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ABSTRACT

Various data modalities are common in real-world applications. In healthcare, for
example, electronic health records, medical images, and clinical notes provide
comprehensive information for diagnosis and treatment. Thus, it is essential to
develop multimodal learning methods that aggregate information from multiple
modalities to generate meaningful representations for downstream tasks. The key
challenge here is how to appropriately align the representations of the respective
modalities and fuse them into a joint distribution. Existing methods mainly focus
on fusing the representations via concatenation or the Kronecker product, which
oversimplifies the interaction structure between modalities, prompting the need
to model more complex interactions. Moreover, the notion of joint distribution
of the latent representation that incorporates higher-order interactions between
modalities is also underexplored. Copula is a powerful statistical structure in
modelling the interactions between variables, as it bridges the joint distribution
and marginal distributions of multiple variables. In this paper, we propose a
novel copula modelling-driven multimodal learning framework, which focuses
on learning the joint distribution of various modalities to capture the complex
interaction among them. The key idea is interpreting the copula model as a tool
to align the marginal distributions of the modalities efficiently. By assuming a
Gaussian mixture distribution for each modality and a copula model on the joint
distribution, our model can also generate accurate representations for missing
modalities. Extensive experiments on public MIMIC datasets demonstrate the
superior performance of our model over other competitors. Ablation studies also
validate the effectiveness of the copula alignment strategy and the robustness of our
model over different choices of the copula family. Code is anonymously available
athttps://anonymous.4open.science/r/CM2-C1FD/README . mdl

1 INTRODUCTION

Multimodal learning aims to aggregate information from multiple modalities to generate meaningful
representations for downstream tasks. It has been widely explored in the context of vision-language
models (Fu et al., 2023} |[El Banani et al.| [2023)), audio-visual applications (Chen et al., 2023} Mo
& Tian, 2023} |Huang et al., 2023)), image-video models (Girdhar et al.| 2023} |Gan et al., 2023) and
healthcare applications (Wu et al.| [2024a; |[Hayat et al., |2022). For example, multimodal learning
has been applied to various healthcare tasks such as clinical prediction tasks (Zhang et al., 2023}
Wu et al.| 20244a)), report generation (Song et al., |2022; (Cao et al., |2023), and clinical trial site
selection (Theodorou et al.,[2024). The existing fusion strategies can be divided into early, joint, or
late fusion (Huang et al.l [2020), where the joint fusion paradigm is the most popular strategy and its
core idea is to model the interactions between the representations of the input modalities (Hayat et al.,
2022). The resulting fused embedding encodes the structural interaction between the modalities,
enabling accurate prediction for each modality.

However, due to the heterogeneity of different modalities (e.g., medical images, medical reports,
EHRs), properly aligning the distributions of the various modalities remains a challenging problem.
The existing alignment strategies mainly rely on concatenation or Kronecker products which oversim-
plify the interaction between different modalities. A recent work Salzmann et al.|(2022) emphasizes
simple probabilistic assumptions on the marginals and neglects to explore statistical assumptions
about the joint distributions of the modalities. This approach may result in biased fused representa-
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tions, limiting the performance of downstream tasks and the generalizability and robustness of the
resulting multimodal models. Therefore, there is still a need for an approach that more appropriately
aligns the distributions of modalities and models the potentially complex interactions between them.

Copula models have shown great success in modelling the interactions of variables as they construct
a bridge between the joint distribution and their marginals (Cherubini, |2004). However, copula
models are less explored in the deep learning field as most of the existing approaches heavily rely
on sampling-based methods (e.g., MCMC (Silva & Gramacyl, 2009)), which are relatively slow
and difficult to scale to modern deep learning settings (Smith & Loaiza-Mayal 2023). Although
some recent works are attempting to introduce copula to deep learning models through stochastic
variational inference (Smith & Loaiza-Maya, |2023)), the potential of copula in multimodal learning is
still underexplored.

Moreover, existing multimodal learning methods mostly assume the existence of all modalities. In
reality, some modalities may be missing for some observations due to various reasons, e.g., missing
medical images or reports for some patients due to clinical and administrative factors in healthcare,
which pose a major challenge in multimodal learning. The existing solutions either discard these
observations or impute simple values (e.g., zeros or means from other observations) to address the
missing modality problem. However, these approaches ignore the marginal distributions of the
modality and often mislead the learning of the joint distribution. Therefore, properly learning the
marginal distribution is also necessary to generate unbiased representations for the observations with
missing modalities.

In light of the above challenges, we propose a novel copula modelling-driven multimodal learning
framework, namely CM2 (Cross-Modal alignment via variational Copula Modelling), to tackle the
joint fusion paradigm from a probabilistic perspective. Our contributions can be summarized as:
(1) We for the first time introduce copula modelling into multimodal learning, where we interpret
copula as an effective tool of distribution alignment, guaranteed by Sklar’s theorem. (2) We employ
a Gaussian mixture model on the marginal distribution of each modality to enable more flexible
modelling of the high-dimensional feature distribution of different modalities. (3) We adopt stochastic
variational inference to optimize the copula model, which enables the scalability of our model
to large-scale datasets. (4) We adopt the learned marginal distribution as the data generator to
accurately impute the missing observations. (5) Empirical results on real multimodal MIMIC datasets
demonstrate the good performance of our method and ablation analysis corroborates the effectiveness
of copula in modality alignments and robustness to potential variations.

2 RELATED WORKS

Multimodal Representation Learning. Multimodal representation learning aims to effectively
integrate information from different modalities for accurate predictions on the downstream tasks.
Early works (Hayat et al., [2022; Ding et al., [2022; [Trong et al., |2020) focus on late fusion that
merges unimodal representations via, for instance, concatenation or Kronecker product. However,
such approaches oversimplify the interactions of the modalities and mostly lead to biased fused
representations. Therefore, the structural interactions of the modalities need to be encoded in the
fused representation for more effective multimodal learning. Recently, modelling the interaction
between modalities has received increasing attention. Liang et al|(2024) proposed an information
decomposition framework to define and quantify different types of interactions between modalities.
Transformer-based methods have greatly facilitated the progress by modelling the cross-model
tokens (Zhang et al.| 2023} Theodorou et al., |2024). However, matching the correspondence with
transformers introduces high computational complexity, which prompts a more efficient approach for
representation alignment.

Copula Deep Learning. Copula is a promising tool in modelling the interactions or correlations
between variables and it constructs a bridge between the joint distribution and marginal distributions.
Copula has been widely applied in financial risk management (Hofert, 2021 Rodriguez, [2007)),
signal processing, and healthcare (Zeng & Wangl 2022) due to its capability in modelling complex
interactions. Traditional copula models rely on closed-form solutions of the likelihood and estimate
the copula parameter with sampling-based approaches (e.g., MCMC (Silva & Gramacy, [2009))).
However, these algorithms suffer from high time complexity, making them less applicable to high-
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Figure 1: Overview of our proposed CM? framework. For a dataset with M/ modalities, we extract
modality-specific embeddings z,,, via Encoder,,, and compute its GMM. We then model the marginal
distribution and estimate the joint distribution using a copula family C. If modality m is missing,
we sample 2,,, from its GMM. The concatenated embedding z then passes through a 2-layer LSTM
fusion module and MLP classifier to predict §. The ELBO for backpropagation can be obtained
by aggregating the task-specific loss (e.g., CE loss) and the negative log-likelihood from the joint
distribution.

dimensional data. Recently, with the emergence of deep learning, there have been works integrating
copula models into deep learning frameworks (Tagasovska et al., |2019; Smith et al., |2020). To
tackle the inherent high dimensionality, variational inference is adopted to solve copula models in
high dimensions (Tran et al 2015} Smith & Loaiza-Maya, |2023)). For example, Tagasovska et al.
(2019) introduced copula to variational autoencoders to create deep generative models. However, the
potential of copula in multimodal learning is still under-explored.

