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Abstract

We study the problem of estimating the average treatment effect (ATE) in adap-
tive experiments where treatment can only be encouraged—rather than directly
assigned—uvia a binary instrumental variable. Building on semiparametric effi-
ciency theory, we derive the efficiency bound for ATE estimation under arbitrary,
history-dependent instrument-assignment policies, and show it is minimized by a
variance-aware allocation rule that balances outcome noise and compliance variabil-
ity. Leveraging this insight, we introduce AMRIV—an Adaptive, Multiply-Robust
estimator for Instrumental-Variable settings with variance-optimal assignment.
AMRIYV pairs (i) an online policy that adaptively approximates the optimal al-
location with (ii) a sequential, influence-function—based estimator that attains
the semiparametric efficiency bound while retaining multiply-robust consistency.
We establish asymptotic normality, explicit convergence rates, and anytime-valid
asymptotic confidence sequences that enable sequential inference. Finally, we
demonstrate the practical effectiveness of our approach through empirical studies,
showing that adaptive instrument assignment, when combined with the AMRIV es-
timator, yields improved efficiency and robustness compared to existing baselines.

1 Introduction

Adaptive experimentation enables efficient estimation of treatment effects in sequential settings by
adjusting assignment strategies based on accumulating data. Compared to traditional randomized
controlled trials (RCTs), adaptive designs can reduce estimation variance, thus accelerating discovery
and limiting exposure to ineffective or harmful interventions. These methods are now widely used
across domains—from medicine to online platforms—and have been formally endorsed by the U.S.
Food and Drug Administration [21]], driving both practical adoption and theoretical advances.

In many such settings, however, direct treatment assignment is not feasible or ethical. The
treatment must instead be encouraged through a randomized recommendation or design choice—often
referred to as an instrumental variable (IV)—Ieaving the final decision to the participant. This gives
rise to noncompliance, where the assigned encouragement and the actual treatment may differ,
and where self-selection based on unobserved factors introduces confounding that biases standard
estimators. For instance, in a real TripAdvisor experiment, users were exposed to different premium
sign-up interfaces that encouraged membership enrollment [52]]. The actual treatment—whether
a user subscribed—could not be enforced, but the interface (the instrument) could be randomized
or adaptively adjusted. Similarly, in clinical trials, a physician may recommend a new medication
but cannot compel adherence: the recommendation can be assigned, yet treatment uptake remains
endogenous. Related challenges arise in recommender systems and public health interventions, where
engagement or behavioral uptake is voluntary.

In such applications, reducing estimator variance is not merely a statistical preference; it determines
how quickly and confidently a study can reach conclusions. Because high variance delays both
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the detection of harmful effects and the confirmation of beneficial ones, adaptive designs that
learn to allocate instruments in variance-minimizing ways can mitigate these risks, yielding tighter
confidence sequences and enabling earlier, statistically valid stopping decisions. Despite extensive
work on adaptive designs for settings where treatment can be directly enforced [13} 23 27]], adaptive
experimentation under noncompliance—where treatment is voluntary but encouragement can be
adaptively controlled, remains largely unexplored, even though it describes many real-world scenarios.

This paper addresses this gap. We study the problem of estimating the average treatment effect
(ATE) in a sequential experiment where the experimenter can assign only a binary instrument, while
the treatment itself is determined endogenously. Building on the semiparametric framework of
Wang and Tchetgen Tchetgen [54]], which identifies the ATE under an unconfounded compliance
assumption and provides a multiply robust, efficient influence-function-based estimator, we extend
this framework to the adaptive setting. Specifically:

* We derive the semiparametric efficiency bound and characterize the variance-optimal adaptive
policy that minimizes this bound through a covariate-dependent instrument assignment.

* We introduce AMRIYV, an Adaptive, Multiply Robust estimator for IV settings, which applies a
sequential, plug-in version of the efficient influence function evaluated under the adaptive policy.

* We establish strong theoretical guarantees, including asymptotic normality, explicit conver-
gence rates, multiply robust consistency, and time-uniform asymptotic confidence sequences for
valid inference at arbitrary stopping times.

* We demonstrate practical effectiveness in both synthetic and semi-synthetic studies, showing
improved efficiency and robustness over non-adaptive baselines and alternatives.

In contrast to prior work on adaptive design with instruments [3. 9, 22, |61]], our method focuses
on point estimation of the ATE, achieves semiparametric efficiency, and supports multiply robust
inference under adaptive assignment. To our knowledge, this is the first method to bring the full
suite of modern semiparametric tools—efficient influence functions, adaptive policy learning, robust
plug-in estimation, and anytime-valid inference—to the adaptive IV setting with noncompliance.

2 Related Work

We provide a brief overview of related work here, with a more detailed discussion in

IV-Based ATE Estimation. ATE identification in IV settings has traditionally relied on structural
equation models (SEMs) that impose parametric assumptions on the outcome and treatment as-
signment mechanisms. More recent work has proposed flexible alternatives—such as DeeplV [24],
kernel IV [50], and orthogonal moment methods [6, [52]—that enable conditional effect estimation in
high-dimensional or nonlinear settings. However, these approaches do not directly target robustness
or semiparametric efficiency for the ATE. We instead build on the framework of Wang and Tchet-
gen Tchetgen [54]], which establishes point identification of the ATE via an unconfounded compliance
assumption without requiring SEMs. Their influence-function—based estimator achieves semipara-
metric efficiency and is multiply robust, remaining consistent under partial nuisance misspecification.
We extend this framework to the adaptive setting and use it as the foundation for our estimator.

Adaptive Experimentation for ATE Estimation. A large and growing literature studies adaptive
designs where the treatment itself can be directly assigned, with the goal of minimizing estimator
variance or its regret analogue. Early two-stage designs asymptotically achieve the semiparametric
efficiency bound [23], and fully sequential approaches such as A2IPW attain variance-optimal
Neyman allocation [27]. Subsequent extensions learn the allocation policy online [28] and add
principled policy truncation with the first anytime-valid confidence sequences [13]. Parallel work
from an online-learning perspective achieves sublinear or logarithmic "Neyman regret" via clipped or
optimistic algorithms [[14} 38} 139], matches finite-sample lower bounds under low-switching policies
[35], and extends to covariate-adaptive and off-policy settings [29] 33]]. Together, these methods form
a mature toolkit—adaptive nuisance learning, cross-fitting, policy truncation, regret-style allocation,
and time-uniform inference—but all assume the experimenter can randomize the treatment directly.
Our work generalizes these efficiency guarantees to the harder and less explored regime where only
an instrument can be assigned and treatment uptake is endogenous.

Adaptive Experimentation with Instruments. A small but growing literature explores adaptive
design in settings where only an instrument, rather than the treatment, can be assigned. Closest to our
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Figure 1: Left: Adaptive experimentation with noncompliance. Blue elements denote learned or
assigned quantities (g, Z;), orange elements represent observed variables (X;, 4;, Y;), and the
dashed red arrow indicates noncompliance (A:(Z;) # Z;). Right: The adaptive policy yields faster
confidence-sequence contraction, enabling earlier stopping.

work is Chandak et al. [9], who propose a practical influence-function—based procedure to reduce
prediction error in nonparametric IV regression. However, they focus on prediction accuracy and do
not address semiparametric efficiency or robustness to nuisances. Other approaches focus on partial
identification [3]], adaptive data acquisition [22]], or regret minimization in bandit-style settings with
endogeneity [16| 61]]. In contrast, our goal is to enable efficient and robust adaptive ATE estimation
under noncompliance, providing the first efficient and multiply robust estimator for this setting.

Additional related work on semiparametric inference, multiply robust estimation, and confidence
sequences is discussed in detail in Appendix [A]

3 Background and Setup

We consider the problem of estimating the average treatment effect (ATE) of a binary treatment
A € {0,1} on a real-valued outcome Y € R, in the presence of unobserved confounding, within
an adaptive experimental setting. We adopt the potential outcomes framework, where each unit is
associated with two potential outcomes, Y'(0) and Y (1), corresponding to the outcomes under control
and treatment, respectively. However, only the realized outcome Y = Y (A), corresponding to the
treatment actually received, is observed.

Each unit is also associated with covariates X € R"™, and we assume that the random variables
(X,Y(0),Y (1)) are jointly distributed according to some unknown distribution P. Our goal is to
estimate the ATE given by:

7= E[Y(1)] - E[Y (0)].

Because direct treatment assignment may be infeasible, we rely on a binary instrumental variable
Z € {0, 1} that influences treatment uptake. The instrument can be interpreted as a recommendation
or encouragement—something the experimenter can assign, unlike the treatment itself. We denote
by Y (a, z) the potential outcome under treatment level a and instrument value z, and by A(z) the
potential treatment that would be taken under instrument assignment z. Noncompliance arises when
the potential treatment does not follow the instrument, i.e., A(z) # z, reflecting endogenous treatment
selection. Equivalently, a unit complies if its treatment adheres to the assigned instrument (A(z) = 2).

The experiment proceeds over I" € N rounds. At each round ¢, a new unit with covariates X; is drawn
from P. The experimenter observes X; and selects an instrument value Z; ~ (- | Xy, Hi—1),
where 7; is an adaptive policy that depends on the current covariates X; and past observations

Ht71 = {<X17 Z17A17Y1)3 ey (thla Zt717At717}/t71)}'

This allows the instrument-assignment policy to evolve over time based on accumulated data. Fol-
lowing the instrument assignment Z;, the treatment A, = A;(Z;) is realized, and the outcome
Y: = Y (A4, Z;) is observed. The full observation at time ¢ is thus (X, Z¢, A¢, Y;). After T rounds,
the experimenter estimates the ATE from accumulated data Hr = {(X;, Z;, A;, Vi) } = ;.

To identify the ATE under endogenous treatment selection (that may be influenced by unobserved
confounders), we adopt standard instrumental variable assumptions, as well as the unconfounded
compliance condition introduced in Wang and Tchetgen Tchetgen [54]. We summarize these below.



Assumption 1 (Standard IV Assumptions). The following properties hold: (Exclusion)Y (a, z) =
Y (a)—the instrument affects the outcome only through the treatment, (Independence) Z 1L U | X—
the instrument is independent of unobserved confounders U given covariates; and (Relevance)
Cov(Z, A | X) # O—the instrument has an effect on treatment uptake for almost every X.

Assumption 2 (Unconfounded Compliance, from [54]]). The treatment effect is independent of
compliance status given covariates: Y (1) — Y (0) L A(1) — A(0) | X.

is standard in the IV literature and ensures instrument validity. The independence
assumption can often be satisfied by design, e.g., via randomization. While sufficient for identifying
the local average treatment effect (LATE), these assumptions do not identify the ATE under effect
heterogeneity or treatment endogeneity. To enable ATE identification, we invoke
from Wang and Tchetgen Tchetgen [54]], which assumes the treatment effect is mean-independent of
compliance type given covariates, ruling out interactions with unobserved confounding.

Remark 1 (Interpretation under violations of Assumption [2). If Assumption [2does not hold, the
ATE is no longer point-identified. The estimand then shifts to the average conditional local average
treatment effect (ACLATE), which averages treatment effects among instrument-responsive individuals
(compliers) across covariate strata. The ACLATE remains identified and interpretable, capturing how
causal effects vary among compliers when compliance is confounded and cannot be fully controlled.

