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Abstract

To deploy reinforcement learning (RL) systems in real-world scenarios we need1

to consider requirements such as safety and constraint compliance, rather than2

blindly maximizing for reward. In this paper we study RL with regular safety3

properties. We present a constrained problem based on the satisfaction of regular4

safety properties with high probability and we compare our setup to the some5

common constrained Markov decision processes (CMDP) settings. We also present6

a meta-algorithm with provable safety-guarantees, that can be used to shield the7

agent from violating the regular safety property during training and deployment.8

We demonstrate the effectiveness and scalability of our framework by evaluating9

our meta-algorithm in both the tabular and deep RL setting.10

1 Introduction11

Figure 1: Diagrammatic repre-
sentation of runtime verifica-
tion and shielding.

The field of safe reinforcement learning (RL) [6, 28] has gained in-12

creasing interest, as practitioners begin to understand the challenges13

of applying RL in the real world [26]. There exist several dis-14

tinct paradigms in the literature, including constrained optimization15

[2, 20, 49, 58, 62, 74], logical constraint satisfaction [17, 24, 36–16

38, 66], safety-critical control [15, 19, 53], all of which are unified17

by prioritizing safety- and risk-awareness during the decision making18

process.19

Constrained Markov decision processes (CMDP) [4] have emerged20

as a popular framework for modelling safe RL, or RL with con-21

straints. Typically, the goal is to obtain a policy that maximizes22

reward while simultaneously ensuring that the expected cumulative cost remains below a pre-defined23

threshold. A key limitation of this setting is that constraint violations are enforced in expectation24

rather than with high probability, the constraint thresholds also have limited semantic meaning, can25

be very challenging to tune and in some cases inappropriate for highly safety-critical scenarios26

[66]. Furthermore, the cost function in the CMDP is typically Markovian and thus fails to capture a27

significantly expressive class of safety properties and constraints.28

Regular safety properties [9] are interesting because for all but the simplest properties the correspond-29

ing cost function is non-Markovian. Our problem setup consists of the standard RL objective with30

regular safety properties as constraints, we note that there has been a significant body of work that31

combines temporal logic constraints with RL [17, 24, 36–38, 66], although many of these do not32

explicitly separate reward and safety in the same way that we do.33

Our approach relies on shielding [3], which is a safe exploration strategy that ensures the satisfaction34

of temporal logic constraints by deploying the learned policy in conjunction with a reactive system35
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that overrides any unsafe actions. Most shielding approaches typically make highly restrictive36

assumptions, such as full knowledge of the environment dynamics [3], or access to a simulator [29],37

although there has been recent work to deal with these restrictions [30, 39, 73]. In this paper, we38

opt for the most permissive setting, where the dynamics of the environment are unknown, runtime39

verification of the agent is realized by finite horizon model checking with a learned approximation of40

the environment dynamics. However, in principle our framework is flexible enough to accommodate41

more standard model checking procedures as long as certain assumptions are met.42

Our approach can be summarised as an online shielding approach (see Fig. 1), that dynamically43

identifies unsafe actions during training and deployment, and deploys a safe ‘backup policy’ when44

necessary. We summarise the main contributions of our paper as follows:45

(1) We state a constrained RL problem based on the satisfaction of regular safety properties with high46

probability, and we identify the conditions whereby our setup generalizes several CMDP settings,47

including expected and probabilistic cumulative cost constraints.48

(2) We present several model checking algorithms that can verify the finite-horizon satisfaction49

probability of regular safety properties, this includes statistical model checking procedures that can50

be used if either the transition probabilities are unavailable or if the state space is too large.51

(3) We develop a set of sample complexity results for the statistical model checking procedures52

introduced in point (2), which are then used to develop a shielding meta-algorithm with provable53

safety guarantees, even in the most permissive setting (i.e., no access to the transition probabilities).54

(4) We empirically demonstrate the effectiveness of our framework on a variety of regular safety55

properties in both a tabular and deep RL settings.56

2 Related Work57

Safety Paradigms in Reinforcement Learning. There exist many safety paradigms in RL, the most58

popular being constrained MDPs. For CMDPs several constrained optimization algorithms have59

been developed, most are gradient-based methods built upon Lagrange relaxations of the constrained60

problem [20, 49, 58, 62] or projection-based local policy search [2, 74]. Model-based approaches to61

CMDP [7, 11, 41, 64] have also gathered recent interest as they enjoy better sample complexity than62

their model-free counterparts, which can be imperative for safe learning [44].63

Linear Temporal Logic (LTL) constraints [17, 24, 36–38, 66] for RL have been developed as an64

alternative to CMDPs to specify stricter and more expressive constraints. The LTL formula is typically65

treated as the entire task specification, although some works have aimed to separate LTL satisfaction66

and reward into two distinct objectives [66]. The typical procedure in this setting is to identify end67

components of the MDP that satisfy the LTL constraint and construct a corresponding reward function68

such that the optimal policy satisfies the LTL constraint with maximal probability. Formal PAC-style69

guarantees have been developed for this setting [27, 36, 66, 71] although they typically rely on70

non-trivial assumptions. We note that LTL constraints can capture regular safety properties, although71

we explicitly separate reward and safety, making the work in this paper distinct from previous work.72

More rigorous safety-guarantees can be obtained by using safety filters [3], control barrier functions73

(CBF) [5], and model predictive safety certification (MPSC) [67, 68]. To achieve zero-violation74

training these methods typically assume that the dynamics of the system are known and thus they75

are typically restricted to low-dimensional systems. While these methods come from safety-critical76

control, they are closely related to safe reinforcement learning [15].77

Learning Over Regular Structures. RL and regular properties have been studied in conjunction78

before, perhaps most famously as ‘Reward Machines’ [42, 43] – a type of finite state automaton that79

specifies a different reward function at each automaton state. Reward machines do not explicitly80

deal with safety, rather non-Markovian reward functions that depend on histories distinguished by81

regular languages. Several methods have been developed to exploit the structure of these automata82

and dramatically speed up learning [42, 43, 55, 61], e.g., counter factual experiences.83

Regular decision processes (RDP) [13] are a specific class non-Markovian DPs [8] that have also84

been studied in several works [13, 22, 51, 59, 65]. Most of these works are theoretical and slightly85

out-of-scope for this paper, as the RDP setting does not explicitly handle safety and encompasses86

both non-Markovian rewards and transition probabilities.87
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Shielding. From formal methods, shielding for safe RL [3] forces hard constraints on policies, using88

a reactive system that ‘shields’ the agent from taking unsafe actions. Synthesising a correct-by-89

construction reactive ‘shield’ typically requires access to the environment dynamics and can be90

computationally demanding when the state or action space is large. Several recent works have aimed91

to scale the concept of shielding to more general settings, relaxing the prerequisite assumptions for92

shielding, by either only assuming access to a ‘black box’ model for planning [29], or learning a world93

model from scratch [30, 39, 73]. Other notable works that can be viewed as shielding include, MASE94

[69] – a safe exploration algorithm with access to an ‘emergency reset button’, and Recovery-RL95

[63] – which has access to a ‘recovery policy’ that is activated when the probability of reaching an96

unsafe state is too high. A simple form of shielding with LTL specifications has also been considered97

[37, 54], but experimentally these methods have only been tested in quite simple settings.98

3 Preliminaries99

For a finite set S, let Pow(S) denote the power set of S. Also, let Dist(S) denote the set of100

distributions over S , where a distribution µ : S → [0, 1] is a function such that
∑

s∈S µ(s) = 1. Let101

S∗ and Sω denote the set of finite and infinite sequences over S respectively. The set of all finite and102

infinite sequences is denoted S∞ = S∗ ∪ Sω. We denote as |ρ| the length of a sequence ρ ∈ S∞,103

where |ρ| =∞ if ρ ∈ Sω. We also denote as ρ[i] the i+ 1-th element of a sequence, when i < |ρ|,104

and we denote as ρ↓= ρ[|ρ| − 1] the last element of a sequence, when ρ ∈ S∗. A sequence ρ1 is a105

prefix of ρ2, denoted ρ1 ⪯ ρ2, if |ρ1| ≤ |ρ2| and ρ1[i] = ρ2[i] for all 0 ≤ i ≤ |ρ1|. A sequence ρ1 is106

a proper prefix of ρ2, denoted ρ1 ≺ ρ2, if ρ1 ⪯ ρ2 and ρ1 ̸= ρ2.107

Labelled MDPs and Markov Chains. An MDP is a tupleM = (S,A,P,P0,R,AP ,L), where108

S and A are finite sets of states and actions resp.; P : S × A → Dist(S) is the transition109

function; P0 ∈ Dist(S) is the initial state distribution;R : S ×A → [0, 1] is the reward function;110

AP is a set of atomic propositions, where Σ = Pow(AP ) is the alphabet over AP ; and L :111

S → Σ is a labelling function, where L(s) denotes the set of atoms that hold in a given state112

s ∈ S. A memory-less (stochastic) policy is a function π : S → Dist(A) and its value function,113

denoted Vπ : S → R is defined as the expected reward from a given state under policy π, i.e.,114

Vπ(s) = Eπ[
∑T

t=0R(st, at)|s0 = s], where T is a fixed episode length. Furthermore, denote as115

Mπ = (S,Pπ,P0,AP ,L) the Markov chain induced by a fixed policy π, where the transition116

function is such that Pπ(s
′|s) =

∑
a∈A P(s′|s, a)π(a|s). A path ρ ∈ S∞ throughMπ is a finite (or117

infinite) sequence of states. Using standard results from measure theory it can be shown that the set118

of all paths {ρ ∈ Sω | ρpref ⪯ ρ} with a common prefix ρpref is measurable [9].119

Probabilistic CTL. (PCTL) [9] is a branching-time temporal logic for specifying properties of120

stochastic systems. A well-formed PCTL property can be constructed with the following grammar,121

Φ ::=true | a | ¬Φ | Φ ∧ Φ | P▷◁ p[φ]

φ ::=XΦ | ΦUΦ | ΦU≤nΦ

where a ∈ AP , ▷◁ ∈ {<,>,≤,≥} is a binary comparison operator, and p ∈ [0, 1] is a probability.122

Negation ¬ and conjunction ∧ are the familiar logical operators from propositional logic, and next X ,123

until U and bounded until U≤n are the temporal operators from CTL [9]. We make the distinction124

here between state formula Φ and path formula φ. The satisfaction relation for state formula Φ is125

defined in the standard way for Boolean connectives. For probabilistic quantification we say that126

s |= P▷◁ p[φ] iff Pr(s |= φ) := Pr(ρ ∈ Sω | ρ[0] = s, ρ |= φ) ▷◁ p. Let PrM(s |= φ) be the127

probability w.r.t. the Markov chainM. For path formula φ the satisfaction relation is as follows,128

ρ |= XΦ iff ρ[1] |= Φ
ρ |= Φ1UΦ2 iff ∃ j ≥ 0 s.t. (ρ[j] |= Φ2 ∧ ∀ 0 ≤ i < j, ρ[i] |= Φ1)
ρ |= Φ1U

≤nΦ2 iff ∃ 0 ≤ j ≤ n s.t. (ρ[j] |= Φ2 ∧ ∀ 0 ≤ i < j, ρ[i] |= Φ1)

From the standard operators of propositional logic we may derive disjunction ∨, implication→ and129

coimplication↔. We also note that the common temporal operators ‘eventually’ ♢ and ’always’ □,130

and their bounded counterparts ♢≤n and □≤n can be derived in a familiar way, i.e., ♢Φ ::= trueUΦ,131

□ Φ ::= ¬♢¬Φ, resp. ♢≤n Φ ::= trueU≤nΦ, □≤n Φ ::= ¬♢≤n¬Φ.132

Regular Safety Property. A linear time property Psafe ⊆ Σω over the alphabet Σ is a safety property133

if for all words w ∈ Σω \ Psafe, there exists a finite prefix wpref of w such that Psafe ∩ {w′ ∈ Σω |134
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wpref ⪯ w′} = ∅. Any such sequence wpref is called a bad prefix for Psafe, a bad prefix wpref135

is called minimal iff there does not exist w′′ ≺ wpref such that w′′ is a bad prefix for Psafe. Let136

BadPref(Psafe) and MinBadPref(Psafe) denote the set of of bad and minimal bad prefixes resp.137

A safety property Psafe ∈ Σω is regular if the set BadPref(Psafe) constitutes a regular language. That138

is, there exists some deterministic finite automata (DFA) that accepts the bad prefixes for Psafe [9],139

that is, a path ρ ∈ Sω is ‘unsafe’ if the trace trace(ρ) = L(ρ[0]),L(ρ[1]), . . . ∈ Σω is accepted by140

the corresponding DFA.141

Definition 3.1 (DFA). A deterministic finite automata is a tuple D = (Q, Σ,∆,Q0,F), where Q142

is a finite set of states, Σ is a finite alphabet, ∆ : Q× Σ→ Q is the transition function, Q0 is the143

initial state, and F ⊆ Q is the set of accepting states. The extended transition function ∆∗ is the144

total function ∆∗ : Q × Σ∗ → Q defined recursively as ∆∗(q,w) = ∆(∆∗(q,w \ w↓),w↓). The145

language accepted by DFA D is denoted L(D) = {w ∈ Σ∗ | ∆∗(Q0,w) ∈ F}.146

Furthermore, we denote as PH
safe ⊆ Σω the corresponding finite-horizon safety property for H ∈ Z+,147

where for all words w ∈ Σω \ PH
safe there exists wpref ⪯ w such that |wpref | ≤ H and wpref ∈148

BadPref(Psafe). We model check regular safety properties by synchronizing the DFA and Markov149

chain in a standard way – by computing the product Markov chain.150

Definition 3.2 (Product Markov Chain). LetM = (S,P,P0,AP ,L) be a Markov chain and D =151

(Q, Σ,∆,Q0,F) be a DFA. The product Markov chain isM⊗D = (S ×Q,P ′,P ′
0, {accept},L′),152

where L′(⟨s, q⟩) = {accept} if q ∈ F and L′(⟨s, q⟩) = ∅ o/w, P ′
0(⟨s, q⟩) = P0(s) if q =153

∆(Q0,L(s)) and 0 o/w, and P ′(⟨s′, q′⟩|⟨s, q⟩) = P(s′|s) if q′ = ∆(q,L(s′)) and 0 o/w.154

To compute the satisfaction probability of Psafe for a given state s ∈ S we consider the set of paths155

ρ ∈ Sω from s and the corresponding trace in the DFA. We provide the following definition.156

Definition 3.3 (Satisfaction probability for Psafe). LetM = (S,P,P0,AP ,L) be a Markov chain157

and let D = (Q, Σ,∆,Q0,F) be the DFA such that L(D) = BadPref(Psafe). For a path ρ ∈ Sω158

in the Markov chain, let trace(ρ) = L(ρ[0]),L(ρ[1]), . . . ∈ Σω be the corresponding word over159

Σ = Pow(AP ). From a given state s ∈ S the satisfaction probability for Psafe is defined as follows,160

PrM(s |= Psafe) := PrM(ρ ∈ Sω | ρ[0] = s, trace(ρ) ̸∈ L(D))

