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Abstract

Modeling the interaction between proteins and ligands and accurately predicting
their binding structures is a critical yet challenging task in drug discovery. Recent
advancements in deep learning have shown promise in addressing this challenge,
with sampling-based and regression-based methods emerging as two prominent
approaches. However, these methods have notable limitations. Sampling-based
methods often suffer from low efficiency due to the need for generating multiple
candidate structures for selection. On the other hand, regression-based methods
offer fast predictions but may experience decreased accuracy. Additionally, the
variation in protein sizes often requires external modules for selecting suitable
binding pockets, further impacting efficiency. In this work, we propose FABind, an
end-to-end model that combines pocket prediction and docking to achieve accurate
and fast protein-ligand binding. FABind incorporates a unique ligand-informed
pocket prediction module, which is also leveraged for docking pose estimation. The
model further enhances the docking process by incrementally integrating the pre-
dicted pocket to optimize protein-ligand binding, reducing discrepancies between
training and inference. Through extensive experiments on benchmark datasets, our
proposed FABind demonstrates strong advantages in terms of effectiveness and
efficiency compared to existing methods. Our code is available at Githu

1 Introduction

Biomolecular interactions are vital in the human body as they perform various functions within
organisms [44! 2]]. For example, protein-ligand binding [35], protein-protein interaction [17], protein-
DNA interaction [18]], and so on. Among these, drug-like small molecules (ligands) binding to
protein is important and widely studied in interactions as they can facilitate drug discovery. Therefore,
molecular docking, which involves predicting the conformation of a ligand when it binds to a target
protein, serves as a crucial task, the resulting docked protein-ligand complex can provide valuable
insights for drug development.
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Though important, fast and accurately predicting the docked ligand pose is super challenging. Two
families of methods are commonly used for docking: sampling-based and regression-based prediction.
Most of the traditional methods lie in the sampling-based approaches as they rely on physics-informed
empirical energy functions to score and rank the enormous sampled conformations 8} 35| |43]],
even with the use of deep learning-based scoring functions for conformation evaluation [34, 49],
these methods still need a large number of potential ligand poses for selection and optimization.
DiffDock [7] utilizes a deep diffusion model that significantly improves accuracy. However, it
still requires a large number of sampled/generated ligand poses for selection, resulting in high
computational costs and slow docking speeds. The regression-based methods [9, 132, [11] that use
deep learning models to predict the docked ligand pose bypass the dependency on the sampling
process. For instance, TankBind [31] proposes a two-stage framework that simulates the docking
process by predicting the protein-ligand distance matrix and then optimizing the pose. In contrast,
EquiBind [41] and E3Bind [51] directly predict the docked pose coordinates. Though efficient, the
accuracy of these methods falls behind the sampling-based methods. Additionally, the variation
in protein sizes often requires the use of external modules to first select suitable binding pockets,
which can impact efficiency. Many of these methods rely on external modules to detect favorable
binding sites in proteins. For example, TankBind [31] and E3Bind [51]] take P2Rank [23]] as priors
for generating the pocket center candidates, which results in the need for a separate module (e.g.,
affinity prediction in TankBind and confidence module in E3Bind) for pocket selection, increasing
the training and inference complexity.

To address these limitations, we propose FABind, a Fast and Accurate docking framework in an
end-to-end way. FABind unifies pocket prediction and docking, streamlining the process within
a single model architecture, which consists of a series of equivariant layers with geometry-aware
updates, allowing for either pocket prediction or docking with only different configurations. Notably,
for pocket prediction, we utilize lightweight configurations to maintain efficiency without sacrificing
accuracy. In contrast to conventional pocket prediction, which only uses protein as input and forecasts
multiple potential pockets, our method incorporates a specific ligand to pinpoint the unique pocket
that the ligand binds to. Integrating the ligand into pocket prediction is crucial as it aligns with the
fundamental characterization of the docking problem. In this way, we achieve a quick (without the
need for external modules such as P2Rank) and precise pocket prediction (see Section [5.1).

Several strategies are additionally proposed in FABind to make a fast and accurate docking prediction.
(1) Our pocket prediction module operates as the first layer in our model hierarchy and is jointly
trained with the subsequent docking module to ensure a seamless, end-to-end process for protein-
ligand docking prediction. We also incorporate a pocket center constraint using Gumbel-Softmax.
This way assigns a probabilistic weighting to the inclusion of amino acids in the pocket, which helps
to identify the most probable pocket center and improve the precision of the docking prediction. (2)
We incorporate the predicted pocket into the docking module training using a scheduled sampling
approach [4]. This way ensures consistency between the training and inference stages with respect
to pocket leverage, thereby avoiding any mismatch that may arise from using the native pocket
during training and the predicted pocket during inference. In this way, FABind is trained on a variety
of possible pockets, allowing it to generalize well to new docking scenarios. (3) While directly
predicting the ligand pose [41]] and optimizing the coordinates based on the protein-ligand distance
map [31] are both widely adopted in the sampling-based methods to ensure efficiency, we integrate
both predictions in FABind to produce a more accurate pose prediction.

To evaluate the performance of our method, we conducted experiments on the binding structure
prediction benchmark and compared our work with multiple existing methods. Our results demon-
strate that FABind outperforms existing methods, achieving a mean ligand RMSD of 6.4. This is a
significant improvement over previous methods and demonstrates the effectiveness of our approach.
Remarkably, our approach also demonstrates superior generalization ability, performing surprisingly
well on unseen proteins. This suggests that our model can be applied to a wide range of docking
scenarios and has the potential to be a useful tool in drug discovery. In addition to achieving superior
performance, our method is also much more efficient during inference (e.g., 170x faster than Diff-
Dock), making it a fast and accurate binding framework. This efficiency is critical in real-world drug
discovery scenarios, where time and resources are often limited.



