5± 21.5
COIL-20 52.0± 0.0 54.0± 0.0 47.0± 1.0 48.5± 0.5 52.0± 1.0 304.5± 7.5
Activity 123.0± 1.0 159.5± 0.5 113.5± 0.5 116.0± 0.0 121.5± 0.5 1260.5± 2.5

Table 7: AUC of Criteo large experiments. SA is Sequential Attention, GL is generalized LASSO, and
SL is Sequential LASSO. The values in the header for the LASSO methods are the ℓ1 regularization
strengths used for each method.

𝑘 SA CMIM GL (𝜆 = 10−1) GL (𝜆 = 10−4) SL (𝜆 = 10−1) SL (𝜆 = 10−4) Liao et al. (2021)
5 0.67232± 0.00015 0.63950± 0.00076 0.68342± 0.00585 0.50161± 0.00227 0.60278± 0.04473 0.67710± 0.00873 0.58300± 0.06360
10 0.70167± 0.00060 0.69402± 0.00052 0.71942± 0.00059 0.64262± 0.00187 0.62263± 0.06097 0.70964± 0.00385 0.68103± 0.00137
15 0.72659± 0.00036 0.72014± 0.00067 0.72392± 0.00027 0.65977± 0.00125 0.66203± 0.04319 0.72264± 0.00213 0.69762± 0.00654
20 0.72997± 0.00066 0.72232± 0.00103 0.72624± 0.00330 0.72085± 0.00106 0.70252± 0.01985 0.72668± 0.00307 0.71395± 0.00467
25 0.73281± 0.00030 0.72339± 0.00042 0.73072± 0.00193 0.73253± 0.00091 0.71764± 0.00987 0.73084± 0.00070 0.72057± 0.00444
30 0.73420± 0.00046 0.72622± 0.00049 0.73425± 0.00081 0.73390± 0.00026 0.72267± 0.00663 0.72988± 0.00434 0.72487± 0.00223
35 0.73495± 0.00040 0.73225± 0.00024 0.73058± 0.00350 0.73512± 0.00058 0.73029± 0.00509 0.73361± 0.00037 0.73078± 0.00102

One observes that the selected pixels “clump together” as 𝑖 increases, indicating a greater degree of580

redundancy.581

Our empirical results in this section suggest that adaptivity greatly enhances the quality of features582

selected by Sequential Attention, and in feature selection algorithms more broadly.583
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Figure 8: Sequential Attention with varying levels of adaptivity. We select 64 features for each model,
and take 2𝑖 features in each round for increasing values of 𝑖. We plot accuracy as a function of 𝑖.

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Figure 9: Sequential Attention with varying levels of adaptivity on the MNIST dataset. We select 64
features for each model, and select 2𝑖 features in each round for increasing values of 𝑖.

B.5 Variations on Hadamard product parameterization584

We provide evaluations for different variations of the Hadamard product parameterization pattern as585

described in Section 4.2. In Table 10, we provide the numerical values of the accuracies achieved.586

19



Table 8: Log-loss of Criteo experiments. SA is Sequential Attention, GL is generalized LASSO, and
SL is Sequential LASSO. The values in the header for the LASSO methods are the ℓ1 regularization
strengths used for each method.

𝑘 SA CMIM GL (𝜆 = 10−1) GL (𝜆 = 10−4) SL (𝜆 = 10−1) SL (𝜆 = 10−4) Liao et al. (2021)
5 0.14123± 0.00005 0.14323± 0.00010 0.14036± 0.00046 0.14519± 0.00000 0.14375± 0.00163 0.14073± 0.00061 0.14415± 0.00146
10 0.13883± 0.00009 0.13965± 0.00008 0.13747± 0.00015 0.14339± 0.00019 0.14263± 0.00304 0.13826± 0.00032 0.14082± 0.00011
15 0.13671± 0.00007 0.13745± 0.00008 0.13693± 0.00005 0.14227± 0.00021 0.14166± 0.00322 0.13713± 0.00021 0.13947± 0.00050
20 0.13633± 0.00008 0.13726± 0.00010 0.13693± 0.00057 0.13718± 0.00004 0.13891± 0.00187 0.13672± 0.00035 0.13806± 0.00048
25 0.13613± 0.00013 0.13718± 0.00009 0.13648± 0.00051 0.13604± 0.00004 0.13760± 0.00099 0.13628± 0.00010 0.13756± 0.00043
30 0.13596± 0.00001 0.13685± 0.00004 0.13593± 0.00015 0.13594± 0.00005 0.13751± 0.00095 0.13670± 0.00080 0.13697± 0.00015
35 0.13585± 0.00002 0.13617± 0.00006 0.13666± 0.00073 0.13580± 0.00012 0.13661± 0.00096 0.13603± 0.00010 0.13635± 0.00005

Table 9: Sequential Attention with varying levels of adaptivity. We select 64 features for each model,
and take 2𝑖 features in each round for increasing values of 𝑖. We give the accuracy as a function of 𝑖.