With and[2] the ATE can be point-identified. For notational convenience, we define the
instrument-induced outcome and treatment models 1 (2, X) := E[Y | Z = 2, X] and p” (2, X) :=
E[A| Z = z, X] for z € {0, 1}. The ATE can then be expressed as (Theorem 1 from [54]):

2 (1,X) _MY(O’X):| By {5Y(X)} ’

JA(1,X) — (A0, X) 5A(X) W

T:]EX

where §¥ (X) and 64 (X) denote the instrument-induced shifts in outcome and treatment, respectively.
We refer to 6 (X) as the compliance score, representing the instrument’s effect on treatment uptake.

In the non-adaptive setting, where the instrument assignment policy is fixed over time—i.e.,

m(1l | X,Hi—1) = w(X)—Wang and Tchetgen Tchetgen [54] (Theorem 5) derive the ef-

ficient influence function (EIF) for the ATE estimator in Let w(x),n(x) =

{u¥ (0,2), (0, x),5%(z), 5(x)} denote the nuisances, where §(X) := §* (X)/64(X). The (Re-
centered) EIF is then given by

(X, Z,A,Y;mm) 2

27 -1 1

= T D=0 7 [y — AS(X) — 1Y (0, X) + ™ (0, X)5(X)] +5(X).

The corresponding estimator—known as the multiply robust IV estimator (MRIV) [18| |54]—uses
plug-in estimates of nuisance functions within the recentered efficient influence function. It attains
the semiparametric efficiency bound when all nuisances are correctly specified and remains consistent
under partial misspecification.

We extend this framework to the adaptive setting, where the instrument assignment policy 7, evolves
with accumulating data. We characterize the optimal adaptive policy that minimizes asymptotic vari-
ance and develop AMRIYV, an Adaptive Multiply Robust IV estimator that combines adaptive policy
learning with sequential influence-function—based estimation. Our method achieves semiparametric
efficiency, ensures multiply robust consistency, and enables valid time-uniform inference.

Notation: We write m¢(X; | Ht) := m(1 | Xy, Hy) for the probability of assigning Z; = 1 given
covariates and history. The Ly norm of a function f is || f||2 := Ep[f(X)?]*/2, and f; denotes an

estimate of f based on t samples. We use E to denote empirical expectations computed from data.
Notation used throughout the paper is summarized in Appendix [B](Table|T).

4 Efficiency Bounds and Optimal Instrument Assignment

To guide optimal experiment design under the IV setting, we derive the semiparametric efficiency
bound for ATE estimation under a fixed instrument policy 7(X). This characterizes the variance-
minimizing allocation strategy and motivates our adaptive estimator.



Theorem 1 (Semiparametric Efficiency Bound). Under[Assumption I|and 2} the semiparametric
efficiency bound for estimating the ATE T is given by

1 <02(1,X) a%(0, X)

V) =% s (T + =y 000 - @

where 0%(z,X) = Var(Y — A§(X) | Z = z, X).

Corollary 2 (Optimal Instrument Assignment). The assignment policy 7*(X) that minimizes the

efficiency bound in[Theorem I|is given by

W*(X)_ 0’2(1,X)

T VA + 0K @

Proofs of [Theorem 1| and [Corollary 2]are included in[Appendix E|

Drivers of Efficient Allocation. From [Corollary 2} the optimal assignment policy 7*(X) allocates
more weight to the arm z with higher residual variance Var(Y — Aé(X) | Z = z, X)), where

Var(Y — AS(X) | Z =2, X)=Var(Y | Z = 2, X) + 6(X)*Var(A | Z = 2, X)
—26(X)Cov(Y,A| Z =2z, X).

This expression reveals that, unlike in standard adaptive ATE estimation, the residual variance depends
jointly on both outcome noise (Var(Y | Z = z, X)) and compliance noise (Var(4 | Z = z, X)).
When compliance is more uncertain in one arm, the estimator becomes noisier in that region, leading
the optimal policy to allocate more probability mass to that arm to compensate.

Connection to Neyman Allocation. In the special case of perfect compliance (when A(Z) = Z),
the treatment is fully determined by the (conditionally) randomized instrument and our setting
becomes the classical adaptive ATE estimation scenario. In this setting, Var(Y — A§(X) | Z =
z,X) =Var(Y — A6(X) | A = 2, X) = Var(Y | A = z,X) and thus the optimal allocation
reduces to y Var(|A=1,X) which exactly matches the classical Neyman allocation
\/Var(Y[A=0,X)+4/Var(Y|A=1,X)

for minimizing the variance of a difference-in-means estimator [27,40]]. This highlights that our
policy generalizes Neyman allocation to settings with noncompliance and endogenous treatment,
adjusting for both outcome and compliance-driven noise.

Motivating Illustration. Consider an example with one- Adaptive policy vs. compliance
sided noncompliance—treatment is only accessible to those 0.50 1
who receive the instrument, so (0, X) = 0. This cap-

tures scenarios such as vaccine access, product rollouts, or
behavioral nudges. Let compliance vary with X € R via *C g.404

§4(x) = p(1,2) = o(—2x), and let outcomes follow

Y = f(A, X) +uA + €4, where u is a fixed unobserved con- 0.351 Neyman Allocation __ '\
founder and €4 ~ N(0, A + 4(1 — A)), with higher variance 0.0 05 10
in the control arm. As shown in|[Figure 2] the optimal policy 64(x)

7*(X) approaches Neyman allocation when 6 (X) — 1, but
shifts toward uniform allocation when 6 (X) — 0. This re-
flects a key design intuition: under low compliance, assigning
more units to Z = 1 compensates for scarce treatment uptake, helping preserve estimator efficiency.

Figure 2: Optimal policy 7*(X) as
a function of compliance 54 (X).

5 Adaptive Estimation of the Average Treatment Effect

We propose an adaptive framework for estimating the ATE in sequential experiments with a binary
instrument. Our goal is to minimize the semiparametric efficiency bound from by
combining: (1) instrument assignment via a data-driven policy 7, (X, | #;—1) that approximates
the optimal allocation 77*(X); and (2) treatment effect estimation using an adaptive plug-in version
of the multiply robust estimator from Although the theory assumes per-round updates,
the method also applies in batch settings with fewer updates. We detail both components below.



5.1 Adaptive Instrument Assignment

To stabilize nuisance estimation, we begin with a burn-in phase of Ty < 7T rounds using a fixed policy
minit(X ), such as uniform randomization. From round Ty + 1 onward, instruments are assigned via a
data-driven policy m;(X | H;—1) that approximates the optimal allocation in Specifically,
we compute a plug-in estimate 74 (X | H—1) as

a\f?—l(la X)
V(0. X) + /57, (1,X)

where 57_; (z, X) is an estimate of the conditional residual variance Var(Y — A§(X) | Z = z, X)
based on data in H;_;. We then apply a truncation step to 7+ (X | H:—1) (described below) to obtain
the final assignment policy 7 (X | H;_1) used at time ¢.

%t(X | ’Htfl) =

&)

Residual-variance estimation. One option for estimating 57, (z, X) is using the decomposition
Var(Y — AS(X) | Z = 2, X) = E[(Y — A5(X))* | Z = 2, X] — (1Y (0, X) — (0, X) 5(X))*.
We proceed in two stages: (i) fit72¥_; (0, X), fit 1 (0, X) and 8,1 (X)) using H,_1; (ii) form residuals
Ri1=Y — Ad;_1(X) and regress R? ; on (Z, X) to obtain 5;_1(z, X) := E[R?_, | Z = z, X].
Unbiased two-stage estimation via cross-fitting. To mitigate finite-sample bias in estimating
62 ,(z,X), we apply the sequential cross-fitting scheme of Waudby-Smith et al. [55]]. Thus, we split
‘H:—_1 into two temporal folds Hij_)l ={(X;,Z;,A;,Y;) i € [t —1],i mod 2 =3}, j €{0,1},
fit §;_1 on one and compute residuals E%_l on the other, and vice-versa. The combined residuals
are used to regress R?_; on (Z, X) to estimate 5;_1(z, X). Since i, and i ; do not depend on
other nuisances, they can be learned on the full history H;_.

Nuisance learners. Any sequentially consistent nonparametric regressor can be used for 7} ;, ﬁf_l,
and 5;_1, e.g. k-NN [58]], kernel smoothers [435]], random forests [53]], or neural nets [48]. ﬁf_l may
also be estimated via these methods or a classifier such as logistic regression. We compute d;—1(X) =
6 [ (X)/8A (X)), where 8, is estimated via either a difference of regressions i (1, X) —
iy 1(0, X) or a direct IPW-style regression E [mi%X) - 1153_75))() | X} . An estimate of gf_l (X)
is obtained analogously by replacing Y with A.

To guarantee non-negativity of the estimated variances, we define 52 _;(z, X) as

{gt—l(Z»X) — (B-1(0, X) — ﬁ{‘_l(O,X)gt,l(X))Q} if{---}>0

€ otherwise

o7 1(2,X) = { (©6)

for a small constant ¢ > 0.

Remark 2 (Choice of nuisance and variance estimators). Sequential cross-fitting removes the need
for restrictive conditions (e.g., Donsker)—standard nonparametric convergence rates suffice for the
guarantees in our main theorems. In practice, any consistent learner (e.g., k-NN, random forests,
or neural networks) can be used, depending on data structure and sample size (see Appendix[C).
The variance estimator in Eq. () ensures nonnegativity via a small floor €, though fully nonnegative
alternatives such as self-normalized kernel estimators may also be used. Appendix|Clfurther discusses
these options and outlines online or streaming implementations that avoid full data storage.

Truncation for Finite-Sample Stability. Following recent work on adaptive ATE estimation without
endogenous treatment assignment (e.g., [[13}14,[38]]), we apply a truncation scheme to stabilize the
assignment policy 7¢(X | Hi—1). After computing the raw plug-in policy 7+(X | H:—1) via Eq. (3),
we define the truncated policy m¢(X | Hi—1) as

(X | Heer) = min{l - 1,max{1,%t(X | ’Ht_l)}}, @)
k¢ ky

where k; € [2,00) is a truncation parameter satisfying k; — oo as t — oo. Truncation ensures
that the instrument assignment probabilities remain bounded away from 0 and 1, thereby improving
finite-sample stability and leading to better theoretical guarantees.



Algorithm 1 AMRIV: Adaptive Multiply Robust IV Estimation

Require: Burn-in period Tp; initial policy i (X ); regression/classification learners for p¥ (z, X),
ph(z, X), 6(X), 64(X), s(2, X).
I: fort =1toT do

2:  Observe covariates X;.
3. ift <Tj then
4: Assign Z; ~ Bern (i (X¢))-
5:  else R
6: Estimate nuisance functions 7y, (0, X), i ; (0, X), 8;_1(X), and 5;_1 (2, X) from H;_4
using cross-fitting. Compute 57_, (z, X ) using Eq. (6).
32
7: Compute plug-in assignment probability: 7¢(X | Hs—1) = = (07);;(\;;;)71 ok
8: Apply truncation to obtain 7, (X | H;—_1) := min {1 — o, max { oo me(X | Ht—1)}}-
9: Assign Z; ~ Bern(my (X, | Hi—1))-

10:  Observe instrumented treatment A; = A(Z;) and outcome Y; = Y (A;).