Learning with Missing Data. Traditional multimodal learning assumes all modalities are available,
but in reality, some observations may be missing, e.g., missing medical images or reports in clinical
data. Late fusion is a common strategy to address missing modalities by aggregating predictions (Yoo
et al., 2019) or latent space representations (Theodorou et al.,[2024) from the available modalities.
Although it is effective, it treats each modality independently and lacks interaction between them.
Some researches focus on extracting shared information across modalities to perform downstream
tasks (Deldari et al.,|[2023}; | Yao et al., [2024). However, learning such shared representations can be
challenging, particularly when the modalities are highly heterogeneous, as in the case of EHRs and
CXRs. Many approaches attempt to preserve model performance via modelling the relationships
between them (Zhang et al.| [2022; Wu et al., 2024b) or generating a global representation for the
missing data (Hayat et al., [2022). Other methods assume that the missing modality follows a certain
distribution, imputing the missing values using the mean or mode of that distribution (Ma et al., 2021)).
Despite their successes, these distributional assumptions may be inaccurate, potentially introducing
bias into the model. Therefore a probabilistic assumption is needed to guarantee the unbiasedness of
learned marginal distributions.

3 METHODOLOGY

3.1 PRELIMINARIES

Copula. A M -variate function C(u1, . .., cpr) where u,, € [0,1] for all ¢ is a copula if and only if
C' defines a valid joint cdf of the random vector (U, ..., Uys) with each U, distributed as uniform
on the unit interval. Without loss of generality, we select the Gumbel copula for illustration as it is
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based on the extreme values of each modality, which can best represent the strongest signals in each
modality. Given u and v the c.d.f. values of the first and second modality, respectively, the bivariate
form of Gumbel copula is defined by

C(u,v;a) = exp{—[(—logu)* + (—logv)"]
and its copula density is

Q=

2

1 2(1=a) _1
c(u,v;a) = —(~logv)* "} (~log w)* 1 C(u, v;0) [g(u,v;a)] = |(a—1)[g(u,v;)] = +1],
uv
where g(u, v; o) = (—logu)® + (—logv)®. The effects of different Copula families are discussed
in the ablation analysis. Details of different copula families and their corresponding distribution and
density functions are provided in the Appendix [C]

Multimodal Learning. Given the multimodal training dataset Dy, = {(mgi), .. ,wg\?,y(i)) 1
where ij} is the i-th observation of the m-th modality and 3 is the corresponding label, the goal
is to train a multimodal model fg(-) with parameter © such that the model can achieve optimal

performance in downstream tasks.

3.2 COPULA MULTIMODAL LEARNING

The overview of the proposed copula-driven multimodal learning framework is shown in Figure
[1] Given multimodal data, we extract each modality-specific embedding and compute its Gaussian
mixture model (GMM). We then model the marginal densities and estimate the joint distribution using
a copula family C'. If modality m is missing, we generate feature embeddings from its GMM. The
concatenated embeddings z are passed through a fusion module and an MLP classifier for prediction.
The ELBO combines the copula log-likelihood and task-specific loss.

Gaussian Mixture Assumption. To generate a more flexible feature distribution, we assume the
feature distribution of the m-th modality follows a K-mixture of multivariate GMM,

K
Fn(2) = kN (Bomes S (1
k=1
where 7,1 is the mixture weight, p,,, is the mean vector, and 35, is the covariance matrix of the
k-th mixture of the m-th modality. We let p = {ftyp, : m € [M],k € [K]} and X = {2, : m €
[M], k € [K]}. Without loss of generality, we predict 7, with an MLP with a softmax output layer
and adopt the reparameterization trick (Nalisnick, |2018}; [Tran et al.,|2022)) which assumes 3,5 is
diagonal. We further set ;1 and 3 to be trainable by gradient backpropagation. We compute the
cumulative distribution function of the multivariate Gaussian distributions using the approximation
provided in Marmin et al.|(2015). By employing a mixture model, we can model a wider range of
distributions of each modality and improve the flexibility and robustness.

Multivariate Copula. We model the joint distribution of the modalities with multivariate copula.
Using the multivariate copula, the joint distribution function of the modality can be written as

FZl,---,ZM (Z) = C(F('Zl)> s ’F(ZM))v
where C'(F(z1),. .., F(zar)) is the M-dimensional copula distribution function, and F,,(z) is the
marginal cumulative distribution function of the m-th modality which is the c.d.f. of the GMM model
defined in Eq. (I).

3.3  STOCHASTIC VARIATIONAL INFERENCE

To tackle the scalability of CM? to modern deep learning settings, we adopt the stochastic variational
inference to optimize the proposed copula model and treat the copula parameter « as trainable.
Algorithm[T]presents the overall workflow of our method.

Variational Family. We use a variational posterior g to approximate the true posterior of the joint
distribution. The variational family of the copula model that we optimize during training is given by

q(z) = [H Qm(z)‘| C(Ql(z)’ AR Qm(z))7
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Algorithm 1 Sampling algorithm of our proposed framework.

Input:
Multimodal model fg(-) with parameter ©
The Copula parameter o
1: Means and covariances {(ftmi, Xmi) |Ym=1,..., M, k=1,...,K}
2: Multimodal training dataset Dy, = {(w(f), . ,wg\l}, yn
Output: Trained fo
for (:cgz), o m%}% y®) in Dy, do
Compute task-specific loss Loy with 7@ and 3*
Compute the KL(g||7) and hence the ELBO
Backpropagate the ELBO to update ®
end for
Return: Trained fo

> Forward propagation

R A A i

where ¢, (z) is the density of the variational posterior of the GMM of the m-th modality, and Q,,,(2)
is the corresponding c.d.f.

The Evidence Lower Bound (ELBQ). The joint objective function can be written as the negation of
the negative log-likelihood

n M
ELBO = —Xcop D <1og c(Q1(z), - Qm(z:)) — Y log fm(z,-)> + Lo,
m=1

=1

where ¢(Q1(2),...,Qm(z)) is the copula density, Acop is the regularization parameter of the copula
assumption, and L,y is the task-specific loss (e.g., the cross-entropy loss). We compute the gradient
based on the ELBO and backpropagate it to p and 3 to learn the marginal distributions of each
modality, together with the copula parameter « to learn the interactions between these modalities and
the multimodal model parameter © to learn the embedding, fusion, and classification layers.