Docking ,

AN e P
e, S I FABind layer

Iterative
Refinement I (o}

FABind layers x N . Interfacial oy 2
I Message Passing TS

00000000 . 6

Q
! - Q

"h'lé‘:; & ‘/‘ { i | Cross Attention Update : 24
‘!" ’ { . Q)
fo. 5" ) » -d @ o

/ | o}

0

Pocket ’_;‘ I o °
Prediction Gumbel-Softmax . Independent o
000000000000 . Message Passing S
o

[ FABind layers ]x M

o e
y;gé% " 000000000000 2,
SRz

Figure 1: An overview of FABind. Left: The pocket prediction module takes the whole protein and the
ligand as input and predicts the coordinates of the pocket center, where the ligand is randomly placed
at the center of the protein. After determining the pocket center, a pocket is defined as a set of amino
acids within a fixed radius around the center. Subsequently, the docking module moves the ligand to
the pocket center and the ligand-pocket pair iteratively goes through the FABind layers to obtain the
final pose prediction. M and NN are the number of layers in pocket prediction and docking. Right:
Architecture of FABind layers. Each layer contains three modules: independent message passing
takes place within each component to update node embeddings and coordinates; cross-attention
captures correlations between residues and ligands and updates embeddings only; and interfacial
message passing focuses on the interface, attentively updating coordinates and representations.

2 Related Work

Protein/Molecule Modeling. Learning effective protein and molecule representations is fundamental
to biology and chemistry research. Deep learning models have made great progress in protein and
molecule presentation learning. Molecules are usually represented by graph or string formats, and
the graph neural networks (e.g., GAT [46], GCN [48]]) and sequence models (e.g., LSTM [12],
Transformer [45]]) are utilized to model the molecules. For proteins, the sequence models are
the common choices since the FASTA sequence is the most widely adopted string format [38].
Considering the 3D representations, incorporating the geometric information/constraint, e.g., SE(3)-
invariance or equivariance, is becoming promising to model the protein/molecule structures, and
there are multiple equivariant/invariant graph neural networks proposed [39, 20, 3, [16]. Among them,
AlphaFold2 [19] is almost the most successful geometry-aware modeling that achieves revolutionary
performance in protein structure prediction. In our work, we also keep the equivariance when
modeling the protein and ligand.

Pocket Prediction. Predicting binding pocket is critical in the early stages of structure-based drug
discovery. Different approaches have been developed in the past years, including physical-chemical-
based, geometric-based, and machine learning-based methods [40]. Typical geometric-based methods
are SURFNET [26] and Fpocket [27], and many alternatives have been proposed [47, 16} 42]]. Recently,
machine learning-based, especially deep learning-based methods, have been promising, such as
DeepSite [[15] and DeepPocket [1]] which directly predict the pocket using deep networks, and some
works utilize the deep scoring functions (e.g., affinity score) to score and rank the pockets [36} 50].
Among them, P2Rank [23]] is an open-sourced tool that is widely adopted in existing works [51}131]]
to detect potential protein pockets. In this work, we distinguish ourselves from previous methods
through the introduction of a novel equivariant module and the combination of two separate losses.
Besides, we jointly train the pocket prediction module and the docking module, leveraging the
knowledge gained from the docking module to improve the performance of pocket prediction.



Protein-Ligand Docking. Protein-ligand docking prediction is to predict the binding structure of the
protein-ligand complex. Traditional methods usually take the physics-informed energy functions to
score, rank, and refine the ligand structures, such as AutoDock Vina [43]], SMINA [21]], GLIDE [&]].
Recently, geometric deep learning has been attractive and greatly advances docking prediction. There
are two distinct approaches in docking research. Regression-based methods, such as EquiBind [41]],
TankBind [31]], and E3Bind [S1]], directly predict the docked ligand pose. On the other hand, sampling-
based methods, like DiffDock [[7], require extensive ligand pose sampling and optimization, but often
yield more accurate predictions. Our work lies in the research of regression-based methods with
much less computational costs, but achieves comparable performance to sampling-based approaches.

3 Method

An overview of our proposed FABind is presented in Fig.[I] We first clarify the notations and problem
definition in Section[3.1] In Section[3.2] we illustrate our FABind layer in detail. The specific design
of the pocket prediction module is explained in Section[3.3] while the docking module is introduced
in Section[3.4] Furthermore, the training pipeline is comprehensively described in Section [3.5]

3.1 Preliminaries

Notations. For each protein-ligand complex, we represent it as a graph and denote it as G =
(V= {Vyr} € = (&, &P, £PY). Specifically, the ligand subgraph is G! = (V!, £'), where node
v; = (h;,x;) € V! is an atom, h; is the pre-extracted feature by TorchDrug [52]], and x; € R3
is the corresponding coordinate. The number of atoms is denoted as n!. &' is the edge set that
represents chemical bonds in the ligand. The protein subgraph is GP = (VP EP), where node
v; = (h;,x;) € VP is aresidue, h; is initialized with the pre-trained ESM-2 [28] feature following
DiffDock [7], and x; € R3 is the coordinate of the C,, atom in the residue. The number of residues
is denoted as n”. E? is the edge set constructed by a cut-off distance 8A. The input of the pocket
prediction module is G. We further denote the pocket subgraph as GP* = (VP* EP*), with nP*
residues in the pocket. The pocket and ligand form a new complex as the input to the docking module:
Girr = (V := (VLV} € o= {8, EP* EP*}), where £P* defines edges in the external contact
surface. Detailed edge construction rule is in Appendix Section For clarity, we always use
indices 1, k for ligand nodes, and j, k" for protein nodes.

Problem Definition. Given a bounded protein and an unbounded ligand as inputs, our goal is to
predict the binding pose of the ligand, denoted as {x!*}1<;<,,. Following previous works, we focus
on blind docking scenario in which we have zero knowledge about protein pocket.

3.2 FABind Layer

In this section, we provide a comprehensive description of the FABind layer. For clarity, we use
FABind in the pocket prediction module for a demonstration.