11:  Construct 7, = {fY_1(0,X), il 1(0, X), 62 ,(X), d;:—1(X)} by estimating (or reusing)
nuisance functions via cross-fitting.

12:  Compute ¢y = ¢(Xy, Zs, A¢, Ye; 7, 1t ) using Eq. ().

13: return MRV = LS 6,

5.2 AMRIV: Adaptive Multiply Robust Estimation of the ATE

We now introduce our estimator, AMRIV, which adaptively estimates the ATE using the recentered
efficient influence function in Eq. (Z) evaluated on sequentially updated plug-in estimates of nuisance
functions. The estimator is defined as

T
1
~AMRIV -
= — X, 7y Av, Yy 8
T T ;:1 (X, Zt, Ap, Yei e, 1), ®)

where 7y = {f)_ (0, X), 718 1(0, X), 6{* ;(X),8:_1(X)} denotes plug-in estimates of the nuisance
functions at time ¢, constructed solely from the past data H;_; (Note: the instrument assignment
policy m¢(X | H¢—1), defined by the experimenter based on the estimated optimal rule from
tion 5.1} is treated as known and does not require further estimation from data). This construction

confers the estimator 7pMRY a near-martingale structure, that is, it can be written as the sum of a

true martingale difference sequence and a remainder term of order op(T_l/ 2), enabling, as we will
show in valid asymptotic inference under sequential dependence.

Nuisance Estimation. The nuisance functions 7Y, (0, X), fitt ; (0, X), 672 ; (X), &1 (X) can be
estimated using any flexible nonparametric regression method applied to the historical data H;_;. To
reduce computational overhead, we can reuse the estimates of 7i;_; (0, X) and i{* ; (0, X) previously
obtained for instrument assignment in Similarly, the estimate of d;_1 (X ) can be formed
by averaging the cross-fitted estimates gf@l and gt(i)l, trained on the two data folds ’H@l and H,El_)l,
respectively. The only remaining component is §;* ; (X), which must be estimated separately if it
was not already computed as part of the d;_1 (X) estimation pipeline.

For completeness, the final estimate of the (R)EIF at time ¢ is given by

. 27 — 1 1
Xi, 7o, Ay, Yo w0, ) = ‘ A
P(Xe, 2oy A Vs ) Zimi(Xe | Hea) + (1= Z0)(1 = me (X [ Heo1)) 64 (X)

[ = 4B (X0) = A0, X0) + A1 (0, X1 (X0) | + 8ima(X0) 9

where all _quantities are constructed from H;_;. The full procedure is summarized in
Algorithm Unlike prior adaptive ATE methods without IVs, the estimator 72MRIV =

% Zthl O(Xy, Zy, Ay, Yy; w1, M) cannot be written as a martingale difference sequence. Hence,
standard MDS central limit theorems do not apply directly, and we must instead decompose the
estimator to recover a suitable martingale structure.



6 Theoretical Guarantees

This section provides theoretical guarantees for the AMRIV estimator. We establish its asymptotic
normality, characterize its convergence rates, and demonstrate its multiply-robust consistency. Fur-
thermore, in[Appendix D] we consider the sequential inference setting and derive asymptotically-valid,
time-uniform confidence sequences for the AMRIV estimator.

6.1 Efficiency and Asymptotic Normality of the AMRIV Estimator

We start by establishing the asymptotic properties of the AMRIV estimator 7pMRIY. We first introduce
the following assumption:

Assumption 3 (Bounded Outcomes and Nuisances). The potential outcomes and nuisance function
estimates are uniformly bounded. That is, there exists a constant C > 0 such that, for all t and x:

Y0, V()] < C.[&Y (0, 2)], [BA(0,2)], [6,(2)], 154 ()|~ < C.

This boundedness assumption is standard in influence-function-based ATE estimation and ensures
stability of the estimator. With this assumption in place, we now state our main result on the
asymptotic efficiency of the AMRIV estimator.

Theorem 3 (Asymptotic Normality of the AMRIV Estimator). Suppose Assumptions|[I|to[3|hold and
there exists a non-adaptive policy m(X) € [e, 1—¢| for some € > 0 such that the nuisances estimates 7,
and the adaptive assignment policy wi(X | H¢—1) are Lo-consistent relative to the truncation sched-

ule, e, Kyl fis — 112 = 0p(1) and kylm — 12 = 0,(1) for f € {a¥ (0,),14(0, ), (), 34()}.
Furthemore, assume ||6;—1 — 6|2||67* 1 — 62||2 = 0,(t~/?). Then, the AMRIV estimator is asymp-
totically normal:

VI (M — 1) <5 N (0, Veg(m) (10)
where V,y is defined in In particular; if we have ©(X) = n*(X), then T4MRIV js

semiparametrically efficient.

The key insight behind is that the AMRIV estimator admits the following near-
martingale decomposition: T (TAMRY — 1) = /T (% S - 7') + VT (% Sy mt) ,
where z; = &(Xy, Zt, A, Yi;me,m) is a martingale difference sequence (MDS), and m; =
(X, Zy, Ay, Yy me, ) — O( Xy, Zy, Ay, Yy; e, m) is an asymptotically vanishing term that captures
the impact of estimating the nuisance functions. The first term satisfies a central limit theorem
for MDS under standard Lindeberg-type conditions [60]], while the second is controlled by the
Lo-consistency of the nuisance estimates. We formalize this in Importantly, this
result holds under mild assumptions: we only require Ly convergence (no pointwise convergence
or Donsker conditions [[7]), bounded outcomes and nuisance estimates, and Lo-consistency of the
nuisance components w.r.t. the truncation schedule. This allows AMRIV to accommodate flexible,
data-dependent policies and sequential nuisance estimation.

The truncation schedule &; plays a central role by ensuring positivity of (X )—crucial for variance
control—while still allowing m; to approach an optimal policy 7* as k; — oo. For this to hold,

we must ensure lim; ,., k: > supy ﬁ, so the truncation threshold does not constrain the

optimal allocation in the limit and semiparametric efficiency can be achieved (see last line in
[Theorem 3). This mirrors tradeoffs in efficient ATE estimation [13]], where adaptive truncation
stabilizes estimation without distorting the estimator asymptotically. In practice, when the plug-
in policy 7, is uniformly bounded away from 0 and 1, truncation becomes unnecessary: setting
ki =1/ minx {7:(X),1 — 7(X)} ensures 7, = 7, for all ¢.

6.2 Consistency Guarantees under Partial Nuisance Misspecification

As shown in[Theorem 3] the convergence rate of AMRIV is primarily governed by the estimation

error of §(X) and 6“(X). This reflects its multiply robust property: AMRIV remains consistent
even when other nuisance components are misspecified. This robustness goes beyond prior work on
IV methods in adaptive settings, where such guarantees were not established. The next two results
formalize AMRIV’s convergence rate and multiply robust consistency.
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Figure 3: Performance of different estimators across increasing sample size T'. (a) Efficiency:
Normalized MSE versus an oracle benchmark. (b) Consistency: MSE = standard error. (¢) Coverage:
Empirical coverage of 95% confidence intervals.

Theorem 4 (Convergence Rate of the AMRIV Estimator). Suppose Assumptions[I|to[5|hold, and that
there exists a non-adaptive policy m(X) € [e, 1 — €] for some € > 0 such that the adaptive policies T,

satisfy k¢||m; — ml|2 = op(1). Let 77 = {f¥ (0, ), ﬁA(O D), 8(- ) A(-)} denote a possibly misspecified
limit of the nuisance functions, and suppose that k|| ft 1—f ||2 = 0,(1) for each f € 1. Then the
AMRIV estimator satisfies

[FMRY — | = 0,(T7Y2) + 0, (1137 — 61257 — 6]l2) an

Corollary 5 (Multiply Robust Consistency Guarantees). Under the conditions of[Theorem 4| if either
5t or 6t is Lo-consistent, then the AMRIV estimator oMY s consistent for .

We provide a proof of [Theorem 4] and [Corollary 5|in [Appendix G} An immediate consequence
of m is that if both 6(X) and 6 (X) converge at rate 0,(T~'/*), AMRIV achieves the
parametric Op(Tfl/ 2) rate. This is usually attainable under mild regularity conditions, even with
flexible nonparametric models. Furthermore, shows that AMRIV inherits the multiply
robust property from its static counterpart [[18, 54]. In the static setting, the MRIV converges if
either (i) ¥ (0, ), (0, -), 5 are correctly specified, (ii) both 7 and 54 are, or (iii) 7 and 5 are.
However, in the adaptive setting, we can establish a stronger result: even if the outcome-related
nuisance functions 72} (0, -) and i;* (0, -) are misspecified, AMRIV is still consistent as long as one

of d{ 54 or 6t converges. This is due to the adaptive setting design where we control the mstrument
assignment 7, (X; | H;_1) which confers robustness to misspecification in 7z} (0,-) and (0, -).
Thus, our adaptive generalization preserves the multiple robustness property, making it particularly
well-suited for practice where some nuisance components may be difficult to estimate reliably.

7 Experimental Results

We demonstrate the practical effectiveness of our approach in both synthetic and semi-synthetic
studies. In each setting, we compare our estimator (AMRIV) to its non-adaptive counterpart (AMRIV-
NA), which assigns the instrument uniformly at random; the plug-in direct method from Eq. (T)) (DM)
and its non-adaptive version (DM-NA); the A2IPW estimator from [27]]; and two oracle baselines:
a fully oracle-efficient estimator that uses the true nuisance functions (Oracle) and a non-adaptive
version (Oracle-NA). To assess robustness, we also evaluate misspecified variants of AMRIV and
DM—denoted AMRIV-MS and DM-M (X)) estimator is deliberately misspecified.

Across both experiments, we evaluate three desiderata: (i) efficiency, measured by normalized MSE
relative to the Oracle estimator; (ii) consistency, assessed via MSE decay with sample size 7T'; and (iii)
coverage, computed from empirical 95% confidence intervals. We implement all estimators using
Random Forests (RF, [8]) and update the nuisance estimates in mini-batches for efficiency. Further
implementation details, including model hyperparameters and ablations, are provided in
The replication code is available at https://github. com/CausalML/Adaptive-1IV.

7.1 Simulation Studies with Synthetic Data

We construct a synthetic environment with one-sided noncompliance, where the treatment A is only
accessible to those who receive the instrument Z = 1. At each time ¢, we sample covariates X, assign


https://github.com/CausalML/Adaptive-IV

the instrument Z; ~ 7 (X; | Hi—1), and realize A; = C;Z;, where C4 is a latent compliance indica-
tor sampled from Bern(5 (X)). The outcome Y; depends on A;, X, an unobserved confounder U;,

and heteroskedastic noise. The full data-generating process is detailed in

We set T' = 2000, Ty = 200, and run 1000 trajectories. All estimators are updated in batches of size
b = 200 and implemented using Random Forests (RFs) when applicable. For the adaptive estimators,
we use the truncated optimal policy in Eq. (7)), with truncation schedule k; = 2/0.999". AMRIV uses
RF classifiers for 4 (X) (clipped at 0.01) and RF regressors for ¥ (z, X), while §(X) is computed
via the plug-in ratio. A2IPW follows Kato et al. [27] with Neyman allocation and RF regressors. To

induce misspecification, we replace 7i¥ (1, X) with the constant E[1Y (1, X)], flattening outcome
heterogeneity. Figure [3]summarizes the experimental results.