Perhaps more importantly, we note that this satisfaction probability can be written as the following161

reachability probability in the product Markov chain,162

PrM(s |= Psafe) = PrM⊗D(⟨s, qs⟩ ̸|= ♢accept)

where qs = ∆(Q0,L(s)) and ♢accept is a PCTL path formula that reads, ‘eventually accept’ [9].163

For the corresponding finite-horizon safety property PH
safe we state the following result.164

Proposition 3.4 (Satisfaction probability for PH
safe). LetM and D be the MDP and DFA in Defn. 3.3.165

For a path ρ ∈ Sω in the Markov chain, let traceH(ρ) = L(ρ[0]),L(ρ[1]) . . . ,L(ρ[H]) be the166

corresponding finite word over Σ = Pow(AP ). For a given state s ∈ S the finite horizon satisfaction167

probability for Psafe is defined as follows,168

PrM(s |= PH
safe) := PrM(ρ ∈ Sω | ρ[0] = s, traceH(ρ) ̸∈ L(D))

where H ∈ Z+ is some fixed model checking horizon. Similar to before, we show that the finite169

horizon satisfaction probability can be written as the following bounded reachability probability,170

PrM(s |= PH
safe) = PrM⊗D(⟨s, qs⟩ ̸|= ♢≤Haccept)

where qs = ∆(Q0,L(s)) is as before and ♢≤Haccept is the corresponding step-bounded PCTL path171

formula that reads, ‘eventually accept in H timesteps’.172

The unbounded reachability probability can be computed by solving a system of linear equations, the173

bounded reachability probability can be computed with O(H) matrix multiplications, in both cases174

the time complexity of the procedure is a polynomial in the size of the product Markov chain [9].175
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4 Problem Setup176

In this paper, we are interested in the quantitative model checking of regular safety properties for177

a fixed finite horizon H and in the context of episodic RL, i.e., where the length of the episode T178

is fixed. In particular, at every timestep we constrain the (step-bounded) reachability probability179

Pr(⟨s, q⟩ ̸|= ♢≤Haccept) in the product Markov chainMπ ⊗D. We assume that H is chosen so as180

to avoid any irrecoverable states [35, 64], i.e., those that lead to a violation of the safety property no181

matter the sequence of actions taken, the precise details of this notion are presented in Section 6. We182

specify the following constrained problem,183

Problem 4.1 (Step-wise bounded regular safety property constraint). Let Psafe be a regular safety184

property, D be the DFA such that L(D) = BadPref(Psafe) andM be the MDP;185

max
π

Vπ subject to Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ]

where all probability is taken under the product Markov ChainMπ ⊗D, p1 ∈ [0, 1] is a probability186

threshold, H is the model checking horizon and T is the fixed episode length.187

The hyperparameter p1 is be directly used to trade-off safety and exploration in a semantically188

meaningful way; p1 prescribes the probability of satisfying the finite-horizon safety property PH
safe at189

each timestep. In particular, if p1 is sufficiently small then we can guarantee (with high-probability)190

that the regular safety property Psafe is satisfied for the entire episode length T .191

Proposition 4.2. Let PT
safe denote the (episodic) regular safety property for a fixed episode length192

T . Then satisfying Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 for all t ∈ [0,T ] guarantees that Pr(s0 |=193

PT
safe) ≥ 1− p1 · ⌈T/H⌉, where s0 ∼ P0 is the initial state.194

Comparison to CMDP. In the remainder of this section, we compare our problem setup to various195

CMDP settings [4], with the aim of unifying different perspectives from safe RL. The purpose of this196

is to show that our proposed method for solving Problem 4.1 can also be used to satisfy other more197

common CMDP constraints. First, we define the following cost function that prescribes a scalar cost198

C > 0 when the regular safety property Psafe is violated and 0 otherwise.199

Definition 4.3 (Cost function). Let Psafe be a regular safety property and let D be the DFA such200

that L(D) = BadPref(Psafe), modified such that for all q ∈ F , q → Q0. The cost function is then201

defined as,202

C(⟨s, q⟩) =
{
C if accept ∈ L′(⟨s, q⟩)
0 otherwise

where C > 0 is some generic scalar cost and L′ is the labelling function defined in Def. 3.2.203

Resetting the DFA. Rather than reset the environment, the DFA is reset once it reaches an accepting204

state, so as to measure the rate of constraint satisfaction over a fixed episode length T . This can easily205

be realized by replacing any outgoing transitions from the accepting states with transitions back to206

the initial state, i.e., for all q ∈ F , q → Q0.207

Non-Markovian costs. The cost function is Markov on the product states ⟨s, q⟩ ∈ S ×Q. However,208

in most cases the cost function is non-Markovian in the original state space S, since the automaton209

state q ∈ Q could depend on some arbitrary history of states. Thus our problem setup generalizes the210

standard CMDP framework with non-Markovian safety constraints.211

Invariant properties. Invariant properties Pinv(Φ), also written □Φ (‘always Φ’), where Φ is a212

propositional state formula, are the simplest type of safety properties where the cost function is still213

Markov in the original state space. In this case we are operating in the standard CMDP framework,214

we also note that checking invariant properties with a fixed model checking horizon has been studied215

in previous works, as bounded safety [29, 30] and safety for a finite horizon [45].216

The most common type of CMDP constraints are expected cumulative (cost) constraints, which217

constrain the expected cost below a given threshold.218

Problem 4.4 (Expected cumulative constraint [4, 58]).

max
π

Vπ subject to E⟨st,qt⟩∼Mπ⊗D

[∑T
t=0 C(⟨st, qt⟩)

]
≤ d1

where d1 ∈ R+ is the cost threshold and T is the fixed episode length.219
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Probabilistic cumulative (cost) constraints, are a stricter class of constraints that constrain the220

cumulative cost with high probability, rather than in expectation.221

Problem 4.5 (Probabilistic cumulative constraint [18, 56]).

max
π

Vπ subject to P⟨st,qt⟩∼Mπ⊗D

[∑T
t=0 C(⟨st, qt⟩) ≤ d2

]
≥ 1− δ2

where d2 ∈ R+ is the cost threshold, δ2 is a tolerance parameter, and T is the fixed episode length.222

We also consider instantaneous constraints, which bound the cost ‘almost surely’ at each timestep223

t ∈ [0,T ]. These are an even stricter type of constraint for highly safety-critical applications.224

Problem 4.6 (Instantaneous constraint [23, 60, 69]).
max
π

Vπ subject to P⟨st,qt⟩∼Mπ⊗D
[
C(⟨st, qt⟩) ≤ d3

]
= 1 ∀t ∈ [0,T ]

where d3 ∈ R+ is the cost threshold and T is the fixed episode length.225

In particular, these problems define a constrained set of feasible policies Π. We make the distinction226

here between a feasible policy and a solution to the problem, the former being any policy satisfying227

the constraints of the problem and the later being the optimal policy within the feasible set Π.228

Theorem 4.7. A feasible policy for Problem 4.1 is also a feasible policy for Problems 4.4, 4.5 and229

4.6 under specific parameter settings for p1, d1, d2 and δ2, and d3.230

In Appendix G we provide a full set of statements that outline the relationships between the con-231

strained problems presented in this section. The significance of these results is that they demonstrate232

by solving Problem 4.1 with our proposed method we can obtain feasible policies for Problems 4.4,233

4.5 and 4.6, although for most of these problems there is no direct relationship between our problem234

setup, in particular we can say little about whether the optimal policy for one problem is necessarily235

optimal for another. Nevertheless, we find it interesting to explore the relationships between our setup236

and other perhaps more common constrained RL problems.237

5 Model checking238

In this section we outline several procedures for checking the finite-horizon satisfaction probability239

of regular safety properties and we summarise the settings in which they can be used.240

Assumption 5.1. We are given access to the ‘true’ transition probabilities P .241

Assumption 5.2. We are given access to a ‘black box’ model that perfectly simulates the ‘true’242

transition probabilities P .243

Assumption 5.3. We are given access to an approximate dynamic model P̂ ≈ P , where the total244

variation (TV) distance DTV (Pπ(· | s), P̂π(· | s)) ≤ ϵ/H , for all s ∈ S.1245

Exact model checking. Under Assumption 5.1 we can precisely compute the (finite horizon)246

satisfaction probability of Psafe, in the Markov chain Mπ induced by the fixed policy π in time247

O(poly(size(Mπ ⊗ D)) ·H) [9], where D is the DFA such that L(D) = BadPref(Psafe) and H248

is the model checking horizon. H should not be too large and so the complexity of exact model249

checking ultimately depends on the size of the productMπ ⊗D, and so if the size of either the MDP250

or DFA is too large then exact model checking may be infeasible.251

Monte-Carlo model checking. To address the limitations of exact model checking, we can drop252

Assumption 5.1. Rather, under Assumption 5.2, we can sample sufficiently many paths from a253

‘black box’ model of the environment dynamics and estimate the reachability probability Pr(⟨s, q⟩ |=254

♢≤Haccept) in the product Markov chainMπ ⊗D, by computing the proportion of accepting paths.255

Using statistical bounds, such as Hoeffding’s inequality [40] or Bernstein-type bounds [52], we can256

bound the error of this estimate, with high probability.257

Proposition 5.4. Let ϵ > 0, δ > 0, s ∈ S and H ≥ 1 be given. Under Assumption 5.2, we can258

obtain an ϵ-approximate estimate for the probability Pr(⟨s, q⟩ |= ♢≤Haccept) with probability at259

least 1− δ, by sampling m ≥ 1
2ϵ2 log

(
2
δ

)
paths from the ‘black box’ model.260

1For two discrete probability distributions µ1 and µ2 over the same space X the TV distance is defined as:
DTV (µ1(·),µ2(·)) = 1

2

∑
x∈X |µ1(x)− µ2(x)|
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We note that the time complexity of these statistical methods does not depend in the size of the261

product MDP or DFA, since the product states ⟨s, q⟩ ∈ S ×Q can be computed on-the-fly, rather the262

time complexity depends on the horizon H , the desired level of accuracy ϵ, failure probability δ.263

Model checking with approximate models. In most realistic cases neither the ‘true’ transition264

probabilities nor a perfect ‘black box’ model is available to us before-hand. Under Assumption265

5.3 we can model check with an ‘approximate’ model of the MDP dynamics, which can either be266

constructed ahead of time (offline) or learned from experience, with maximum likelihood (or similar).267

We can then either exact model check in with the ‘approximate’ probabilities, or if the MDP is too268

large, we can leverage statistical model checking by sampling paths from the ’approximate’ model.269

Proposition 5.5. Let ϵ > 0, δ > 0, s ∈ S and H ≥ 1 be given. Under Assumption 5.3 we can make270

the following two statements:271

(1) We can obtain an ϵ-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Haccept) with probability 1 by272

exact model checking with the transition probabilities of P̂π in time O(poly(size(Mπ ⊗D)) ·H).273

(2) We can obtain an ϵ-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Haccept) with probability at least274

1− δ, by sampling m ≥ 2
ϵ2 log

(
2
δ

)
paths from the ‘approximate’ dynamics model P̂π .275

6 Shielding the policy276

Algorithm 1 Shielding (with runtime verification
of regular safety properties)
Input: model checking parameters (ϵ, δ, p, H),
labelling function L, DFA D = (Q, Σ,∆,Q0,F).
Optional: probabilities P , ‘backup policy’ πsafe.
Initialize: ‘task policy’ πtask, ‘backup policy’ πsafe

and (approximate) probabilities P̂ .
for each episode do

Observe s0, L(s0) and q0 ← ∆(Q0,L(s0))
for t = 0, . . . ,T do ▷ Fixed episode length

Sample action a ∼ πtask(· | st)
if Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 then

// Use the proposed action
at ← a

else
// Override the action
at ∼ πsafe(· | st, qt)

Play at and observe st+1, L(st+1), rt
qt+1 ← ∆(qt,L(st+1)),
ct ← 1[qt+1 ∈ F ]
Update πtask with (st, at, st+1, rt)
Update πsafe with (st, qt, at, st+1, qt+1, ct)

Update P̂ with (st, at, st+1)

At a high-level, the shielding meta-algorithm277

works by switching between the ‘task policy’278

trained with RL to maximize rewards and a279

‘backup policy’, which typically constitutes a280

low-reward, possibly rule-based policy that is281

guaranteed to be safe. In some cases this282

‘backup policy’ may be available to us before283

training, although in most realistic cases it will284

need to be learned. In our case we switch285

from the ‘task policy’ to the ‘backup policy’286

when the reachability probability Pr(⟨s, q⟩ |=287

♢≤Haccept) exceeds the probability threshold288

p1. To check this we can use any of the model289

checking procedures presented earlier. The290

‘backup policy’ is used when the reachability291

probability exceeds p1. Intuitively if the ‘backup292

policy’ is guaranteed to be safe, then our system293

should satisfy the constraints of Problem 4.1,294

independent of the ‘task policy’.295

Backup policy. In general we assume no knowl-296

edge of the safety dynamics before training and297

so the ‘backup policy’ needs to be learned. In298

particular, we can use the cost function defined299

in Defn. 4.3 and train the ‘backup policy’ with300

RL to minimize the expected discounted cost301

(Eπ[
∑T

t=0 γ
tC(st, qt)]). Importantly, we note that the cost function is defined on the product state302

space S × Q and so the ‘backup policy’ must also operate on this state space, possibly leading303

to slower convergence. However, we can eliminate this issue entirely by training the ‘backup pol-304

icy’ with counterfactual experiences [42, 43] – a method originally used for reward machines that305

generates additional synthetic data for the policy, by simulating experience from each automaton306

state.307

Meta Algorithm. We now present the structure of the shielding meta-algorithm (see Algorithm308

1). The precise realization of this algorithm can vary depending on problem setting, tabular, deep309

RL, etc., however the main structure of the algorithm remains the same. In particular, during310

interaction with the environment we shield the agent by checking that the reachability probability311

Pr(⟨s, q⟩ |= ♢≤Haccept) does not exceed threshold p1. Then, with the new accumulated experience312

we update the ‘task policy’ denoted πtask and the ‘backup policy’ denoted πsafe with RL, and if need be313
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we update our (approximate) dynamics model accordingly. In principle, the underlying RL algorithm314

used to train either ‘task policy’ or ‘backup policy’ can differ, and the dynamics model can be a315

simple maximum likelihood estimate or something more complex, e.g., Gaussian Process model316

[25, 70], ensemble of parametric neural networks [21, 44] or a world model [32, 33].317

Global Safety Guarantees. In the tabular setting we can guarantee the safety of the system described318

in Algorithm 1 under various assumptions, even when doing Monte-Carlo model checking on an319

‘approximate’ model of the environment dynamics. First, we provide the following definitions.320

Definition 6.1 (Non-critical state). A product state ⟨s, q⟩ ∈ S × Q is said to be non-critical for a321

given model checking horizon H if for all policies π we have Pr(⟨s, q⟩ |= ♢≤Haccept) = 0.322