Overview. Besides node-level information, we explicitly model pair embedding for each protein
residue-ligand atom pair (¢, j). We follow E3bind [51]] to construct a pair embedding z,; via an outer
product module (OPM): z;; = Linear ((Linear(h;) @) Linear(h;))). For the initial pair embedding,
OPM is operated on the transformed initial protein/ligand node embedding h;/h;. As illustrated
in Figure |1} each FABind layer conducts three-step message passing: (1) Independent message
passing. The independent encoder first passes messages inside the protein and ligand to update node
embeddings and coordinates. (2) Cross-attention update. This block operates to exchange information
across every node and updates pair embeddings accordingly. (3) Interfacial message passing. This
layer focuses on the contact surface and attentively updates coordinates and representations for such
nodes. The fundamental concept behind this design is the recognition of distinct characteristics
between internal interactions within the ligand or protein and external interactions between the
ligand and protein in biological functions. After several layers of alternations, we perform another
independent message passing for further adjustment before the output of pocket prediction/docking
modules. Notably, the independent and interfacial message passing layers are E(3)-equivariant, while
cross-attention update layer is E(3)-invariant since it does not encode structure. These ensure each
layer is E(3)-equivariant.



Independent Message Passing. We introduce a variant of Equivariant Graph Convolutional Layer
(EGCL) proposed by EGNN [39] as our independent message passing layer. For simplicity, here we
only illustrate the detailed message passing of ligand nodes, while the protein updates are in a similar
way. With the ligand atom embedding h! and the corresponding coordinate x! in the I-th layer, we
perform the independent message passing as follows:

my; = ¢, (b, b, [x; = xi]*).

1
h! = h! hl.E , R 7§ [ A
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where ., ¢, ¢ are Multi-Layer Perceptons (MLPs) [10] and A (i|£') denotes the neighbors of
node 7 regarding the internal edges &' of the ligand.

Cross-Attention Update. After independent message passing, we enhance the node feature with
cross-attention update over all protein/ligand nodes by passing the messages from all ligand/protein
nodes. The pair embeddings are also updated accordingly. We also take the ligand embedding
update for clarity. Given the ligand atom representations and the pair embeddings, we first perform
multi-head cross-attention over all protein residues:
1 " o
al(-;?) = softmax; (\/qu(-h) k;h) + bg?) , h! = hl4Linear [ concat,<p<py Z ag;b)vﬁ-h)
j=1
() (0 () l
b ] )

where q; v, are linear projections of the node embedding, and bl(?) = Linear(z;;) is a

linear transformation of pair embedding zéj. The protein embeddings hé- are updated similarly.

Based on updated node embeddings h! and hé—, the pair embeddings are further updated by z! ;=
zij + OPM(h, hé)

Interfacial Message Passing. With the updated protein and ligand representations, we perform an
interfacial message passing to update the included node features and the coordinates on the contact

surface. Our interfacial message passing derives from MEAN [22] with an additional attention bias.

The detailed updates are as follows:
exp (g, kij + bi)
> jenijen) exp (a kij + ;)
I+1 _ 1l e +1 _ R .
B =B D ey @V KT XD @ (= XG) b (vig),
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where ;= g (B), ki = or ([[xt =% [*, ), viy = o0 ([lxt = x]* Bl ), and by =
ob (2;), and ¢, Gk, Pu, db, dzv are MLPs. E'P* denotes the external edges between ligand and
protein contact surface constructed by cut-off distance 10A.
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3.3 Pocket Prediction

In the pocket prediction module, given the protein-ligand complex graph G, our objective is to
determine the amino acids of the protein that belong to the pocket. Previous works such as TankBind
and E3Bind both use P2Rank [23] to produce multiple pocket candidates. Subsequently, either affinity
score (TankBind) or self-confidence score (E3Bind) is utilized to select the most appropriate docked
pose. Though P2Rank is faster and better than previous tools, it is based on numerical algorithms
and traditional machine learning classifiers. Furthermore, the incorporation of P2Rank necessitates
the selection of candidate poses following multiple poses docking. These factors could potentially
restrict the performance and efficiency of fully deep learning-based docking approaches.

In our work, we propose an alternative method by treating pocket prediction as a binary classification
task on the residues using the FABind layer, where each residue in the protein is classified as belonging

to the pocket or not. Hence, the pocket prediction is more unified with the deep learning docking.

Specifically, we use a binary cross-entropy loss to train our pocket classifier:

1

Lo = - [y log(p;) + (1 —y;)log(1 — p;)],
P j=1

Tp



where 7, is the number of residues in the protein, and y; is the binary indicator for residue j (i.e., 1 if
it belongs to a pocket, 0 otherwise). p; = o(MLP({FABind layer(G)},)) is the predicted probability
of residue j belonging to a pocket, G is the protein-ligand complex graph, and ¢ is sigmoid function.

Besides the direct classification of each residue to decide the pocket, the common practice of
leveraging P2Rank pocket prediction is to first predict a pocket center coordinate, then a sphere near
the pocket center under a radius 20A. Therefore, we add a constraint about the pocket center to make
a more accurate prediction.

Constraint for Pocket Center. To constrain the predicted pocket center, we introduce a pocket
center regression task over the classified pocket residues. Given n?’ predicted pocket residues
Vp, = {Uflvvg
Then we can add a distance loss between the predicted pocket center xP" and the native pocket center
xP*. This pocket center computation inherently involves discrete decisions — selecting which amino
acids contribute to the pocket. Hence, we apply Gumbel-Softmax [[14] to produce a differentiable

approximation of the discrete selection process. It provides a probabilistic “hard” selection, which
more accurately reflects the discrete decision to include or exclude an amino acid in the pocket.