Adaptivity. As shown in panel (a), adaptive design consistently improves the efficiency of all
estimators. AMRIV approaches the oracle benchmark despite using estimated nuisances, while
AMRIV-NA exhibits a constant efficiency gap due to suboptimal allocation. This illustrates how
adaptivity enables more effective data collection: by dynamically allocating instruments to regions of
high uncertainty, AMRIV concentrates sampling effort where it contributes most to precision. The
effect is particularly evident under one-sided noncompliance, where asymmetries in both outcome
and compliance variance make uniform allocation especially inefficient (Theorem 1)). Panel (a)
also confirms that AMRIV and AMRIV-NA converge at the expected OP(T’l/ 2) rate (Theorem 4),
whereas DM and DM-NA converge more slowly, as their normalized MSE increases with 7T'.

Consistency. Panel (b) confirms that AMRIV, AMRIV-NA, and DM converge to the true 7, with
AMRIV variants achieving lower error due to variance-aware allocation. In contrast, A2IPW is biased
and fails to converge, as expected, since it does not correct for unobserved confounding in treatment
selection. The comparison further highlights the importance of robust nuisance estimation: DM-MS
diverges when §(X) is misspecified, while AMRIV-MS remains consistent. This robustness reflects
the multiply-robust property formalized in[Theorem 4] which ensures consistency as long as either
the compliance model or the outcome model is estimated correctly—an especially desirable feature
in practice when some nuisance components are difficult to learn reliably.

Coverage. In panel (c), we evaluate the empirical coverage of 95% asymptotic confidence intervals.
Only AMRIV and AMRIV-NA achieve nominal coverage, consistent with our theoretical guarantees
(Theorem 3)). The misspecified and plug-in methods under-cover, with DM and A2IPW performing
particularly poorly as T' grows, owing to finite-sample bias and unaddressed confounding bias,
respectively. AMRIV-MS provides partial correction but still falls short of nominal coverage,
consistent with the requirement that §(X) be estimated consistently for asymptotic validity.

7.2 Simulation Studies with Semi-Synthetic Data

We also evaluate AMRIV on a semi-synthetic dataset based on the TripAdvisor customer simulator
from Syrgkanis et al. [52]], where we use customer features as covariates X, a simulated signup
prompt as the instrument Z, and subscription revenue as the outcome Y. The DGP and oracle
nuisances are described in[Appendix H.2} Results are consistent with the synthetic setting: adaptive
instrument assignment improves efficiency, AMRIV achieves superior coverage and consistency, and
robustness holds under partial misspecification.

Overall, these findings confirm that pairing adaptive design with the AMRIV estimator improves
efficiency, enhances robustness, and yields more reliable inference than non-adaptive baselines.

8 Conclusion

We develop AMRIYV, an adaptive, multiply robust estimator for ATE estimation in experiments where
treatment can only be encouraged via a binary instrument. Our approach (i) derives the semiparametric
efficiency bound and optimal assignment policy, (ii) constructs a sequential estimator that attains the
bound under adaptive allocation, (iii) provides asymptotic normality, convergence rates, and multiply
robust consistency, and (iv) supports valid inference through time-uniform confidence sequences.
Empirical results on synthetic and semi-synthetic data confirm that adaptive instrument assignment
improves both efficiency and robustness over non-adaptive baselines. This work represents a step
toward principled, data-efficient experimentation in real-world settings where compliance is optional
and uncertainty is unavoidable. We discuss limitations and broader impacts in
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A Extended Literature Review

We contextualize our work by surveying six strands of prior research. We group these into two
categories: (1) core threads that directly motivate and inform our methodology, and (2) auxiliary
threads that provide important theoretical and practical foundations but are not specific to our design.

A.1 Core Related Work

Identification and Estimation with Instrumental Variables. Instrumental variable (IV) methods
are widely used to estimate causal effects in the presence of endogenous treatment selection due to
unmeasured confounding. Under classical IV assumptions—exclusion, independence, and relevance—
these methods typically identify the local average treatment effect (LATE) [} 2} 4, (10} 42]], which
pertains to compliers: units whose treatment responds to the instrument. However, compliers represent
an unknown and potentially unrepresentative subpopulation, limiting the policy relevance of LATE.

To target the population average treatment effect (ATE), IV methods have traditionally relied on
linear structural equation models (SEMs), in which the ATE corresponds to a regression coefficient
under correct model specification [[19]. Two-stage least squares (2SLS) is the canonical estimator in
this setting, but its consistency and interpretability depend on strong linearity assumptions [12}57].
More recent SEM-based IV approaches focus on estimating conditional effects, including kernel IV
[50], DeepIV [24]], and other moment-based estimators [6} 52].

We instead build on the framework of Wang and Tchetgen Tchetgen [54], who introduce an al-
ternative identification strategy based on an unconfounded compliance assumption. This allows
point identification of the ATE while separating identification assumptions from estimation model
assumptions. Their approach avoids reliance on parametric SEMs for ATE estimation and instead
yields an efficient semiparametric estimator with an efficient influence function (EIF) that confers the
estimator a multiple-robust property, i.e. the estimator remains consistent if one or several nuisance
components are misspecified. This structure makes the estimators well-suited to nonparametric
plug-in estimation using modern machine learning tools. This insight has been extended to develop
multiply-robust CATE estimators that leverage binary instruments to adjust for unobserved confound-
ing [LL8], and to debias confounded observational data by incorporating (potentially weak or imperfect)
instruments [43]]. Other recent work extends the framework of Wang and Tchetgen Tchetgen [54] to
nonparametric identification of ATEs under related assumptions [34].

We adopt the framework of Wang and Tchetgen Tchetgen [54] as the foundation for our estimator,
with the goal of efficiently and robustly estimating the ATE under adaptive, sequential data collection.
Specifically, we derive the semiparametric efficiency bound for ATE estimation under arbitrary,
covariate-dependent instrument-assignment policies and identify the optimal adaptive policy that
minimizes this bound. We then introduce AMRIV, an adaptive, multiply robust estimator that attains
the bound and enables valid inference in sequential experiments.

Adaptive Experimental Design for Treatment Effect Estimation. A substantial literature studies
adaptive algorithms for estimating the average treatment effect (ATE) efficiently and with minimal
variance when the treatment itself can be directly assigned. This line of work was initiated by Hahn
et al. [23]], who proposed a two-stage explore-then-commit design that asymptotically achieves the
semiparametric efficiency bound, echoing early bandit-style adaptive allocation schemes. Fully
sequential designs soon followed: Kato et al. [27] introduced the Adaptive Augmented Inverse
Propensity Weighting (A2IPW) estimator, which achieves variance-optimal Neyman allocation; Kato
et al. [28] extended this to settings with estimated policies and nuisance functions and demonstrated
multiply robust consistency; and Cook et al. [[13] added principled policy truncation and developed
the first anytime-valid confidence sequences for adaptive ATE estimation.

Parallel progress has come from an online-learning perspective. Recent methods such as Clip-OGD
and its optimistic variants attain sublinear or logarithmic "Neyman regret" for the ATE [14} 38 139];
low-switching policies achieve finite-sample optimality bounds [35)]; and newer designs jointly
optimize over covariate and treatment dimensions [29]. Off-policy estimators with adaptively
collected data have also obtained sharp error rates and regret guarantees [33l]. Together, these
advances form a mature toolkit for adaptive experimentation that combines adaptive nuisance learning,
cross-fitting, policy truncation, regret-minimizing allocation, and time-uniform inference.
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Our work builds directly on this literature but extends it to the far less explored setting where only
an instrument can be assigned and treatment uptake is endogenous. We integrate core components
from the direct-treatment literature—influence-function—based estimation, adaptive policy learning,
cross-fitting, policy truncation, and sequential inference—to construct a unified estimator that retains
semiparametric efficiency, multiply robust consistency, and time-uniform inference under noncom-
pliance. Specifically, we are the first to: (i) derive the semiparametric efficiency bound for ATE
estimation when only an instrument can be adaptively assigned; (ii) identify the variance-optimal
allocation rule that balances outcome noise and compliance variability; and (iii) develop AMRIV, a
multiply robust estimator that attains this bound and supports anytime-valid inference.

Adaptive Experimentation with Instrumental Variables. Recent work has begun to explore
adaptive experimentation in settings where treatments cannot be directly assigned, requiring the use
of instrumental variables (IVs) to estimate causal effects under unobserved confounding. Broadly,
these efforts fall into two categories: methods aimed at improving predictive accuracy in the presence
of confounding, and approaches focused on adaptive design and data collection or regret minimization
using bandit-style feedback.

The first group focuses on improving estimation efficiency in indirect experiments. Gupta et al. [22]]
propose an adaptive framework for selecting among multiple data sources to efficiently estimate
causal functionals such as the ATE. Their method, Online Moment Selection (OMS), chooses which
source to query at each step based on moment conditions implied by a causal graph. While they
address efficient data acquisition under structural constraints, their setting assumes passive data
collection and differs from our focus on adaptive experimental design with noncompliance and
endogenous treatment. Ailer et al. [3] study sequential indirect experiment design in instrumental
variable settings, focusing on partial identification of nonlinear treatment effect queries. Rather than
aiming for point estimation, their method adaptively tightens upper and lower bounds on a functional
Q[f] of the treatment effect by selecting experiments that reduce the gap between these bounds. In
contrast, our work targets point identification and estimation of the ATE, and provides semiparametric
efficiency and robustness guarantees under adaptive instrument assignment. Most closely related to
our setting, Chandak et al. [9]] study adaptive instrument selection to improve sample efficiency in
indirect experiments. They propose a general influence-function—based optimization procedure for
selecting instruments that minimize the mean squared error of nonparametric IV estimators, such as
DeeplV [24]. However, their objective is variance reduction for prediction, not inference for causal
estimands like the ATE. Their analysis is estimator-specific and does not characterize semiparametric
efficiency bounds or multiply robust inference, which are central to our approach.

The second line of work focuses on regret minimization in settings with instrumental feedback.
Zhao et al. [61] use randomized instruments within a linear structural equation model to enable pure
exploration for policy learning under unobserved confounding. Their focus is on identifying the best
treatment arm using bandit-style algorithms with finite-sample confidence intervals and near-optimal
sample complexity guarantees. Unlike our work, which targets semiparametric inference for the ATE,
their goal is policy optimization rather than estimation. Della Vecchia and Basu [16] study online
instrumental variable regression with bandit feedback and propose regret bounds under endogeneity.
Their focus is on prediction in stochastic settings with instrumental bandit structure, rather than causal
effect estimation or statistical inference.

Our Contribution. To our knowledge, we present the first estimator that is both semiparametrically
efficient and multiply robust for ATE estimation under a binary instrument with adaptive assignment.
We characterize the efficiency bound, derive the optimal allocation policy that balances outcome and
compliance variance, and develop the AMRIV estimator that asymptotically attains this bound. Our
results generalize prior work on ATE estimation to settings with endogenous treatments, establish
asymptotic normality, and construct time-uniform asymptotic confidence sequences. Empirical
studies confirm our method’s efficiency, robustness, and practical viability.

A.2 Auxiliary Context

Semiparametric Efficiency and Influence-Function-Based Methods.