Definition 6.2 (Irrecoverable). A critical state ⟨s, q⟩ ∈ S × Q is said to be irrecoverable with323

probability p1 if for all policies π we have Pr(⟨s, q⟩ |= ♢accept) ≥ p1. In other words, for any324

sequence of actions a0, a1, . . . the minimum probability Prmin(⟨s, q⟩ |= ♢accept) of reaching an325

accepting state is p1, where Prmin(⟨s, q⟩ |= ♢accept) = infπ Pr
Mπ⊗D(⟨s, q⟩ |= ♢accept)326

The safety-guarantees for Algorithm 1 rely on the following assumptions.327

Assumption 6.3. We assume H is sufficiently large so that it is not possible to transition from any328

non-critical state to an irrecoverable state. Furthermore we assume that there exists some H∗ < H329

such that if Prmin(⟨s, q⟩ |= ♢accept) = p1 then Prmin(⟨s, q⟩ |= ♢≤H∗
accept) = p1.330

Assumption 6.4. The initial state ⟨s0,L(s0)⟩ is non-critical and for any state ⟨s, q⟩ ∈ S ×Q that is331

not irrecoverable, the ‘backup policy’ πsafe is satisfies PrMπC⊗D(⟨s, q⟩ |= ♢≤Haccept) ≤ p1332

Theorem 6.5. Under Assumption 6.3 and 6.4, and provided that every state action pair (s, a) ∈ S×A333

has been visited at least O
(

H2|S|2
ϵ2 log

(
|A||S|2

δ

))
times. Then with probability 1 − δ the system334

satisfies the constraints of Problem 4.1, independent of the ‘task policy’.335

The theory is quite conservative here due to the strong dependence on |S|, in practice we can replace336

the outer |S|2 by the maximum number of successor states from any given state. With regards to our337

assumptions, both are not overly restrictive. Assumption 6.3 essentially states that any irrecoverable338

states, will reach the accepting state with some probability > g within a fixed horizon H∗. Similar339

statements have been considered in prior work [35, 64]. Assumption 6.4 states that the ‘backup340

policy’ satisfies Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 if possible, we would expect this to be the case when341

training the ‘backup policy’ with RL to minimize cost. The analysis for Theorem 6.5 then follows342

by showing that the system can be recovered to a non-critical state after entering a critical but not343

irrecoverable state.344

7 Empirical Evaluation345

We implemented two separate realizations of Algorithm 1, the first adapted to tabular environments346

which implements both exact or statistical model checking over the learned transition probabilities, the347

second is adapted to (visual) deep RL, making use of world models [32, 33], specifically DreamerV3348

[34], to learn a latent dynamics model for model checking and policy optimization.349

Table 1: Safety properties

property Psafe

(1) □¬green
(2) □goal→♢≤10blue

(3) □goal→♢≤10□≤5purple

Tabular RL. We conduct experiments on a simple ‘colour’ grid-350

world environment, with regular safety properties of increasing351

difficulty. In short, the goal is to navigate from a starting state352

to a goal position as frequently as possible, while respecting a353

given regular safety property during training. The environment is354

stochastic – with some probability p the agent’s action is ignored355

and another action is chosen uniformly instead. For smaller p val-356

ues the environment becomes more deterministic and the safety property typically becomes easier to357

satisfy with higher probability, we refer the reader to Appendix D.1 for more details. Table 1 outlines358

the three safety properties used for our environments. We use PCTL-like notation to describe the359

safety properties, although strictly speaking (2) and (3) are actually PCTL∗ path formula. Regardless360

of this slight technical detail, properties (1)-(3) are valid regular safety properties, as we can come up361

with a DFA that accepts the bad prefixes for them.362

We compare our approach to Q-learning (without any penalties), and Q-learning on the product363

state space, with penalties provided by the cost function (Defn. 4.3) and trained with counterfactual364
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experiences [43]. In all cases, by separating reward and safety into two distinct policies, we are able365

to effectively trade-off the two objectives. Q-learning simply finds the best policy ignoring the costs,366

and Q-learning with penalties is able to find a safe policy, but struggles to meaningfully balance both367

objectives (see Fig. 2). Hyperparameter settings for all experiments are detailed in Appendix E. In368

addition, we provide an extensive series of ablation studies in Appendix F for these experiments. For369

example, we show that we don’t loose much by using Monte Carlo model checking as opposed to370

exact model checking with the ‘true’ probabilities. We also show that tuning the cost coefficient C371

offers no meaningful way to trade-off reward and the probability of constraint satisfaction.372

Figure 2: Episode reward and cost for tabular RL
‘colour’ gridworld environment.

Figure 3: Episode reward and violation rate for
deep RL Atari Seaquest.

Deep RL. We deploy our version of Algo-373

rithm 1 built on DreamerV3 [34] on Atari374

Seaquest, provided as part of the Arcade Learn-375

ing Environment (ALE)[10, 50]. We experi-376

ment with two different regular safety proper-377

ties: (1) (□¬surface→□(surface→ diver)) ∧378

(□¬out-of-oxygen)∧ (□¬hit) and (2) □diver∧379

¬surface→♢≤30surface. We compare our ap-380

proach to the base DreamerV3 algorithm and381

a version of DreamerV3 that implements the382

augmented Lagrangian penalty framework, sim-383

ilarly to [7, 41], for additional details see Ap-384

pendix B.1.385

Again our approach is able to effectively trade-386

off both objectives, while (base) DreamerV3 ig-387

nores the cost, the Lagrangian approach appears388

to learn a safe policy that is not always efficient389

in terms of reward (see Fig. 3). We refer the390

reader to Appendix D.2 for more details of the391

environment and an extended discussion.392

Separating Reward and Safety. The separa-393

tion of reward and safety objectives into two dis-394

tinct policies has been demonstrated as an effec-395

tive strategy towards safety-aware decision mak-396

ing [3, 30, 46, 63], in many cases the safety ob-397

jective is simpler and can be more quickly learnt398

[46]. In our experiments it is clear that when399

the system enters a critical state, the ‘backup400

policy’ is able to efficiently guide the system401

back to a non-critical state where the task policy402

can continue collecting reward. However, there403

is evidence that the complete separation of poli-404

cies is not always appropriate [31] and penalties405

or a slight coupling of the policies is required406

to stop the ‘task’ and ‘backup policy’ fighting407

for control of the system. Furthermore, by separating reward and safety, we typically loose any408

asymptotic convergence guarantees, similar to the situation faced for hierarchical RL [61], although409

there has been recent work to develop convergence guarantees for shielding [75].410

8 Conclusion411

In this paper we propose a shielding meta-algorithm for the runtime verification of regular safety412

properties, given as a probabilistic constraint on the system. We provide a thorough theoretical413

examination of the problem and develop probabilistic safety guarantees for the meta-algorithm,414

which hold under reasonable assumptions. Empirically, we demonstrate that shielding is able to415

effectively balance both reward and safety, in both the tabular and deep RL setting. A more thorough416

theoretical and empirical examinations of the conditions for when shielding is appropriate would be417

an interesting direction for future work.418
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A Algorithms615

Algorithm 2 Exact Model Checking [9]
Input: model checking parameters (p, H), current state ⟨s, q⟩, current action a, product MC
Mπ ⊗D = (S ×Q,P ′,P ′

0, {accept},L′)
Output: true if Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1

Initialize zero vector x(0) ← 0 with size |S| × |Q|
Initialize probability matrix A← (P ′(s, t))s,t̸∈accept (ignoring accepting states)
Initialize probability vector b← (P ′(s, accept))s̸∈accept (going to accepting states)
// Iterate over the model checking horizon
for i = 1, . . . ,H do

Compute x(i) = Ax(i−1) + b

// Get the corresponding probability
Let X ← x⟨s,q⟩
If X < p return true else return false

Algorithm 3 Monte-Carlo Model Checking
Input: model checking parameters (ϵ, δ, p, H), current state ⟨s, q⟩, current action a, policy π,
labelling function L, DFA D = (Q, Σ,∆,Q0,F) and (approximate) transition probabilities P
Output: true if Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1
Choose m ≥ 2/(ϵ2) log(2/δ)
for i = 1, . . . ,m do

Set s0 ← s, q0 ← q and a0 ← a
// Sample a path through the model
for j = 1, . . . ,H do

Sample next state sj ∼ P(· | sj−1, aj−1),
Compute qj ← ∆(qj−1,L(sj)),
Sample action aj ∼ π(· | sj)

// Check if the path is accepting
Let Xi ← 1 [qH ∈ F ]

// Construct probability estimate
Let X̃ ← 1

m

∑m
i=1 Xi

If X̃ < p− ϵ return true else return false

Algorithm 4 Tabular Q-learning (Regular Safety Property) with Counter Factual Experiences [65]
Input: MDP M = (S,A,P,P0,R,AP ,L), DFA D = (Q, Σ,∆,Q0,F), discount factor γ ∈
(0, 1], learning rate α ∈ (0, 1], temperature τ > 0, cost coefficient C and fixed episode length T

Initialize: (Q-table) Q̂(s, q, a)← 0 ∀s ∈ S, q ∈ Q, a ∈ A
for each episode do

Observe s0, L(s0) and q0 ← ∆(Q0,L(s0))
for t = 0, . . . ,T do

Sample action at from ⟨st, qt⟩ using the Boltzmann policy derived from Q̂ with temp. τ
Play action at and observe st+1, L(st+1) and rt (reward is optional).
// Generate synthetic data by simulating all automaton transitions
for q̄ ∈ Q do

Compute q̄′ ← ∆(q′,L(st+1))
Compute cost c̄′ ← C · 1[q̄′ ∈ F ]
Compute done← 1[q̄′ ∈ F ]
// Q-learning step
Q̂(st, q̄, at)← (1− α) · Q̂(st, q̄, at) + α · (rt + c̄′ + γ · done ·maxa′∈A Q̂(st+1, q̄

′, a′)

Compute qt+1 ← ∆(qt,L(st+1)) and continue
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Algorithm 5 DreamerV3 [34] with Shielding (Regular Safety Property)
Initialize: replay buffer D with S random episodes, world model parameters θ, ‘task policy’ πtask
and ‘backup policy’ πsafe randomly.
for each episode do

Observe o0, L(s0) and q0 ← ∆(Q0,L(s0))
for t = 1, . . . , T do

Sample action a ∼ πtask from the task policy
// Estimate the reachability probability using the world model pθ
if Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 then

Use proposed action
at ← a

else
// Override action
at ∼ πsafe

Play action at and observe ot+1, L(st+1) and rt
Compute qt+1 ← ∆(qt,L(st+1)),
Compute cost ct ← 1[qt+1 ∈ F ]
Append (ot, at, rt, ct, ot+1) to the replay buffer D
if update then

// World model learning
Sample a batch B of transition sequences {(ot′ , at′ , rt′ , ct′ , ot′+1)} ∼ D.
Update the world model parameters θ with maximum likelihood.
// Task policy optimization
‘Imagine’ sequences {ôt′:t′+H , r̂t′:t′+H , ĉt′:t′+H} with the ‘task policy’ πtask
Update the ‘task policy’ πtask with RL (to maximize reward).
Update the corresponding value critics with maximum likelihood
// Backup policy optimization
‘Imagine’ sequences {ôt′:t′+H , r̂t′:t′+H , ĉt′:t′+H} with the ‘backup policy’ πsafe
Update the ‘backup policy’ πsafe with RL (to minimize cost)
Update the corresponding value critics with maximum likelihood

B Technical Details616

B.1 Augmented Lagrangian617

We first define the following objective functions,618

JR(π) = Eπ

[
T∑

t=0

R(st, at)

]
(1)

JC(π) = Eπ

[
T∑

t=0

C(st, at)

]
(2)

(3)

The augmented Lagrangian [72] is an adaptive penalty-based technique for the following constrained619

optimization problem,620

max
π

JR(π) subject to JC(π) ≤ d (4)

where d is some cost threshold. The corresponding Lagrangian is given by,621

max
π

min
λ≥0

[
JR(π)− λ (JC(π)− d)

]
= max

π

{
JR(π) if JC(π) < d

−∞ otherwise
(5)

The LHS is an equivalent form for the constrained optimization problem (RHS), since if π is feasible,622

i.e. JC(π) < d then the maximum value for λ is λ = 0. If π is not feasible then λ can be arbitrarily623

large to solve this equation. Unfortunately this form of the objective function is non-smooth when624

moving from feasible to infeasible policies, thus we introduce a proximal relaxation of the augmented625
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Lagrangian [72],626

max
π

min
λ≥0

[
JR(π)− λ (JC(π)− d) +

1

µk
(λ− λk)

2

]
(6)

where µk is a non-decreasing penalty multiplier dependent on the gradient step k. The new term627

that has been introduced here encourages the λ to stay close to the previous value λk, resulting in a628

smooth and differentiable function. The derivative w.r.t λ gives us the following gradient update step,629

λk+1 =

{
λk + µk(JC(π)− d) if λk + µk(JC(π)− d) ≥ 0

0 otherwise
(7)

At each gradient step, the penalty multiplier µk is updated in a non-decreasing way by using some630

small fixed (power) parameter σ,631

µk+1 = max{(µk)
1+σ, 1} (8)

The policy π is then updated by taking gradient steps of the following unconstrained objective,632

J̃(π,λk,µk) = JR(π)−ΨC(π,λk,µk)

where,633

ΨC(π,λk,µk) =

{
λk(JC(π)− d) + µk

2 (JC(π)− d)2 if λk + µk(JC(π)− d) ≥ 0

− (λk)
2

2µk
otherwise

C Technical Proofs634

C.1 Proof of Proposition 3.4635

Proposition 3.4 (restated) (Satisfaction probability for PH
safe). Let M and D be the MDP and636

DFA from before (Defn. 3.3). For a path ρ ∈ Sω in the Markov chain, let traceH(ρ) =637

L(ρ[0]),L(ρ[1]) . . . ,L(ρ[H]) be the corresponding finite word over Σ = Pow(AP ). For a given638

state s ∈ S the finite horizon satisfaction probability for Psafe is defined as follows,639

PrM(s |= PH
safe) := PrM(ρ ∈ Sω | ρ[0] = s, traceH(ρ) ̸∈ L(D))

where H ∈ Z+ is some fixed model checking horizon. Similar to before, we show that the finite640

horizon satisfaction probability can be written as the following bounded reachability probability,641

PrM(s |= PH
safe) = PrM⊗D(⟨s, qs⟩ ̸|= ♢≤Haccept)

where qs = ∆(Q0,L(s)) is as before and ♢≤Haccept is the corresponding step-bounded PCTL path642

formula that reads, ‘eventually accept in H timesteps’.643

Proof. Let Psafe be a regular safety property and let D = (Q, Σ,∆,Q0,F) be the DFA such that644

L(D) = BadPref(Psafe). We provide a formal definition for Psafe and the corresponding finite645

horizon property PH
safe, respectively:646

Psafe = {w ∈ Σω | ∀wpref ∈ Σωs.t. wpref ⪯ w,wpref ̸∈ L(D)} (9)

PH
safe = {w ∈ Σω | ∀wpref ∈ Σωs.t. wpref ⪯ w ∧ |wpref | ≤ H + 1,wpref ̸∈ L(D)} (10)