’
)

' . . . / P /
...,v” } from our classifier, the pocket center coordinate is x? = -1, 3™ x?',
? “np nP Jj=1"3

P exp((log(p)) +95)/7e)
T oxp((log(pr) + gir)/7e)
where g; is sampled from Gumbel distribution g; = —log(— log Uy,), Uy, ~ Uniform(0, 1), and 7.

is the controllable temperature. Then we use Huber loss [13]] between the predicted pocket center

p— 1 n® PP : D .
xP = E]’:l 7;%; and the native pocket center x”* as the constraint loss,

ﬁ;fr == lHuber (va Xp*)'

Training Loss. The pocket prediction loss is comprised of classification loss £, and pocket center
constraint loss ﬁggr, with a weight factor o = 0.2,

2
£pocket = AC;, + Oéﬁ; T

Pocket Decision. Our pocket classifier can output the classified residues in a pocket. Following
previous works [31,[51], we do not directly take these predicted residues as the pocket. Instead, we
calculate the center of these classified residues and take it as the predicted pocket center, and the
predicted pocket is in a sphere near the predicted center under a radius 20A. However, for some
proteins, our classification model may predict each residue as negative for a pocket, making it
impossible to determine the pocket center. This is likely due to an imbalance between the pocket and
non-pocket residues. For these rare cases, we take the Gumbel-softmax predicted center =P as the
pocket center to address this problem.

3.4 Docking

In the docking task, given a pocket substructure GP*, our docking module predicts the coordinate
of each atom in G'. The docking task is challenging since it requires the model to preserve E(3)-
equivariance for every node while capturing pocket structure and chemical bonds of ligands.

Iterative refinement. Iterative refinement [[19] is adopted in docking FABind layers to refine the
structures by feeding the predicted ligand pose back to the message passing layers several rounds.
During refinement iterations, new graphs are generated and the edges are also constructed dynamically.

After k iterations (iterative refinement) of the N x FABind layer alternations, we obtain the final
coordinates x and node embeddings h¥ and hJL. Besides directly optimizing the coordinate
loss, we additionally add distance map constraints to refine the ligand pose better. We reconstruct

distance matrices in two ways. One is to directly compute based on the predicted coordinates:

Dy; = ||xF — x%||. The other is to predict from the pair embeddings z[; by an MLP transition:

D; ;= MLP(ziLj), where each vector outputs a distance scalar.

Training Loss. The docking loss is comprised of coordinate 1oss L.,.-¢ and distance map loss Lg;s¢:

Edocking = Ecoord + Bﬁdisr



Ligand RMSD Centroid Distance

Percentiles | % Below T Percentiles | % Below T Average
Methods 25% 50% 75% Mean 2A  SA | 25% 50% 75% Mean 2A  SA | Runtime (s)
QVINA-W 25 77 237 136 209 402 09 37 229 119 410 546 49%
GNINA 28 87 221 133 212 370 1.0 45 212 115 360 520 146
SMINA 38 81 179 121 135 339 | 13 37 162 98 380 559 146*
GLIDE 26 93 281 162 218 336| 08 56 269 144 361 487 1405+
VINA 57 107 214 147 55 212| 1.9 62 201 121 265 47.1 205+
EQUIBIND 38 62 103 82 55 390 | 13 26 74 56 400 675 0.03
TANKBIND 26 42 76 78 176 578 | 08 17 43 59 550 778 0.87
E3BIND 21 38 78 712 234 600| 08 15 40 51 600 788 0.44
DIFFDOCK (1) 24 49 89 83 204 510| 07 18 45 58 541 768 2.72
DIFFDOCK (10) 16 38 79 74 324 597| 06 14 36 52 607 798 20.81
DIFFDOCK (40) 15 35 74 74 360 6L7| 05 12 33 54 629 802 82.83
1.3

FABIND 1.7 31 6.7 64 331 642 | 07 3.6 47 603 80.2 | 0.12

Table 1: Flexible blind self-docking performance. The top half contains results from traditional
docking software; the bottom half contains results from recent deep learning based docking methods.
The last line shows the results of our FABind. The number of poses that DiffDock samples is specified
in parentheses. We run the experiments of DiffDock three times with different random seeds and
report the mean result for robust comparison. The symbol "*" means that the method operates
exclusively on the CPU. The superior results are emphasized by bold formatting, while those of the
second-best are denoted by an underline.

Lcoora is computed as the Huber distance between the predicted coordinates and ground truth
coordinates of the ligand atoms. L g;; is comprised of three terms, each of which is £, loss between
different components of the ground truth and the two reconstructed distance maps. Formally,

np*

Laist :ﬁ[zizl Zjil(Dij — D) + Zi:l Z]:l(Dij — D)+ 721‘:1 Zj:1(Dij - Di;)?,

where D;; is ground truth distance matrix. In practice, we set § = v = 1.0.

3.5 Pipeline

We first predict the protein pocket and then predict the docked ligand coordinates in a hierarchical
unified framework. However, the common approach is to only use the native pocket for docking in
the training phase, which is known as teacher-forcing [24]] training. Therefore, there is a mismatch in
that the training phase takes the native pocket while the inference phase can only take the predicted
pocket since we do not know the native pocket in inference. To reduce this gap, we incorporate a
scheduled training strategy to gradually involve the predicted pocket in the training stage instead
of using the native pocket only. Specifically, our training pipeline consists of two stages, (1) in the
initial stage, since the performance of pocket prediction is poor, we only use the native pocket to
perform the docking training; (2) In the second stage, with the improved pocket prediction ability, we
then involve the predicted pocket into docking, where the native pocket is still kept in docking. The
ratio between the predicted pocket and the native pocketis 1 : 3.

Comprehensive Training Loss. Our comprehensive training loss comprises two components: the
pocket prediction loss and the docking loss,

L= Lpocket + £docking- (1)

4 Experiments

4.1 Setting

Dataset. We conduct experiments on the PDBbind v2020 dataset [29], which is from Protein Data
Bank (PDB) [5] and contains 19,443 protein-ligand complex structures. To maintain consistency
with prior works [41l 31]], we follow similar preprocessing steps (see Appendix Section [A.T]for more
details). After the filtration, we used 17, 299 complexes that were recorded before 2019 for training
purposes, and an additional 968 complexes from the same period for validation. For our testing phase,
we utilized 363 complexes recorded after 2019.