Our estimator builds on a long line of semiparametric inference techniques, particularly those using
influence functions to achieve efficiency and robustness in the presence of nuisance components
[7,147]. Recent work has adapted these methods to flexible machine learning settings by incorporating
sample-splitting and cross-fitting [[11} 118} |30]. In adaptive experiments, such techniques have been
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shown to yield efficient estimators without requiring Donsker conditions [[13} 27, 28]. We extend
these tools to a setting with endogenous treatment and adaptive assignment via a binary instrument.

Multiply Robust Estimation.

Multiply robust estimators remain consistent if any one of multiple nuisance components is correctly
specified. In the IV context, this structure has been exploited to enhance robustness of ATE and
CATE estimators [18],154]. We extend these ideas to adaptive settings, showing that AMRIV retains
consistency even when some nuisance functions are misspecified, as long as at least one of §(X) or
§4(X) is consistently estimated.

Confidence Sequences and Anytime-Valid Inference.

Confidence sequences (CSs) provide coverage guarantees that hold uniformly over time, making
them well-suited to adaptive experiments with interim monitoring or early stopping. Recent work has
developed CSs for influence-function—based estimators using martingale techniques and empirical
Bernstein bounds [[1325,156]]. We build on this to construct asymptotically valid confidence sequences
for our adaptive IV estimator, accounting for sequential dependence and cross-fitted nuisances.

B Notation

Table 1: Notation

Observed covariates (feature vector) in R™.

Binary instrument / encouragement, Z € {0, 1} (experimenter-assigned).
Binary treatment, A € {0, 1}, determined endogenously by the unit.
Real-valued observed outcome.

Potential outcome under treatment a (and instrument z when shown).
Potential treatment taken under instrument z.

Unobserved confounder(s).

True (observable) distribution of (X, Z, A,Y").

Population average treatment effect (ATE): 7 := E[Y (1)] — E[Y (0)].

B N
=
~
®
&

—~
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~—
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E[Y | Z = z, X = z], instrument-conditional outcome regression.
E[A | Z = z, X = z], instrument-conditional treatment regression.
Instrument-induced shifts in Y and A, respectively.

6 () = u¥ (1) — ¥ (0,2), % () = p(1,) — (0, 2):

o(z) Conditional average treatment effect (CATE) at z:: 6(x) := 6" (z)/6% ().
me(x | He—1) | Instrument assignment policy at time ¢: Pr(Z; =1 | X; = =, H¢—1).

7 (x) Efficiency-optimal instrument assignment (Eq. (@)).

Hi 1 History before round ¢: {(X;, Zi, A;,Y3) f;%

T Total number of rounds / samples.

To Burn-in rounds (initial exploration).

kq Truncation parameter at time ¢ (ensures 7; € [1/ks, 1 — 1/k¢]).

o%(z,x) Residual variance: Var(Y — A§(X) | Z = 2, X = z).

Ver () Semiparametric efficiency bound under policy 7 (Eq. (3)).

o(5m,m) Recentered efficient influence function (EIF) used in AMRIV (Eq. @)).

f, f f estimate of f; f: plug-in or candidate function.

TAMRIV AMRIV estimator after 7" rounds (Alg. .

E Empirical expectation (sample average).

lgl2 Ly norm: g2 == E[g(X)?]"/2.

op(1), Op Standard probabilistic asymptotic order notation.

€ Small positive constant (e.g., variance-floor in Eq. (6)).

"Hij_) 1 Temporal cross-fitting fold (e.g., 7 € {0, 1}) used for sequential cross-fitting.

C Practical Implementation of Nuisance and Variance Estimators

This section complements Remark 2] by outlining practical choices for nuisance and variance estima-
tors, including nonnegativity and online-update considerations.
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Nuisance estimators. Because AMRIV uses sequential cross-fitting, we require only standard
nonparametric convergence rates to establish asymptotic normality (Theorems [3H4). Consequently,
the analyst may flexibly choose estimators according to data structure and sample size. Representative
options include:

Table 2: Representative nuisance estimators, convergence rates, and suitable applications.

Estimator Convergence rate Best suited for

k-NN / kernel smoother O (n_ﬁ /(28 +d)) for Holder-/3 smooth Low-dimensional,
functions [41] smooth problems

Random forest O(n=P/8+d) for Holder-8 smooth Moderate-dimensional,
functions (49 53] tabular data

Fully connected neural nets O (\/WL logWn~/ 2) for width W and  High-dimensional or

(ReLU) depth L [59] structured inputs

Neural nets (1-Lipschitz, O( Hlel M,/ n/*) where M, ; bounds High-dimensional or

bounded weights) structured inputs

the Frobenius norm of layer [’s weights [20]]

The best choice depends on sample size, covariate dimension, and smoothness. In adaptive experi-
ments with directly assigned treatments, k-NN and random forests are standard baselines [13} [27]].

Online or streaming implementations. Theoretical results assume that nuisance functions are
re-estimated at each update, but full data storage is not required. Practical alternatives include:

1. Online learners: gradient-descent (SGD) updates, online random forests [32]], or GLMs can
update parameters incrementally using new data.

2. Block sample-splitting: reuse recent batches to update nuisance fits and discard older data while
maintaining cross-fitting validity [26].

3. Sufficient-statistic updates: for parametric or binned regressors, sufficient statistics such as
running sums of (X, Z, A,Y") per cell suffice.

Non-negative variance estimation. Equation (6) enforces non-negativity via a small floor pa-
rameter €. As an alternative, one may use a self-normalized kernel variance estimator that is fully
nonparametric and guarantees 57 (z,x) > 0 by construction.

For each (z, ), define

520y = Dt KX = al) HZ, = 2} (R = (2. 0)
" %oz Kn(1Xe — ) HZs = 2} |
| Soc KX — o) HZ = ) B,

/’Ltfl(zax) - Esgt K}L(”Xs — x”)]I{Zé — Z} 9

where Ry, = Y, — A, gt_l(Xs) and Kj(+) is a kernel with bandwidth h.

This estimator satisfies 52 (z, ) > 0 by construction and is consistent for Var(Y — A§(X) | Z =
2, X = x) under standard kernel conditions. Caveat: updating kernel weights online can be O(t?) in
general; for large-scale data, the plug-in estimator in Eq. (6] is more computationally efficient.

Both the plug-in estimator with the floor € and the kernel-based version above preserve all asymptotic
guarantees; the choice between them is primarily a trade-off between computational efficiency and
strict non-negativity.

D Asymptotic Confidence Sequences

The fixed—time intervals in guarantee (1 — «) coverage solely at a pre-specified sample
size T'. In practice, however, analysts often peek at interim results and may stop the study early once
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a decision rule is met [46], behavior that invalidates fixed-time intervals. To remain valid under such
data-dependent stopping one needs a confidence sequence (CS)—a collection of intervals
[Lt, Utle>1

satisfying the time-uniform guarantee

P(Vt€N+ T E [Lt7Ut]) Z 1—a.
Constructing non-asymptotic, anytime-valid CSs can be difficult in when the target estimand contains
estimated nuisance functions. Fortunately, for AMRIV the nuisance-induced remainder is o, (t=1/2)
under [Theorem 3| assumptions, so an asymptotic CS—valid after a finite, burn-in phase— remains
both tractable and practically useful.
Deﬁnition~ 1 (Asymptotic time-uniform coverage [15, Def. 2.1 & 2.3]). A sequence of random
intervals Cy = [Ly, Up)y>1 is an asymptotic time uniform (1 — «) confidence sequence (AsympCS)
for a parameter T if the following two conditions hold.

(i) Asymptotic confidence sequence: there exists an exact (potentially unknown) (1 — «v) confidence
sequence C} = [L},Uf]4>1 such that Ly/ L} — 1 and Uy JU; — 1 almost surely.

(ii) Asymptotic time-uniform coverage:

lim P(Vt=Ty:7eCi) = 1-a.
To—o0

can be read as follows: if one waits to “peek” until the sample size is sufficiently large
(T" > Ty for some burn-in 7p), the band then covers the true parameter at every later time with
probability approaching 1 — «.. In practice, the rare coverage failures occur almost exclusively during
this short initial window; once past it, the intervals tighten rapidly and deliver appreciable power
gains over fully non-asymptotic sequences [[13}[55]].

Building on the methodologies of Waudby-Smith et al. [56] and Cook et al. [13]], we now present the
corresponding asymptotic confidence-sequence (AsympCS) results for our estimator:
Theorem 6 (AsympCS for AMRIV). Suppose Assumptions [I] to [3| hold and there exists a non-

adaptive policy m(X) € [e,1 — €] for some € > 0 such that the nuisances estimates 7y and the
adaptive assignment policy 7(X | Hi—1) are La-consistent relative to the truncation schedule,

ie. kil fior = fll2 = 0p(1) and killm, — wll2 = 0,(1) for £ € {1¥(0,), p(0,-),8(-), 54 (-)}.

Furthermore, assume HSt_l —6l|l2 = 04.5.(1) and ||5t_1 — (5H2||gf‘71 — 0|2 = 0q.. ( loft) Let
T

~ PO 2
VT = T; (¢(Xt7Zt7Ata}/;f; 7Tt777t) _T’ZA“MRIV) )
be the estimated variance of {¢(X¢, Zs, A¢, Ye; 7, 1t) }, and fix a user-specified p > 0. Then, for all

T > 0, the interval

- . 2ATVrp? + 1 VT Vrp® +1
CAsympOS [ ZAMrIy (TVrp* +1) o P

T2 p? & @

forms an asymptotic (1 — &) confidence sequence (as in Definition|l)) for T. Furthermore, width of
éAsympCS
T

is (approximately) minimized at
N \/QIOga + log(7210ga+ 1)
p = T
Remark 3 (Difference in convergence rates for fixed-time and anytime-valid inference.). The

conditions under which the AsympCS in Theorem|0]is valid are largely the same as those imposed
for fixed time inference in Theorem 3| The main difference lies in the convergence conditions for the
nuisance functions. While ||0,—1 — 6|2 and ||6,—1 — 0||2]|62 | — 64|2 are assumed to converge in
probability for fixed time inference, confidence sequences require convergence almost surely, as noted
by Waudby-Smith et al. [55]]. However, the conditions for valid inference are not necessarily stricter

than fixed-time inference, as the product error term is allowed to converge a slower /logt/t rate as
opposed to t—1/2.
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Proof of[Theorem 6] For the proof of Theorem [6] we rely on an existing result for asymptotic
confidence sequences [55]. For completeness, we provide this result in Lemma [7] below.

Lemma 7 (Corollary 3.4 of Waudby-Smith et al. [S5] ). Suppose O, is an asymptotically linear
estimator of 0 with influence function ¢ that satisfies

) 1<
0= 0= 7 3 6(Xi Zi, A Yismme) + 0. (V0B H/2) (12)

i=1

Furthermore, suppose that Var(¢) < oco. Then, (975 + \/2(';@?2‘1) log (\/t;:j-rl)) forms a valid
(1 — a)-AsympCS (as in Definition[)) for 6.

Using Lemma([7} we only need to show that (i) the residual error of our estimator is of a smaller order
than /log t/t almost surely and (ii) the variance of the limiting influence function ¢ is bounded.