3.4 HANDLING MISSING MODALITY

Thanks to the probabilistic design of our method, our framework can also generate pseudo obser-
vations for missing modalities. Without loss of generality, we consider missing modalities with
complete labels where only the observations are missing. The learned GMM for each modality can
be treated as a data generation model, and we can generate feature embeddings through sampling

from the GMM of each modality (i.e., zﬁ,’? ~ F,,). Then the generated feature embeddings can be
treated as the future input to the classification layer and predictions can be obtained.

By learning the copula parameter «, the marginal distribution on each modality contains information

from other modalities and information of the interactions. The generated feature representation :cg,i,)

can therefore better reflect the characteristics of the joint distribution, which would improve the
quality of the representation and the downstream task performance as a result.

3.5 THEORETICAL GUARANTEE WITH SKLAR’S THEOREM.

We make use of Sklar’s theorem to demonstrate the uniqueness of the joint distribution. Sklar’s
theorem is given as follows.

Theorem 1. (Sklar’s theorem) (Sklar, |1959) Let F(x1,...,x5) be an M-variate c.d.f. for
(X1,...,Xn) with the marginal c.d.f. for the m-th variable given by F, (z,,),m = 1,..., M.
Then:

1. There exists an M-dimensional copula such that
C(F1($1)7...,F]\4(£L'M)):F(l‘l,...,l‘M) (2)
forall ., € R.
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2. Conversely, given any copula C' and univariate c.d.f.s Fy, ..., Fy, Cis a valid joint c.d.f.
for (Xu,...,Xn). Furthermore, if F is continuous, then C in Eq. is unique.

The above theorem allows us to construct joint distributions with the same margin but different
dependence structures, or conversely by fixing the dependence structure and variating the behaviour
in individual modalities (Tagasovska et al.,[2019). This allows us to update the marginal distributions
and the copula parameter separately. Furthermore, since we assume a GMM for each modality
and they are continuous by definition, the uniqueness of the copula C' can be guaranteed and the
identifiability of the model can be enhanced.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTING

Datasets. We evaluate the performance of CM? using large-scale, real-world EHR datasets: MIMIC-
IIT (Johnson et al., 2016}, MIMIC-IV (Johnson et al., [2023), and MIMIC-CXR (Johnson et al.|
2019). MIMIC-IIT and MIMIC-IV are publicly available datasets containing real-world EHR data
from patients admitted to the intensive care units (ICUs) or emergency departments of Beth Israel
Deaconess Medical Center (BIDMC), comprising numerical time series and clinical notes. MIMIC-
CXR is a public dataset of Chest X-ray(CXR) images along with radiology reports collected from
BIDMC, with a subset of patients matched to those in MIMIC-IV.

Following (Hayat et al.,[2022)), we utilize the MIMIC-IV and MIMIC-CXR datasets for our multi-
modal experiments. Additionally, we extend our experiments to the MIMIC-III dataset. As CXR
images are not available in MIMIC-III, we replace them with clinical notes serving as the second
modality. Table[T] provides an overview of the datasets used in our experiments. We extracted 25,071
ICU stays with EHR records from MIMIC-1V, 5,931 of which are matched to CXR images and
reports. Similarly, we extracted 21,139 ICU stays with EHR records from MIMIC-III, with 5,273
stays matched to clinical notes. To evaluate the performance of CM? on cross-modal alignment,
we conduct experiments on fotally matched bi-modal and tri-modal settings. We also evaluate the
performance on partially matched datasets to demonstrate the robustness of CM? in the presence of
missing modalities. Further details on the datasets can be found in the appendix [A.T]

Task & Evaluation Metrics. Fol- Table 1: Datasets description

lowing the common practice in clin-

ical prediction tasks (Hayat et al., Dataset No. Train No. Valid No. Test No. Total
L [ Complete Datasets.

2022; [Zhang et al., 20225 Wu et al,  —ymyrem 14,681 3222 3236 21,139

2024b; (Wang et all [2024), we fo- ~“MIMIC-IINOTE 3,652 315 306 5273

cus on two common clinical predic-  MIMIC-IV 18,064 2,035 i972 25071

. ) . p MIMIC-CXR 344529 9497 23069 377,095

tion tasks: (1) In-Hospital Mortal- Maiched Datasets.

ity (IHM) predlctlon, which predlcts MIMIC-IIT INOTE 3,652 815 806 5273

- . MIMIC-IV | CXR 4287 765 L.I79 5931
whether a patient will pass away dur- e T CXRTREPORT — 4.287 365 LI79 5031

ing their hospital stay; and (2) Read-
mission (READM) prediction, which
aims to predict whether a patient will be readmitted within 30 days after discharge. Both tasks are
formulated as binary classification problems. To assess model performance, we compute the area
under the precision-recall curve (AUPR) and the area under the receiver operating characteristic
Curve (AUROC). Results are reported with the corresponding 95% confidence intervals, obtained
through 1,000 bootstrap iterations.

Backbone Encoders. Following (Hayat et al.,|2022)), we utilize ResNet34 (He et al., 2016) as the
backbone encoder for CXR image data. For time-series data, including lab values and vital signs,
we employ a two-layer stacked LSTM network (Graves & Graves,, 2012). For clinical notes and
radiology reports, we use the TinyBERT encoder (Jiao et al.| 2019). Additionally, a projection layer
is applied to map the modality embeddings into the same latent space.
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Table 2: Result on MIMIC-III and MIMIC-1V datasets with fotally matched modalities. All results
are reported in AUROC and AUPR with 95% confidence intervals. The best results are highlighted in
bold. Our proposed method CM? outperforms the baselines in all cases.

IHM READM

Model

AUROC (1)

AUPR (1)

AUROC (1)

AUPR (1)

MIMIC-III

MMTM (Joze et al.|[2020)
DAFT (Polsterl et al.[|2021)
Unified (Hayat et al.|[2021)
MedFuse (Hayat et al.|[2022)
DrFuse (Yao et al.[[2024)

0.776(0.728, 0.819)
0.792(0.746, 0.839)
0.827(0.752, 0.868)
0.8260.7s1, 0.866)
0.835(0.793, 0.874)

0.3470.268, 0.447)
0.388,0.299, 0.454)
0.466(0.371, 0.569)
0.4300.340, 0.537)
0.5110.417, 0.607)

0.716(0.670, 0.762)
0.7010.653, 0.746)
0.7140.662, 0.759)
0.7250.676, 0.774)
0.7490.699, 0.795)

0.341(0.277, 0.419)
0.325(0.262, 0.403)
0.423(0.344, 0.504)
0.4140.335, 0.502)
0.4410.356, 0.527)

cm?