Ligand RMSD Centroid Distance

Percentiles | % Below T Percentiles | % Below T Average

Methods 25% 50% 75% Mean 2A  SA | 25% 50% 75% Mean 2A  5A | Runtime (s)
QVINA-W 34 103 281 169 153 319]| 13 65 268 152 354 479 49
GNINA 45 134 278 167 139 278 | 20 101 270 151 257 395 146
SMINA 48 109 260 157 9.0 257 | 16 65 257 13.6 299 417 146*
GLIDE 34 180 314 196 196 287 | 1.1 17.6 29.1 181 294 406 1405*
VINA 79 166 271 187 14 120 | 24 157 262 16.1 204 373 205*
EQUIBIND 59 91 143 113 07 188 26 63 129 89 167 438 0.03
TANKBIND 34 57 108 105 35 437 | 12 26 84 82 409 70.8 0.87
E3BIND 30 61 102 101 63 389 | 1.2 23 170 7.6 438 66.0 0.44
DiFFDOCK (1) 4.1 72 182 125 81 331 | 14 37 167 100 33.6 583 2.72
DiFrFDOCK (10) 32 64 165 11.8 142 387 | 1.1 28 133 93 397 626 20.81
DIFrFDOCK (40) 28 64 163 120 172 423 | 1.0 27 142 98 433 626 82.83

FABIND 22 34 83 77 194 604 | 09 15 47 59 576 757 | 0.12

Table 2: Flexible blind self-docking performance on unseen receptors.

Model Configuration. For pocket prediction, we use M/ = 1 FABind layer with 128 hidden
dimensions. The pocket radius is set to 20A. As for docking, we use N = 4 FABind layers with 512
hidden dimensions. Each layer comprises three-step message passing modules (refer to Fig.[T)). We
perform a total of k& = 8 iterations for structure refinement during the docking process. Additional
training details can be found in the Appendix Section[A.2]

Evaluation. Following EquiBind [41]], the evaluation metrics are (1) Ligand RMSD, which calculates
the root-mean-square deviation between predicted and true ligand atomic Cartesian coordinates,
indicating the model capability of finding the right ligand conformation at atom level; (2) Centroid
Distance, which calculates the Euclidean distance between predicted and true averaged ligand
coordinates, reflecting the model capacity to identify the right binding site. To generate an initial
ligand conformation, we employed the ETKDG algorithm [37] using RDKit [25]], which randomly
produces a low-energy ligand conformation.

4.2 Performance in Flexible Self-docking

In the context of flexible blind self-docking, where the bound ligand conformation is unknown and the
model is tasked with predicting both the bound ligand conformation and its translation and orientation,
we observe the notable performance of our FABind. Across most metrics, FABind ranking either
as the best or second best, as presented in Table E} Our FABind exceeds the DiffDock with 10
sampled poses. Although FABind may not achieve the best performance in terms of the <2A metric,
it demonstrates exceptional proficiency with a mean RMSD score of 6.4A. The comparatively lower
performance in the <2A metric can be attributed to the optimization objective of DiffDock, which
primarily focuses on optimizing ligand poses towards achieving <2A accuracy. FABind also gets
comparative performance on Centroid Distance metrics. Overall, the experimental results showcase
the remarkable efficacy of FABind.

4.3 Performance in Self-docking for Unseen Protein

To perform a more rigorous evaluation, we apply an additional filtering step to exclude samples whose
UniProt IDs of the proteins are not contained in the data that is seen during training and validation.
The resulting subset, consisting of 144 complexes, was then used to evaluate the performance of
FABind. The results of this evaluation are presented in Table 2] demonstrating that FABind surpasses
other deep learning and traditional methods by a significant margin across all evaluation metrics.
These findings strongly indicate the robust generalization capability of FABind.

4.4 Inference Efficiency

We conducted an inference study to demonstrate the efficiency of FABind. The statistics regarding
the average time cost per sample are presented in Table [} Comparing our method to others, we
observe that the inference time cost of FABind ranks second lowest. Notably, when compared to
DiffDock with 10 sampled poses, our FABind achieves better docking performance while being over
170 times faster. The efficiency of our method can be attributed to eliminating the need for an external



pocket selection module, and the sampling and scoring steps used by other methods. By doing so,
our FABind produces significantly faster docking. While EquiBind exhibits superior inference speed,
it performs poorly in the docking task. These compelling findings strongly support the claim that our
FABind is not only highly fast but also accurate.

5 Further Analysis

5.1 Pocket Prediction Analysis

In this study, We conduct an independent analysis of our

pocket prediction module. To evaluate its performance, | DCC % Below 1
we compared it with two existing methods, TankBind ~ Methods | 344X  5A
and E3Bind, both of which use P2Rank to first seg- TN kB 182 320 399
ment the protein to multiple pocket blocks, and then E3BIND ‘ 26.7 358 50.1
apply a confidence module for ranking and selection. " prrank 1364 501 570
The selected pockets are used to compare with our pre- oD 27 565 628
dicted pockets. The pocket prediction performance iS | |GAND INFORMATION | 369 515 590
measured by the distance between the predicted pocket - CENTER CONSTRAINT | 88 229 317
center and the center of the native binding site (DCC)

metric, which is a widely-used metric in pocket pre- Table 3: Results of pocket prediction.

diction task [[1]]. We use thresholds of SA, 4/°\, and 5/08, to determine successful predictions. From
Table[3] we can see that: (1) removing the center constraint (classification only) significantly hurts
the prediction performance. (2) The integration of ligand information into the pocket prediction task
also enhances performance and efficiency. Previous two-stage methods involve initial docking for
multiple pocket candidates, followed by the selection of the optimal candidate. Nevertheless, the
majority of potential binding sites are irrelevant to the particular ligand [51]. Our FABind further
improves the inference efficiency as our pocket prediction is essentially designed for predicting the
most probable pocket for the specific ligand. (3) Combined with center constraint, even without
incorporating ligand information, our pocket prediction performance outperforms TankBind and
E3Bind, which shows our rational design of the pocket prediction module is effective.