LetM = (S,P,P0,AP ,L) be a Markov chain and consider the product Markov chainM⊗D647

from Defn. 3.2. For any path ρ = s0, s1, s2, . . ., there exists a unique run q0, q1, q2, . . . for the trace648

trace(ρ) = L(s0),L(s1),L(s2) . . ., and denote,649

ρ+ = ⟨s0, q0⟩, ⟨s1, q1⟩, ⟨s2, q2⟩ . . . (11)

where start state is ⟨s0, ∆(Q0,L(s0))⟩. Before we deal with probabilities let’s just consider a650

fixed path ρ ∈ Sω, the finite trace traceH(ρ) = L(ρ[0]),L(ρ[1]) . . . ,L(ρ[H]), the unique run651

q0, q1, q2, . . . , qH and the path ρ+ ∈ Σω ×Qω in the product Markov chain. We prove the following652

statement,653

ρ ̸|= PH
safe if and only if ρ+ |= ♢accept≤H (12)
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We start with the (→) direction, in particular, ρ ̸|= PH
safe if and only if traceH(ρ) ∈ L(D). Recall654

that by definition L(D) = {w ∈ Σ∗ | ∆∗(Q0,w) ∈ F}, and so traceH(ρ) ∈ L(D) implies that655

qH = ∆∗(Q0, traceH(ρ)) ∈ F , which by construction implies that ρ+ |= ♢accept≤H .656

The opposite direction (←) is a little more involved, in particular, ρ+ |= ♢accept≤H implies that657

for the unique run q0, q1, q2, . . . , qH there exists t ≤ H such that qt ∈ F . We notice that since658

L(D) = BadPref(Psafe) then once the DFA reaches an accepting state it will remain in an accepting659

state for the rest of the run. Therefore, qt ∈ F for t ≤ H implies that qH ∈ F . Then by definition660

the trace traceH(ρ) that determined the unique run q0, q1, q2, . . . , qH must be in the language L(D),661

which again by definition implies that ρ ̸|= PH
safe.662

We now deal with the probabilities. First we note that the DFA D does not affect the probabilities of663

the product Markov chain – it can be shown that for every measurable set P of paths inM,664

PrM(P ) = PrM⊗A(ρ+ | ρ ∈ P ) (13)

see [9]. It now remains to construct this set P in the proper way. In particular, if P is the set of paths665

starting in some state s ∈ S and that refute Psafe in the next H timesteps, i.e.,666

P = {ρ ∈ Sω | ρ[0] = s, {w′ ∈ Σ∗ | wpref ⪯ trace(ρ) ∧ |wpref | ≤ H + 1} ∩ L(D) ̸= ∅} (14)

and P+ is defined as the set of paths starting from the corresponding state ⟨s, qs⟩ (where qs =667

∆(Q0,L(s))) inM⊗D that eventually reach an accepting state of D in the next H steps, i.e.668

P+ = {ρ+ ∈ (S ×Q)ω | ρ+[0] = ⟨s, qs⟩ ∧ ρ+ |= ♢≤Haccept} (15)

Then by construction we have,669

PrM(P ) = PrM⊗D(ρ+ | ρ[0] = s, ρ ∈ P ) = PrM⊗D(P+) (16)

Finally the probability PrM(P ) and PrM(s |= PH
safe) are related as follows,670

PrM(s |= PH
safe) = 1− PrM(P ) (17)

= 1− PrM⊗D(P+) (18)

= 1− PrM⊗D(⟨s, qs⟩ |= ♢≤Haccept) (19)

= PrM⊗D(⟨s, qs⟩ ̸|= ♢≤Haccept) (20)

671

C.2 Proof of Proposition 4.2672

Proposition 4.2 (restated). Let PT
safe denote the (episodic) regular safety property for a fixed episode673

length T . Then satisfying Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 for all t ∈ [0,T ] guarantees that674

Pr(s0 |= PT
safe) ≥ 1− p1 · ⌈T/H⌉, where s0 ∼ P0 is the initial state.675

Proof. Consider splitting up the episode in to ⌈T/H⌉ chunks with length at most H . Let676

X0,X1, . . . X⌈T/H⌉−1 be the indicator random variables defined as follows,677

Xi =

{
1 if ⟨si·H , qi·H⟩ |= ♢≤Haccept

0 otherwise
(21)

Since Pr(⟨st, qt⟩ |= ♢≤Haccept) ≤ p1 for all t ∈ [0,T ] then the probability Pr(Xi = 1) ≤ p1. By678

construction we have,679

if
⌈T/H⌉−1⋂

i=0

Xi = 0 then s0 |= PT
safe (22)

18



Intuitively we satisfy Psafe for the entire episode length if we never enter an accepting state in each of680

the ⌈T/H⌉ chunks. The final result is then obtained by taking a union bound as follows,681

Pr(s0 |= PT
safe) ≥ Pr

⌈T/H⌉−1⋂
i=0

Xi = 0

 (23)

= 1− Pr

⌈T/H⌉−1⋃
i=0

Xi = 1

 (24)

≥ 1−
⌈T/H⌉−1∑

i=0

Pr(Xi = 1) (25)

≥ 1− p1 · ⌈T/H⌉ (26)
(27)

682

C.3 Proof of Proposition 5.4683

Proposition 5.4 (restated). Let ϵ > 0, δ > 0, s ∈ S be given. Under Assumption 5.2, we can obtain684

an ϵ-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Haccept) with probability at least 1− δ, by sampling685

m ≥ 1
2ϵ2 log

(
2
δ

)
paths from the ‘black box’ model.686

Proof. In words, we estimate Pr(⟨s, q⟩ |= ♢≤Haccept) by sampling m paths from a ‘black box’687

model of the environment dynamics. We label each path as satisfying or not and return the proportion688

of satisfying traces as an estimate for Pr(⟨s, q⟩ |= ♢≤Haccept). We proceed as follows, let ρ1, . . . ρm689

be a sequence of paths sampled from the ‘black box’ model and let trace(ρ1), . . . trace(ρm) be the690

corresponding traces. Furthermore, let X1, . . . ,Xm be indicator r.v.s such that,691

Xi =

{
1 if trace(ρ1) |= ♢≤Haccept,
0 otherwise

(28)

Recall that trace(ρ1) |= ♢≤Haccept can be checked in time O(poly(H)). Now let,692

X =
1

m

m∑
i=1

Xi where E[X] = Pr(⟨s, q⟩ |= ♢≤Haccept) (29)

then by Hoeffding’s inequality [40],693

P
[
|X − E[X]| ≥ ϵ

]
≤ 2 exp

(
−2mϵ2

)
(30)

Bounding the RHS from above by δ and rearranging gives the desired result.694

C.4 Proof of Proposition 5.5695

We start by introducing the following lemma.696

Lemma C.1 (Error amplification for trace distributions). Let P̂ ≈ P be such that,697

DTV

(
P(· | s), P̂(· | s)

)
≤ α ∀s ∈ S (31)

Let the start state s0 ∈ S be given, and let Pt(·) and P̂t(·) denote the path distribution (at time t) for698

the two transition probabilities P and P̂ respectively. Then the total variation distance between the699

two path distributions (at time t) are bounded as follows,700

DTV

(
Pt(·), P̂t(·)

)
≤ αt ∀t (32)
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Proof. We will prove this fact by doing an induction on t. We recall that Pt(·) and P̂t(·) denote the701

path distribution (at time t) for the two transition probabilities P and P̂ respectively. Formally we702

define them as follows,703

Pt(ρ) = Pr(s0, . . . , st ⪯ ρ | s0 = s,P) (33)

P̂t(ρ) = Pr(s0, . . . , st ⪯ ρ | s0 = s, P̂) (34)

These probabilities read as follows, ‘the probability of the sequence s0, . . . , st ⪯ ρ at time t’, or704

similarly ‘the probability that the sequence s0, . . . , st is a prefix of ρ at time t’ Since the start state705

s0 ∈ S is given we note that,706

P0(·) = P̂0(·) (35)
Before we continue with the induction on t we make the following observation, for any path ρ ∈ Sω707

we have by the triangle inequality,708 ∣∣∣Pt(ρ)− P̂t(ρ)
∣∣∣ = ∣∣∣P(st | st−1)Pt−1(ρ)− P̂(st | st−1)P̂t−1(ρ)

∣∣∣ (36)

≤ Pt−1(ρ)
∣∣∣P(st | st−1)− P̂(st | st−1)

∣∣∣+ P̂(st | st−1)
∣∣∣Pt−1(ρ)− P̂t−1(ρ)

∣∣∣
(37)

Now we continue with the induction on t,709

2DTV (Pt(·), P̂t(·)) =
∑
ρ∈Sω

∣∣∣Pt(ρ)− P̂t(ρ)
∣∣∣ (38)

≤
∑
ρ∈Sω

Pt−1(ρ)
∣∣∣P(st | st−1)− P̂(st | st−1)

∣∣∣
+
∑
ρ∈Sω

P̂(st | st−1)
∣∣∣Pt−1(ρ)− P̂t−1(ρ)

∣∣∣ (39)

≤
∑
ρ∈Sω

Pt−1(ρ) · (2α) +
∑
ρ∈Sω

∣∣∣Pt−1(ρ)− P̂t−1(ρ)
∣∣∣ (40)

= 2α+ 2DTV (Pt−1(·), P̂t−1(·)) (41)
≤ 2αt (42)

The final result is obtained by an induction on t where the base case comes from P0(·) = P̂0(·).710

Proposition 5.5 (restated). Let ϵ > 0, δ > 0, s ∈ S and horizon H ≥ 1 be given. Under Assumption711

5.3 we can make the following two statements:712

(1) We can obtain an ϵ-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Haccept) with probability 1 by713

exact model checking with the transition probabilities of P̂π in time O(poly(size(Mπ ⊗D)) ·H).714

(2) We can obtain an ϵ-approximate estimate for Pr(⟨s, q⟩ |= ♢≤Haccept) with probability at least715

1− δ, by sampling m ≥ 2
ϵ2 log

(
2
δ

)
paths from the ‘approximate’ dynamics model P̂π .716

Proof. We start by proving statement (1) and then statement (2) will follow quickly. First let717

Pr(⟨s, q⟩ |= ♢≤Haccept) and P̂r(⟨s, q⟩ |= ♢≤Haccept) denote the acceptance probabilities for the718

two transition probabilities P and P̂ respectively. We also let g(·) and ĝ(·) denote the average trace719

distribution (over the next H timesteps) for the two transition probabilities P and P̂ respectively,720

where,721

g(ρ) =
1

H

H∑
t=1

Pt(ρ) (43)

ĝ(ρ) =
1

H

H∑
t=1

P̂t(ρ) (44)

Before we continue with the proof of (1) we make the following observations,722
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• max
⟨s,q⟩

∣∣∣Pr(⟨s, q⟩ |= ♢≤Haccept)− P̂r(⟨s, q⟩ |= ♢≤Haccept)
∣∣∣ ≤ 1723

• Let f(x) : x ∈ X → [0, 1] be a real-valued function. Let P1(·) and P2(·) be probability724

distributions over the space X , then.725 ∣∣Ex∼P1(·)[f(x)]− Ex∼P2(·)[f(x)]
∣∣ ≤ DTV (P1(·),P2(·))

We continue by showing the following,726 ∣∣∣Pr(⟨s, q⟩ |=♢≤Haccept)− P̂r(⟨s, q⟩ |= ♢≤Haccept)
∣∣∣ (45)

=
∣∣∣Eρ∼g

[
1
[
⟨s, q⟩ |= ♢≤Haccept

]]
− Eρ∼ĝ

[
1
[
⟨s, q⟩ |= ♢≤Haccept

]] ∣∣∣ (46)

≤ DTV (g(·), ĝ(·)) (47)

=
1

2

∑
ρ∈Sω

|g(ρ)− ĝ(ρ)| (48)

=
1

2H

∑
ρ∈Sω

∣∣∣∣∣
H∑
t=1

Pt(ρ)− P̂t(ρ)

∣∣∣∣∣ (49)

≤ 1

2H

H∑
t=1

∣∣∣∣∣∣
∑
ρ∈Sω

Pt(ρ)− P̂t(ρ)

∣∣∣∣∣∣ (50)

≤ 1

2H

H∑
t=1

H(ϵ/H) (51)

= ϵ/2 (52)
(53)

The first inequality (Eq. 47) comes from our earlier observations. The second inequality (Eq. 50) is727

straightforward and the final inequality (Eq. 51) is obtained by applying Lemma C.1 and Assumption728

5.3. We note that this result is similar to the simulation lemma [48], which has been proved many729

times for several different settings [1, 16, 47, 57].730

This concludes the proof of statement (1), since we have shown that P̂r(⟨s, q⟩ |= ♢≤Haccept) is an731

ϵ/2-approximate estimate of Pr(⟨s, q⟩ |= ♢≤Haccept), under the Assumption 5.3.732

The proof of statement (2) follows quickly. We have established that,733 ∣∣∣Pr(⟨s, q⟩ |= ♢≤Haccept)− P̂r(⟨s, q⟩ |= ♢≤Haccept)
∣∣∣ ≤ ϵ/2 (54)

It remains to obtain an ϵ/2-approximate estimate of P̂r(⟨s, q⟩ |= ♢≤Haccept). By using the734

same reasoning as in the proof of Proposition 5.4. We can obtain an ϵ/2-approximate estimate735

of P̂r(⟨s, q⟩ |= ♢≤Haccept) by sampling m paths, ρ1, . . . ρm, from the approximate dynamics model736

P̂ . Then provided,737

m ≥ 2

ϵ2
log

(
2

δ

)
(55)

with probability 1− δ we can obtain ϵ/2-approximate estimate of P̂r(⟨s, q⟩ |= ♢≤Haccept) and by738

extension an ϵ-approximate estimate of Pr(⟨s, q⟩ |= ♢≤Haccept). This concludes the proof.739

C.5 Proof of Theorem 6.5740

Theorem 6.5 (restated). Under Assumption 6.3 and 6.4, and provided that every state action pair741

(s, a) ∈ S ×A has been visited at leastO
(

H2|S|2
ϵ2 log

(
|A||S|2

δ

))
times. Then with probability 1− δ742

the system satisfies the constraints of Problem 4.1, independent of the ‘task policy’.743

Proof. We split the proof up in to three parts, (1), (2) and (3). In part (1) we show that the given744

sample complexity bound gives us an approximate model of the environment dynamics with high745
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probability. In part (2) we use our assumptions to reason about the probabilistic recoverability746

of the system when it enters a critical state. In part (3) we put everything together and deal with747

approximation error ϵ the remaining failure probability that are both unavoidable for the statistical748

model checking procedures used to shield the system.749

(1) We show that the following holds with probability 1− δ/2,750

DTV

(
Pπ(· | s), P̂π(· | s)

)
≤ ϵ/H ∀s ∈ S (56)

when every state action pair (s, a) ∈ S ×A has been visited at least,751

O
(
H2|S|2

ϵ2
log

(
|A||S|2

δ

))
times. First we let #(s, a) denote the total number of times that (s, a) has been observed, similarly752

we let #(s′, s, a) denote the total number of times that (s′, s, a) has been observed. The maximum753

likelihood estimate for the unknown probability P(s′ |, s, a) is P̂(s′ | s, a) = #(s′, s, a)/#(s, a).754