Verifying Residual Error. Our proof of the residual error bound follows similar steps to the proof

of Theorem [3| We first rewrite the difference between our estimate 7121V and 7 as
1o 1o
FAMEIV _ o DN (X, A 2, Y >
Ty - T = n ra ¢(XZaAZaZZa1/Za7Tta77t) t P my, (13)

where my = ¢(X;, Ai, Zi, Yis e, 1) — 0( Xy, Asy Zi, Yi; e, ). We repeat the same arguments as
the proof of Theorem E} which shows that the cumulative residual error (i.e. the sum of m;) vanish
at 0,(1/+/t) rates. Replacing assumptions |6;—1 — 6||2 = 0,(1) with |[0;—1 — J||2 = 04.5.(1) and

181 = 8llalIBA 4 — 5412 = 0,(t1/2) with [1§1—1 — 21157 4 — 6412 = 0us. ( )w obtain

Z§=1 my = 04.5.(v/tlogt). Normalizing by ¢, we obtain the desired result.

Finite Variance of ¢. The finite variance of limiting influence function ¢ is immediate from
Assumption[3|and the condition that 7(X) € [e, 1 — €] for some € > 0. Under these assumptions, for
any tuple (X, Z, A,Y), ¢ is bounded almost surely as a function of some constant C,

6(X, 2, A,V mm)| = 2 (307 + C%) + C.

Using this bound, we now upper bound the variance as follows:

Var (¢) = E[¢”] - E[¢]* < E[¢’] < (2 (3C%+C%) + C) -

Because the constant C' is finite, the variance must also be finite, which completes our proof. By
Lemma the confidence sequence in Theorem@is a valid (1 — «)-AsympCS for 7. The proof for
the approximate choice of p* that minimizes the relative width of the confidence sequence at time T’
is provided in Waudby-Smith et al. [55, Appendix B.2]. O

E Proof of[Theorem 1| and [Corollary 2|

In semiparametric theory, the efficiency bound is determined by the variance of the EIF characterized
in Eq. (2):
Verr(m) = E[($(X, Z, A, Y3n) = 7)°]
=E [E[(¢(X,Z,A,Y;n) —7)*| X]] (Law of iterated expectations)
where
¢(X,Z,AY;m) -1
27 -1

1 Yy A
= O B A=) P [y —AS(X) — ¥ (0, X) + p? (0, X)a(x)] FO(X) -7

Ay
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First, we show that E[A; | X] = 0:
E[Ay | X] = n(X)E[A, | Z =1, X] + (1 — m(X))E[A, | Z = 0,X]

_ ZE§§ iy (1 (1) = i (1L X)30X) = 7 (0.X) 4 (0. X)5(3)
n l-n(X) 1 (MY(O’X) — 0, X)8(X) — p¥ (0, X) +MA(0aX)5(X)>

1— 7(X) 3A(X)

=0
(Using the p#, ¥ definitions)

= (0 (L, X) = A (L X)5(X) — 2 (0,X) + (0, X)3(X)

where in the last line we used the fact that 6(X) = %

1Y (1,X) — pA (L, X)S(X) = ¥ (0, X) — u(0, X)3(X).

Thus, we can expand Vg (7) as:

which implies the identity

Vegr(m) = E [E[(A1 4 6(X) — 7)* | X]]
=E [E[AT | X] + (6(X) —7)*] = 2E[(6(X) — T)E[A; | X]]

=E[E[A] | X]+ (0(X) —7)?] (Using E[A; | X]=0)
It now remains to expand E[A? | X]:

E[A | X]=m(X)E[A]| Z=1,X]+ (1 - n(X))E[A]| Z =0,X]

= 77TT((XX))26"‘(1X)2E (Y — A5(X) — p¥ (0, X) + (0, X)86(X))? | Z = 1, X]
1—7(X) 1

E[(Y - A5(X) — 1 (0, X) + w (0, X)8(X))? | Z = 0, X]

(1 —m(X))? 64(X)?
1 1

= st sy Verty — 49001 7= 1,30

+ Var(Y—Aé(X)|Z:O,X)>

1—71r(X)
1 <02(1,X)+02(0,X))

“axe oo T
where we used the fact that E[Y — A§(X) | Z = 0,X] = p¥(0,X) — p(0,X)s§(X) and
E[Y — ADX) | Z = LX] = p¥ (1,X) ~ pA(LX)8(X) = ¥ (0, X) — (0, X)3(X). Patting

everything together, we obtain the result of

1 o2(1,X 02(0, X
Valr) =8 |0y (T + 2wy + 000 =7

Then, the optimal policy 7*(X) is given by:

7" = arg min Vg ()
™

1 (0—2(1,){) L *0.X) )]

= argmink LSA(X)Z mX) 1-m)

—min® [xie® (S + 7 e) <)

o2(1,X)  0%(0,X)
b 1—p>

= 7 (X) = argmin (
P
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a2(0,X) a?(1,X) _ 0
a-p? __ p> T

. Thus, we obtain the result of [Corollary 2

The minimum is obtained when the derivative of the argument w.r.t. pis 0, i.e.

02(1,X)
Vo2 (1,X)+4/02(0,X)

B o?(1,X)
V(LX) +/02(0,X)

By solving for p, we obtain p =

T (X)

F Proof of

F.1 Preliminaries
Our asymptotic argument relies on a martingale central limit theorem under a Lindeberg-type

condition. We use a streamlined version of the MDS central limit theorem originally due to Dvoretzky
[17], as presented in Zhang et al. [60, Theorem 2].

Theorem 8 (Martingale CLT, adapted from [60, Thm. 2]). Let {(z;, H:)}1_, be a real-valued
sequence where Zp = % Ethl z¢ such that:

1. (Martingale difference sequence) {z;}1_, is a martingale difference sequence; that is,
Elz: | Hs—1] = O for every t € [1,T).

2. (Conditional variance convergence) There exists a constant 02 > 0 such that
T
LSRR [ Hea] o
T t t—1 )
t=1
3. (Lindeberg condition) For every € > 0,
1 X
P
T ZE [zf]l{|zt| > eVTY | 7-[,5_1] — 0.
t=1
Then,

VT 71 -5 N(0,02).

To begin our proof, we define ¥, := ¢(Xy, As, Zt, Ye; 7, ) — 7, where ¢ is given in Eq. (9). Letting
n={p¥(0,X),u*(0,X),54(X),5(X)} denote the true nuisance values, we decompose 1); as
¢t = ¢(Xt7 Ata Zt7 }/ta Tt, 77) -7+ ¢(Xta At7 Zt> }/;fa Tt ﬁt) - ¢(Xt7 Ata Zta }/;fa Tt 77)7

Zt me

such that
1 & 1 &
~AMRIV _
\/T(TT T)ﬁ<T;ZtT>+ﬁ<Tt=Zlmt>.

Then, the proof of proceeds in three steps. We first verify that {2;}7_; forms a martingale
difference sequence. Then, we show that {z;}7_, satisfies conditions (2)-(3) of with

0% = Vege(m). Finally, we will show that v7'(+ Zthl my) = op(1), thus concluding that
VT(EMRY 1) L A0, Vegr()).
F.2 MDS structure of z;

We now show that {2z} = {¢:(X+, A¢, Z4, Yi; e, m) — 7} forms an MDS, i.e. Elz; | Hi—1] = 0:
IE[zt ‘ Ht_1]
7E[ 27, — 1 1

ZtTrt(Xt | Htfl) + (1 — Zt)(l — 7Tt(Xt | Ht71)> (SA(Xt)
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Vi = A8 (X) — 17 (0, X)) + 1 (0, X0)8(X)] + 6(Xy)
27, — 1 1
= E[E{zm(xt o)+ (L= Z) (0 — (X, | Hi) 5A(X)
Vi = A(X0) — 1Y (0, Xy) + 120, Xp)5(X)] ‘Xt, HH} ‘%H} fr—1
From Eq. (T)

"Htfl] -7

=B [0 (1X0) = i (1, X08(X0) = ¥ (0, X0) + (0, X,)8(X,)]

sicey [P0 X0 = 0. X080 ¥ (0,%0) + (0, X)5(X0)] [Hi

=0
where we used the identity p¥ (1, X;) — p?(1, X;)0(X:) = p¥ (0, X¢) — u(0, X;)d(X;) which

follows from the definition of 6(X7). Thus, {z;} is an MDS, owing to the fact that 7, is constructed
from historical data only.

F.3 2 satisfies conditions (2)—(3) of

For condition (2), we first show that E[2? | H;_1] — Veg (1) —2= 0:
Elz | Hia] = Ver(7)

= Var(z; | Hi—1) — E {5‘4(

1 a?(1,X)  02(0,Xy) _ )2
X;)? ( m(X4) * 1-— W(Xt)) i (5(Xt()E[ |)jl 1= 0)
= Var(é(Xy, As, Zi, Yisme,m) | Hie1)

-8 [ (S Ty + 000 =]
~% | a7 (wf;lfiin - :&Xiu_n) + (0 - )‘”]

(n is the oracle nuisance set)

[ 1 0'2(1,Xt) 0'2(0 Xt) 2
‘E_5A<Xt>2< 2% 1o <X»>+<5(Xt)‘”]

= [ () e

)

[ 04(X4)? N (1 = me( X | Hem)) (1 = m(Xy))
2€2A '
< R Rl () — (X | He)| S bllme = 7l = 0p(1)

where in the last line we use the following boundedness conditions: (i) |Y| < C' from
and thus [6(X)| < 2C and 0?(z, X;) = E[(Y — A6(Xy))? | Z = 2, Xy] — E[Y — AS(X,) [ Z =

2, X¢]? < 18C2, (ii) |6 (X)| ™! < g4 for some €54 > 0 implicit in the (conditional) relevance in
IAssumption 1} (iii) 7(X;), 1 — w(X;) > e from|Theorem 3|statement, (iv) 7(X;), 1 — 7 (X;) > 1/k;
by construction, and (v) the L; norm is bounded by the L, norm. Thus, setting 02 := Vg, we

have that each term converges in probability to o2, i.e. B[22 | H;_1] —— o2, where o2 is finite by
[Assumption 1|and|Assumption 3|

To complete condition (2), we now show that

TZ]E | H,1] — 0% 25 0.