5.2 Ablation Study

In this subsection, we perform several ablation
studies to analyze the contribution of different RMSD RMSD

. Method Mean (A)] % Below 2A
components, the results for selected metrics are FAeB ods ea:: W % Z:vlv T
. 3 . IND K 3.

reported in Table 4, We examine four specific |

. . Ta NO SCHEDULED SAMPLING 6.4 28.7
settings: removal pf the scheduled training strat- COORD LOSS ONLY 69 163
egy (teacher forcing); removal of the distance NO ITERATIVE REFINEMENT 6.6 2.5
map related losses; removal of the iterative re- NO CROSS-ATTENTION 64 214

finement; and removal of the cross-attention up-
date. From the table, we can see that: (1) each
of the components contributes to the good performance of our FABind. (2) The combination of
distance map losses impacts most of the docking performance. (3) The remaining components

primarily contribute to improvements in fine-grained scales (<2A). A full ablation study can be found
in Appendix Section

5.3 Case Study

Table 4: Results of ablation study.

FABind can identify the right binding pocket for a new large protein. In Fig. [2{a), the large
protein target (PDB 6NPI) is not seen during training, thus posing a significant challenge to accurately
locate the binding pocket. Though predicted poses of other deep learning models (DiffDock, E3Bind,
TankBind, and EquiBind) are all off-site, FABind can successfully identify the native binding site and
predict the binding pose (in green) with low RMSD (3.9A), showing the strong generalization ability.

FABind generates ligand pose with better performance and validity. Fig. 2(b) shows the docked
results of another protein (PDB 6G3C). All methods find the right pocket, but our FABind aligns best
RMSD (0.8A) with the ground truth ligand pose. In comparison, E3Bind produces a knotted pose
where rings are knotted together which is not valid. DiffDock also produces the same accurate ligand



RMSD from
ground truth (A)
»FABind: 3.9
: 199
P E3Bind: 22.6
1232
»EquiBind: 20.0

RMSD from
ground truth (A)
»>FABind: 0.8
: 08
» E3Bind: 3.6
241
»EquiBind: 5.8

(a) PDB: 6NP! (b) PDB: 6G3C

Figure 2: Case studies. Pose prediction by FABind (green), DiffDock (wheat), E3Bind (magenta),
TankBind (cyan), and EquiBind (orange) are placed together with protein target, and RMSDs to
ground truth (red) are reported. (a) For large unseen protein (PDB 6NPI), FABind successfully
identifies the pocket, while the others are all off-site. (b) For the other protein (PDB 6G3C), all
models find the right pocket, among which FABind predicts the most precise and valid binding pose
as the DiffDock but with faster speed.

pose but is much slower. These show that FABind can not only find good pose with high speed but
also maintain structural rationality.

6 Conclusion

In this paper, we propose an end-to-end framework, FABind, with several rational strategies. We
propose a pocket prediction mechanism to be jointly trained with the docking module and bridge
the gap between pocket training and inference with a scheduled training strategy. We also introduce
a novel equivariant layer for both pocket prediction and docking. For ligand pose prediction, we
incorporate both direct coordinate optimization and the protein-ligand distance map-based refinement.
Empirical experiments show that FABind outperforms most existing methods with higher efficiency.
In future work, we aim to better align the pocket prediction and docking modules and develop more
efficient and effective tools.
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A More Detailed Descriptions

A.1 Dataset Preprocessing

As we stated in paper Section 4.1, PDBBind v2020 dataset [29] contains 19,443 ligand-protein
complex structures, and we pre-process the structures as follows. First, we only keep complex
structures whose ligand structure file (in sdf or mol2 format) can be processed by RDKit [25] or
TorchDrug [52], leaving 19,126 complexes. Then, to address the multiple equally valid binding
ligand pose issue for symmetric receptor structures, we only keep the protein chains that have an
atom within 10 A radius of any atom of the ligand. We further filter out complexes in which the
contact (distance is within 10A) number between ligand atom and protein amino acid C,, are less
than or equal to 5, or the number of ligand atom is more than or equal to 100. After applying these
filters, 18, 630 complexes are left. Finally, we process the remaining complexes with the time split as
described in EquiBind [41].

A.2 Experiment Settings

Baseline. We compare our model with traditional score-based docking methods and recent geometry-
based deep learning methods. For traditional docking methods, QVina-W, GNINA [33]], SMINA [21]],
GLIDE [8]] and AutoDock Vina [43] are included. For deep learning methods, EquiBind [41],
TankBind [31]], E3Bind [51] and DiffDock [7] are included.

We report corrected results for the deep learning baselines including EquiBind, TankBind, and E3Bind.
The corrected results adopt post-optimization methods on model outputs, including fast point cloud
fitting (used in EquiBind) and gradient descent (used in TankBind and E3Bind), which can further
enforce geometry constraints within the ligand. For TankBind, the post-optimization method is used
to get final ligand coordinates through the predicted distance matrix, which is essential for distance to
coordinate transformation. However, for a fair comparison, the reported average runtime of EquiBind,
TankBind, E3Bind, and FABind is the uncorrected version without post-optimization. The reported
baseline results are mainly derived from the original paper of E3Bind [51]]. For the DiffDock results,
as the results of the sample-based method are unstable, we reproduce the results using its pre-trained
checkpoinﬂ Specifically, we run the DiffDock inference codes with three random seeds and report
the average results.

Training and Evaluation. The training process consists of two stages. In the initial warm-up stage,
only the native pockets are used for docking. Once the pocket prediction performance reaches a
certain threshold (specifically, when the center coordinate distance between the predicted center
and ground truth is less than 4A), the training progresses to the second stage. During the second
stage, the predicted pockets are integrated into the docking training process. The sampling protocol
involves a 75% probability of selecting the ground truth pocket and a 25% probability of selecting
the predicted pocket. Note that the task of pocket prediction is consistently incorporated into the
entire training process. Following E3Bind [51]], we also apply normalization (divided by 5) and
unnormalization (multiplied by 5) techniques on the coordinate and distance. Additionally, to improve
the generalization ability of the model, the pocket is randomly shifted from —5A to 5A in all three
axes during training. FABind models are trained for approximately 500 epochs using the AdamW [30]]
optimizer on 8 NVIDIA V100 16GB GPU with batch size set to 3 on each GPU. The learning rate
is be — 5, which is scheduled to warm up in the first 15 epochs and then decay linearly. To further
enforce geometric constraints, we also incorporate local atomic structures (LAS) constraints in the
training process by ensuring the distances between ligand atoms ¢ and k in the transformed conformer
(X) by the model are consistent with those in the initial low-energy conformer (Z) for atoms that are
either 2-hop neighbors or in the same ring structure, as proposed in EquiBind [41]].