Let us fix some (s, a) ∈ S ×A, and s′ ∈ S, we let ps′ = P(s′ | s, a) denote the true probability of755

transitioning to s′ from (s, a) and we let p̂s′ = #(s′, s, a)/#(s, a) denote our estimate. We note that756

E[p̂s′ ] = ps′ , i.e. p̂s′ is an unbiased estimator for ps′ . Let m = #(s, a) also be the number of times757

that (s, a) has been observed, then by Hoeffding’s inequality [40] we have,758

P
[
|ps′ − p̂s′ | ≥

ϵ

H|S|

]
≤ 2 exp

(
−2m ϵ2

H2|S|2

)
(57)

Bounding the LHS from above by 1− δ/2(|A||S|2) and rearranging gives the following lower bound759

for m,760

m ≥ H2|S|2

2ϵ2
log

(
4|A||S|2

δ

)
(58)

Taking a union bound over all (s′, s, a) ∈ S × S ×A, then for all state action pairs (s, a) ∈ S ×A761

we have the following with probability at least 1− δ.762

2DTV

(
P(· | s, a), P̂(· |, s, a)

)
=
∑
s′∈S

|ps′ − p̂s′ | ≤
∑
s′∈S

ϵ

H|S|
≤ ϵ/H (59)

Now fix some s ∈ S and we observe the following,763

2DTV

(
Pπ(· | s), P̂π(· | s)

)
=
∑
s′∈S
|Pπ(s

′ | s)− P̂π(s
′ | s)| (60)

=
∑
s′∈S

∑
a∈A
|P(s′ | s, a)π(a | s)− P̂(s′ | s, a)π(a | s)| (61)

=
∑
a∈A

π(a | s)
∑
s′∈S
|P(s′ | s, a)− P̂(s′ | s, a)| (62)

=
∑
a∈A

π(a | s)2DTV

(
P(· | s, a), P̂(· |, s, a)

)
(63)

≤ ϵ/H (64)

Thus with probability at least 1− δ/2 we have for all s ∈ S that,764

DTV

(
Pπ(· | s), P̂π(· | s)

)
≤ ϵ/H (65)

(2) Using Assumption 6.3 and 6.4 we can argue about the safety of the system. Suppose firstly,765

that we can check the condition Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1, precisely and without any failure766

probability (we will deal with statistical model checking in part (3)). From any non-critical state we767

can transition arbitrarily to a critical state, although under Assumption 6.3 this critical state is not768

irrecoverable with probability ≥ p1. We now consider the following two cases:769

(i) Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 under the ‘task’ policy.770
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(ii) Pr(⟨s, q⟩ |= ♢≤Haccept) > p1 under the ‘task’ policy.771

For case (i) we can safely use the ‘task’ policy and return to a non-critical state within H timesteps772

with probability at least 1− p1. For case (ii) we deploy the ‘safe’ policy and under Assumption 6.4773

we can return to a non-critical state within H timesteps with probability at least 1− p1. We have now774

established an invariant, since from every non-critical state we can return to a non-critical state with775

probability 1− p1 and thus satisfy Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 at every timestep t ∈ [0,T ].776

(3) We now make a similar argument but for the statistical model checking procedure where we777

can only obtain an ϵ-approximate estimate for the probability Pr(⟨s, q⟩ |= ♢≤Haccept) with high778

probability. Let us denote our ϵ-approximate estimate P̂r(⟨s, q⟩ |= ♢≤Haccept), rather than check779

the condition Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1, we can check condition P̂r(⟨s, q⟩ |= ♢≤Haccept) ≤780

p1 − ϵ, and if P̂r(⟨s, q⟩ |= ♢≤Haccept) is indeed an ϵ-approximate estimate then this guarantees781

Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1. Consider the following two cases:782

(i) Our estimate P̂r(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 − ϵ783

(ii) Our estimate P̂r(⟨s, q⟩ |= ♢≤Haccept) > p1 − ϵ784

For case (i) we can safely use the ‘task’ policy and return to a non-critical state within H timesteps785

with probability at least 1− p1. For case (ii) we deploy the ‘safe’ policy and under Assumption 6.4786

we can return to a non-critical state within H timesteps with probability at least 1− p1. Again we787

have established an invariant, since from every non-critical state we can return to a non-critical state788

with probability 1− p1 and thus satisfy Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 at every timestep t ∈ [0,T ].789

We still need to deal with the failure probability of the statistical model checking procedure at790

each timestep, by choosing failure probability 1 − δ/2T we can guarantee (by a union bound) an791

ϵ-approximate estimate for each timestep with probability 1− δ/2. Finally, taking a union bound792

over part (1) and (2) gives the desired total failure probability 1− δ.793

794

D Environment Details795

D.1 Colour Gridworld796

Figure 4: Colour gridworld en-
vironment. Top left hand cor-
ner (agent) is the start posi-
tion. The agent must navigate
to the goal position in the bot-
tom right hand corner of grid-
world. The coloured states la-
belled blue, green and purple
correspondingly.

The colour gridworld environment is a simple 9 × 9 grid, with797

state space |S| = 81 and action space |A| = 5, where each action798

corresponds to the following movements: Left,Right, Up, Down, Stay.799

The objective is to navigate from the start state in one corner of the800

grid, to the goal state in the other corner, after reaching the goal state801

the agent is then sent back to the start state. The agent must navigate802

to the goal state as many times as possible in a fixed episode length803

of T = 1000. The reward function is a sparse reward that gives the804

agent +1 reward for reaching the goal and 0 otherwise. When the805

environment is fully deterministic the maximum achievable reward806

is 58.807

In addition to the goal state, there are three other distinct states,808

green, blue and purple, each labelled with their corresponding809

colours, see Fig. 4. The set of atomic propositions is thus AP =810

{green, blue, purple, goal}, the safety properties are specified over811

the set AP , in particular we conduct experiments with 3 different812

safety properties of increasing complexity:813

• (1) □¬green814

• (2) □goal→♢≤10blue815

• (3) □goal→♢≤10□≤5purple816

Property (1) is a simple invariant property Pinv(¬green) that states the green state must always be817

avoided. Property (2) and (3) are more complex safety properties that interfere with the goal state. In818
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particular, property (2) states that once the goal state is reached then the blue state must be reached819

within 10 steps, this actually has no direct consequences on the maximum reward achievable but may820

interfere with convergence as the goal state seemingly leads to a high penalty if the blue state is not821

reached.822

Property (3) states that once the goal state is reached then the purple state must be reached within 10823

steps and then purple must hold for the next 5 timesteps. In safety property both interferes with the824

goal and has direct consequences on the maximum achievable reward as staying in purple for 5 steps825

does not lead to progress towards the goal state. In terms of the size of the DFA |Q|, property (1) is826

an invariant so the cost function is Markov and the size of the DFA is 2, for property (2) and (3) the827

size of the DFA is 12 and 62 respectively.828

Table 2: Safety properties and p value

property rand. act. p

(1) □¬green 0.25
(2) □goal→♢≤10blue 0.25

(3) □goal→♢≤10□≤5purple 0.1

Each of the safety properties are tested with the cor-829

responding p value for the environment, detailed in830

Table 1, which is repeated here for reference. The p831

value corresponds to the level of stochasticity in the832

environment. In particular, if p = 0.25 then there is833

a 25% chance of the agents action being overridden834

with another random action chosen uniformly. Given835

the environment is stochastic then it is difficult to satisfy the safety properties with probability 1.836

Through preliminary statistical analysis we computed the maximum satisfaction probabilities for837

each property, to help inform an appropriate p value to test with. With p = 0.25, property (1) can be838

satisfies with very high probability close to 1, while still achieving maximum reward. With p = 0.25839

property (2) can be satisfied with probability ≈ 0.93 while still achieving maximum reward. With840

p = 0.1 property (3) can be satisfied with probability ≈ 0.75 while still achieving good reward.841

Hyperparameter settings. We discuss some of the hyperparameter settings for our shielding842

approach that are not detailed in Table 5.843

Property (1): we use a model checking horizon of H = 3, and probability threshold p1 = 1.0, with844

the number of samples m = 4096, we can obtain a roughly ϵ = 0.05 approximate estimate of the845

finite horizon satisfaction probability with failure probability δ = 0.01.846

Property (2): we use a model checking horizon of H = 10, and probability threshold p1 = 0.9, with847

the number of samples m = 8192, we can obtain a roughly ϵ = 0.05 approximate estimate of the848

finite horizon satisfaction probability with a smaller failure probability δ = 0.001.849

Property (3): again we use a model checking horizon of H = 10, and probability threshold p1 = 0.6,850

with the number of samples m = 1024, we can obtain roughly a ϵ = 0.1 approximate estimate of the851

finite horizon satisfaction probability with failure probability δ = 0.01.852

Extended discussion of results. First we provide slightly larger figures that than provided in the853

main paper, see Figure 5.854

In general we observe that our shielding method is able to effectively trade-off reward and safety, in855

all cases converging to a system that obtains superior or comparable performance with the baseline.856

For property (1) we might expect our method to be able to recover the optimal policy that avoids the857

green state, it is clear in this case that the shielding procedure has harmed convergence and perhaps858

further investigation and hyperparameter tuning will encourage improvements. For property (2) and859

(3) the results are what we expect – we can recover the best policy that satisfies the step-wise bounded860

safety property with the desired probability p1.861

The intuitive reason for why simply penalising Q-learning doesn’t work, is that tuning the cost862

coefficient C is challenging for stochastic environments, where safety cannot be enforced ‘almost863

surely’ (with probability 1), and the precise value of C offers little to no semantic meaning. For864

different levels of stochasticity p values it is hard to know what desired level of safety we can achieve865

while still converging to a high reward policy, making tuning C even harder without knowing more866

about the structure of the environment. In Appendix F we study more closely the effect of C and867

p. Furthermore, we note te sensitivity of our method to the chosen model checking horizon H . In868

particular, if H is too large we might expect the system to be overly conservative, we also address869

this in more detail in Appendix F.870
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Figure 5: Episode reward and cost for tabular RL ‘colour’ gridworld environment.

D.2 Atari Seaquest871

Figure 6: Atari Seaquest environment
[10, 50]. The goal is to rescue divers
(small blue people), while shooting en-
emy sharks and submarines.

Our DreamerV3 [34] based shielding procedure is tested872

on Atari Seaquest, provided as part of the Arcade Learn-873

ing Environment (ALE)[10, 50]. Seaquest is a partially874

observable environment meaning we do not have direct875

access to the underlying state space S, we are however876

provided with observations o ∈ O as pixel images which877

correspond to 64 × 64 × 3 tensors. Fortunately Dream-878

erV3 is specifically designed to operate in visual settings879

and is able to effectively learn a predictive world model880

that closely approximate the environment dynamics. The881

action space of Seaquest is finite, specifically |A| = 18,882

where each action corresponds to a joystick movement and fire button interaction. Rewards are883

obtained by ‘shooting’ an enemy shark or submarine, or by rescuing divers and returning them to the884

surface. In addition, the agent must manage its oxygen resources and avoid being hit by sharks and885

the enemy submarines which fire back, see Fig. 6. The environment is also made stochastic by using886

‘sticky actions’ [50], where the agents previous action is repeated with probability p = 0.25.887

In terms of safety properties we experiment with the following two properties,888

• (1) (□¬surface→□(surface→diver)) ∧ (□¬out-of-oxygen) ∧ (□¬hit)889

• (2) □diver ∧ ¬surface→♢≤30surface890

Property (1) states that after diving (i.e. not surface), the agent must only surface with a diver on891

board, and never run out-of-oxygen and never get hit by an enemy. The size of the DFA for this892

property is |D| = 4. Property (2) states that once a diver is on board the agent must surface within 30893

timesteps (i.e. rescue the diver).894
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Hyperparameter settings. For our shielding approach almost all the hyperparameters are specified895

in Appendix E. The only hyperparameter that varies is the model checking horizon H . For property896

(1) we use H = 30, empirically this seems adequate enough to avoid running out-of-oxygen and897

begin surfacing in enough time. For property (2) we use H = 50, this is to avoid picking up a diver898

at the bottom of the ocean where it may not be possible to return to the surface in 30 timesteps.899

Extended discussion of results. First we provide slightly larger figures that than provided in the900

main paper, see Figure 7901

Figure 7: Episode reward and violation rate for deep RL Atari Seaquest.

For both safety properties DreamerV3 with shielding obtains comparative performance in terms of902

reward with the unmodified DreamerV3 baseline. Of course this baseline entirely ignores the safety903

properties and simply maximizes reward. We remark on the differences between the safety properties904

themselves, property (1) in particular specifies the natural safety properties of the environment, since905

violating property (1) results in a death, the agent only start with 4 lives (and can gain one more ever906

10000 points) and so satisfying property (1) is beneficial for long term reward, short the behaviour907

satisfying property (1) is correlated with higher reward and we might expect the globally optimal908

policy in the environment to never violated property (1). Property (2) specifies that once a diver is909

recovered the submarine must return to the surface in 30 timesteps, we would not expect that the910

globally optimal policy satisfies this property (2) rather we would expect to converge to a locally911

optimal policy satisfying property (2) while still obtaining good reward.912

With respect to the baseline DreamerV3 (LAG) which has access to the cost function, we see that in913

both cases it fails to reliable learn a safe policy that simultaneously maximizes reward. For property914

(2) DreamerV3 (LAG) appear to do slightly better in terms of safety, however when qualitatively915

inspecting the runs for property (2) we see the DreamerV3 (LAG) agent intentionally get hit by916

enemy submarines/sharks to re-spawn on the surface without actually having to navigate there. This917

may be a more effective way to satisfy the safety property with high probability but it clearly leads to918

worse long term reward.919

E Hyperparameters & Implementation Details920

E.1 Access to Code921

To maintain a high standard of anonymity we provide code for the experiments run on ‘colour’922

gridworld as supplementary material, rather than through GitHub. The colour gridworld environment923

is implemented with the Gym [14] interface. Tabular Q-learning is implemented with numpy in Python,924

the model checking procedures (both exact and Monte Carlo) are implemented with JAX [12] which925

supports vectorized computation on GPU and CPU. The code for the Atari Seaquest experiments926
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are not currently available, although our code base was heavily derived from the code base for927

Approximate Model-based Shielding (AMBS) [30], see https://github.com/sacktock/AMBS928

(MIT License).929

Training details. For collecting both sets of experiments we has access to 2 Nvidia Tesla A30930

(24GB RAM) GPU and a 24-core/48 thread Intel Xeon CPU each with 32GB RAM. For the ‘colour’931

gridworld experiments each run can take several minutes up to a day depending on which property is932

being tested, for example one run for property (3) can take roughly 1.5 days as the product state space933

is fairly large. For the Atari Seaquest experiments each run can take 8 hours to 1 day depending on934

the precise configuration of DreamerV3, in general we see a slow down of ×2 when using shielding935

compared to the unmodified DreamerV3 baseline. Memory requirements may differ depending on936

the DreamerV3 configuration used, for the xlarge DreamerV3 configuration 32GB of GPU memory937

should suffice.938

Statistical significance. Error bars are provided for each of our experiments. In particular, we report939

5 random initializations (seeds) for each experiment, the error bars are non-parametric (bootstrap) 95%940

confidence intervals, provided by seaborn.lineplot with default parameters: errorbar=(‘ci’,941

95), n_boot=1000. The error bars capture the randomness in the initialization of the DreamerV3942

world model and policy parameters, the randomness of the environment and any randomness in the943

batch sampling.944
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E.2 Colour Gridworld945

Table 3: Q-learning
Name Symbol value

Learning rate α 0.1
Discount factor γ 0.95
Exploration type - Boltzmann
Temperature τ 0.05

Table 4: Q-learning with counter factual experiences [43]
Name Symbol value

Learning rate α 0.1
Discount factor γ 0.95
Exploration type - Boltzmann
Temperature τ 0.05
Cost coefficient C 10.0

Table 5: Q-learning with shielding (Algorithm 1)
Name Symbol value

Model checking type - Monte-Carlo
Approximate model - True
Shielding - Task
Number of samples m varies
Approximation error ϵ varies
Failure probability δ varies
Model checking horizon H varies
Satisfaction prob. p varies
Prior - uninformative

‘Task policy’ πtask

See Q-learning (Table 3)
...