0.854/0.520, 0.561)

0.513(9.460, 0.557)

0.754(0.731, 0.774)

0.4450 403, 0.457)

MIMIC-1V

MMTM (Joze et al..[2020)
DAFT (Polsterl et al.[[2021)
Unified (Hayat et al.[[2021)
MedFuse (Hayat et al.|[2022)
DrFuse (Yao et al.[[2024)

0.8020.770, 0.835)
0.815¢0.782, 0.844)
0.8080.775, 0.840)
0.813(0.777, 0.844)
0.818,0.784, 0.850)

0.4290.362, 0.513)
0.4540.387, 0.538)
0.4290.367, 0.512)
0.448,0.350, 0.528)
0.460,0.391, 0.540)

0.7130.677, 0.750)
0.7290.692, 0.766)
0.7190.680, 0.756)
0.725(0.690, 0.762)
0.726(0.659, 0.760)

0.420/0.362, 0.459)
0.4330.378,0.499)
0.450(0.390, 0.513)
0.4380.379, 0.508)
0.430,0.370, 0.495)

cMm?

| 0.827,0.790,0.859)

0.492 9.423,0.566)

0.7370.704,0.773)

0.466,0.404, 0.529)

4.2 COMPARED METHODS

We compare CM? against the following baselines: (1) MMTM (Joze et al.,[2020) is a flexible plugin
module that facilitates information exchange between modalities. Since the model assumes full
modality availability, we compensate for missing CXR and clinical notes during training and testing
by filling in all zeros. (2) DAFT (Polsterl et al.|[2021) is a module designed to exchange information
between tabular data and image modalities when integrated into CNN models. Similarly, we replace
missing CXR and clinical notes with zero matrices during training and testing. (3) Unified (Hayat
et al.l|2021])) is a dynamic approach for integrating auxiliary data modalities, learning modality-specific
representations, and combining them via a unified classifier. It handles missing data inherently and
leverages all available modality-specific information. (4) MedFUSE (Hayat et al.,|2022) employs
LSTM-based fusion to combine features from image or language encoders with EHR encoders. It
handles missing modalities by learning a global representation for absent CXR or clinical notes.
(5) DrFuse (Yao et al., [2024)) leverages disentangled representation learning to create a shared
representation between the EHR and image modalities, even when one modality is missing.

4.3 EXPERIMENTAL RESULTS

Quantitative Results. Table 2] presents results on the MIMIC-III and MIMIC-1V datasets with rotally
matched modalities. CM2 outperforms all baselines in all cases. Notably, for the IHM task, CM?
exceeds the best baseline by 1.9% in AUROC on MIMIC-III and 3.2% in AUPR on MIMIC-IV. These
results demonstrate the effectiveness of CM? in capturing the interactions between modalities and
enhancing the performance of multimodal learning tasks in clinical prediction.

Table [3| reports results on the MIMIC-IIT and MIMIC-1V datasets with partially matched modali-
ties(e.g. missing modality). CM? outperforms the baselines in all cases, with the best performance
on the MIMIC-III dataset, where it outperforms the best baseline by 1.5% in AUPR for the [HM
task and 0.8% in AUPR for the READM task. This indicates that CM? effectively learns the joint
distribution of the modalities, generating robust and unbiased representations in the presence of
missing modalities.

Moreover, our results reveal that the performance on the partially matched datasets is superior to
that on the matched datasets. This can be attributed to the larger number of observations in the
partially matched datasets, underscoring the importance of multimodal learning in the presence
of missing modalities. Lastly, we observe that the performance on MIMIC-IV is better than that
on MIMIC-III under partially matched setting, likely due to the larger number of observations in
MIMIC-IV. Additionally, the heterogeneity between modalities in MIMIC-IV may be greater than in
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Table 3: Result on MIMIC-III and MIMIC-IV datasets with partially matched modalities (i.e.,
missing modalities). All results are reported in AUROC and AUPR with 95% confidence intervals.
The best results are highlighted in bold. Our proposed method CM? outperforms the baselines in all

cases.
Model IHM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)

MIMIC-III
MMTM (Joze et al.]2020) | 0.846.525, 0.665) 045010399, 0.509) 0.7420.716,0.766 04130371, 0.455)
DAFT (Polster] et al.| 0.854(0.836,0.873)  0.49500.440,0552)  0.748(0.724,0.772)  0.429(0.386, 0.473)
Unifie 0.849(0.829,0.868)  0.491(0.435,0542)  0.75110.728 0.772)  0.427(0.383, 0.467)
MedFuse 0.850(0.530, 0.868)  0-48010.426,0.533  0.75310.730, 0.775)  0.437(0.396, 0.450)
DrFuse 0.8390.817,0861) 047410422, 0531)  0.7490.727,0.7700  0.411(0.371, 0.455)
cm? | 0.856(0.533,0.877) 0.510(0.463 0566) 0.7540.708 0.795) 0.445(0.355 0.523)

MIMIC-IV
MMTM (Joze et al.][2020) | 0.8550.540,0869) 0.519%0.477,0561) 0.765(0.747,0783  0.465(0.430, 0.501)
DAFT POlSterl etal. 0.857(0.841,08700  0.52610.487,0565)  0.7650.747,0.782)  0.476(0.442. 0.510)
Unifie 0.854(0.839,0870)  0.505(0.545, 04639  0.759%0.742, 0.776)  0.470¢0.436, 0.503)
MedFuse 0.855(0.840, 0.870)  0.50010.458 0.541)  0.762(0.744,0.778)  0.465(0.430, 0.501)

DrFuse ‘ 0~857(0.841, 0.872)

0.5180.479, 0.562)

0.7680.749, 0.754)

0.485(0.451, 0.520)

| 0.8580.514, 0.572)

0.527(9.490, 0.565)

0.7710.752, 0.788)

0.486,0.452, 0.515)
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Figure 2: Plots of the fitted copula density to demonstrate the interrelationship captured by the copula
model (Left: Gumbel, middle: Gaussian, right: Frank).

MIMIC-III, contributing to the difference in performance between the two datasets under the totally

matched setting.

Qualitative Analysis. We visualize the copula
density of different families of copula and see
how the interactions between modalities are cap-
tured. Figure [2] presents the visualizations of
learned copula densities of the Gumbel, Gaus-
sian, and Frank copula families, respectively.
We observe that the Gumbel copula is more fo-
cused on the positive dependence between the
modalities while the Gaussian copula has fewer
weight on modelling tail dependences. On the
other hand, the Frank copula is tail-symmetric
and capable of modelling both positive and neg-
ative dependence. Hence it can cover more de-
pendency structures, indicating that it may be
a more flexible choice for modelling complex

— 89: 2.54349 theta

— B

0.60684 corr

20

40
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80

Figure 3: Plots comparing the « value and the
correlation (Corr = QT’l) learned by the Gumbel
copula model

interactions. We further demonstrate how the CM? learns the interaction through density plots at
different epochs. The detailed discussion can be found in the Appendix. We also study how CM?
learns the correlatlon over epochs. Figure 3| presents the change in estimated « and its corresponding

correlation &=

L over training epochs. We discover that the model is learning a positive correlation

over the epochs and the correlation converges at around 0.601. This implies that by backpropagating
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Table 4: Ablation study on the influence of different components (e.g., resampling and fusion module)
of our proposed method. All results are reported in AUROC and AUPR with 95% confidence intervals

on MIMIC-IV.
IHM READM
Model Matched | s iRoc (1) AUPR (1) AUROC (1) AUPR (1)

w/o resampling X 0.858(0.844,0.872)  0.521(0.485.0.562)  0.763(0.745,0.782)  0.473(0.438,0.511)

w/o fusion module X 0.860(0.845,0.875)  0.531(0.490,0.575) 0.762(0.744,0.781)  0.476(0.442, 0.514)

w/o fusion module v 0.81110.778 0.845) 0.4460.778 0.845)  0.720(0.685,0.756)  0.4240.368, 0.491)

cM? X 0.858(0.844,0.872)  0.527(0.490,0568)  0.771(0.752,0.788)  0.486(0.452, 0.518)

cm? v 0.827(0.7900859)  0.49210.423.0566)  0.737(0.704,0.773)  0.466(0.404, 0.529)

Table 5: Result on different copula families and the influence of the missing modality. All results are
reported in AUROC and AUPR with 95% confidence intervals on MIMIC-IV.