A.3 Ligand and Protein Feature Encoding

As we stated in paper Section 3.1, we construct ligand feature by TorchDrug [52]] toolkit and protein
feature with the pre-trained ESM-2 model. Here we give a detailed description of the encoding.
For ligand compound, the node embedding h; is a 56-dimensional vector containing the following
features: atom number; degree; the number of connected hydrogens; total valence; formal charge;

*https://github.com/gcorso/DiffDock
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Table 5: PDBBind blind docking on apo proteins. The top half contains results from traditional
docking software; the bottom half contains results from recent deep learning based docking methods.
The last line shows the results of our FABind. No method received further training on ESMFold
generated structures.

Apo ESMFold proteins

Top-1 RMSD
Method Y0<2 Med.
GNINA 2.0 223
SMINA 34 15.4
EQUIBIND 1.7 7.1
TANKBIND 10.4 5.4
P2RANK+SMINA 4.6 10.0
P2RANK+GNINA 8.6 11.2
EQUIBIND+SMINA 4.3 8.3
EQUIBIND+GNINA 10.2 8.8
DIFFDOCK (10) 21.7 5.0
DirFrDoOCK (40) 20.3 5.1
FABIND 24.9 4.2

whether or not it is in an aromatic ring. For protein target, we directly use the pre-trained 33-layer
ESM-2 [28]] modeﬂ, which contains 650M parameters and is trained on UniRef 50M dataset. The
node feature in the protein graph is derived from the amino acid feature and the hidden size is 1280.

A.4 Model Architecture Details

Edge Construction. We now introduce how to construct the edges in our FABind layers. For clarity,
we use FABind in the pocket prediction module for a demonstration. The cut-offs are set to the
same in both pocket prediction and docking. As defined in the paper, we have three types of edges,
£ = {&! & &P}, for ligand, protein, and ligand-protein interface, respectively. &' and P are
constructed from independent context, while &£ p is constructed from external interface. For the
independent context of a ligand, we directly refer to chemical bonds as constructed edges £' with the
biological insight that a molecule keeps its chemical bonds during the process. For the independent
context of a protein, £? is defined as the edges connecting to nodes when the spatial distance is below
a cutoff distance ¢;,. We set ¢, = 8.0 in our work following Kong et al. [22]. Note that independent
edges for ligands and proteins differ. For external edges £'7, we also add edges with a spatial radius
threshold c.x = 10.0 following TankBind [31]].

Global Nodes. MEAN [22] demonstrates that the global nodes intensify information exchange during
message passing. Therefore, we insert a global node into each component (ligand or protein) of the
complex as well. A global node connects to all nodes in the same component and the other global
node. The coordinates are initialized as zero tensors and can be updated during feed-forward.

Iterative Refinement. Iterative structure refinement has been proved as a critical design in structure
prediction task [[19]. It allows the network to go deeper without adding much computational overhead.
Specifically, we update coordinates during all iterations and update hidden representations only in the
last iteration. To stabilize the training process and save memories, we stop the gradients except for
the last iteration. In our implementation, we also accelerate training speed by randomly sampling an
iteration number less than or equal to the configuration NV for each batch, while always refining N
iterations during inference.

The pre-trained ESM-2 checkpoint can be found at https://dl.fbaipublicfiles.com/fair-esm/
models/esm2_t33_650M_UR50D. pt
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Ligand RMSD

Centroid Distance

Percentiles | % Below T Percentiles | % Below 1
Methods 25% 50% 75% Mean 2A  SA | 25% 50% 75% Mean 2A  SA
FABIND 1.7 3.1 6.7 6.4 331 64.2 \ 0.7 1.3 3.6 4.7 60.3 80.2
NO SCHEDULED SAMPLING 1.7 3.5 7.0 6.4 28.7 634 | 0.7 1.5 3.5 4.5 60.3 82.6
COORD LOSS ONLY 2.6 4.1 7.3 6.9 163 609 | 1.0 1.7 4.5 4.7 539 774
COORD LOSS + DIST. LOSS (1) 1.9 3.5 74 6.5 262 634 0.7 1.5 4.1 4.5 56.7 80.0
NO CROSS-ATTENTION 2.2 4.2 7.0 6.4 214 599 | 09 1.9 4.1 4.5 523 804
NO INDEPENDENT MP 2.1 3.8 7.0 6.6 226 61.7 | 0.8 1.5 3.3 4.6 59.8 82.6
NO ITERATIVE 2.2 4.1 7.2 6.6 225 585 | 09 1.9 4.7 4.7 523 804
NO ESM-2 1.9 3.6 8.0 63 275 612 038 1.6 3.8 44 562 79.1
WITH POST OPTIMIZATION 1.8 3.5 7.2 6.6 309 614 | 0.7 1.4 3.5 4.7 59.8 80.7

Table 6: Results of full ablation study.