‘Backup policy’ πsafe

See Q-learning with counter factual experiences (Table 4)
...
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E.3 Atari Seaquest946

Table 6: DreamerV3 [34]
Name Symbol value

General

Replay capacity |D| 106

Batch size |B| 16
Batch length - 64
Number of envs - 8
Train ratio - 64
Number of MLP layers - 5
Number of MLP units - 1024
Activation - LayerNorm + SiLU

World Model

Configuration size - medium
Number of latents - 32
Classes per latent - 32
Number of layers - 3
Number of hidden units - 640
Number of recurrent units - 1024
CNN depth - 48
RSSM loss scales βpred, βdyn, βrep 1.0, 0.5, 0.1
Predictor loss scales βo,βr,βc,βγ 1.0, 1.0, 1.0, 1.0
Learning rate - 10−4

Adam epsilon ϵadam 10−8

Gradient clipping - 1000

Actor Critic

Imagination horizon H 15
Discount factor γ 0.997
TD lambda λ 0.95
Critic EMA decay - 0.98
Critic EMA regularizer - 1
Return norm. scale Sreward Per(R, 95)− Per(R, 5)
Return norm. limit Lreward 1
Return norm. decay - 0.99
Actor entropy scale ηactor 3 · 10−4

Learning rate - 3 · 10−5

Adam epsilon ϵadam 10−5

Gradient clipping - 100
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Table 7: Augmented Lagrangian [7, 41, 72]
Name Symbol value

Augmented Lagrangian

Penalty multiplier µk 5 · 10−9

Initial Lagrange multiplier λk 0.01
Penalty power σ 10−6

Cost coefficient C 1.0
Cost threshold d 1.0

Penalty Critic

See ‘Actor Critic’ in Table 6
...

Table 8: DreamerV3 with Shielding (Algorithm 5)
Name Symbol value

Shielding

Approximation error ϵ 0.09
Number of samples m 512
Failure probability δ 0.01
Look-ahead/shielding horizon H varies
Satisfaction prob. p 0.9
Cost coefficient C 10

‘Task policy’

See ‘Actor Critic’ in Table 6
...

‘Backup policy’

See ‘Actor Critic’ in Table 6
...
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F Ablation Studies947

In this section we provide several ablation studies for the ‘colour’ gridworld environment. We test the948

most significant hyperparameters and algorithmic components of our method including the baseline949

(Q-learning with penalties). In particular we demonstrate the counter factual experiences is crucial950

for learning the safety properties of the environment when the size of the corresponding DFA is non951

trivial. We also experiment with using exact model checking – demonstrating that we don’t loose952

much by using statistical model checking procedures. Furthermore, we experiment with the cost953

coefficient C, the model checking horizon H and the level of stochasticity p.954

F.1 Counter factual experiences955

We run our method and the baseline (Q-learning with penalties) without counterfactual experiences956

to train the ‘backup policy’ or penalized task policy (baseline).957

Figure 8: Episode reward and cost for Q-learning
(Shield) and Q-learning (COST-CF) with and with-
out counterfactual experiences (CF).

Figure 9: Episode reward and cost for Shield
(Exact-True) – exact model checking with the ‘true’
probabilities, Shield (Exact-Approx) - exact model
checking with the learning transition probabilities,
and Shield (MC-Approx) – from the main paper.

For property (2) and (3) we see a significant958

drop in safety performance, since learning to959

respect the safety property over the much larger960

product state space will require much more ex-961

perience and without exploiting the structure of962

the DFA (using counter factual experiences) to963

generate synthetic data the task behaviour will964

be much more quickly learnt. For property (1),965

the invariant property, we observe identical per-966

formance as the DFA is trivial (only 2 states),967

and so counter factual experiences is essentially968

redundant in this case.969

F.2 Exact model checking970

We run our method (Shielding) with two differ-971

ent configurations: exact model checking with972

the ‘approximate’ transition probabilities (learn-973

ing from experience) and exact model check-974

ing with the ‘true’ transition probabilities. We975

compare these two methods to the configuration976

used in the main paper: Monte Carlo (statisti-977

cal) model checking with the learned transition978

probabilities.979

In all cases we see that Shield (MC-Approx)980

obtains almost identical performance to Shield981

(Exact-True), which demonstrates that we don’t982

loose much by statistical model checking with983

the learned probabilities, when for example we984

don’t have access to the transition probabilities985

ahead of time, or the MDP is too large to ex-986

act model check. We see some variance with987

Shield (Exact-Approx), which can be explained988

by sub-optimal convergence in terms of reward,989

although note that the safety performance is con-990

sistent with the other configurations. Perhaps ex-991

act model checking with an inaccurate model of992

the transition probabilities restricts exploration993

to areas of the state space that are actually safe.994
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F.3 Cost coefficient C995

We experiment with different values for the cost coefficient C used for our baseline (Q-learning with996

penalties). In particular, we use C ∈ {0.1, 1.0, 10.0, 100.0}, we expect that a larger cost coefficient997

will penalize unsafe behaviour more harshly and result in ‘safer’ behaviour (i.e., fewer safety-property998

violations).999

Figure 10: Episode reward and cost for Q-learning
(COST-CF) – baseline from the main paper, with
different cost coefficients C.

Unsurprisingly, across the board, by increasing1000

the cost coefficient C we obtain a policy that has1001

fewer safety-property violations. The improved1002

‘safety performance’ is of course at the expense1003

of reward or task performance, this is a trade-off1004

we would expect. In particular for C = 100.01005

we see that the learned policy essentially avoids1006

the goal state (achieving zero reward) all but1007

guaranteeing safety (no safety-violations). The1008

purpose of this ablation study is to demonstrate1009

that while we can achieve any desired level of1010

safety by tuning the cost coefficient C, the actual1011

value of C offers little to no semantic meaning1012

for the probability of violating the safety prop-1013

erty.1014

F.4 Model checking horizon H1015

As was alluded to in the main paper, our method1016

can be very sensitive to the model checking hori-1017

zon (hyperparameter) H . In particular, if H is1018

too large then we might expect the system to1019

exhibit overly conservative behaviour. As a rule of thumb we suggest that H should be set to roughly1020

the shortest path in the DFA from the initial state to an accepting state – this can easily be computed1021

by using Dijkstra’s (shortest-path) algorithm. In this ablation we experiment with much larger H1022

than recommended. This significantly impacts the performance of our proposed approach. However,1023

we do propose a solution, Q-learning (Shield-Rec) which in short, checks that the action proposed by1024

the ‘task policy’ is recoverable with the ‘backup policy’, or in other words by playing with the action1025

a ∼ πtask proposed by the ‘task policy’ We can still satisfy Pr(⟨s, q⟩ |= ♢≤Haccept) ≤ p1 by using1026

the ‘backup policy’ after playing a.1027

Figure 11: Episode reward and cost for Q-learning
(Shield) - from the main paper, Q-learning (Shield)
with bigger H and Q-learning (Shield-Rec) with
bigger H .

In general we observe that when H is too large1028

our original method (Shield) is overly conser-1029

vative, sacrificing reward or task performance1030

for safety guarantees. Our proposed solution1031

(Shield-Rec) is alleviates this issue partly, pro-1032

viding reasonable safety performance and com-1033

parable task performance. We note that this1034

solution is clearly not perfect as is it appears1035

to be slightly more permissive allowing more1036

safety-violations than necessary. More investi-1037

gation into this framework would be interesting1038

future work, and perhaps more hyperparameter1039

tuning, specifically by tuning p1, could improve1040

this method. The goal would be to obtain an al-1041

gorithm that is not overly sensitive to H , and as1042

long as H is sufficiently big to guarantee safety1043

we don’t see much performance degradation by1044

further increasing H .1045
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F.5 Level of stochasticity p1046

Finally we investigate the effect of the level of stochasticity of the environment. Specifically, the value1047

p corresponding the the probability that the agent’s action is ignored and another action is chosen1048

(uniformly at random) from the action space and played instead. For example, of p = 0.25 and the1049

agent chooses the action Right, there is a 75% chance that the agent goes right and a 25% chance1050

the agent goes a different direction. If p = 0.0 (deterministic environment) then achieving complete1051

safety (zero-violations) becomes easier as the agent has complete control of the environment through1052

their actions.1053

Figure 12: Episode reward and cost for Q-learning,
Q-learning (COST-CF) and Q-learning (Shield) –
all from the main paper. With smaller levels of
stochasticity p

We experiment with the following p values: p =1054

0.1 for property (1), p = 0.1 for property (2)1055

and p = 0.05 for property (3). For these smaller1056

p values we would expect it to be easier for1057

our methods including the baseline to achieve1058

a higher-rate of safety and possibly complete1059

safety in some cases.1060

We see a similar situation as in the main paper,1061

Q-learning (without penalties) simply finds the1062

best policy ignoring costs. However, Q-learning1063

(with penalties) is able to obtain the same perfor-1064

mance now as our method Q-learning (Shield),1065

both in terms of reward and cost. With a smaller1066

p value the safety-property can be satisfied with1067

higher probability while still visiting the goal1068

state frequently and obtaining high reward. In1069

particular, these p values are chosen such that1070

each of the safety properties can be satisfies with1071

probability at least 0.9 from the goal state, thus1072

penalizing safety-violations with C = 10.0 ap-1073

pears to be enough to guarantee safety above1074

0.9 at each timestep while still achieving high1075

reward. For different values of C we might expect the baseline to have a different performance1076

profile.1077

G Comparison to CMDP1078

In this additional section we analyze the relationships between our problem setup and other common1079

CMDP settings, for both the finite horizon and corresponding (discounted) infinite horizon problems.1080

G.1 Finite Horizon1081

For reference we restate Problem 4.1 here.1082

Problem 4.1 (restated) (Step-wise bounded regular safety property constraint). Let Psafe be a regular1083

safety property, D be the DFA such that L(D) = BadPref(Psafe) andM be the MDP;1084

max
π

Vπ subject to Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ]

where all probability is taken under the product Markov ChainMπ ⊗D, p1 ∈ [0, 1] is a probability1085

threshold, H is the model checking horizon and T is the fixed episode length.1086

G.1.1 Expected Cumulative Constraint1087

First we restate Problem 4.4.1088

Problem 4.4 (restated) (Expected cumulative constraint [4, 58]).

max
π

Vπ subject to E⟨st,qt⟩∼Mπ⊗D

[∑T
t=0 C(⟨st, qt⟩)

]
≤ d1

where d1 ∈ R+ is the cost threshold and T is the fixed episode length.1089
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Proposition G.1. A feasible policy π for Problem 4.1 with parameters p1 ∈ [0, 1] is also a feasible1090

policy for Problem 4.4 with parameter d1 ∈ R+, provided that d1 ≥ (T + 1) · p1.1091

Proof. For t ∈ [0,T ] we define, the following random variables, X0, . . . ,XT , where1092

Xt = C(⟨st, qt⟩) = 1 [accept ∈ L′(⟨st, qt⟩)] (66)

where,1093

E [Xt] = E [1 [accept ∈ L′(⟨st, qt⟩)]] (67)

= Pr (accept ∈ L′(⟨st, qt⟩)) (68)
≤ p1 (69)

The argument is straightforward if at every timestep t ∈ [0,T ] we have Pr(⟨st, qt⟩ |= ♢≤Haccept) ≤1094

p1 then with probability ≤ p1 we have accept ∈ L(⟨st, qt⟩). Then, under mild assumptions1095

(i.e. C(⟨st, qt⟩) <∞) we consider the following decomposition of the expected cumulative cost,1096

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
= Eπ

[
T∑

t=0

Xt

]
(70)

= Es0∼P0(·) [X0] + Es1∼P1(·) [X1] + . . .+ EsT∼PT (·) [XT ] (71)

= Eπ [X0] + Eπ [X1] + . . .+ Eπ [XT ] (72)

We replace the subscript ‘⟨st, qt⟩ ∼ Mπ ⊗D’ here for brevity. Clearly by linearity of expectations1097

this statement holds. Although it is worth noting that each expectation is taken under a different1098

marginal state distribution (i.e. Pt(·)), which depends on π (apart from the initial state distribution1099

P0(·)). From now on we will write this is implicitly (i.e. Eq. 72), rather than writing the marginal1100

state distribution (at time t) for each expectation. Using our earlier observations we can now bound1101

the expected cumulative cost from above as follows,1102

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
= Eπ [X0] + Eπ [X1] + . . .+ Eπ [XT−1] + Eπ [XT ] (73)

≤ (T + 1) · p1 (74)

1103

Proposition G.2. The converse is not strictly true, since there may be a feasible policy π for Problem1104

4.4 with threshold d1 ≤ (T + 1) · p1 which does not satisfy the constraints of Problem 4.1.1105

Proof. We want to prove the following statement, a policy π satisfying,1106

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ (T + 1) · p1 (75)

does not imply that,1107

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ] (76)

To prove this we will show that there may be some policy π that satisfies Eq. 75, but does not satisfy1108

Eq. 76 at some timestep t. For simplicity we consider the first timestep (i.e. t = 0). First we assume1109

π is such that Eq. 75 holds, assuming H ≤ T then clearly we have,1110

Eπ

[
H∑
t=0

C(⟨st, qt⟩)

]
≤ Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ (T + 1) · p1 (77)

Let Pr(⟨s0, q0⟩ |= ♢≤Haccept) denote the proportion of accepting paths from the initial state1111

s0 ∼ P0(·) and automaton state q0 = ∆(Q0,L(s0)). Suppose π is such that Pr(⟨s0, q0⟩ |=1112

♢≤Haccept) > p1. We note that for each path ρ ∈ Sω and corresponding trace(ρ) ∈ Σω such that1113

trace(ρ) |= ♢≤Haccept the sum
∑H

t=0 C(⟨st, qt⟩) ≥ 1, and now we have,1114

(T + 1) · p1 ≥ Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≥ Eπ

[
H∑
t=0

C(⟨st, qt⟩)