. IHM READM
Model Matched Copula Family AUROC (1) AUPR (1) AUROC (1) AUPR (1)
cm? v Gumbel 0.8250.792,0.854y  0.488(0.4090564)  0.735(0.695,0.772)  0.463(0.405,0.568)
cM? X Gumbel 0.858(0.843, 0873  0.52710.492,0568) 0.772(0.789, 0.753)  0.485(0.451, 0.521)
cM? v Frank 0.827(0.7000859)  0.492(0.4230566)  0.737(0.704,0.773)  0.466(0.404, 0.529)
cM? X Frank 0.858(0.844,0.872)  0.5270.490, 0568 0.771(0.752,0.785)  0.486(0.452, 0.518)
cM? v Gaussian 0.827(0.791,0.856)  0.488(0.410,0.551)  0.736(0.701,0.772)  0.458(0.528, 0.528)
cM? X Gaussian 0.8590.842, 0.871)  0.527(0.498,0.5600  0.771(0.754,0.788)  0.4850.450, 0.512)

the gradient to the copula parameter «, the model can learn the interactions between the modalities
during training.

4.4 ABLATION ANALYSIS

Effectiveness of Copula Alignment. We analyze the impact of different alignment loss functions
on the performance of CM2. Table E] presents the results of CM? on the MIMIC-IV dataset using
various align loss functions. Notably, the copula loss consistently outperforms both the cosine loss
and KL-divergences (KL) loss, highlighting its effectiveness in modeling the joint distribution of
modalities and capturing their interactions.

Ablation on Contribution of the Designed Modules. To further evaluate the performance of CM?,
we conduct an ablation study by removing the resampling and fusion modules. Table [ presents
the results of CM? under these modifications. We observe a slight performance decline when the
resampling module is removed, indicating its effectiveness in generating unbiased representations for
observations with missing modalities. Additionally, the removal of the fusion module results in a
significant drop in performance in most cases, highlighting the critical role the fusion module plays
in capturing the interactions between modalities and enhancing model performance.

Table 6: Ablation study on different loss functions. All
results are reported in AUROC and AUPR with 95% confi-
dence intervals on MIMIC-IV.

Ablation on Different Families of
Copula. Beyond the resampling and
fusion modules, we also compare the
performance of CM? under different
settings for missing modalities and
copula families. The accuracy relies
heavily on the guesses of the Copula
family (Zeng & Wang, [2022). We ex-
amine the performance of our method
over an array of commonly used copula families. Table presents the results of CM? on MIMIC-IV
datasets. We discover that while our method is generally robust to the choice of copula family,
the best-performing copula family varies across tasks. This indicates that different tasks highlight
different characteristics (e.g. extreme values for mortality) that can be captured when a proper copula
family is chosen.

THM
AUROC (1)

READM

Align Loss AUROC (1) AUPR (1)

AUPR (1)

Cosine Loss
KL Loss

0.4459.387, 0.516)
0.446(0.391, 0.511)

0.726/0.690, 0.762)
0.731¢0.693, 0.766)

0.470,0.399, 0.545)
0.4890.415, 0.568)

0.820¢0.784, 0.852)
0.826¢0.792, 0.857)

Copula Loss | 0.8270.790.0859) 0492004230506 0.73710.704,0.773)  0.466(0.404, 0529
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Table 7: Result on MIMIC-IV datasets with three modalities (EHR time series, CXR images, and

CXR reports). All results are reported in AUROC and AUPR with 95% confidence intervals.

Model

IHM

AUROC (1)

AUPR (1)

READM

AUROC (1)

AUPR (1)

MMTM (Joze et al.||2020)
DAFT (Polsterl et al.{[2021)
Unified (Hayat et al.[[2021)
MedFuse (Hayat et al.||2022)
DrFuse (Yao et al.|[2024)

0.77710.739, 0.813)
0.788/0.754, 0.821)
0.795(0.761, 0.827)
0.801(0.767, 0.836)
0.808/0.773, 0.839)

0.3700.312, 0.443)
0.3970.331, 0.471)
0.420/0.351, 0.497)
0.4270.367,0.511)
0.4510.376, 0.524)

0.6890.650, 0.723)
0.706(0.670, 0.742)
0.715(0.679, 0.749)
0.7130.675, 0.749)
0.728,0.691, 0.761)

0.401(0.347, 0.463)
0.403(0.346, 0.464)
0.4300.376, 0.495)
0.4190.356, 0.487)
0.433,0.370, 0.495)

cM?

| 0.8240,703, 0.556)

0.4710.399, 0.554)

0.730,0.694, 0.764)

0.444 ¢ 355, 0.509)

Extension to More Modalities. We further investigate the impact of incorporating more auxiliary
modality. We adapt all baselines into the tri-modal setting. Table [7| presents the results for CM?
and the baselines on the MIMIC-IV dataset under tri-modal setting: EHR time series, CXR images,
and radiology reports. Across both tasks, CM? consistently outperforms the baselines, achieving the
highest performance. Notably, the baseline models show a decline in performance compared to the
bi-modal setting, suggesting that the difficulty of incorporating additional modalities increases as
the complexity of aligning them grows with the number of modalities. Despite this, CM? maintains
strong performance, demonstrating its robustness and effectiveness in aligning multiple modalities.

5 CONCLUSION

In this work, we introduce copula modelling into multimodal representation learning. Using a copula
can effectively model the interaction between the modalities, and impute the missing modalities
through sampling from learned marginals. Empirical evaluation validates the predictive performance
on multimodal learning tasks, on both the fully and partially matched datasets. Ablation studies
showed that the proposed copula model can serve as a promising modality alignment tool and the
consistent satisfactory performance over different copula families. Our work can be potentially
extended to works that require effective fusion or distribution alignment, including domain adaptation,
multi-feature and multi-view learning.

Limitations and Future Works. Using a neural network to learn the copula parameter aw may be
insufficient (since the joint log-likelihood may not be necessarily convex). Hence an alternative
updating algorithm (e.g., partial likelihood) is needed in future development of copula multimodal
learning to ensure that each loss is convex and we can apply gradient descent. In addition, we select
healthcare datasets to demonstrate the effectiveness of our model, while we will extend our method
to other multimodal datasets in future works.
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SUMMARY

In this appendix, we first present detailed information on the datasets in [A.T] and tasks used in
the experiments in@ Next, we introduce the multivariate Gaussian distribution in [B|and some
common copula families in [C] Then in[D] we discuss the implications of how the copula model
learns interactions over the epochs. Finally, we provide more details on the implementation and
hyperparameters used in the experiments in [E.T|along with the baseline methods settings in[E.2]

A ADDITIONAL INFORMATION ON DATASETS AND TASKS

A.1 DATASETS

Table [§| provides a summary of the datasets used in our experiments.

MIMIC-III dataset This dataset contains 46,520 ICU stays, each with 17 clinical variables. We split
the dataset into training, validation, and test sets in a 70%-15%-15% ratio, following the procedure in
(Harutyunyan et al., 2019).