Let a; := E[2? | H;_1] and a := 2. We have just established that a, %, a, and under our bounded-
ness assumptions, sup; E[a;] < oo, so the sequence {a;} is uniformly integrable. By the L' conver-
gence theorem (e.g., Loéve [36]), this implies that a; — ain L!,ie., E [|E[zt2 | Hi1] — 02|] — 0.
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Therefore, by Cesaro averaging and Markov’s inequality, we obtain £ Zthl B[22 | Hi 1] 2= 02,
completing the verification of condition (2) in[Theorem §|

Now we verify that z; satisfies condition (3), the Lindenberg condition. We follow the same steps as

in Cook et al. [13]. Let b; := 27 - 1{|z;| > 6v/T}. Then b, = z? with probability Pr(|z;| > §v/T),
and b; = 0 otherwise. By Chebyshev’s inequality,

Var(z;)

62T

Since Var(z;) = E[22] < o0, it follows that lim7_,., Yo5Z) = 0, which implies b; + 0 and hence

Pr(|z| > 6VT) <

by % 0. Moreover, note that |bs] < 22 and E[2?] < oco. By the dominated convergence theorem,
lim E[b;] = E [ lim bt] = 0.
T—o00 T—o00
Therefore,

;iE 22 1{J20) > VT | Haa | 20,

verifying the Lindeberg-type condition required for the martingale CLT.
F4 T (% sT mt> is 0, (1)

We first decompose /T' (% Zle mt> as:

T
1 ~
=T (T Z(¢(Xta Ata Zt>Yt;7Tt777t) - ¢(Xt7 At’ Zt’}/;;ﬂt’n))>
t=1
1 T
= T (T Z(]E[gb(XtaAtthv}/t;ﬂhﬁt) ‘ Ht—l] - E[¢(Xt7At7Zta}/t;7Ttan) | Ht—l])) (AA)
t=1

T
—~/ 1 ~
+ T(T Z {((b(Xta Ata Zt,)/;:;ﬂ't,'r]t) - ¢(Xta Ata Zt7Yt§7Tt77l))

—E[o(Xy, At, Zs, Yy e, ) — 0( X, Ag, Z, Y me,m) | Ht—l]}) (AP)

where A4 is an asymptotic bias term due to nuisance estimation and A is the empirical pro-
cess term. We bound these independently. Let A} = E[p(X:, As, Zs, Ye; 76, ) | Heo1] —
E[¢(Xt7 Atv Ztv }/ta Tt, 7]) ‘ Htfl]' Then:

A

[0(Xe, Av, Ze, Yoy, 1) | Her] — E[o(Xe, Ar, Z2, Yisme,m) | He—a]
[Elp(Xe, Av, Ze, Y o, 1e) | Xoy Heoa] | Heoa] — E[6(Xe) | Hi1]
[E[¢(Xy, Ae, Zy, Yeis o, mp) | Zo = 1, Xy, Hya]me( Xy | Haer) | He—d]
E[E[Qﬁ(XtaAthtath;ﬂ—taﬁt) | Zy = O»XtaHtfl](]- - Wt(Xt | Htfl)) | Htfl]
—E[6(Xy) | Hi]

E
E
E
+

(1Y (LX) — (L, X001 (Xe) + i1 (0, X)) — A1 (0, X4)0-1(X0))

1 - R ~ _
A (X )(“Y(O’Xt) — (0, X401 (Xe) + 171 (0, X)) — Fift 1 (0, X¢)01—1(Xy))
i—1( Ay
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+ 01 (Xe) — 6(Xy)

_ i 1 Y _5A N n o
=E _gtA_l(XT)(é (Xit) = 67(X¢)0r-1(Xe)) + 0p—1(Xe) — 6(Xy) Ht—l]

[ 54(x,) - ~
=B | = (6(X1) = 61 (X)) + 61 (Xy) — 6(Xy) | Hen

0721 (Xe)

1 A =A 5

=E | = (67(Xe) = 621 (X1))(6(Xe) — 61-1(X3)) [ Hea

6721 (Xe)
< C1dr-1 = 3|16 1 — 642 (Assumption 3|and Cauchy-Schwarz)
= Op(til/Q)

Using a similar argument as in the previous section, we have that /7' (% Zthl A{‘) = 0,(1).

We now focus on the empirical process term AZ. We will show that E[A®] = 0 and Var(AP) =
0p(1) and then apply Chebyshev’s inequality to reach the desired conclusion. We now turn to the
empirical process term AP, Our goal is to show that E[A®] = 0 and Var(AB) = 0,(1), which
together imply that A® is 0,(1) by Chebyshev’s inequality.

Let ¢¢(7:) == ¢(X¢, Ag, Zt, Yi; e, 1) and ¢4 (n) := ¢( Xy, Ay, Zy, Yi; me,m). We tackle the mean:

P

T
D (@) — de(n) — E[6u(7) — du(n) | Htl])‘|

t=1

VT
- T

(E[pe(m) — de(m)] — Eloe(ne) — ¢e(n)]) = 0. (Iterated expectations)

Mﬂ

t=1

Let us now bound Var(A?). Since the summands in AP are conditionally mean-zero and adapted to
the filtration H;_1, the cross-terms vanish by martingale difference independence. Thus:

T
Var(A) = Var <% > (@4() — 6u(n) — Bl (@) — 1) | HHD)
T
= 7 " Var (0 — 01n) — El6u(i) — 6u(n) | Hea))
t=1

- %ZE [Var (6,(7) — ¢(n) | Hi-1)]

I A

fZE[ (66 (A1) — de(m)? | Ho—1]

where we used the inequality Var(X — E[X | F]) < E[X?] for any square-integrable X. We now
stochastically bound E[(¢ (7)) — ¢¢(n))° | Hs—1]. First, we note:

Ge(0) — ()
27 —1
Zm( X)) + (1 — 2)(1 — m(Xy))
{st/*(xt)é“f_l(xt) A <3 (X)) 8(X) ) . (ﬁf_lm,xt) - uY((LXt))
" SAX)SA, (X,) A (X)) 0K

SA (X)) 64 (Xy)

A (0, X0)0-1 (0, X0) 10, X,)8(0, Xy) = _
+< 51 (Xe) 5A(X,) >+(5t—1(Xt) J(Xt))}.
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Then:

E[(61(7) — 60(n)° | Hea] = E [E [ (61(@) = &u(0)” | Xo, Haa ]|
1

< om lE[Yf 20— 1,y D - 5AL (X)) H]

(X2 T (A (X))
L Sa(x) o)\
+2E m(Xt)IE[At | Z, =1, X4] <3;41(Xt) 5A(Xt)> ’Htl

- 2
1 (BL0.X) Y0,
+ 2E — — Hi—
(Xy) ( oA L(Xy) 54 (Xy) t—1
r ~ 2
1 10, X0)0-1(0,X4)  pit1(0, X)de-1(0, X3)
+ 2E = — ) Hi1
(Xt) A (Xe) 64 (Xe)
+2E (/5\1:—1(Xt) - Xt))2|Ht—1]
[ §A(Xy) — 64, (Xp))?
_ 2]E #ED@Q ‘ Zt — 07Xt]( ( t) _ tfl( t)) Htfl
= (X)) (54 (X051 (X)))?
B ~ 2
1 G (X)) 8(Xy)
—E |———E[A? | Z,=1,X,] [ ==L20 — H,_
T () e [ 2= 1, X4 (@A_l(xt) 0A(Xy) ) |
B R 2
1 .Uz/—1(07Xt) ,LLY(07Xt)
—2E & - M
1—m (X)) \ 34, (X0) 04 (Xy)
- L ~ i ,
1 :ut—l(OvXt)dt—l(vat) /’Lt—l(OaXt)(St—l(OvXt)
—2E = — Y Hiy
1 —m(Xy) S8 (X) 04 (Xy)
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Bounding all terms using [Assumption I|and|Assumption 3| we have:

E[(¢(5) — ¢ (n))? | He—1]
< 4k, CUedallof — 613
+ 8k C263a (0p—1 — 613 + 4C|157 | — 6413)
+ 8k C2e2a ()10, ) — 11 (0, )13 + C?[o7, — 5*113)
+ 8k C2 ks (ACH |1 (0,) — (0, )13 + 4CH 167 — 613 + €611 — 5]3)
+ -1 (Xe) — 8(X0)II3
= Op(l)

()

(b)

©

(d)

(e

(a)

(b)

(©)

(d)

(e)

(@)
(b)
()
(d)
(e)

where the last line follows from the fact that (a-e) are 0, (1) from the premise of Since each

term E | (¢4 () — ¢¢(n))? | Ht71:| is nonnegative, uniformly bounded, and satisfies o, (1), it follows

by Cesaro averaging that 7 SLLE {(qﬁt(ﬁt) — du(n))” | ”Ht,l} = 0,(1). Thus, Var(AB) = 0,(1)
and we can apply Chebyshev’s inequality to obtain P(|AB| > ¢) < Var(AP)/e2, Ve > 0. Therefore,
APB is 0,(1), as desired. Putting everything together, we conclude that v/7' (% Zle mt) =0p(1)

and the conclusion of [Theorem 3 holds.
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G Proof of Theorem 4] and [Corollary 5

Letting ¢y (7, n) = ¢(Xy, As, Zt, Ye; 7, n) for any 7,7 and , we decompose 72

TAMRIV _ a5 follows:

FAMRIV

Nl=
B

(e, ) — 7

o~
Il
-

T
(Oe(me, 1) — By (me, e) | Hin]) + = - Z [Pt (e, 1) | Hea] —7)
=

I
Nl =
[M]=

o~
I
-

AA AB
We will now show that A4 is O,(T~1/2) via a similar argument as in |[Appendix Fand A® is
0, (113 = 9421137 — ol ).

Write A2 := ¢y (ms, 1) — Elde(me,7:) | He—1] and note that Af* is an MDS by construction, i.e.
E[A# | Hi_1] = 0. Let V(7) := Var, (¢¢(m, 7)) where Var, indicates the variance over data where

7 ~ Bern(w(X;)). Thus, it suffices to show that E[(A?)2 | H, 1] -+ 02, where 02 = V(x).
Then, the result follows by tracing the rest of the proof in

Write Ay := ¢¢(me, M) — ¢t(me, 77) and note
Var (¢¢ (e, ) | He1) = Var(de(me, 7) | He—1) + Var(Ay | He—1) +2 Cov(¢e(7), Ay | He—1)
and thus
’Vﬁr(¢t(ﬂt7ﬁt) \ Ht—l) —Var(¢t(7Tt,77) | Ht—1)|
< Var(Ay | He1) +2¢/Var(Ay | He_1) Var(oy (e, 77) | He—1)

Since, Var(¢(me,n) | Hi—1) is bounded by |Assumption 3} we just need to show that Var(A; |
Hi—1) = 0p(1):

Var(¢y (7, 1) | Hi—1) < E [(¢t(7fta77t) — ¢u(me, M) | Hia]

< Chr(I0e-1 — 013 + 18- (0,-) = & (0, )13 + 11 (0,-) = (0, )3 + 162, = 513)
(Parallelogram law)

= 0,(1) (Theorem assumptions)

where C encompasses the constants ¢ and C fromand the theorem’s premise. Thus,
since Var (¢ (s, 7¢) | Ht_l) SN Var(ér(me, 1) | Heo1) L5 V., we can use form
Appendix F|and retrace the same arguments to obtain A4 = OP(T*I/ 2) due to the Martingale CLT.
Now, we study AB:

AP

= E[¢¢(me, ) | He—1] — E[6(X)]

= E[E[QS(XMAM Zt»Yt;Wt,ﬁt) | Xthtfl] | /Htfl] - E[5(Xt) | ,Htfl]

=E[E[p(Xy, Ay, Zo, Yes e, ) | Ze = 1, Xy, Hya|me(Xe | Heen) | Heoa]

+ E[E[p(Xy, Aty Z, Yes i, 0e) | Ze = 0, X, Hya](1 = mo(Xy | Hoo)) | Heon]
E[

6(Xy) | He—i]
1 —~ . - ~
= W(MYU’ Xe) = (1, Xe)0s-1 (Xe) + 11 (0, Xo) = 1121 (0, X¢)dp—1 (X))
t—1 t

1 - ~ ~ _
- AAi(MY(O,Xt) — (0, X401 (Xe) + 171 (0, X)) — fift 1 (0, X¢)01—1(Xy))
61 (Xy)
o]

+01(Xy) — 6,-1(Xy)
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o ) )
=E AAi(‘SY(Xt) — 0 (X1)0p-1(X1)) + dr—1 (X)) — 6-1(Xy) Htl]
0721 (Xe)
[ 54X ~ -
=B 1(70(5(&) — 61-1(X)) + 0p—1(Xy) — Gp—1(X¢) Ht—1]
074 (Xt)
1 ~ ~
=B | = (0%(Xe) = 6;11(X2)) (0(Xe) — 5t—1(Xt))‘7'lt—1]
6721 (X4)
< 181 = dllal167 1 — 642 (Assumption 3|and Cauchy-Schwarz)
Thus, AP is Op(HST =42 Hgﬁ —64|2), as desired. [Corollary 5|follows immediately by noting that if
either ;1 or 0;1 ; are consistent(i.e. 0,(1)), then AP is also consistent and |[7AMRIV — 7| = o (1).