]
> p1 (78)
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Now clearly for all p1 ∈ [0, 1] and T ∈ Z+ the following holds,1115

p1 < (T + 1) · p1 (79)

This implies that there may exist some π satisfying Eq. 75 and such that Pr(⟨s0, q0⟩ |=1116

♢≤Haccept) > p1, i.e. does not satisfy Eq. 76 at timestep t = 0.1117

Proposition G.3. A feasible policy π for Problem 4.4 with threshold d1 ≤ p1, satisfies Pr(⟨st, qt⟩ |=1118

♢≤Haccept) ≤ p1 for all t ∈ [0,T ]. This bound is tight.1119

Proof. Firstly, a feasible policy π for Problem 4.4 with threshold d1 ≤ p1 clearly satisfies,1120

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ p1 (80)

Assuming H ≤ T , then this implies that for all t′ ∈ [0,T −H] we have,1121

Eπ

t′+H∑
t=t′

C(⟨st, qt⟩)

 ≤ Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ p1 (81)

Let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting paths at timestep t′, where st′ ∼1122

Pt′(·). Here Pt′(·) denotes the marginal state distribution at time t′. Recall that for each path ρ ∈ Sω1123

and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum
∑t′+H

t=t′ C(⟨st, qt⟩) ≥ 1.1124

Without loss of generality fix some t′ ∈ [0,T −H] and suppose that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) >1125

p1. This implies that,1126

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≥ Eπ

t′+H∑
t=t′

C(⟨st, qt⟩)

 > p1 (82)

Which is a contradiction. Therefore, it must be the case that when Eq. 80 is satisfied then so is1127

Pr(⟨st, qt⟩ |= ♢≤Haccept]) ≤ p1 for all t ∈ [0,T −H]. For the remaining t′ ∈ [T −H,T ] a similar1128

argument can be made, the only detail is to ensure the sum in Eq. 81 is up to T rather than t′ +H .1129

To prove that this bound is tight we can again show the possible existence of a counter example. In1130

particular, we want to prove the following statement, a policy π satisfying,1131

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ p1 + c (83)

for some constant c > 0, does not imply that,1132

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ] (84)

We will show that there may exist some policy π that satisfies Eq. 83 but does not satisfy Eq. 84 at1133

some timestep t. Firstly, we assume π is such that Eq. 83 holds, this implies that for all t′ ∈ [0,T−H]1134

we have,1135

Eπ

t′+H∑
t=t′

C(⟨st, qt⟩)

 ≤ Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≤ p1 + c (85)

Fix some t′ ∈ [0,T −H] and once again let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of1136

accepting paths at timestep t′. Suppose π is such that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) > p1. Again recall1137

that for each path ρ ∈ Sω and corresponding trace trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept1138

the sum
∑t′+H

t=t′ C(⟨st, qt⟩) ≥ 1, and so,1139

p1 + c ≥ Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
≥ Eπ

t′+H∑
t=t′

C(⟨st, qt⟩)

 > p1 (86)

Now clearly for all p1 ∈ [0, 1] and c > 0, the following holds,1140

p1 < p1 + c (87)

This implies that there may exist some π satisfying Eq. 83 and such that Pr(⟨st′ , qt′⟩ |=1141

♢≤Haccept) > p1, i.e. does not satisfy Eq. 84 at timestep t = t′.1142
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G.1.2 Probabilistic Cumulative Constraint1143

First we restate Problem 4.5.1144

Problem 4.5 (restated) (Probabilistic cumulative constraint [18, 56]).

max
π

Vπ subject to P⟨st,qt⟩∼Mπ⊗D

[∑T
t=0 C(⟨st, qt⟩) ≤ d2

]
≥ 1− δ2

where d2 ∈ R+ is the cost threshold, δ2 is a tolerance parameter and T is the fixed episode length.1145

Proposition G.4. A feasible policy π for Problem 4.1 with parameters p1 ∈ [0, 1] is also a1146

feasible policy for Problem 4.5 with parameters d2 ∈ R+ and δ2 ∈ (0, 1], provided that,1147

d2 ≥
√
(T + 1)/2 · log(1/δ2) + (T + 1) · p1.1148

Proof. For t ∈ [0,T ] we define the following random variables, X0, . . . ,XT , where,1149

Xt = C(⟨st, qt⟩) = 1 [accept ∈ L′(⟨st, qt⟩)] (88)

and we make the same following observation,1150

E [Xt] = E [1 [accept ∈ L′(⟨st, qt⟩)]] (89)

= Pr (accept ∈ L′(⟨st, qt⟩)) (90)
≤ p1 · δ (91)

See the proof of Prop. G.1 for details, the argument is identical. Once again, under mild assumptions1151

(i.e. C(⟨st, qt⟩) <∞) we consider the following decomposition of the expected cumulative cost,1152

Eπ

[
T∑

t=0

C(⟨st, qt⟩)

]
= Eπ [X0] + Eπ [X1] + . . .+ Eπ [XT ] (92)

≤ (T + 1) · p1 (93)

Again we replace the subscript ‘⟨st, qt⟩ ∼ Mπ⊗D’ here for brevity, see the proof of Prop. G.1 for the1153

full details. Before we proceed we must first deal with the dependence between the random variables1154

X0, . . . ,XT . Strictly speaking it is not the case that Pr(Xt = 1 | Xt−1, . . . ,X0) = Pr(Xt = 1).1155

However, we have already established that Pr(Xt = 1) ≤ p1, as such we can simulate X0, . . . ,XT1156

as a sequence of independent coin flips Y0, . . . ,YT with probability p1, it is then the case that1157

P[
∑T

t=0 Xt > d2] ≤ P[
∑T

t=0 Yt > d2]. We can now continue by bounding the probability we care1158

about,1159

1− P

[
T∑

t=0

C(⟨st, qt⟩) ≤ d2

]
= P

[
T∑

t=0

C(⟨st, qt⟩) > d2

]
(94)

= P

[
T∑

t=0

Xt > d2

]
(95)

≤ P

[
T∑

t=0

Yt > d2

]
(96)

= P

[
T∑

t=0

Yt > (T + 1) · p1 + d2 − (T + 1) · p1

]
(97)

= P

[
T∑

t=0

Yt > E

[
T∑

t=0

Yt

]
+ d2 − (T + 1) · p1

]
(98)

≤ exp

(
− 2 · (d2 − (T + 1) · p1)2∑T

t=0(max{Yi} −min{Yi})2

)
(99)

= exp

(
−2 · (d2 − (T + 1) · p1)2

(T + 1)

)
(100)

The first inequality (Eq. 96) comes from our earlier construction and the second (Eq. 99) is obtained1160

from Hoeffding’s inequality [40] for bounded random variables. Finally, bounding the final expression1161

from above by δ2 and rearranging gives the desired result.1162
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Proposition G.5. A feasible policy π for Problem 4.5 with parameters δ2 ≤ p1 and d2 < 1, satisfies1163

Pr(⟨st, qt⟩ |= ♢≤Haccept) ≤ p1 for all t ∈ [0,T ]. This bound is tight.1164

Proof. A feasible policy π for Problem 4.5 with parameters δ2 ≤ p1 and d2 < 1 clearly implies that,1165

P

[
T∑

t=0

C(⟨st, qt⟩) < 1

]
≥ 1− p1 (101)

Assuming H ≤ T , then this implies that for all t′ ∈ [0,T −H] we have,1166

P

t′+H∑
t=t′

C(⟨st, qt⟩) < 1

 ≥ P

[
T∑

t=0

C(⟨st, qt⟩) < 1

]
≥ 1− p1 (102)

Let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting paths at timestep t′, where st′ ∼1167

Pt′(·). AgainPt′(·) denotes the marginal state distribution at time t′. Recall that for each path ρ ∈ Sω1168

and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum
∑t′+H

t=t′ C(⟨st, qt⟩) ≥ 1.1169

Without loss of generality fix some t′ ∈ [0,T −H] and suppose that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) >1170

p1. This implies that,1171

P

[
T∑

t=0

C(⟨st, qt⟩) ≥ 1

]
≥ P

t′+H∑
t=t′

C(⟨st, qt⟩) ≥ 1

 > p1 (103)

Which is a contradiction. Therefore, it must be the case that when Eq. 101 is satisfied then so is1172

Pr(⟨st, qt⟩ |= ♢≤Haccept]) ≤ p1 for all t ∈ [0,T −H]. For the remaining t′ ∈ [T −H,T ] a similar1173

argument can be made, the only detail is to ensure the sum in Eq. 102 is up to T rather than t′+H . To1174

prove that this bound is tight we can show the possible existence of a counter example. In particular,1175

we want to prove the following statement, a policy π satisfying,1176

P

[
T∑

t=0

C(⟨st, qt⟩) < 1

]
≥ 1− (p1 + c) (104)

for some constant c > 0 does not imply that,1177

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ] (105)

We will show that there may exist some policy π that satisfies Eq. 104 but does not satisfy Eq. 1051178

at some timestep t. Firstly, we assume π is such that Eq. 104 holds, this implies that for all1179

t′ ∈ [0,T −H] we have,1180

P

t′+H∑
t=t′

C(⟨st, qt⟩) < 1

 ≥ P

[
T∑

t=0

C(⟨st, qt⟩) < 1

]
≥ 1− (p1 + c) (106)

Fix some t′ ∈ [0,T −H] and let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting1181

paths at timestep t′. Suppose that π is such that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) > p1. Again recall that1182

for each path ρ ∈ Sω and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum1183 ∑t′+H
t=t′ C(⟨st, qt⟩) ≥ 1, and so,1184

p1 + c ≥ P

[
T∑

t=0

C(⟨st, qt⟩) ≥ 1

]
≥ P

t′+H∑
t=t′

C(⟨st, qt⟩) ≥ 1

 > p1 (107)

Now clearly for all p1 ∈ [0, 1] and c > 0, the following holds,1185

p1 < p1 + c (108)

This implies that there may exist some π satisfying Eq. 104 and such that Pr(⟨st′ , qt′⟩ |=1186

♢≤Haccept) > p1, i.e. does not satisfy Eq. 105 at timestep t = t′.1187
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G.1.3 Instantaneous constraint1188

First we restate Problem 4.6.1189

Problem 4.6 (restated) (Instantaneous constraint [23, 60, 69]).

max
π

Vπ subject to P⟨st,qt⟩∼Mπ⊗D
[
C(⟨st, qt⟩) ≤ d3

]
= 1 ∀t ∈ [0,T ]

Proposition G.6. A feasible policy π for Problem 4.6 with threshold d3 < 1 (otherwise the problem1190

is trivial) is a feasible policy for Problem 4.1 if and only if p1 = 0.1191

Proof. We start by proving the 4.6⇒ 4.1 direction. A feasible policy π for Problem 4.6 with d3 < 11192

satisfies,1193

Pr (C(⟨st, qt⟩) < 1) = 1 ∀t ∈ [0,T ] (109)

which implies that,1194

Pr (C(⟨st, qt⟩) = 0) = 1 ∀t ∈ [0,T ] (110)

and by Defn. 4.3,1195

Pr (accept ̸∈ L′(⟨st, qt⟩)) = 1 ∀t ∈ [0,T ] (111)

Then if for all t ∈ [0,T ], accept ̸∈ L′(⟨st, qt⟩) then we have Pr(⟨s0, q0⟩ ̸|= ♢accept) = 1, where1196

q0 = ∆(Q0,L(s0)) and by extension we have Pr(⟨st, qt⟩ ̸|= ♢accept≤H) = 1 for all t ∈ [0,T ].1197

This completes the proof of this direction.1198

Now we prove the 4.1⇒ 4.6 direction. A policy π satisfying Pr(⟨st, qt⟩ |= ♢accept≤H)) = 0 for all1199

t ∈ [0,T ] implies that Pr(⟨st, qt⟩ ̸|= ♢accept≤H) = 1 for all t ∈ [0,T ] which implies the following,1200

Pr (accept ̸∈ L′(⟨st, qt⟩)) = 1 ∀t ∈ [0,T ] (112)

and by Defn. 4.3,1201

Pr [C(⟨st, qt⟩) = 0] = 1 ∀t ∈ [0,T ] (113)

which implies that,1202

Pr [C(⟨st, qt⟩) < 1] = 1 ∀t ∈ [0,T ] (114)

which concludes the proof.1203

G.2 Infinite Horizon1204

While in this paper we only consider finite horizon problems with a fixed episode length T , we note1205

that we can also make a set of similar statements for the infinite horizon (discounted) setting. In this1206

section we provide the corresponding statements and proofs for the infinite horizon setting. Firstly,1207

we consider the following infinite horizon problem.1208

Problem G.7 (Step-wise bounded regular safety property constraint). Let Psafe be a regular safety1209

property, D be the DFA such that L(D) = BadPref(Psafe) andM be the MDP;1210

max
π

Vπ subject to Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t = 0, 1, 2, . . .

where all probability is taken under the product Markov chainMπ ⊗D, p1 ∈ [0, 1] is a probability1211

threshold H is the model checking horizon .1212

G.2.1 Expected Cumulative Constraint1213

Problem G.8 (Expected cumulative constraint).

max
π

Vπ subject to E⟨st,qt⟩∼Mπ⊗D

[∑∞
t=0 γ

tC(⟨st, qt⟩)
]
≤ d1

where d1 ∈ R+ is the cost threshold and γ ∈ [0, 1) is the discount factor.1214

Proposition G.9. A feasible policy π for Problem G.7 with parameters p1 ∈ [0, 1], is also a feasible1215

policy for Problem G.8 with parameter d1 ∈ R+, provided that d1 ≥ T · p1, where T = 1/(1− γ) is1216

the effective horizon.1217
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Proof. For t = 0, 1, 2, . . . we define, the following random variables, X0,X1,X2, . . ., where,1218

Xt = C(⟨st, qt⟩) = 1 [accept ∈ L′(⟨st, qt⟩)] (115)

where,1219

E [Xt] = E [1 [accept ∈ L′(⟨st, qt⟩)]] (116)

= Pr (accept ∈ L′(⟨st, qt⟩)) (117)
≤ p1 (118)

The argument for this is straightforward. If at every timestep t = 0, 1, 2, . . . we have Pr(⟨st, qt⟩ |=1220

♢≤Haccept) ≤ p1 then with probability ≤ p1 we have accept ∈ L(⟨st, qt⟩). Let T = 1/(1 − γ)1221

be the effective horizon, then under mild assumptions (i.e. C(⟨st, qt⟩) < ∞) we can consider the1222

following decomposition of the expected cumulative cost,1223

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
= Eπ

[ ∞∑
t=0

γtXt

]
(119)

= Es0∼P0(·) [X0] + γ · Es1∼P1(·) [X1] + . . .