MIMIC-IV dataset This dataset includes 21,139 ICU stays, also with 17 clinical variables. The data
is split into 70% training, 10% validation, and 20% test sets, following (Hayat et al., [2022).

For both MIMIC-IIT and MIMIC-IV datasets, we extract 17 clinical variables commonly monitored
in the ICU, including 5 categorical and 12 continuous variables. Data are sampled every two hours
during the first 48 hours of ICU admission for both tasks, in accordance with (Hayat et al.| [2022]).
This results in a vector representation of size 76 at each time step of the clinical time-series data.

MIMIC-CXR dataset This dataset contains 377,110 chest X-ray images, of which 5,931 are
associated with MIMIC-IV ICU stays. We split the data into 4,287 training samples, 465 validation
samples, and 1,179 test samples. Following (Hayat et al.,|2022), we retrieve the last Anterior-Posterior
(PA) projection chest X-ray and apply transformations to the images, resizing them to 224 x 224
pixels.

This dataset also includes radiology reports, which are unstructured text data. We choose the radiology
reports of the MIMIC-CXR dataset as an auxiliary modality to investigate the effectiveness of CM?
on more modality alignment since the radiology reports do not contain death information and can
avoid possible overfitting and shortcuts. We divide the unstructured radiology reports into 4 sections,
including Impression, Findings, Last paragraph, and Comparison.

MIMIC-III NOTE dataset This dataset consists of 5,273 clinical notes associated with MIMIC-III
ICU stays. The data is divided into 3,652 training samples, 815 validation samples, and 806 test
samples. In line with (Zhang et al., 2023), we select the last five clinical notes before the prediction
time. If fewer than five notes are available, we treat the notes for that ICU stay as missing. The
original number of matched ICU stays is around 15,000. We randomly sample one-third of the
matched ICU stays to form the training, validation, and test sets, keeping the scale of the notes nearly
the same as the CXRs in the MIMIC-IV dataset.

Both radiology reports sections and clinical notes are capped at a maximum length of 512 words,
tokenized into words, and embedded into 312-dimensional vectors using the pre-trained TinyBERT
model (Jiao et al., 2019ﬂ

A.2 TASKS

In Hospital Mortality (IHM) Prediction. The In Hospital Mortality (IHM) prediction task focuses
on predicting whether a patient will pass away during their hospital stay. As summarized in Table
B], the MIMIC-III dataset contains a total of 2,795 positive samples, of which 736 are matched with
clinical notes. Similarly, the MIMIC-IV dataset includes 3,153 positive samples, with 890 matched
to CXR.

'https://huggingface.co/huawei-noah/TinyBERT_General 4L_312D
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Table 8: Datasets Summary

Dataset Tasks No. Train No. Valid No. Test No. Pos. Total
Complete Datasets
MIMIC-III IHM 14681 3222 3236 2795 21139
MIMIC-IIT READM 14681 3222 3236 3987 21139
MIMIC-III NOTE - 3652 815 806 - 5,273
MIMIC-IV IHM 18064 2035 4972 3153 25071
MIMIC-1V READM 18064 2035 4972 4603 25071
MIMIC-CXR - 344529 9497 23069 - 377,095
Matched Datasets
MIMIC-III | NOTE THM 3652 815 806 736 5273
MIMIC-III | NOTE READM 3652 815 806 998 5273
MIMIC-IV | CXR IHM 4287 465 1179 890 5931
MIMIC-1IV | CXR READM 4287 465 1179 1262 5931
MIMIC-1V | CXR | REPORT IHM 4287 465 1179 890 5931
MIMIC-IV | CXR | REPORT READM 4287 465 1179 1262 5931

Readmission (READM) Prediction. The Readmission (READM) prediction task aims to forecast
whether a patient will be readmitted within 30 days of discharge. In this task, both patients who are
readmitted and those who pass away in hospital are considered positive samples. As shown in Table
[8] the MIMIC-III dataset contains 3,987 positive samples, with 998 matched to clinical notes. In the
MIMIC-1V dataset, there are 4,603 positive samples, with 1,262 matched to CXRs.

B  MULTIVARIATE GAUSSIAN DISTRIBUTION

The multivariate Gaussian Distribution is defined as

1 1 Ts—1
P(Zhuyz):mexp{—i(z_ﬂ) D) (Z—H)}

where p € RP? is a p-dimensional mean vector and 3 € RP*? is the covariance matrix.

The KL divergences of two multivariate normal distributions NV (g1, X1) and N (g, 32)

KLWN (p1, Z1) |V (2, E2)) =

| 20|

log 57— {2 B e — ) ez — )|

C CoMMON CoprPULA FAMILIES.

We specify the copula distribution and density functions of common copula families with necessary
derivations. We consider bivariate copula without loss of generality.

Archimedean Copula. A subclass of copulas that can be constructed easily by the use of generator
functions ¢ : [0,1] — [0, cc], which are strictly decreasing and convex so that ¢(0) = oo and
(1) = 0. Then, a copula C can be constructed:

d
C(ur,ug,...,uq) = go[_l] (Z go(uﬁ) .
i=1

The Archimedean copula can generate copula densities when there is more than one modality in the
dataset.
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C.1 CoPULA DISTRIBUTION FUNCTIONS

* Clayton

C(u,v;o) = [max{u~® +v~* = 1,0}] Ve

e Frank

L og (1- 61““_)(61_; ™))

where o € R\{0}.

e Gumbel

Q=
——

C(u,v; ) = exp{— [(— logu)* + (—log v)]

¢ Gaussian
Clu,v;p) = ©2 [ (u), @1 (v), p] ,

where @ is the cdf of a standard Gaussian distribution.

Student’s ¢

C(u,v;p,v) = To, [T, (u), T, (v); pl, v>05pl <1,

C.2 CoPULA DENSITY FUNCTIONS

Clayton Copula

c(u,v) = (1+ Oz)(uv)flfa(fl T vfa)f271/a7

where a € (—1, 00)

Frank Copula

—ae V) (gma 1)

(e—a —emu _ p—av 4 e—a(u+1)))2

c(u,v) =

where a € (—00,00), ¢ # 0.
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Gumbel copula

=% toge) ! | (2 Iatws ] =) L expl- ofu i)

! ou
+exp{ gl v/} 3 2 o) '+
= (- tog0)* | = gt v ™ expl- ot 05"} L latu i) 5 ) S gtuvs0)
+ o= I V22 [t ) = gt via)
= (- tog)* 1 g(u,vi ) exp( fo s )]} | 5 o vs )]
e
= - (~loge)™ ! (~logu)* Cu,) (@~ 1) [ )] =+ [g(u,vs )] |

= %(—log 1))0471(_ log u)ocflC(u, ”U) [g(u’v; a)}@ [(a _ 1) [g(u,v; a)]ié I 1}

The closed-form density of the trivariate Gumbel Copula is computed by
0 0 0

c(u,v,w) = aa%C(um,w)
_ﬁﬁi T a _ a _ all/a
= T 0 0 exp{—[(~logu)” + (~logv)* + (~ logw)*|!/“}
0 0 0 o
= %%%exp{—(h(u,v,ma)) }
1