Dataset 𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 6
Mice Protein 0.990± 0.006 0.990± 0.008 0.989± 0.006 0.989± 0.006 0.991± 0.005 0.992± 0.006 0.990± 0.007

MNIST 0.963± 0.001 0.961± 0.001 0.956± 0.001 0.950± 0.003 0.940± 0.007 0.936± 0.001 0.932± 0.004
MNIST-Fashion 0.860± 0.002 0.856± 0.002 0.852± 0.003 0.852± 0.004 0.847± 0.002 0.849± 0.002 0.843± 0.003

ISOLET 0.934± 0.005 0.930± 0.003 0.927± 0.005 0.919± 0.004 0.893± 0.022 0.845± 0.021 0.782± 0.022
COIL-20 0.998± 0.002 0.997± 0.005 0.999± 0.001 0.998± 0.003 0.995± 0.005 0.972± 0.012 0.988± 0.009
Activity 0.938± 0.008 0.934± 0.007 0.928± 0.010 0.930± 0.008 0.915± 0.004 0.898± 0.010 0.913± 0.010

Table 10: Accuracies of Sequential Attention for different Hadamard product parameterizations.
Dataset Softmax ℓ1 ℓ2 ℓ1 normalized ℓ2 normalized

Mice Protein 0.990± 0.006 0.993± 0.010 0.993± 0.010 0.994± 0.006 0.988± 0.008
MNIST 0.958± 0.002 0.957± 0.001 0.958± 0.002 0.958± 0.001 0.957± 0.001

MNIST-Fashion 0.850± 0.002 0.843± 0.004 0.850± 0.003 0.853± 0.001 0.852± 0.002
ISOLET 0.920± 0.003 0.894± 0.014 0.908± 0.009 0.921± 0.003 0.921± 0.003
COIL-20 0.997± 0.004 0.997± 0.004 0.995± 0.006 0.996± 0.005 0.996± 0.004
Activity 0.922± 0.005 0.906± 0.015 0.908± 0.012 0.933± 0.010 0.935± 0.007
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Figure 10: Accuracies of Sequential Attention for different Hadamard product parameterization
patterns. Here, SM = softmax, L1 = ℓ1, L2 = ℓ2, L1N = ℓ1 normalized, and L2N = ℓ2 normalized.

B.6 Approximation of marginal gains587

Finally, we present our experimental results that show the correlations between weights computed by588

Sequential Attention and traditional feature selection marginal gains.589

Definition B.1 (Marginal gains). Let ℓ : 2[𝑑] → R be a loss function defined on the ground set [𝑑].590

Then, for a set 𝑆 ⊆ [𝑛] and 𝑖 /∈ 𝑆, the marginal gain of 𝑖 with respect to 𝑆 is ℓ(𝑆)− ℓ(𝑆 ∪ {𝑖}).591

In the setting of feature selection, marginal gains are often considered for measuring the importance of592

candidate features 𝑖 given a set 𝑆 of features that have already be selected by using the set function ℓ,593
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which corresponds to the model loss when trained on a subset of features. It is known that greedily594

selecting features based on their marginal gains performs well in both theory (Das and Kempe, 2011;595

Elenberg et al., 2018) and practice (Das et al., 2022). These scores, however, can be extremely596

expensive to compute since they require training a model for every feature considered.597

In this experiment, we first compute the top 𝑘 features selected by Sequential Attention for 𝑘 ∈598

{0, 9, 49} on the MNIST dataset. Then we compute (1) the true marginal gains and (2) the attention599

weights according to Sequential Attention, conditioned on these features being in the model. The600

Sequential Attention weights are computed by only applying the attention softmax mask over the601

𝑑− 𝑘 unselected features, while the marginal gains are computed by explicitly training a model for602

each candidate feature to be added to the preselected 𝑘 features. Because our Sequential Attention603

algorithm is motivated by an efficient implementation of the greedy selection algorithm that uses604

marginal gains (see Section 1), one might expect that these two sets of scores are correlated in some605

sense. We show this by plotting the top scores according to the two sets of scores and by computing606

the Spearman correlation coefficient between the marginal gains and attention logits.607

In the first and second rows of Figure 11, we see that the top 50 pixels according to the marginal gains608

and attention weights are visually similar, avoiding previously selected regions and finding new areas609

which are now important. In the third row, we quantify their similarity via the Spearman correlation610

between these feature rankings. While the correlations degrade as we select more features (which is611

to be expected), the marginal gains become similar among the remaining features after removing the612

most important features.613
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Figure 11: Marginal gain experiments. The first and second rows show that top 50 features chosen
using the true marginal gains (top) and Sequential Attention (middle). The bottom row shows the
Spearman correlation between these two computed sets of scores.
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