+ γT · EsT∼PT (·) [XT ] + . . .
(120)

= Eπ [X0] + γ · Eπ [X1] + . . .+ γT · Eπ [XT ] + . . . (121)

We replace the subscript ‘⟨st, qt⟩ ∼ Mπ ⊗D’ here for brevity. Clearly by linearty of expectations1224

this statement holds. Although it is worth noting that each expectation is taken under a different1225

marginal state distribution (i.e. Pt(·)), which depends on π (apart from the initial state distribution1226

P0(·)). From now on we will write this is implicitly (i.e. Eq. 121), rather than writing the marginal1227

state distribution (at time t) for each expectation. Using our earlier observations we can now bound1228

the expected cumulative cost from above as follows,1229

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
= Eπ [X0] + γ · Eπ [X1] + . . .+ γT · Eπ [XT ] + . . . (122)

≤ p1 + γ · p1 + . . . + γT−1 · p1 + γT · p1 + . . . (123)

= p1 ·
∞∑
t=0

γt = p1 · (1/(1− γ)) = T · p1 (124)

1230

Proposition G.10. The converse is not strictly true, since there may be a feasible policy π for1231

Problem G.8 with threshold d1 ≤ T · p1 which does not satisfy the constraints of Problem G.71232

We want to prove the following statement, a policy π satisfying,1233

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≤ T · p1 (125)

does not imply that,1234

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t = 0, 1, 2, . . . (126)

Proof. To prove this we will show that there may be some policy π that satisfies Eq. 125, but does1235

not satisfy Eq. 126 at some timestep t. For simplicity we consider the first timestep (i.e. t = 0). First1236

we assume π is such that Eq. 125 holds, then clearly we have,1237

Eπ

[
H∑
t=0

γtC(⟨st, qt⟩)

]
≤ Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≤ T · p1 (127)

Let Pr(⟨s0, q0⟩ |= ♢≤Haccept) denote the proportion of accepting paths from the initial state s0 ∼1238

P0(·). Suppose π is such that Pr(⟨s0, q0⟩ |= ♢≤Haccept) > p1. We note that for each path ρ ∈ Sω1239
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and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum
∑H

t=0 γ
tC(⟨st, qt⟩) ≥1240

γH , and so,1241

T · p1 ≥ Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≥ Eπ

[
H∑
t=0

γtC(⟨st, qt⟩)

]
> p1 · γH (128)

Now clearly for all p1 ∈ [0, 1], γ ∈ [0, 1), H ∈ Z+ and T = 1/(1− γ) the following holds,1242

p1 · γH < T · p1 (129)

This implies that there may exist some π satisfying Eq. 125 and such that Pr(⟨s0, q0⟩ |=1243

♢≤Haccept) > p1, i.e. does not satisfy Eq. 126 at timestep t = 0.1244

Proposition G.11. A feasible policy π for Problem 4.4 with threshold d1 ≤ p1 · γT+H satisfies1245

Pr(⟨st, qt⟩ |= ♢≤Haccept) ≤ p1 up to the effective horizon T = 1/(1− γ). This bound is tight.1246

Proof. Let T = 1/(1−γ) be the effective horizon. A feasible policy π for Problem 4.4 with threshold1247

d1 ≤ p1 · γT+H clearly satisfies,1248

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≤ p1 · γT+H (130)

which implies that for all t′ ∈ [0,T ] we have,1249

p1 · γT+H ≥ Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≥ Eπ

t′+H∑
t=t′

γtC(⟨st, qt⟩)

 (131)

= Eπ

γt′
t′+H∑
t=t′

γt−t′C(⟨st, qt⟩)

 (132)

= γt′ · Eπ

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩)

 (133)

Let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting paths at timestep t′, where1250

st′ ∼ Pt′(·). Here Pt′(·) denotes the marginal state distribution at time t′. Recall that for1251

each path ρ ∈ Sω and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum1252 ∑t′+H
t=t′ γt−t′C(⟨st, qt⟩) ≥ γH . Without loss of generality fix some t′ ∈ [0,T ] and suppose that1253

Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) > p1. This implies that,1254

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≥ γt′ · Eπ

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩)

 (134)

> p1 · γH · γt′ ≥ p1 · γT+H (135)

Which is a contradiction. Therefore, it must be the case that when Eq. 130 is satisfied then so is1255

Pr(⟨st, qt⟩ |= ♢≤Haccept]) ≤ p1 for all t ∈ [0,T ]. To prove that this bound is tight we can again1256

show the possible existence of a counter example. In particular, we want to prove the following1257

statement, a policy π satisfying,1258

Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≤ p1 · γT+H + c (136)

for some constant c > 0, does not imply that,1259

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ] (137)

We will show that there may exist some policy π that satisfies Eq. 136 but does not satisfy Eq. 137 at1260

some timestep t. For simplicity we consider timestep t = T , although we note that with a little extra1261
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work we could come up with a proof for any t ∈ [0,T ]. Firstly, we assume π is such that Eq. 1361262

holds, then we have,1263

p1 · γT+H + c ≥ Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
≥ Eπ

[
T+H∑
t=T

γtC(⟨st, qt⟩)

]
(138)

Let Pr(⟨sT , qT ⟩ |= ♢≤Haccept) denote the proportion of accepting paths at timestep T . Suppose π1264

is such that Pr(⟨sT , qT ⟩ |= ♢≤Haccept) > p1. We note that for each path ρ ∈ Sω and corresponding1265

trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum
∑T+H

t=T γtC(⟨st, qt⟩) ≥ γT+H , and so,1266

p1 · γT+H + c ≥ Eπ

[ ∞∑
t=0

γtC(⟨st, qt⟩)

]
(139)

≥ Eπ

[
T+H∑
t=T

γtC(⟨st, qt⟩)

]
(140)

> p1 · γT+H (141)

Now clearly for all p1 ∈ [0, 1], γ ∈ [0, 1), c > 0, H ∈ Z+ and T = 1/(1− γ), the following holds,1267

p1 · γT+H < p1 · γT+H + c (142)

This implies that there may exist some π satisfying Eq. 136 and such that Pr(⟨sT , qT ⟩ |=1268

♢≤Haccept) > p1, i.e. does not satisfy Eq. 137 at timestep t = T .1269

G.3 Probabilistic Cumulative Constraint1270

Problem G.12 (Probabilistic cumulative constraint).

max
π

Vπ subject to P⟨st,qt⟩∼Mπ⊗D

[∑∞
t=0 γ

tC(⟨st, qt⟩) ≤ d2

]
≥ 1− δ2

where d2 ∈ R+ is the cost threshold, δ2 is a tolerance parameter and γ ∈ [0, 1) is the discount factor.1271

1272

Proposition G.13. A feasible policy π for Problem G.7 with parameters p1 ∈ [0, 1], is also a1273

feasible policy for Problem G.12 with parameters d2 ∈ R+ and δ2 ∈ (0, 1], provided that, d2 ≥1274 √
(⌈log(T )⌉ · T )/2 · log(1/δ2)+ ⌈log(T )⌉ ·T ·p1+1, where T = 1/(1−γ) is the effective horizon.1275

1276

Proof. Again t = 0, 1, 2, . . . we define the following random variables, X0,X1,X2, . . ., where,1277

Xt = C(⟨st, qt⟩) = 1 [accept ∈ L′(⟨st, qt⟩)] (143)

and we make the following observation,1278

E [Xt] = E [1 [accept ∈ L′(⟨st, qt⟩)]] (144)

= Pr (accept ∈ L′(⟨st, qt⟩)) (145)
≤ p1 (146)

See the proof of Prop. G.9, the argument is identical. Under mild assumptions (i.e. C(⟨st, qt⟩) <∞)1279

we consider the following decomposition of the (undiscounted) expected cumulative cost up to1280

timestep ⌈log(T )⌉ · T − 1,1281

Eπ

⌈log(T )⌉·T−1∑
t=0

C(⟨st, qt⟩)

 = Eπ [X0] + Eπ [X1] + . . .+ Eπ

[
X⌈log(T )⌉·T−1

]
(147)

≤ ⌈log(T )⌉ · T · p1 (148)

Again we replace the subscript ‘⟨st, qt⟩ ∼ Mπ ⊗D’ here for brevity, see the proof of Prop. G.9 for1282

more details. Before we proceed we must first deal with the dependence between the random variables1283

X0, . . . X⌈log(T )⌉·T−1. Strictly speaking it is not the case that Pr(Xt = 1 | Xt−1, . . . ,X0) =1284

41



Pr(Xt = 1). However, we have already established that Pr(Xt = 1) ≤ p1, as such we can simulate1285

X0, . . . ,X⌈log(T )⌉·T−1 as a sequence of independent coin flips Y0, . . . ,Y⌈log(T )⌉·T−1 with probability1286

p1, it is then the case that P[
∑⌈log(T )⌉·T−1

t=0 Xt > d2] ≤ P[
∑⌈log(T )⌉·T−1

t=0 Yt > d2]. Now we can1287

bound the probability that we care about,1288

1− P

[ ∞∑
t=0

γtC(⟨st, qt⟩) ≤ d2

]
= P

[ ∞∑
t=0

γtC(⟨st, qt⟩) > d2

]
(149)

= P

[ ∞∑
t=0

γtXt > d2

]
(150)

= P

⌈log(T )⌉·T−1∑
t=0

γtXt +

∞∑
t=⌈log(T )⌉·T

γtXt > d2

 (151)

≤ P

⌈log(T )⌉·T−1∑
t=0

Xt + 1 > d2

 (152)

≤ P

⌈log(T )⌉·T−1∑
t=0

Yt + 1 > d2

 (153)

= P

⌈log(T )⌉·T−1∑
t=0

Yt > ⌈log(T )⌉ · T · p1 + d2 − ⌈log(T )⌉ · T · p1 − 1


(154)

= P

⌈log(T )⌉·T−1∑
t=0

Yt > E

⌈log(T )⌉·T−1∑
t=0

Yt

+ d2 − ⌈log(T )⌉ · T · p1 − 1


(155)

≤ exp

(
− 2 · (d2 − ⌈log(T )⌉ · T · p1 − 1)2∑⌈log(T )⌉·T−1

t=0 (max{Yi} −min{Yi})2

)
(156)

= exp

(
−2 · (d2 − ⌈log(T )⌉ · T · p1 − 1)2

⌈log(T )⌉ · T

)
(157)

Here the first inequality (Eq. 152) comes from the following two facts, certainly1289 ∑⌈log(T )⌉·T−1
t=0 γtXt ≤

∑⌈log(T )⌉·T−1
t=0 Xt and we have that

∑∞
t=⌈log(T )⌉·T γtXt ≤ 1. The sec-1290

ond fact is a little harder to see, first we note that limγ→1 γ
T = 1/e, where T = 1/(1 − γ) is the1291

effective horizon. Then we can rewrite,1292

∞∑
t=⌈log(T )⌉·T

γtXt =
(
γ⌈log(T )⌉·T

)
·

 ∞∑
t=⌈log(T )⌉·T

γt−⌈log(T )⌉·TXt

 (158)

=
(
(γT )⌈log(T )⌉

)
·

 ∞∑
t=⌈log(T )⌉·T

γt−⌈log(T )⌉·TXt

 (159)

≤

(
1

e

⌈log(T )⌉
)
·
(

1

1− γ

)
≤

(
1

e

log(T )
)
· T =

1

T
· T = 1 (160)

The second inequality (Eq. 153) comes from our earlier construction. The final inequality (Eq. 156)1293

is obtained from Hoeffding’s inequality [40] for bounded random variables. Finally, by bounding the1294

final expression (Eq. 157) from above by δ2 and rearranging gives the desired result.1295

Proposition G.14. A feasible policy π for Problem G.12 with parameters δ2 ≤ p1 and d2 < γT+H ,1296

satisfies Pr(⟨st, qt⟩ |= ♢≤Haccept) ≤ p1 up to the effective horizon T = 1/(1− γ). This bound is1297

tight.1298
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Proof. A feasible policy π for Problem G.12 with parameters δ2 ≤ p1 and d2 < γT+H clearly1299

implies that,1300

P

[ ∞∑
t=0

γtC(⟨st, qt⟩) < γT+H

]
≥ 1− p1 (161)

and certainly for all t′ ∈ [0,T ] we have that,1301

1− p1 ≤ P

[ ∞∑
t=0

γtC(⟨st, qt⟩) < γT+H

]
(162)

≤ P

t′+H∑
t=t′

γtC(⟨st, qt⟩) < γT+H

 (163)

= P

γt′
t′+H∑
t=t′

γt−t′C(⟨st, qt⟩) < γT+H

 (164)

= P

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩) < (γT+H/γt′)

 (165)

≤ P

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩) < γH

 (166)

Let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting paths at timestep t′, where1302

st′ ∼ Pt′(·). Here Pt′(·) denotes the marginal state distribution at time t′. Recall that for1303

each path ρ ∈ Sω and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum1304 ∑t′+H
t=t′ γt−t′C(⟨st, qt⟩) ≥ γH . Without loss of generality fix some t′ ∈ [0,T ] and suppose that1305

Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) > p1. This implies that,1306

P

[ ∞∑
t=0

γtC(⟨st, qt⟩) ≥ γT+H

]
≥ P

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩) ≥ γH

 > p1 (167)

Which is a contradiction. Therefore, it must be the case that when Eq. 161 is satisfied then so is1307

Pr(⟨st, qt⟩ |= ♢≤Haccept]) ≤ p1 for all t ∈ [0,T ]. To prove that this bound is tight we can show1308

the possible existence of a counter example. In particular, we want to prove the following statement,1309

a policy π satisfying,1310

P

[ ∞∑
t=0

γtC(⟨st, qt⟩) < γT+H

]
≥ 1− (p1 + c) (168)

for some constant c > 0 does not imply that,1311

Pr
(
⟨st, qt⟩ |= ♢≤Haccept

)
≤ p1 ∀t ∈ [0,T ] (169)

We will show that there may exist some policy π that satisfies Eq. 168 but does not satisfy Eq. 169 at1312

some timestep t. Firstly, we assume π is such that Eq. 168 holds, this implies that for all t′ ∈ [0,T ]1313

we have,1314

1− (p1 + c) ≤ P

[ ∞∑
t=0

γtC(⟨st, qt⟩) < γT+H

]
(170)

≤ P

t′+H∑
t=t′

γtC(⟨st, qt⟩) < γT+H

 (171)

≤ P

t′+H∑
t=t′

γt−t′C(⟨st, qt⟩) < γH

 (172)
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Fix some t′ ∈ [0,T ] and let Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) denote the proportion of accepting paths1315

at timestep t′. Suppose that π is such that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) > p1. Again recall that1316

for each path ρ ∈ Sω and corresponding trace(ρ) ∈ Σω such that trace(ρ) |= ♢≤Haccept the sum1317 ∑t′+H
t=t′ γt−t′C(⟨st, qt⟩) ≥ γH , and so,1318

p1 + c ≥ P

[ ∞∑
t=0

γtC(⟨st, qt⟩) ≥ γT+H

]
(173)

≥ P

t′+b∑
t=t′

γt−t′C(⟨st, qt⟩) ≥ γH

 > p1 (174)

Now clearly for all p1 ∈ [0, 1], and c > 0, the following holds,1319

p1 < p1 + c (175)

This implies that there may exist some π satisfying Eq. 168 such that Pr(⟨st′ , qt′⟩ |= ♢≤Haccept) >1320

p1, i.e. does not satisfy Eq. 169 at timestep t = t′.1321
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