B Apo-Structure Docking

As stated in DiffDock [7], the PDBBind benchmark primarily focuses on evaluating the ability of
docking methods to dock ligand to its corresponding receptor holo-structure, which is a simplified
and less realistic scenario. However, in real-world applications, docking is often performed on apo or
holo-structures that are bound to different ligands. To address this limitation, DiffDock proposed a
new benchmark that combines the crystal complex structures of PDBBind with protein structures
predicted by ESMFold [28]. In order to validate the efficacy of our FABind in the apo-structure
docking scenario, we also evaluated its performance under the same settings with DiffDock. In
order to validate the efficacy of our FABind in the apo-structure docking scenario, we implement the
same experimental setup as DiffDock. For 363 test samples, we first extract their sequences from
PDBBind and use esmfold_v1 to predict their structures, from which process we assume that the
apo protein structures are obtained. One sample (PDB: 60TT) is filtered out due to out-of-memory
error. Then we align the rest of the samples with PDBBind, where 12 samples are further excluded
due to memory limitations, the same as DiffDock. The results in TableE]demonstrate that FABind
outperforms DiffDock, achieving an RMSD of less than 2A on 24.9% of the complexes generated by
ESMFold. This demonstrates the strong predictive capacity of FABind for apo-structure predictions.

C Study

C.1 Full Ablation

The comprehensive ablations are listed in Table [ We can observe that each of the components
contributes to the good performance of our FABind. Firstly, the scheduled training strategy, when
removed, leads to a slight decrease in performance for challenging cases (e.g., RMSD 75%). This
indicates that the scheduled training strategy contributes positively to handling difficult scenarios.
Regarding loss construction, the inclusion of the distance map loss is crucial, and solely utilizing

the first term of distance map loss (i.e., the distance loss between D;; and D;; in Lg;s¢, which we
call “coord loss + dist. loss (1)” in Table[6) does not yield optimal results. The architecture design
also has a substantial impact. The removal of the cross-attention update and independent message
passing severely impair the model’s ability to handle favorable cases (e.g., RMSD 25%). This
suggests that cross-attention update and independent message passing are both vital for capturing
important structural dependencies. Furthermore, iterative refinement is found to be indispensable for
most structure prediction models, including ours. In terms of feature representation, the utilization
of ESM-2 features for residues proves to be most beneficial for challenging cases. It enhances
the model’s capability to handle difficult scenarios effectively. Lastly, post-optimization does not
significantly affect the overall performance but ensures that the generated ligand conformations are
chemically more rational.

C.2 Iterative Refinement

In this section, we investigate the impact of iterative refinement on our model. We utilize our
best-performing model and evaluate its performance using different iterations during inference. The
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Ligand RMSD Centroid Distance

Percentiles | % Below T Percentiles | % Below 1 Average
Iteration 25% 50% 75% Mean 2A  SA | 25% 50% 75% Mean 2A  SA | Runtime (s)
ITERATION=1 3.1 4.8 7.9 7.3 52 518 12 2.0 53 53 499 741 0.03
ITERATION=2 2.4 3.8 7.7 6.8 20.1 60.1 | 0.9 1.5 4.6 4.9 56.5 77.1 0.05
ITERATION=4 1.8 3.3 7.2 6.5 284 63.6 | 0.7 1.4 3.8 4.8 59.5 78.8 0.07
ITERATION=6 1.8 3.2 7.0 6.4 309 645 | 0.7 1.3 3.7 4.7 60.6 79.6 0.10
ITERATION=8 1.7 3.1 6.7 6.4 33.1 642 | 0.7 1.3 3.6 4.7 60.3 80.2 0.12
ITERATION=10 1.7 3.1 6.6 6.4 32,5 653 | 0.7 1.3 3.5 4.7 60.6 80.4 0.16
ITERATION=12 1.7 3.1 6.6 6.4 325 656 | 0.7 1.4 3.6 4.7 61.7 80.4 0.19

Table 7: Inference on different iterations.

RMSD from
ground truth (A)
»FABind: 2.7
: 555
»E3Bind: 6.8
: 74
»EquiBind: 34.0

RMSD from
ground truth (A)

»FABind: 1.9
g P2

»E3Bind: 3.4
34

»EquiBind: 5.7

(b) PDB: 6JB4

Figure 3: Additional case studies. Pose prediction by FABind (green), DiffDock (wheat), E3Bind
(magenta), TankBind (cyan), and EquiBind (orange) are placed together with protein target structure,
and RMSD to ground truth (red) are reported. (a) For unseen protein (PDB 6N93), FABind, E3Bind,
and TankBind successfully identify the pocket, among which FABind predicts the most precise
binding pose with the lowest RMSD 2.7A, while the other methods are all off-site. (b) For PDB
6JB4, all deep learning models find the right pocket, among which FABind predicts the most precise
binding pose with the lowest RMSD 1.9A.

results are reported in Table m From the table, we can find that (denote the number of iterations as 7,
1 <@ < 12): (1) the performance improves as ¢ increases. (2) The results tend to be stable when ¢
increases to some extent. (3) When ¢ = §, the results are generally optimal. However, the results are
similar when 4 < 4 < 12. Thus, a smaller value of ¢ can be used for better efficiency.

C.3 More Cases

Here we show more cases on test sets to further verify the ability of FABind in finding the correct
pocket for unseen protein and docking at the atom level. From Fig. [3(a), in PDB 6N93, the protein
is unseen in the training set, and only the predictions of FABind, E3Bind and TankBind are in the
right pocket, among which FABind predict the most accurate binding pose (RMSD 2.7A). From
Fig.[3(b), in PDB 6JB4, though every method correctly finds the native pocket, FABind predicts the
most accurate ligand conformation (RMSD 1.9.&).

D Broader Impacts and Limitations

Broader Impacts. Developing and maintaining the computational resources necessary to conduct
Al-based molecular docking requires considerable resources, which may lead to a waste of resources.

Limitations. In FABind, we represent the protein structure at the residue level, assuming the
rigidity of the protein. While many existing molecular docking methods adopt a similar protein
modeling strategy, we believe that employing atom-level protein modeling and incorporating protein
flexibility into the modeling process could yield improved results. FABind is not optimally designed
to accommodate scenarios with multiple binding sites, wherein a ligand has many potential binding

17



sites on a protein. Additionally, it is not well-suited for situations where a ligand can adopt multiple
binding conformations within a specific pocket of a protein. Generative modeling [[7] (sample-based
method) presents a reasonable approach to address these two scenarios. However, due to the scope
and limitations of our current work, we have decided to defer these aspects to future research.
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