(—log(u))* ! (—log(v)*~ " (~log(w))* ™' C(u, v, w)

. <a6 (h(u,v,w; @))** 7 = (a — 1)a® (h(u, v, w; ))** > = 205 (a — 1) (h(u, v, w; a))** >

+ (@ —=2)(a — 1)a4 (h(u, v, w; a))a_3>

The identity can be generated by the Archimedean copula for A/ > 3, which is less common in
multimodal learning:

d
c(u) = D (t(w)) [T (uy),
j=1
where ¢(t; o) = (logt)® for the Gumbel copula. j
Gaussian Copula The bivariate case is given by
c(u,v; p) = 711_ > exp <— (o’ —;?j)f2p;)2abp> )
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Figure 4: Plots of the copula densities of the Gumbel family at epochs 5, 50, and 100, respectively.

where a = /2erf ' (2u — 1), and b = v/2erf "' (2v — 1). The multivariate case is given by the
following matrix form

c(u, v; p)

Student’s t Copula

T(0.50)T(0.50 4+ 1)(1 + (t;2(u) + t;2(v) — 2pt;  (u)t; T (v))/(v(1 — p?)) 05 +2)
V1= p20(0.5(v + 1))2(1 + t5 2 (u) /v) ~0-3+D (1 + t, % (v) Jv) ~0-5(v+1)

where v is the degree of freedom, I' is the gamma function, ¢,(x;v) =
fz I'0.5(v + 1))
=2 /ur[(0.50) (1 4 v~ 1¢2)0-5(v+1) 7

)

D DiscuSSION ON HOw COPULA MODEL LEARNS INTERACTIONS.

We demonstrate how the copula model learns the interactions over the epochs and further discuss the
implications.

Figure [ presents the copula densities at epochs epochs 5, 50, and 100, respectively. We use the
Gumbel family as an illustrative example. We observe that the copula density is evolving to a
positive correlation pattern, while the negative correlation scenarios (e.g., v > 0.5,v < 0.5, or
u < 0.5,v > 0.5) are still considered but the weights allocated are decreasing.

E MORE ON BASELINE METHODS AND IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We train all models for 100 epochs on the training set and select the best-performing model based
on the validation set, using the AUROC as the monitoring metric. The final results are reported
on the test set. We optimize the models using the Adam optimizer and apply early stopping if the
validation AUROC does not improve for 15 consecutive epochs to prevent overfitting. All experiments
are conducted on a single RTX-3090 GPU. The batch size is set to 32 for models trained on the
MIMIC-IV & CXR datasets, and 16 for models trained on the MIMIC-III & NOTE datasets, except
for DrFuse, which is trained with a batch size of 8. We employ grid search to tune hyperparameters
using the validation set and report the best results on the test set. The hyperparameter search space
includes:

* Dropout ratio: {0,0.1,0.2,0.3}
* Learning rate: {1 x 107%,5 x 10751 x 1075}
» Number of Gaussian mixture K: {2, 3,4, 5,6}

* Temperature: {0.001,0.005,0.01,0.05,0.08}
* Regularization parameter Acop: {1 X 107°,5 x 1075,1 x 107}
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cM? is implemented in Python 3.11 using PyTorch 1.9. Following MedFuse (Hayat et al., 2022), we
use ResNet34 (He et al., 2016)) as the backbone encoder for CXR, a two-layer LSTM (Graves &
Graves), 2012)) as the encoder for time-series data, and pre-trained TinyBERT (Jiao et al.| 2019 as
the encoder for clinical notes. We include a projection layer to map modality embeddings into the
same latent space. A two-layer LSTM is used as the fusion module to combine modality embeddings,
and a multilayer perceptron (MLP) with one linear layer and a sigmoid activation function serves as
the classifier.

E.2 ADDITIONAL SETTINGS OF BASELINE METHODS
We compare CM? with the following baseline methods.

* MMTM (Joze et al.,|2020) is a module that can leverage the information between modalities
with flexible plugin architectures. Since the model assumes full modality, we compensate
for the missing modality CXR and clinical notes with all zeros during training and testing.
For clinical notes, we replace the ResNet34 encoder with TinyBERT to embed the clinical
notes.

* DAFT (Polsterl et al., 2021) is a module that can be plugged into CNN models to exchange
information between tabular data and image modality. Similarly, we replace the input
of CXR and clinical notes with matrices of all zeros during training and testing and use
TinyBERT to embed the clinical notes.

» Unified (Hayat et al. 2021) is a dynamic approach towards integrating auxiliary data
modalities, learning the data representations for the individual modalities, and integrating
the representations via a unified classifier. It inherently handles missingness and leverages
all of the available modality-specific data. Also, we use TinyBERT to embed the clinical
notes.

* MedFuse (Hayat et al. 2022) uses an LSTM-based fusion to combine features from the
image encoder (or language encoder) and EHR encoder. Missing modality is handled
by learning a global representation for the missing CXR or clinical notes. We randomly
initialized encoders for the time-series data, clinical notes, and CXR images.

* DrFuse (Yao et all [2024) uses disentangled representation learning to learn a shared
representation between the EHR and image modality even when one modality is missing.
Drfuse uses ResNet50 as the image encoder and Transformer as the EHR encoder. We
replace the ResNet50 encoder with TinyBERT to embed the clinical notes.

The Implementation of DrFuse follows the original paper(Yao et al., 2024 and we use the same
hyperparameters as the original paper. We directly adopt the implementations of MMTM, DAFT,
Unified, and MedFuse provided by (Hayat et al., 2022ﬂ and all hyperparameters are set to the
default values provided by |[Hayat et al.[(2022). We adapt the implementations of MMTM, DAFT,
Unified, MedFuse and DrFuse to tri-modal setting, including EHR time-series data, CXR images,
and radiology reports.

F ADDITIONAL EXPERIMENT RESULTS

Additional Baselines. We add two more baselines, LSMT (Khader et al., [2023) and Interleaved
(Zhang et al., [2023), to compare with CM?. The results are shown in Table@

o LSMT (Khader et al.l [2023)) is a transformer-based model designed for the multimodal
medical context.

¢ Interleaved (Zhang et al.| 2023) is a multimodal approach that addresses the irregularity of
medical multimodal data and fuses representations from different modalities using cross-
modal attention.

Zhttps://huggingface.co/huawei-noah/TinyBERT_General_4L_312D
*https://github.com/dorothy-yao/drfuse
*nttps://github.com/nyuad-cai/MedFuse
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Table 9: Results of Additional Baselines on MIMIC-IV datasets. All results are reported in AUROC
and AUPR with 95% confidence intervals. The best results are highlighted in bold.