H Experimental Details

This appendix provides additional details for the simulation experiments described in [Section 7}
including exact hyperparameters, model components, and execution setup. All experiments were
run on a Perlmutter compute node with 256 CPU cores at the National Energy Research Scientific
Computing Center (NERSC) National Energy Research Scientific Computing Center [37] and
required approximately 40—50 minutes per configuration. Random Forests were implemented using
scikit-learn [44], and parallelization was handled via joblib. Full code for generating data,
running experiments, and reproducing all figures is available at https://github.com/CausalML/
Adaptive- IV, with instructions in the README . md.

Each estimator was evaluated on 1000 independent synthetic trials. Simulations were run over
T = 2000 rounds with a T = 200 burn-in period, and nuisance estimators were updated in mini-
batches of 200. For all adaptive methods, we applied the truncated optimal allocation policy from
Eq. (7), with a truncation schedule k; = 2/ 0.999¢. Oracle methods used ground-truth nuisance
functions, while misspecified estimators were constructed by replacing p¥ (1, X) with a constant
regressor fit to the average oracle value.

Unless otherwise stated, outcome and residual variance functions were modeled via Random Forests
with 100 trees, maximum depth 5, and minimum leaf size 5. The compliance model p* (1, X)
was learned with a shallower forest (depth 3, minimum leaf size 30), and ,uA(O7 X) was zero by
construction due to one-sided noncompliance. For the A2IPW estimator, we followed Kato et al. [27]]
and estimated outcome means and second moments using random forests (depth 5, leaf size 100) and
used a Neyman-style allocation based on observed outcomes. All figures report results averaged over
replicates, with confidence intervals based on empirical standard errors.

H.1 Simulation Studies with Synthetic Data

We generate the data sequentially for each time ¢ € [1,T + Tp| using the following one sided
noncompliance setup:

X, ~ Unif(0,2)4,  Z; ~ Bern(m(X; | Hi_1)) (Covariates & Instrument)
p2(0,X,) =0, §(Xy) = put(1,Xy) = 0(2X4[1]) (Compliance Scores)
Cy ~ Bern(éA (X)), Ar=Cy- Zy (Treatment Assignment)
Uy =u(l—Cy) (Unobserved Confounder)

Y= f(A4, Xt) + Ur +€a,, €a, ~Unif[—g(As, Xt), g(As, Xt)] (Outcome Function)

where Tj is the burn-in period, C} is the (unknown) compliance indicator, o is the logistic sigmoid,
Unif and Bern are the uniform and the Bernoulli distributions, respectively. We utilize the following
instantiations for d, u, f, g:

d=5
u=-2.0
FAX)=1+A+X[1]+2a(X"B)+0.75a X [1)?
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Figure 4: Performance of different estimators on TripAdvisor simulated data. (a) Efficiency: Nor-
malized MSE versus an oracle benchmark. (b) Consistency: MSE =+ standard error. (¢) Coverage:
Empirical coverage of 95% confidence intervals.

g(A, X)=/3-(v1- A+ (vo- X[1] +v1)- (1= A)), wvo=4.0,v3 =025

where X[1] denotes the first coordinate of the covariate vector X € R% and B € R% 3 ~
Unif[—1, 1]% is a parameter vector that is fixed over the 1000 simulations (we used a seed of 1 for re-
producibility purposes.). g(A, X) was chosen such that Var(e4 | X) = v1-A+(vo- X [1]+v1)-(A—1)
where vy, v are constants.

H.2 Simulation Studies with Semi-Synthetic Data

To complement our synthetic evaluation, we conduct additional experiments using a semi-synthetic
setting derived from a real-world dataset collected by TripAdvisor. The original data-generating
process (DGP) was introduced by Syrgkanis et al. [52] and is publicly available on|GitHub. In the
original A/B test, users were randomly assigned to one of two groups: group A (instrument Z = 1)
was offered a simplified membership sign-up experience, while group B (Z = 0) saw the default
interface. This encouragement increased the likelihood of signing up for a membership (treatment
A), though actual uptake remained endogenous due to user-specific factors.

The covariates X € R!? capture rich pre-treatment user behavior and demographics. These include:
prior platform revenue, visit frequencies to different TripAdvisor sections (hotels, restaurants, experi-
ences, flights, and vacation rentals) over a 28-day pre-experimental window, engagement through
free channels (e.g., email), locale information, and operating system type. The binary treatment A
indicates whether the user became a member during the experiment, while the outcome Y records the
total number of days the user visited TripAdvisor during the study period.

We preserve the original covariate structure and instrument assignment mechanism, but modify
the outcome model to introduce heteroskedasticity by adding log-normal noise whose variance
depends on treatment status. This choice reflects the heavy-tailed nature of usage metrics in online
platforms [5) 31]], and results in a more realistic and challenging estimation task. The full data-
generating process is provided below ("*" indicates same as original).

TripAdvisor Data-Generating Process. We simulate tuples (X, A(0), A(1),Y(0),Y (1)) via:

X ~ TripAdvisor pre-treatment covariates, ™
v ~ Unif[-5, 5], (latent user heterogeneity™)
A(1) ~ Bernoulli (0.8 - 0(0.4X; +v)), A(0) ~ Bernoulli(0.006), (compliance*)
€1 ~ LogNormal(0,01), &g ~ LogNormal(0, o), (new: heavy-tailed errors)
Y(1)=f(X)+2v+5-1[X[1] > 0] + €1, (potential outcome for A = 1*)
Y(0) =2v+5-1[X[1] > 0] + <o, (potential outcome for A = 0*)

where oy = 1.5 and o7 = 0.25, and the structural CATE function is defined as:
Ff(X)=08+0.5-¢(X;) —3.0X][7],
with ¢(X1) :=5-I[X[1] > 5]+ 10-I[X; > 15] + 5 - [[X; > 20].

We illustrate our results on To maintain readability in the plots, we define the misspecified
outcome model 72¥ (1, X) as the oracle ;¥ (1, X) plus a constant shift.

Adaptivity. As shown in panel (a), adaptive allocation improves the efficiency of both the DM and
AMRIV estimators (particularly at larger 7), with AMRIV again approaching the oracle benchmark.
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Interestingly, AMRIV, AMRIV-NA, and Oracle-NA slightly outperform the fully adaptive Oracle
in some regimes—likely due to extreme compliance scores in this DGP (64(X) — 0), which
inflate the asymptotic variance when using oracle denominators. In contrast, estimators with learned
denominators can perform better in finite samples [28} I51]]. This also helps explain the narrower
variance gap between AMRIV and AMRIV-NA relative to the synthetic setting, as the variance is
dominated by low-compliance regions rather than outcome variance between instrument arms.

Consistency. Panel (b) confirms that AMRIV, AMRIV-NA, and DM all converge to the true 7, with
AMRIV variants consistently achieving lower error. As expected, A2IPW fails to converge due
to uncorrected confounding, while DM-MS diverges due to misspecification of §(X). In contrast,
AMRIV-MS remains consistent—further validating the multiply-robust guarantee from

Coverage. Panel (c) shows that AMRIV, AMRIV-NA, and AMRIV-MS maintain valid 95% con-
fidence interval coverage, consistent with the asymptotic normality result in[Theorem 3| All other
estimators—including DM-MS and A2IPW—under-cover severely as T increases, reflecting bias
under misspecification or confounding.

I Limitations and Broader Impacts

Limitations

While AMRIV is grounded in semiparametric theory and achieves strong empirical performance, there
are several limitations we highlight. First, our method relies on standard I'V identification assumptions
(Assumption T) and the unconfounded compliance assumption (Assumption 2), which—while weaker
than ignorability—are still untestable and may be violated in practice. In particular, the exclusion
restriction and the unconfounded compliance assumption may not hold even in observational settings
where the instrument is randomized. Second, AMRIV assumes access to flexible, sequentially
consistent nuisance estimators, which may be difficult to train or tune in low-data regimes or in the
presence of heavy-tailed outcomes. Third, our analysis focuses on a binary instrument and binary
treatment; extending the framework to multi-valued or continuous instruments remains an open
challenge.

Broader Impacts

This work contributes to the growing intersection of causal inference and adaptive experimentation,
enabling more data-efficient and statistically principled estimation in settings with noncompliance.
Potential applications include health interventions and online recommendation systems, where
experimenters can encourage behavior but not enforce it. AMRIV allows experimenters to make
better use of limited resources while supporting robust inference under endogenous treatment selection
under unobserved confounding. However, we caution that the validity of conclusions drawn from
AMRIV hinges on the identification assumptions and data quality. In high-stakes settings, particularly
those involving marginalized or vulnerable populations, improper use or misinterpretation could lead
to harmful decisions. We strongly recommend pairing AMRIV with domain expertise, sensitivity
analysis, and uncertainty quantification to ensure responsible deployment and interpretation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions,
including the derivation of the efficiency bound, design of the optimal adaptive policy,
and development of AMRIV with theoretical guarantees and empirical validation. Key
assumptions are clearly stated, and limitations are acknowledged.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We present the limitations of our work in|[Appendix [
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We present six theorems and corrollaries—{Theorem 1| [Corollary 2] [Theo]
[rem 3|[Theorem 4} [Corollary 5] [Theorem 6}—which cover the theoretical guarantees of our
estimator. The (complete and correct) proofs are included in [Appendix D} [Appendix E}
[Appendix F| [Appendix G} The assumptions are incorporated in Assumptions|I[to[3] as well
as the text of the theorems.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [Section 7]and [Appendix H|provide the information necessary (including data
generation processes, model choices, training and validation procedures, hyperparameter
choices, etc.) to reproduce the main experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the replication data and code at https://github.com/
CausalML/Adaptive-1IV, along with instructions for reproducibility (see README . md doc-
ument).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See[Section 7|and [Appendix H}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report standard errors on all our plots, where applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See[Appendix H|

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the ethics guidelines at https://neurips.cc/public/
EthicsGuidelines and confirm that our work adheres to them.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See appendix|l]
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The models and datasets used in this work do not pose significant risks for
misuse. No pretrained language models, generative models, or scraped data are used or
released.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and codebases used in this work are publicly available, properly
cited, and used in accordance with their licenses. For example, the TripAdvisor simulator
is cited from Syrgkanis et al. [52], and standard open-source tools such as scikit-learn and
Random Forests are used under their respective licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release code at https://github.com/CausalML/Adaptive-IV to
replicate all experiments, including synthetic and semi-synthetic settings. The code is
documented with usage instructions, data generation scripts, and dependencies.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs (GPT-40, 03) were used solely for writing assistance and code debug-
ging; they were not involved in a non-standard way in the development or implementation
of the core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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