IHM READM

Model AUROC (1) AUPR (1)

‘ AUROC (1) AUPR (1)
Totally Matched

LSMT ( ader et a 02 0.803(0. 769, 0.837)

Interleaved ang Zhang et al. 0.8000.764, 0.834)

\ 0.827(0.790,0.859)  0.492(0.423.0.566)
Partially Matched-IV

LSMT Khader et a 02 0.8540.833, 0.870)
Interleaved ang et al 0.856(0.840, 0.571)

‘ 0.8580.544, 0.572)

0.421¢0.356, 0.490)
0.4210.360, 0.487)

0.701 (0,662, 0.737)
0.7020.664, 0.741)

0.4440.370, 0.519)
0.440(0.374, 0.523)

0.737(0.704,0.773)  0.466(0.404, 0.529)

0.473(0.436, 0.509)
0.473(0.441, 0.506)

0.764(0.746, 0.781)
0.7580.740, 0.775)

0.508,0.466, 0.551)
0.508,0.466, 0.550)

0.5270.490, 0.563)  0.7710.752,0.788)  0-486(0.452, 0.518)

Table 10: Results of different backbone encoders and additional baselines on MIMIC-IV datasets
with totally matched modalities. All results are reported in AUROC and AUPR with 95% confidence
intervals. The best results are highlighted in bold.

Model ‘ Backbone THM READM

TS IMG | AUROC (1) AUPR (1) AUROC (1) AUPR (1)
MMTM (Joze et al.| 2020} 0.802(0.770, 0.835)  0.4290.362, 0513 0.71310.677,0.750)  0.42010.362, 0.489)
DAFT (Polsterl et al. ‘ 2021 0815(0 782, 0.844) 0~454(O.387, 0.538) 0-729(0.692, 0.766) 0.433(0.37& 0.499)
Unified (Hayat et al.. s | 080810778 0.810) 0429036705129  0.7190.680,0.756)  0-45010.390, 0.513)
MedFuse ‘ Hayat et al. |w E Z | 08139777, 0800) 044810350, 0528)  0.725(0.600, 0.762)  0.438,0.379, 0.508)
DrFuse (Yao et al.[[2024] A 2 | 08145005 045003540536 0723106870756 042210367, 0.456)
LSMT (Khader et al.[[2023] 0.803(0.769, 0.837)  0.444(0.374, 0523  0.70110.662,0.737)  0.4210.356, 0.490)
Interleaved ' 12023 0.800¢0.764, 0.834)  0.44000.370, 05199  0.7020.664,0.741)  0.42110.360, 0.487)
0.827(0.790,0.859)  0.492(0.423.0565) 0.73710.704,0.773)  0.466(0.404, 0.529)
0.805¢0.768, 0.837)  0.446(0.377, 0529y  0.71210.676,0.749)  0.422(0.360, 0.491)
0.808/0.775,0.840)  0.43810.365, 0.521)  0.714(0.678 0.753)  0.423(0.369, 0.490)
= 0.803(0.768, 0.835)  0.431(0.365,0.515)  0.70710.667,0.743)  0.416(0.360, 0.482)
£ = | 0.8050.771,0837) 0.4390371, 05249  0.715(0.677,0.753)  0.424(0.370, 0.492)
1 > | 0.8060.772 0835 0.446(0379,0526) 0.7160.677,0.748) 042110364, 0.49)
0.801(0.767,0.835) 0.441(0374, 0527  0.703(0.662, 0.739)  0.41010.358, 0.475)
0.802(0.766, 0.833)  0.434(0.364,0.509)  0.71010.673,0.747)  0.435(0.372, 0.502)
0.826(0.790,0.856)  0-49000.421,0563)  0.736(0.697,0.771)  0.-452(0.394, 0.522)
0.813(0.780, 0.845)  0.452(0.383, 05400  0.7350.699, 0.770)  0.448(0.385, 0.515)
5 0.814(0.782, 0.845)  0.437(0.373,0522)  0.73010.694,0.765)  0.43010.372, 0.493)
£ g | 08120770815 045303850533 0.7190681,0754) 042600365, 0.485)
|w S Z 0.815(0.782, 0.846)  0.441(0.373, 05200  0.7280.692, 0.762)  0.442(0.381, 0.505)
Yao et al.[[2024) Z &3 0.818/0.784,0.850)  0.46010.391, 0.5400  0.726(0.689, 0.760)  0.4300.370, 0.495)
LSMT 1IZ{.§] E 0.817(0.785,0.848)  0.4520.385,0.535)  0.72210.688, 0.758)  0-431(0.376, 0.494)
Interleaved ' 12023 0.821(0.791, 0851y  0.4590.389, 0.539)  0.721(0.683,0.757)  0.429(0.367, 0.497)
0.8230.785,0.855)  0.488(0.421.0560) 0.74010.699, 0.771)  0.4700.352, 0.510)
0.813(0.778, 0.846)  0.462(0.306,0.545)  0.7230.686,0.761)  0-435(0.350, 0.505)
5 0.803(0.768, 0.835)  0.432(0.363, 05100  0.7190.682,0.758)  0.421(0.367, 0.486)
£ 0.8120.775,0.845)  0.463(0.396, 0.546)  0.7190.680,0.753)  0.412(0.353, 0.474)
S = | 0.81810.785,0.849) 0.461(0393 05420 0.721(0.684,0.759) 0.431(0.371, 0.493)
§ > 0.8140.750, 0.845)  0.43600.369, 0.516)  0.717(0.680, 0.755)  0.4160.359, 0.480)
= 0.8150.784,0.847) 04530389, 0535)  0.7T140.675,0.751)  0.42%(0.365, 0.492)
0.8180.7s6,0.849)  0.45310380,0.531)  0.717(0.679,0.753)  0.433(0.371, 0.498)
0.826(0.700,0.855)  0.4890.422.0560) 0.737(0.700,0.772)  0.465(0.304, 0.517)

Effect of Backbone Encoders. Moreover, wo explore the effectiveness of backbone encoders for
both time-series data and CXR images data. The results are shown in Table [T0]

Effect of Number of Mixture /. The performance of CM? with respect to different values of K is
shown in Figure 3]

Statistical Tests The p-values of two-sample bootstrapped ¢-test of the AUROC and AUPR of CM?
compared to baseline methods are shown in Table[TT]

20



Under review as a conference paper at ICLR 2025

=@=Paired_IHM =@=Partial_IHM =e=Paired_READM Partial_READM
—e—Paired_IHM —e—"Partial_IHM —o—Paired_READM Partial_READM
0.9 0.57

0.88 055
0-86 - 053

0.84
o 0.51
O 082 —_— o

D 049
g 08 < 0.47 /._\ S~——"
< 0.78 :
076 0.45
0.43

074 /’_‘\—0_.
0.41

0.72
0.7 0.39

Figure 5: Results (left: AUROC; right: AUPR) of cM2 on MIMIC-IV datasets, where the model
reduced to a multivariate Gaussian assumption when K = 1.

Table 11: P-values of two-sample bootstrapped ¢-test of the AUROC and AUPR of CM? compared to
baseline methods. We observe that most of the tests are significant under 0.05 significance level.

THM READM
AUROC (1) AUPR (1) AUROC (1) AUPR (1)

MMTM (Joze et al.|[2020) 2.02e-06  3.55e-180  4.40e-100  5.36e-291
DAFT (Polsterl et al.|[2021 0.1122 1.53e-132  9.37e-78  2.95e-240
Unified (Hayat et al.| 2021 4.55e-08  5.71e-240  4.80e-73  2.81e-139

MedFuse (Hayat et al.[[2022) 7.73e-07 5.66e-129 1.11e-92 3.69e-173
DrFuse (Yao et al.][2024) 0.1447 4.28e-99 6.05e-67 6.25e-250

Model
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